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Test Statistics for the Comparison of Means for Two Samples Which Include Both Paired 

Observations and Independent Observations. 

 

Introduction 

Hypothesis tests for the comparison of two population means, 1  and 2 , with two samples of either 

independent observations or paired observations are well established. When the assumptions of the 

test are met, the independent samples t-test is the most powerful test for comparing means between 

two independent samples (Sawilowsky & Blair, 1992). Similarly, when the assumptions of the test are 

met, the paired samples t-test is the most powerful test for the comparison of means between two 

dependent samples (Zimmerman, 1997). If a paired design can avoid extraneous systematic bias, then 

paired designs are generally considered to be advantageous when contrasted with independent 

designs.  

There are scenarios where, in a paired design, some observations may be missing. In the literature, 

this scenario is referred to as paired samples that are either “incomplete” (Ekbohm, 1976) or with 

“missing observations” (Bhoj, 1978). There are designs that do not have completely balanced 

pairings. Occasions where there may be two samples with both paired observations and independent 

observations include: 

i) Two groups with some common element between both groups. For example, in 

education when comparing the average exam marks for two optional subjects, where 

some students take one of the two subjects and some students take both.  

ii) Observations taken at two points in time, where the population membership changes 

over time but retains some common members. For example, an annual survey of 

employee satisfaction may include new employees that were unable to respond at 

time point one, employees that left after time point one, and employees that remained 

in employment throughout. 
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iii) When some natural pairing occurs. For example, in a survey taken comparing views 

of males and females, there will be some matched pairs “couples” and some 

independent samples “single”. 

The examples given above can be seen as part of the wider missing data framework. There is much 

literature on methods for dealing with missing data and the proposals in this paper do not detract from 

extensive research into the area. The simulations and discussion in this paper are done in the context 

of data missing completely at random (MCAR). 

Two samples which include both paired and independent observations is referred to using varied 

terminology in the literature. The example scenarios outlined can be referred to as “partially paired 

data” (Samawi & Vogel, 2011). However, this terminology has connotations suggesting that the pairs 

themselves are not directly matched. Derrick et.al. (2015) suggest that appropriate terminology for the 

scenarios outlined gives reference to “partially overlapping samples”. For work that has previously 

been done on a comparison of means when partially overlapping samples are present, “the partially 

overlapping samples framework….has been treated poorly in the literature” (Martínez-Camblor, 

Corral, & María de la Hera, 2012, p.77). In this paper, the term partially overlapping samples will be 

used to refer to scenarios where there are two samples with both paired and independent observations.  

When partially overlapping samples exist, the goal remains to test the null hypothesis 210 :  H . 

Standard approaches when faced with such a situation, are to perform the paired samples t-test, 

discarding the unpaired data, or alternatively perform the independent samples t-test, discarding the 

paired data (Looney & Jones, 2003). These approaches are wasteful and can result in a loss of power. 

The bias created with these approaches may be of concern. Other solutions proposed in a similar 

context are to perform the independent samples t-test on all observations ignoring the fact that there 

may be some pairs, or alternatively randomly pairing unpaired observations and performing the paired 

samples t-test (Bedeian & Feild, 2002). These methods distort Type I error rates (Zumbo, 2002) and 

fail to adequately reflect the design. This emphasises the need for research into a statistically valid 
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approach. A method of analysis which takes into account any pairing but does not lose the unpaired 

information would be beneficial.  

One analytical approach is to separately perform both the paired samples t-test on the paired 

observations and the independent samples t-test on the independent observations. The results are then 

combined using Fisher’s (1925) Chi-square method, or Stouffer’s (1949) weighted z-test. These 

methods have issues with respect to the interpretation of the results. Other procedures weighting the 

paired and independent samples t-tests, for the partially overlapping samples scenario, have been 

proposed by Bhoj, (1978), Kim et. al. (2005), Martínez-Camblor, Corral, & María de la Hera (2012), 

and Samawi & Vogel (2011).  

Looney & Jones (2003) proposed a statistic making reference to the z-distribution that uses all of the 

available data, without a complex weighting structure. Their corrected z-statistic is simple to compute 

and it directly tests the hypothesis 210 :  H . They suggest that their test statistic is generally Type 

I error robust across the scenarios that they simulated. However, they only consider normally 

distributed data with a common variance of 1 and a total sample size of 50 observations. Therefore 

their simulation results are relatively limited, simulations across a wider range of parameters would 

help provide stronger conclusions. Mehrotra (2004) indicates that the solution provided by Looney & 

Jones (2003) may not be Type I error robust for small sample sizes.  

