
Impact of the position of the window in the reveal of a cavity wall on the heat loss and 
the internal surface temperature of the head of an opening with a steel lintel 

  
ABSTRACT 
 

The interface between the head of the window and the wall represents one of the largest thermal 

bridges of a building and one of the areas with the highest risk of surface condensation. This paper 

confirmed the importance, and investigated the impact, of the location of the window in the reveal of a 

cavity wall on the Ψlintel and surface temperature of the area. Additionally, it studied the reliability and 

accuracy of assessing this thermal bridge using an adiabatic surface instead the actual window. Two 

possible construction details that meet PARTL 2013 were modelled and assessed with HEAT2D 

software, following two different methods: the standard and commonly used (adiabatic surface) 

method and the detailed one (including the actual window). The outputs revealed that the adiabatic 

surface prevents the software to account the heat transfer that in reality occurs between the window 

frame and the highly conductive steel lintel. Therefore, the current simplified method could 

underestimates the heat losses up to 33% and the surface temperature by over 4
 º

C for certain 

locations. Additionally, it locates the optimal area for the frame between overlapping 70mm the cavity 

to align with the insulation layer of the cavity. Finally, it concluded that under current trends of 

extremely low Ψlintel the adiabatic surface has a greater impact than before, producing less accurate 

outputs, enough to start to think on the necessity of including the actual window during the 

assessment of the thermal performance of top hat lintels without base plate in low/zero carbon 

projects. 

 

1. INTRODUCTION 

 

A thermal bridge represents an area of least resistance to the heat flux through the building envelope. 

One of the most significant thermal bridges in cavity wall constructions is located at the head of 

openings, due to the sudden change in materials and geometry and the presence of steel lintels [1]. 

The side effects associated with a thermal bridge are greater heat loss and a subsequent reduction of 

the internal surface temperature in comparison with the surrounding area. This temperature gradient 

is naturally higher in corners and lintels [2]; [3]; [4]. Therefore, the lintel area is one of the most likely 

location for condensation and mould growth to occur. 

 

Traditionally frames are fixed into the external leaf of the wall overlapping the cavity by a minimum of 

30 mm, following the recommendation of the Robust Details catalogue [5]. However, well insulated 

walls are relatively thick, so the window can be placed at several locations in the reveal of the window 

opening. As energy heat loss associated with a thermal bridge is a result of the component 

performances as well as the way that components are interconnected [6], the location of the window 

in the reveal of a cavity wall also has an impact on the Ψlintel [4]; [6]; [7]; [8]. The linear thermal 

transmittance [Ψ-value] measures the extra two-dimensional heat loss of the fabric through linear 

thermal bridges expressed as [W/mK] [9]. 

 

The window is part of the thermal envelope. The main design aim is to secure the continuity of this 

envelope. Therefore, in terms of thermal performance, the frame should be aligned with the layer of 

lower conductivity in the wall, the insulation layer. Roberts et al. [7] pointed out the importance of the 

location of the window with respect to the insulation layer of the wall, on the magnitude of the Ψ lintel. In 

their study the alignment of the window with the insulation of the cavity resulted in a significant 

reduction of the Ψlintel with respect to the extreme outer and inner locations. In the same line of 

thoughts, the Zero Carbon Hub [8] concluded that in traditional brick and block cavity walls the deeper 

the window is moved into the cavity the better Ψ-value is achieved. 

 

Additionally, there is another important issue to investigate related with the location of the frame of the 

window. The impact in terms of heat loss of the current conventions used in the UK to assess thermal 
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bridging at openings, which allow the substitution of the window with adiabatic boundary layers [9]. 

Therefore, Ψ-value is taken as independent of the window, and depends only on the location and 

geometry of the junction [9]. In terms of condensation risk, Ward [9] recommends that window should 

be included in the model, when known, to calculate the temperature factor. 