Early literature for the partially overlapping samples framework focused on maximum likelihood 

estimates, when data are missing by accident rather than by design. Lin (1973) use maximum 

likelihood estimates for the specific case where data is missing from one of the two groups. Lin 

(1973) uses assumptions such as the variance ratio is known. Lin & Strivers (1974) apply maximum 

likelihood solutions to the more general case, but find that no single solution is applicable.  

For normally distributed data, Ekbohm (1976) compared Lin & Strivers (1974) tests with similar 

proposals based on maximum likelihood estimators. Ekbohm (1976) found that maximum likelihood 

solutions do not always maintain Bradley’s liberal Type I error robustness criteria. The results suggest 

that the maximum likelihood approaches are of little added value compared to standard methods. 

Furthermore the proposals by Ekbohm (1976) are complex mathematical procedures and are unlikely 

to be considered as a first choice solution in a practical environment.  

A solution available in most standard software is to perform a mixed model using all of the available 

data. In a mixed model, effects are assessed using Restricted Maximum Likelihood estimators 
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“REML”. Mehrotra (2004) indicates that for positive correlation, REML is Type I error robust and 

more powerful approach than that proposed by Looney & Jones (2003).  

For small sample sizes, an intuitive solution to the comparison of means with partially overlapping 

samples, would be a test statistic derived using concepts similar to that of Zumbo (2002) so that all 

available data are used making reference to the t-distribution.  

In this paper, two test statistics are proposed. The proposed solution for equal variances acts as a 

linear interpolation between the paired samples t-test and the independent samples t-test. The 

consensus in the literature is that Welch’s test is more Type I error robust than the independent 

samples t-test, particularly with unequal variances and unequal samples sizes (Derrick, Toher & 

White, 2016; Fay & Proschan, 2010; Zimmerman & Zumbo, 2009). The proposed solution for 

unequal variances is a test which acts as a linear interpolation between the paired samples t-test and 

Welch’s test.  

Standard tests and the proposal by Looney & Jones (2003) are given below. This is followed by the 

definition of the presently proposed test statistics. A worked example provided using each of these 

test statistics and REML is provided. The Type I error rate and power for the test statistics and REML 

is then explored using simulation, for partially overlapping samples simulated from a Normal 

distribution. 
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Notation 

Notation used in the definition of the test statistics is given in Table 1. 

Table 1. Notation used in this paper. 

an  number of observations exclusive to Sample 1 

bn  number of observations exclusive to Sample 2 

cn  number of pairs 

1n  total number of observations in Sample 1 (i.e. 1n an + cn ) 

2n  total number of observations in Sample 2 (i.e. 2n bn  + cn ) 

1X  mean of all observations in Sample 1 

2X  mean of all observations in Sample 2 

aX  mean of the independent observations in Sample 1 

bX  mean of the independent observations in Sample 2 

1cX  mean of the paired observations in Sample 1 

2cX  mean of the paired observations in Sample 2 

2

1S  variance of all observations in Sample 1 

2

2S  variance of all observations in Sample 2 

2

aS  variance of the independent observations in Sample 1 

2

bS  variance of the independent observations in Sample 2 

2

1cS  variance of the paired observations in Sample 1 

2

2cS  variance of the paired observations in Sample 2 

12S  covariance between the paired observations 

r  Pearson’s correlation coefficient for the paired observations 

 

All variances above are calculated using Bessel’s correction, i.e. the sample variance with 1in  

degrees of freedom (see Kenney & Keeping 1951, p.161). 

As standard notation, random variables are shown in upper case, and derived sample values 

are shown are in lower case.  
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Definition of Existing Test Statistics 

Standard approaches for comparing two means making reference to the t-distribution are given below. 

These definitions follow the structural form given by Fradette et.al. (2003), adapted to the context of 

partially overlapping samples. 

To perform the paired samples t-test, the independent observations are discarded so that 
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The statistic 1T  is referenced against the t-distribution with 11  cn  degrees of freedom. 

To perform the independent samples t-test, the paired observations are discarded so that 
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For large sample sizes, the test statistic for partially overlapping samples proposed by Looney & 

Jones (2003) is  
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The statistic correctedZ  is referenced against the standard Normal distribution. In the extremes of 

0 ba nn , or 0cn , correctedZ  defaults to the paired samples z-statistic and the independent 

samples z-statistic respectively. 

Definition of Proposed Test Statistics 

Two new t-statistics are proposed; new1T , assuming equal variances, and new2T , when equal variances 

cannot be assumed. The test statistics are constructed as the difference between two means taking into 

account the covariance structure. The numerator is the difference between the means of the two 

samples and the denominator is a measure of the standard error of this difference. Thus the test 

statistics proposed here are directly testing the hypothesis 210 :  H .  

The test statistic new1T  is derived so that in the extremes of 0 ba nn  or 0cn , new1T  defaults to 

1T  or 2T  respectively, thus  
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The test statistic new1T  is referenced against the t-distribution with degrees of freedom derived by 

linear interpolation between 1v  and 2v  so that: new1v  =  ba
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In the extremes, when 0 ba nn , new1v  defaults to 1v ; or when 0cn , new1v  defaults to 2v . 
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Given the superior Type I error robustness of Welch’s test when variances are not equal, a test 

statistic is derived making reference to Welch’s approximate degrees of freedom. This test statistic 

makes use of the sample variances, 
2

1S  and 
2

2S . The test statistic new2T  is derived so that in the 

extremes of 0 ba nn  or 0cn , new2T  defaults to 1T  or 3T  respectively, thus 
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The test statistic new2T  is referenced against the t-distribution with degrees of freedom derived as a 

linear interpolation between 1v  and 3v  so that 
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In the extremes, when 0 ba nn , new2v  defaults to 1v ; or when 0cn , new2v  defaults to 3v . 

Note that the proposed statistics, new1T  and new2T , use all available observations in the respective 

variance calculations. The statistic correctedZ  only uses the paired observations in the calculation of 

covariance. 

Worked Example 

An applied example is given to demonstrate the calculation of each of the test statistics defined. In 

education, for credit towards an undergraduate Statistics course, students may take optional modules 

in either Mathematical Statistics, or Operational Research, or both. The programme leader is 

interested whether the exam marks for the two optional modules differ. The exam marks attained for a 

single semester are given in Table 2. 
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Table 2. Exam marks for Students studying on an undergraduate Statistics course. 

Student  Mathematical 

Statistics 

Operational 

Research 

1 73 72 

2 82  

3 74 89 

4 59 78 

5 49 64 

6  83 

7 42 42 

8 71 76 

9 

 

79 

10 39 89 

11 

 

67 

12 

 

82 

13 

 

85 

14 

 

92 

15 59 63 

16 85  

 

As per standard notion, the derived sample values are given in lower case. In the calculation of the 

test statistics, 1x 63.300, 2x 75.786, 2

1s 263.789, 2

2s 179.874, an 2, bn 6, cn 8, 1n

10, 2n 14, 1v 7, 2v 6, 3v 6,  17.095, new1v 12, new2v 10.365, r 0.366, 12s 78.679. 

For the REML analysis, a mixed model is performed with “Module” as a repeated measures fixed 

effect and “Student” as a random effect. Table 3 gives the calculated test statistics, degrees of freedom 

and corresponding p-values. 

Table 3. Test statistic values and resulting p-values (two-sided test). 

 
1T  

2T  3T  
correctedZ  REML new1T  new2T  

estimate of mean 

difference 
-13.375 2.167 2.167 -12.486 -12.517 -12.486 -12.486 

t-value -2.283 0.350 0.582 -2.271 -2.520 -2.370 -2.276 

degrees of 

freedom 
7.000 6.000 6.000  11.765 12.000 10.365 

p-value 0.056 0.739 0.579 0.023 0.027 0.035 0.045 
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With the exception of REML, the estimates of the mean difference are simply the difference in the 

means of the two samples, based on the observations used in the calculation. It can quickly be seen 

that the conclusions differ depending on the test used. It is of note that only the tests using all of the 

available data result in the rejection of the null hypothesis at nominal 0.05. Also note that the results 

of the paired samples t-test and the independent samples t-test have sample effects in different 

directions. This is only one specific example given for illustrative purposes, investigation is required 

into the power of the test statistics over a wide range of scenarios. Conclusions based on the proposed 

tests cannot be made without a thorough investigation into their Type I error robustness.  

 

Simulation Design 

Under normality, Monte-Carlo methods are used to investigate the Type I error robustness of the 

defined test statistics and REML. Power should only be used to compare tests when their Type I error 

rates are equal (Zimmerman & Zumbo, 1993). Monte-Carlo methods are used to explore the power 

for the tests that are Type I error robust under normality. 