  

1.1 Theory of heat loss calculations 

 

A linear thermal bridge such as the steel lintel junction, is defined by its linear thermal transmittance 

[ψ-value] and its temperature factor [f -value] [10]. 

 

The linear thermal transmittance of the steel lintel junction [Ψlintel] measures the extra two-

dimensional heat flow associated with the junction which is not accounted for by the U-values of the 

plane elements of the junction. The Ψlintel is calculated using the following equation in accordance 

with Ward and Sanders [10] and its units are W/mK: 

 

𝛹 = 𝐿2𝐷 −  𝑙𝑤  ∙ 𝑈′𝑤        (1) 

 

Where, L
2D

 is the thermal coupling coefficient or the two-dimensional heat transfer coefficient between 

the inside and outside conditions, expressed in W/mK. U’w is the thermal transmittance or U-value of 

the flanking wall, expressed in W/m
2
K. lw is the length in metres over which the Uw value applies. 

 

Additionally, the temperature factor at the internal surface [fRsi] is used to determine whether certain 

surfaces inside a building present potential for condensation because of their low surface temperature 

[9]. It is calculated under steady-state conditions by the following equation [9]: 

 

𝑓𝑅𝑠𝑖  =
𝑇𝑠𝑖−𝑇𝑒

𝑇𝑖−𝑇𝑒
            (2) 

 

Where Tsi is the minimum temperature of the internal surface and typically Te = 0 °C and Ti = 20 °C 

are the external and internal air temperatures respectively, used for calculations for residential 

buildings in the UK [9]. If humid air contacts an internal surface with a temperature below dew point, 

for instance due to thermal bridging, condensation will occur [11]. For residential buildings in the UK 

Tsi should be greater than, or equal to, 15 °C, as determined by fCRsi = 0.75 the critical temperature to 

avoid risk of condensation in dwellings [9]. Since the lintel area is one of the most likely locations for 

condensation, it is important to accurately calculate the temperature factor to determine any potential 

for condensation. 

“Assessing the effects of thermal bridging at junctions and around openings” [9] and the “Conventions 

for calculating linear thermal transmittance and temperature factors” [10] are the guides used in the 

UK to perform the calculations of the heat loss and surface temperature associated with this type of 

thermal bridges. According to these documents, when assessing heat loss, the frame does not need 

to be included in the model and can be substituted for an adiabatic surface [9]. The reason for this is 

that often in the first stages of the design, the window that will be used is not known. 

Previous research by Sierra et al. [12] investigated the impact on the calculation of Ψlintel and surface 

temperature of using an adiabatic surface instead of a detailed frame. The study was only carried out 

for the standard position of the window, when the frame overlaps the outer face of the cavity by 

30 mm. It concluded that, for this location, the use of an adiabatic surface could underestimate the 

heat losses by up to 9% in comparison with a detailed assessment of the thermal bridge when 

including the window. The use of an adiabatic surface involves assuming no heat exchange along the 

joint between the window frame and the wall. Therefore, the main reason to explain the difference in 

output between the two methods, is that substituting the frame by an adiabatic boundary ignores the 

heat transfer between window frame and wall/lintel area, while the detailed method takes account of 
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it. Additionally, the adiabatic surface can increase by over 3 °C the actual internal surface temperature 

of the junction, which agrees with the recommendation suggested by Ward [9] to include the window 

when calculating the temperature factor. Otherwise, if the junction is not assessed correctly, it could 

hide possible risks of condensation which may show up once the building is finished. 

Finally, it is also necessary to point out that the location of the window needs to balance thermal 

performance with other factors, especially when moving the frame to internal positions. For instance, 

Bloom [18] pointed out that deep reveals provide shade when glazing is positioned internally, giving 

reductions in daylight and solar gains. Deeper locations could also generate buildability and structural 

issues when fixing the window, requiring casing [8]. The main reason behind the extended use of the 

position recommended by the Robust Details catalogue [5] is structural. It gives stability, when 

installing and using windows and additionally it facilitates the sealing of the opening for airtightness. 