Unbalanced designs are frequent in psychology (Sawilowski & Hillman, 1982), thus a comprehensive 

range of values for an , bn  and cn  are simulated. These values offer an extension to the work done 

by Looney & Jones (2003). Given the identification of separate test statistics for equal and unequal 

variances, multiple population variance parameters {
2

1 , 
2

2 } are considered. Correlation has an 

impact on Type I error and power for the paired samples t-test (Fradette et. al., 2003), hence a range 

of correlations {  } between two normal populations are considered. Correlated normal variates are 

obtained as per Kenney & Keeping (1951). A total of 10,000 replicates of each of the scenarios in 

Table 4 are performed in a factorial design. 

All simulations are performed in R version 3.1.2. For the mixed model approach utilising REML, the 

R package lme4 is used. Corresponding p-values are calculated using the Satterthwaite approximation 

adopted by SAS using the R package lmerTest (Goodnight, 1976). 
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For each set of 10,000 p-values, the proportion of times the null hypothesis is rejected, for a two sided 

test with nominal 0.05 is calculated.  

Table 4. Summary of simulation parameters 

Parameter Values 

1  0 

2  0 (under 0H ) 

0.5 (under 1H ) 

2

1  1, 2, 4, 8 

2

2  1, 2, 4, 8 

an  5, 10, 30, 50, 100, 500 

bn  5, 10, 30, 50, 100, 500 

cn  5, 10, 30, 50, 100, 500 

  -0.75, -0.50, -0.25, 0.00, 0.25, 0.50, 0.75 

 

Type I Error Robustness 

For each of the test statistics, Type I error robustness is assessed against Bradley’s (1978) liberal 

criteria. This criteria it is widely used in many studies analysing the validity of t-tests and their 

adaptions. Bradley’s (1978) liberal criteria states that the Type I error rate   should be within 

nominal  0.5 nominal . For nominal  0.05, Bradley’s liberal interval is [0.025, 0.075]. 

Type I error robustness is firstly assessed under the condition of equal variances. Under the null 

hypothesis, 10,000 replicates are obtained for the 4   6   6   6   7   6,048 scenarios where 

2

2

2

1   . Figure 1 shows the Type I error rates for each of the test statistics under equal variances for 

normally distributed data. 
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 Figure 1. Type I error rates where 
2

2

2

1   , reference lines show Bradley’s (1978) liberal criteria.  

 

Figure 1 indicates that when variances are equal, the statistics 
1T , 

2T , 
3T , new1T  and new2T  remain 

within Bradley’s liberal Type I error robustness criteria throughout the entire simulation design. The 

statistic correctedZ  is not Type I error robust, thus confirming the smaller simulation findings of 

Mehotra (2004). Figure 1 also shows that REML is not Type I error robust throughout the entire 

simulation design. A review of our results shows that for REML the scenarios that are outside the 

range of liberal Type I error robustness are predominantly those that have negative correlation, and 

some where zero correlation is specified. Given that negative correlation is rare in a practical 

environment, the REML procedure is not necessarily unjustified. 

Type I error robustness is assessed under the condition of unequal variances. Under the null 

hypothesis, 10,000 replicates were obtained for the 4   3   6   6   6   7   18,144 scenarios where 
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2

2

2

1   . For assessment against Bradley’s (1978) liberal criteria, Figure 2 shows the Type I error 

rates for unequal variances for normally distributed data. 

Figure 2. Type I error rates when 
2

2

2

1   , reference lines show Bradley’s (1978) liberal criteria.  

It can be seen from Figure 2 that the statistics defined using a pooled standard deviation 
2T  and new1T , 

do not provide Type I error robust solutions when equal variances cannot be assumed. The statistics 

1T , 
3T  and new2T  retain their Type I error robustness under unequal variances throughout all 

conditions simulated. 

The statistic correctedZ  maintains similar Type I error rates under equal and unequal variances. The 

statistic correctedZ  was only designed to be used in the case of equal variances. For unequal variances, 

we observe that the statistic correctedZ  results in an unacceptable amount of false positives when 

25.0  or max { an , bn , cn } - min{ an , bn , cn } is large. In addition, the statistic correctedZ  is 
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conservative when   is large and positive. The largest observed deviations from Type I error 

robustness for REML are when 0  or max { an , bn , cn } - min{ an , bn , cn } is large. Further 

insight to the Type I error rates for REML can be seen in Figure 3 showing observed p-values against 

expected p-values from a uniform distribution. 

 

Figure 3. P-P plots for simulated p-values using REML procedure. Selected parameter combinations   

(  ,,,,, 2

2

2

1cba nnn ) are as follows; A (5,5,5,1,1,-0.75), B (5,10,5,8,1,0), C  (5,10,5,8,1,0.5), D

 (10,5,5,8,1,0.5). 

 

If the null hypothesis is true, for any given set of parameters the p-values should be uniformly 

distributed. Figure 3 gives indicative parameter combinations where the p-values are not uniformly 

distributed when applying a mixed model assessed using REML. It can be seen that REML is not 

Type I error robust when the correlation is negative. In addition, caution should be exercised if using 

REML when the larger variance is associated with the smaller sample size. REML maintains Type I 
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error robustness for positive correlation and equal variances or when the larger sample size is 

associated with the larger variance.  

 

Power of Type I Error Robust Tests under Equal Variances 

The test statistics that do not fail to maintain Bradley’s Type I error liberal robustness criteria are 

assessed under 1H . REML is included in the comparisons for 0 . The power of the test statistics 

are assessed where 12

2

2

1  , followed by an assessment of the power of the test statistics where 

12

1   and 12

2  .  

Table 5 shows the power of 
1T , 

2T , 
3T , new1T , new2T  and REML, averaged over all sample size 

combinations where 12

2

2

1  . 

Table 5. Power of Type I error robust test statistics, 12

2

2

1  , 05.0 , 5.0μμ 12  . 

   
1T  

2T  3T  
new1T  new2T  REML 

an = bn  

0.75 0.785 0.567 0.565 0.887 0.886 0.922 

0.50 0.687 0.567 0.565 0.865 0.864 0.880 

0.25 0.614 0.567 0.565 0.842 0.841 0.851 

0  0.558 0.567 0.565 0.818 0.818 0.829 

0  0.481 0.567 0.565 0.778 0.778 - 

an    bn  

0.75 0.784 0.455 0.433 0.855 0.847 0.907 

0.50 0.687 0.455 0.433 0.840 0.832 0.861 

0.25 0.615 0.455 0.433 0.823 0.816 0.832 

0  0.559 0.455 0.433 0.806 0.799 0.816 

0  0.482 0.455 0.433 0.774 0.766 - 

 

 

Table 5 shows that REML and the test statistics proposed in this paper, new1T  and new2T , are more 

powerful than standard approaches, 
1T , 

2T  and 3T , when variances are equal. Consistent with the 

paired samples t-test, 
1T , the power of new1T  and new2T  is relatively lower when there is zero or 

negative correlation between the two populations. Similar to contrasts of the independent samples t-

test, 
2T , with Welch’s test, 

3T , for equal variances but unequal sample sizes, new1T  is marginally more 
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powerful than new2T , but not to any practical extent. For each of the tests statistics making use of 

paired data, as the correlation between the paired samples increases, the power increases.  

As the correlation between the paired samples increases, the power advantage of the proposed test 

statistics relative to the paired samples t-test becomes smaller. Therefore the proposed statistics new1T  

and new2T  may be especially useful when the correlation between the two populations is small. 

To show the relative increase in power for varying sample sizes, Figure 4 shows the power for 

selected test statistics for small-medium sample sizes, averaged across the simulation design for equal 

variances. 

 

Figure 4. Power for Type I error robust test statistics, averaged across all values of   where 
2

2

2

1    

and 5.012   . The sample sizes ( an , bn , cn ) are as follows; A (10,10,10),  B (10,30,10), 

C (10,10,30), D (10,30,30), E (30,30,30). 
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From Figure 4 it can be seen that for small–medium sample sizes, the power of the proposed test 

statistics new1T  and new2T  is superior to standard test statistics.  

 

Power of Type I Error Robust Rests under Unequal Variances 

For the Type I error robust test statistics under unequal variances, Table 6 shows the power of 
1T , 

3T , 

new2T  and REML, averaged over the simulation design where 5.012   . 

Table 6. Power of Type I error robust test statistics where 12

1  , 12

2  ,  0.05, 5.012  . 

Within this table, ba nn   represents the larger variance associated with the larger sample size, and 

ba nn   represents the larger variance associated with the smaller sample size. 