The purpose of this research was to investigate the impact of the location of the window in the reveal 

of a cavity wall on the Ψlintel to determine the most efficient position in terms of minimizing the heat 

loss of the fabric. At the same time, the variation of the surface temperature was also studied. Finally, 

this research also analysed the effect of moving the adiabatic surface in the reveal of the opening on 

the Ψlintel and its internal surface temperature. 

  

2 METHODOLOGY 

 

2.1 Data collection and modelling assumptions. 

 

A parametric analysis was carried out to find out how Ψlintel and the internal surface temperature 

change depending on whether an adiabatic surface or the actual window is included in the model 

when moving the location of the frame in the reveal of the wall. The frame was located from left to 

right in six different positions as seen in Fig. 1: 

 

 1. Aligned with the outer face of the façade. 

 2. Fixed into the external leaf and overlapping the cavity 30mm. 

 3. Fixed into the external leaf and overlapping the cavity 70mm. 

 4. Aligned with centre of the cavity. 

 5. Fixed into the inner leaf overlapping this leaf by 50mm. 

 6. Aligned with the inner face of the room.  

 

 

Fig. 1. Six different positions of the frame for the CASE1 
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Two construction details (Case1 and Case2) were set up under PARTL1A 2013 [13] standards, 

incorporating a 2 mm top hat steel lintel without base plate as shown in Fig. 2. The first case study is 

expected to be the common construction trend under PARTL1A 2013. The second case study covers 

an alternative solution to keep a 100 mm cavity size by adding 35 mm of internal insulation. 

 

 
Fig. 2. Specifications of the construction details studied.  

 

They were modelled using the software package HEAT2D [14], under steady state conditions to 

calculate heat loss and surface temperature when moving the frame of the window to six different 

positions.  

 

Any piece of software to assess thermal bridges needs to be validated to assure the trustability and 

consistency of the output generated by their mathematical models. Once validated, it is possible to 

simulate new cases achieving accurate and trustable outputs. HEAT2D has been fully validated by 

Blomberg [14] against the proposed reference cases included in the ISO 10211 [15]. Furthermore, the 

software has been also validated to assess steel lintels, comparing the numerical calculation outputs 

against real data from physical measurement provided by Ward et al. [10].  

 

In addition to using validated software, correct assumption and inputs need to be included in the case-

specific model to generate correct results. For this purpose, the assumptions and inputs to set up the 

calculation of the thermal transmittance of the lintel area followed ISO 10211 [15], the surface 

resistances for the calculation of internal surface temperatures for the purposes of evaluating 

condensation risk were input in accordance with ISO 13788 [11] and the assumptions and inputs to 

set up the calculation of the thermal transmittance of the frame profile used in this research followed 

ISO 10077-2 [16]. 

 

Finally, the frame selected for this research is one of the examples given for validation included in 

Annex D of the BS EN ISO 10077-2:2012 [16]. In this way, the level of uncertainty of the experiment 
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is reduced, since the heat loss through this system is known and has already been validated. The 

process to validate the calculation of the thermal transmittance of the windows is shown in the next 

paragraphs following the steps outlined in ISO 10077-2 [16]. 

 

For each case study and each of the six frame locations, the window unit was replaced either by an 

adiabatic surface according to BRE IP 1/06 [9] and BR 497[10] or a detailed window was modelled 

according to ISO 10077-2 [16] taking into consideration the heat transfer coefficients of the frame and 

the glass and the linear heat transfer coefficients of the glazing spacer. In this way it is possible to 

compare the outputs of the simplified and detailed method. For each surface of every model a 

temperature and a resistance were assigned. Therefore, following ISO 10211 [15], external surface 

resistance had an Rso = 0.04 m
2
K/W, the internal surface resistance had an Rsi = 0.13 m

2
K/W on 

perpendicular surfaces to thermal flux and 0.10 m
2
K/W on parallel surfaces. Furthermore, a difference 

of temperatures was set up from internal Ti = 20C to external Te = 0C [10].  

 

The window selected to carry out the detailed method is represented in Fig.3 and Fig.4. It features a 

softwood frame 83 mm wide by 110 mm long and λ = 0.13 W/mK with a double pane glass 205 mm 

long (4–20–4) and aluminium spacer (λ = 160 W/mK) with a cavity filled with silica gel (λ = 0.13 

W/mK), and a primary seal of polysulphide (λ = 0.4 W/mK). Furthermore, ISO 10077-2 [16] assumes 

vertical orientation of frame sections and air cavities so Rsi = 0.13 m
2
K/W is applied when calculating 

the thermal performance of the frames for the internal surfaces. The same document also states, that 

in the case of reduced radiation/convection due to edges between two surfaces, such as the ones 

represented in red in Fig. 3 and Fig. 4 i.e. between the frame and glass, a RSI= 0.20 m
2
K/W needs to 

be applied.  

The detailed model was assessed following three steps: The first step calculated the Uf of the window 

frame by using a 190 mm long calibration panel (λ = 0.035 W/mK) and Up = 1.03 W/m
2
K instead of the 

glass. The thermal transmittance of the frame was then calculated according to equation (3) [16]:  

 

𝑈𝑓 =
(𝐿2𝐷−𝑈𝑝 ∙𝑙𝑝)

𝑙𝑓
        (3) 

 

Where Up is the thermal transmittance of the central area of the panel, expressed in W/m
2
·K (1.031); lf 

is the width of the frame section expressed in m (0.11); lp is the visible width of the panel, expressed 

in m (0.19). 

 

The thermal conductance of the model calculated was L
2D 

= 6.759/20 = 0.3379 W/mK and  

Uf = (0.3379 – 1.031x0.19)/0.11 = 1.291 W/m
2
K. 

 

 
 

Fig. 3. First step. Calculation of the Uf of the frame of the window. 

 

The elemental recipe for compliance with PARTL1A 2013 for England [13] and Wales [17] suggests 

for the glazing an Uf = 1.4 W/m²K. Therefore, similar windows to the one used in this research will be 

used by the industry. 

 



In the second step the panel was replaced by the original glass and a simplified spacer was added. 

The Ψg of the glazing edge was calculated by subtracting the heat flow through the glass and the 

frame from the heat flow of the whole model according to the equation (4) [16]: 

 

𝛹𝑔 = 𝐿2𝐷 −  𝑈𝑓 ∙ 𝑙𝑓 −  𝑈𝑔 ∙ 𝑙𝑔       (4) 

  

Where Ug (1.03) is the thermal transmittance of the central area of the glass, expressed in W/m
2
·K; lg 

(0.19) is the visible width of the panel, expressed in m. 

The thermal conductance of the model calculated was L
2D 

= 9.549/20 = 0.4774 W/mk and  

Ψg = (0.4774 – 1.291x0.11 – 1.305x0.19) = 0.087 W/mK. 

 

 
 

Fig. 4. Second step. Calculation of the Ψg of the glazing edge. 

 

Finally, the third step carried out the numerical analysis of the entire construction detail including the 

detailed window using HEAT2D. The Ψ-value of the thermal bridge was calculated by subtracting 

the heat flow through the wall, glass, frame and the glazing spacer from the heat flow of the whole 

model according to equation (5) [16]: 

 

𝛹 = 𝐿2𝐷 − 𝑈𝑤 ∙ 𝑙𝑤 −  𝑈𝑓 ∙ 𝑙𝑓 −  𝑈𝑔 ∙ 𝑙𝑔  −  𝛹𝑔    (5) 

 

Where lw = 2 m in the detailed model. This is the dimension of the wall up to the window frame, 

measured from the inside, and expressed in metres as shown in Fig. 5.    

 

 
Fig. 5. Internal dimensions of the detailed and simplified method [10]. 