   
1T  3T  

2newT  REML 

an = bn  

0.75 0.555 0.393 0.692 0.645 

0.50 0.481 0.393 0.665 0.588 

0.25 0.429 0.393 0.640 0.545 

0  0.391 0.393 0.619 0.515 

0  0.341 0.393 0.582 - 

an > bn  

0.75 0.555 0.351 0.715 0.589 

0.50 0.481 0.351 0.688 0.508 

0.25 0.429 0.351 0.665 0.459 

0  0.391 0.351 0.642 0.422 

0  0.341 0.351 0.604 - 

an < bn  

0.75 0.555 0.213 0.559 0.693 

0.50 0.481 0.213 0.539 0.649 

0.25 0.429 0.213 0.522 0.620 

0  0.391 0.213 0.507 0.603 

0  0.341 0.213 0.480 - 

 

Table 6 shows that new2T  has superior power properties to both 
1T  and 

3T  when variances are not 

equal. In common with the performance of Welch’s test for independent samples, 
3T , the power of 

new2T  is higher when the larger variance is associated with the larger sample size. In common with the 

performance of the paired samples t-test, 
1T , the power of new2T  is relatively lower when there is zero 

or negative correlation between the two populations.  
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The apparent power gain for REML when the larger variance is associated with the larger sample size, 

can be explained by the pattern in the Type I error rates. REML follows a similar pattern to the 

independent samples t-test, which is liberal when the larger variance is associated with the larger 

sample size, thus giving the perception of higher power.   

To show the relative increase in power for varying sample sizes, Figure 5 shows the power for 

selected test statistics for small-medium sample sizes, averaged across the simulation design for 

unequal variances. 

Figure 5. Power for Type I error robust test statistics, 
2

2

2

1    and 5.012   . The sample sizes 

( an , bn , cn ) are as follows; A (10,10,10), 1B (10,30,10), 2B (30,10,10), C (10,10,30), 1D

(10,30,30), 2D (30,10,30), E (30,30,30). 
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Figure 5 shows a relative power advantage when the larger variance is associated with the larger 

sample size, as per 2B  and 2D . A comparison of Figure 4 and Figure 5 shows that for small-medium 

sample sizes, power is adversely effected for all test statistics when variances are not equal.  

 

Discussion 

The statistic new2T  is Type I error robust across all conditions simulated under normality. The greater 

power observed for new1T , compared to new2T , under equal variances, is likely to be of negligible 

consequence in a practical environment. This is in line with empirical evidence for the performance of 

Welch’s test, when only independent samples are present, which leads to many observers 

recommending the routine use of Welch’s test under normality (e.g. Ruxton, 2006).   

The Type I error rates and power of new2T  follow the properties of its counterparts, 
1T  and 

3T . Thus 

new2T  can be seen as a trade-off between the paired sample t-test and Welch’s test, with the advantage 

of increased power across all conditions, due to using all available data.  

The partially overlapping samples scenarios identified in this paper could be considered as part of the 

missing data framework and all simulations have been performed under the assumption of MCAR.  

The statistics proposed in this paper form less computationally intensive competitors to REML. The 

REML procedure does not directly calculate the difference between the two sample means, in a 

practical environment this makes its results hard to interpret. The statistics proposed in this paper will 

also far more easily lend themselves to the development of non-parametric tests.  

 

Conclusion 

A commonly occurring scenario when comparing two means is a combination of paired observations 

and independent observations in both samples, this scenario is referred to as partially overlapping 
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samples. Standard procedures for analysing partially overlapping samples involve discarding 

observations and performing either the paired samples t-test, or the independent samples t-test, or 

Welch’s test. These approaches are less than desirable. In this paper, two new test statistics making 

reference to the t-distribution are introduced and explored under a comprehensive set of parameters, 

for normally distributed data. Under equal variances, new1T  and new2T  are Type I error robust. In 

addition they are more powerful than standard Type I error robust approaches considered in this 

paper. When variances are equal, there is a slight power advantage of using new1T  over new2T , 

particularly when sample sizes are not equal. Under unequal variances, new2T  is the most powerful 

Type I error robust statistic considered in this paper. We recommend that when faced with a research 

problem involving partially overlapping samples and MCAR can be reasonably assumed, the statistic 

new1T  could be used when it is known that variances are equal. Otherwise under the same conditions 

when equal variances cannot be assumed the statistic new2T  could be used.  

A mixed model procedure using REML is not fully Type I error robust. In those scenarios in which 

this procedure is Type I error robust, the power is similar to that of new1T  and new2T . 

The proposed test statistics for partially overlapping samples provide a real alternative method for 

analysis for normally distributed data, which could also be used for the formation of confidence 

intervals for the true difference in two means. 
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