 

On the other hand, the simplified model was also assessed using HEAT2D but replacing the window 

frame by an adiabatic boundary with zero heat flow according to Ward [9]. The Ψ-value of the thermal 

bridge is calculated by subtracting the heat flow through the wall, from the heat flow of the whole 

model according to the equation (6) [10]: 

 

𝛹 = 𝐿2𝐷 − 𝑈𝑤 ∙ 𝑙𝑤   (6) 

 



For the simplified method lw = 2.0275 m, which corresponds with the dimension of the wall measured 

up to the internal surface finish of the reveal of the opening underside the plasterboard [10] as shown 

in Fig. 5. 

Therefore and based on the previous assumptions, 24 construction details were modelled in HEAT2D 

and a numerical analysis was carried out to obtain their corresponding Ψ-values and internal surface 

temperature in order to compare the outputs of two different calculation methods for six different 

positions using two different case studies. 

 

3. RESULTS 

 

The results are represented graphically in Fig. 6 ;  Fig. 7 for comparison of the variation in Ψlintel and 

surface temperature depending on the location of the window and the method used when assessing 

both parameters for CASE1 and CASE2. 

 
Fig. 6. Ψlintel for the detailed (red) and simplified method (black) depending on window location for 

CASE1 (left) and CASE2 (right) 

 

 
 

Fig. 7. Surface T for the detailed (red) and simplified method (black) depending on window location for 

CASE1 (left) and CASE2 (right) 

 

The location of the window has a pronounced effect on the Ψlintel with differences up to 0.12 W/mK for 

CASE1 and 0.077 W/mK for CASE2 between best and worst position. The larger values correspond 

to the outer locations and the lower to the inner ones for both cases. When calculating the heat loss 

the use of an adiabatic surface instead the detailed window reduces the Ψlintel for the two first and last 

positions and increases the heat loss for the other three middle positions. The maximum difference 

between methods, equal to 0.02 W/mK for CASE1 and 0.015 W/mK for CASE2, corresponds to the 

inner location. Although the absolute difference is bigger for the CASE1, the use of an adiabatic 

surface produces a larger relative percentage increase for the CASE2 (33%) in comparison with 

CASE 1 (12%). 
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The location of the window has a pronounced effect on the internal surface temperature for CASE1 

with differences up to 2.5 °C and less pronounced for CASE2 with variations up to 1 °C. The larger 

variations correspond to the outer and inner locations, while for intermediate positions the 

temperature remains relatively stable. The use of an adiabatic surface has a higher effect in the case 

of the internal surface temperature in comparison with the Ψlintel, producing increases up to 3.2 °C for 

CASE 1 (standard position) and 4.6 
°
C for CASE2 (inner position). 

Finally, the software images for the isotherms of the 24 cases are illustrated in Fig. 8, Fig. 9, Fig. 

10 ;  Fig. 11 distributed in four groups of six different location subcases. The isotherms tend to be 

more parallel for the intermediate positions and loose the continuity for outer and inner positions. 

Additionally, the inner layer of the wall is kept warmer for the outer positions in comparison with the 

inner positions of the window. Finally, the area with lowest internal temperature moves to the wall-

window connection if the detailed assessment is used and the area covered grows, in comparison 

with the simplified assessment. 
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1. Ψ= 0.270         

 T= 15.78 C 

2. Ψ= 0.201       

   T= 18.36 C 

       3. Ψ= 0.190       

T= 18.30 C 

         4. Ψ= 0.181         

 T= 18.18 C 

       5. Ψ= 0.156        

       T= 17.67 C 

        6. Ψ= 0.170        

T= 16.8 C 
 

Fig. 8. Variation of the distribution of isotherms when changing the window position for CASE 1 & simple method (adiabatic). Where T is the minimum internal 
surface temperature for each position of the window for CASE1. 

 

 

1. Ψ= 0.276         

   T= 13.59C 

2. Ψ= 0.215        

T= 15.14C 

        3. Ψ= 0.188        

T= 16.06C 

        4. Ψ= 0.175       

T= 16.04C 

      5. Ψ= 0.153      

      T= 15.69C 

     6. Ψ= 0.190       

     T= 14.99C 
 

Fig. 9. Variation of the distribution of isotherms when changing the window position for CASE 1 & detailed method (window included). Where T is the 
minimum internal surface temperature for each position of the window for CASE1. 



  

 
1. Ψ= 0.115         

T= 18.79 C 

2. Ψ= 0.093        

T= 19.11 C 

        3. Ψ= 0.082        

T= 19.06 C 

        4. Ψ= 0.076         

T= 19.03 C 

        5. Ψ=0.057         

T= 19.01 C 

        6. Ψ= 0.046        

T= 19.50 C 
 

Fig.10. Variation of the distribution of isotherms when changing the window position for CASE 2 & simple method (adiabatic). Where T is the minimum 
internal surface temperature for each position of the window for CASE2. 

 

 
1. Ψ= 0.127         

T= 14.62C 

2. Ψ= 0.103        

T= 14.96C 

        3. Ψ= 0.078        

T= 15.61C 

        4. Ψ= 0.069   

T= 15.52C 

        5. Ψ= 0.054       

T= 15.30C 

        6. Ψ= 0.061      

T= 14.90C 
 

Fig. 11.  Variation of the distribution of isotherms when changing the window position for CASE 2 & detailed method (window included). Where T is the 
minimum internal surface temperature for each position of the window for CASE2.



4. DISCUSSION OF THE RESULTS 
 

Based on the results shown in the previous section, it is possible to analyse the effect of the use of an 

adiabatic surface on the Ψlintel and internal surface temperature when moving the window frame in 

the reveal of the head of the opening. 

In terms of Ψlintel [W/mK], the analysis of the outputs of the simplified method reveals that the location 

of the window has an impact on the Ψlintel, in the same line of thoughts than [4]; [6]; [7] ;  [8]. The 

differences in heat loss are up to 0.12 W/mK for CASE1 and 0.077 W/mK for CASE2 between best 

and worst position. The larger values of the outer locations are due to the wider distance to the 

insulation layer in both cases. For CASE2 the decrease of the heat loss is continuous, when moving 

the frame to deeper positions in the reveal, due to the presence of a second insulation layer in the 

inner surface of the wall. Therefore, and in accordance with Roberts et al. [7] for thermal efficacy the 

frame should be aligned with the layer of lower conductivity in the wall. 

The comparison between the outputs of the simplified method and the detailed one for the standard 

position reveals an increase of the heat loss of 7% for CASE1 and 11% for CASE2 (Fig. 6). When the 

adiabatic surface is located in the outer, standard or inner positions (1,2, 5 and 6 in Fig. 1), it covers a 

big portion of one of the two wings of the steel lintel. The adiabatic surface then acts for the software 

as a super-insulated material, not accounting the exchange of heat between the steel of the lintel (a 

highly conductive material) and the frame of the window. Therefore, for these locations the simplified 

method underestimates the heat losses that in reality happen. 

The maximum difference between methods corresponds to the inner location (Fig. 6), and equals to 

0.02 W/mK for CASE1 and 0.015 W/mK for CASE2, Although the absolute difference is bigger for the 

CASE1, the use of an adiabatic surface produces a larger relative percentage increase for the CASE2 

(33%) in comparison with CASE 1 (12%), since CASE2 presents lower Ψ-values. Therefore, the lower 

are the Ψlintel, the more impact has the use of an adiabatic surface when calculating the heat loss and 

less accurate are the outputs. This increase in heat loss for the inner position is not detected when an 

adiabatic surface is used for two reasons. Firstly, the inner steel wing is in direct contact with the 

internal environment. Therefore, for inner positions there is more heat exchange between frame and 

lintel than for outer positions. Secondly, the window is located between two insulation layers for 

CASE2 and position 6 (Fig. 1). Therefore, the heat will follow the frame-lintel connection, which in this 

case is the path of less resistance for the heat to escape. However, the presence of an adiabatic 

surface will encapsulate the lintel and the inner leaf of the wall between the cavity and internal wall 

insulation and a fictional super-insulated material, preventing any heat transfer between the lintel and 

the frame section. The detailed assessment demonstrates that, for CASE2 and position 6, the 

simplified method can underestimate heat losses up to 33%. Therefore, for internally insulated details 

the effect of the adiabatic surface cannot be neglected. For CASE1 this effect is softer due to the 

absence of inner wall insulation. 

The current Ψlintel assessment method allows to not include the actual window for the assessment of 

the head of the opening area [9]. At the time the document was published in 2006, the Ψ-values for 

this thermal bridge were large enough so that the inaccuracy of using an adiabatic surface did not 

have a big impact on the absolute and relative value of the heat loss due to this bridge. However, 

under the current trends of energy efficiency and with the “elemental recipe” proposed by PARTL 

2013 [13] suggesting a Ψlintel = 0.050 W/mK for compliance, the use of the adiabatic surface could 

have a greater impact than before as seen in this research. The reason for using the time consuming 

numerical analysis is to achieve a typical accuracy of ± 5%. A 7% to 11% increase of the heat lose for 

current low Ψlintel is large enough to start to think on the necessity of including the actual window 
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http://www.sciencedirect.com/science/article/pii/S0378778816316383#bib0030
http://www.sciencedirect.com/science/article/pii/S0378778816316383#bib0035
http://www.sciencedirect.com/science/article/pii/S0378778816316383#bib0040
http://www.sciencedirect.com/science/article/pii/S0378778816316383#bib0035
http://www.sciencedirect.com/science/article/pii/S0378778816316383#fig0030
http://www.sciencedirect.com/science/article/pii/S0378778816316383#fig0005
http://www.sciencedirect.com/science/article/pii/S0378778816316383#fig0030
http://www.sciencedirect.com/science/article/pii/S0378778816316383#fig0005
http://www.sciencedirect.com/science/article/pii/S0378778816316383#bib0045
http://www.sciencedirect.com/science/article/pii/S0378778816316383#bib0065


during the assessment of both thermal performance and risk of condensation for top hat lintels without 

base plate. 

It was also found that the location of the window has a pronounced effect on the other variable 

studied in the research for CASE1, the internal surface temperature, with differences up to 2.5 °C and 

less pronounced for CASE2 with variations up to 1 °C since the inner layer is insulated. The larger 

variations correspond to the outer and inner locations due to the wider distance to the middle 

insulation layer for CASE1 and only for the outer in the CASE2 due to the existence of the second 

inner insulation layer. 

The use of an adiabatic surface has a higher effect in the case of the internal surface temperature in 

comparison with the Ψlintel, producing increases up to 3.2 °C for CASE 1 (standard position) and 

4.6 °C for CASE2 (inner position). The reasons are similar to the ones presented before for the Ψlintel. 

These results agree with the recommendation made by Ward [9] to include the frame when 

calculating the internal surface temperature. Otherwise, if the junction is not assessed correctly it 

could hide possible risks of condensation which may show up once the building is finished. In this 

way, Fig. 7 shows that the use of an adiabatic surface hides the existence of risk of condensation for 

outer, standard and inner positions (1, 2, and 6 in Fig. 1), showing greater internal temperatures than 

the actual ones. 

Finally, the optimal position of the window should fulfil three requirements: Parallel isotherms to keep 

the continuity of the thermal envelope, low Ψ-values to reduce the heat loss and high surface 

temperature to avoid the risk of condensation. The distribution of the isotherms for each location 

reveals an area, from overlapping 70 mm the cavity to align with the insulation layer, where the 

isotherm became almost parallel. Additionally, it shows that the inner layer of the wall is kept warmer 

for the outer positions in comparison with the inner positions. In terms of heat loss, position 5 (Fig. 1) 

is the optimal followed by 4 and 3. However, these are un-usual positions for the window. The Energy 

Saving Trust [19] already suggested a similar location to 5 in an Enhanced Construction Detail [ECD] 

with internal insulation. Despite the good thermal performance of this detail, the buildability and 

airtightness problems that could produce [8] ; [20] made this detail not popular in the construction 

industry. In terms of lower condensation risk the optimal locations are 3 and 4 (Fig. 1). Based on the 

previous analysis, the optimal location will cover an area between overlapping 70 mm the cavity to 

align with the insulation layer of the cavity. Finally, the standard position (2) is a relatively less efficient 

and safe position if compared with 3 and 4, but with the advantage of being a much more robust 

detail. 

When placing the window, the designer should try to align the frame with the insulation layer for 

continuity of the thermal envelope. However, in practice the decision about the location of the 

fenestration should be driven by other variables as well as the best thermal performance. Factors 

such as daylight distribution, solar gains, maintenance needs, water drainage in the sill area, 

thickness of the frame, buildability, airtightness, structural and aesthetic aspects also need to be 

taken into account [2] ;  [18]. 

 

5. CONCLUSIONS  
 

This paper has investigated the impact of the location of the window in the reveal of a cavity wall on 
the Ψlintel and surface temperature. Additionally, it has also studied the effect, on the accuracy of the 
assessment of both parameters, of using an adiabatic surface instead of the actual window. 

The research has confirmed the importance of the location of the window to improve the thermal 
performance and to avoid condensation in the area. For this purpose, it suggests to align as much as 
possible the frame with the main insulation layer, for continuity of the thermal envelope of the building, 
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http://www.sciencedirect.com/science/article/pii/S0378778816316383#fig0035
http://www.sciencedirect.com/science/article/pii/S0378778816316383#fig0005
http://www.sciencedirect.com/science/article/pii/S0378778816316383#fig0005
http://www.sciencedirect.com/science/article/pii/S0378778816316383#bib0095
http://www.sciencedirect.com/science/article/pii/S0378778816316383#bib0040
http://www.sciencedirect.com/science/article/pii/S0378778816316383#bib0100
http://www.sciencedirect.com/science/article/pii/S0378778816316383#fig0005
http://www.sciencedirect.com/science/article/pii/S0378778816316383#bib0010
http://www.sciencedirect.com/science/article/pii/S0378778816316383#bib0090


covering an area from overlapping the cavity 70 mm to aligned with the insulation of the cavity. 
Additionally, it also concludes that taking into account other factors, the current standard position is a 
relatively less efficient position, but more robust and buildable. 

To date the profession uses an adiabatic surface to replace the actual window during the thermal 
assessment of the head of the openings. This prevents the software to account the heat transfer that 
in reality occurs between the window frame and the highly conductive steel lintel. Therefore, when the 
adiabatic surface covers big areas of the steel wings of the lintel such as the standard, outer or inner 
locations, the simplified assessment underestimates the heat losses. This is especially pronounced 
for internally insulated walls for which the simplified method underestimates the heat losses up to 
33%. 

It has also been demonstrated that the correct location of the window is vital to avoid condensation 
and that needs to be assessed including the actual window. Otherwise, the use of an adiabatic 
surface can increase the actual internal surface temperatures over 4 °C, hiding a possible risk of 
condensation. 

In the past, when Ψ-values were greater, the impact of using an adiabatic surface was minimum. 
However, under current trends of energy efficiency, extremely low Ψlintel are achieved. This research 
demonstrated that the use of the adiabatic surface could have a greater impact than before in the 
accuracy of the calculation of the heat loss. Under current PARTL 2013, differences of 7% to 11%, for 
the standard position when assessing the heat loss of common construction details, are large enough 
to start to think on the necessity of including the actual window during the assessment of thermal 
performance for top hat lintels without base plate. 
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