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ABSTRACT 

In a pioneering effort, the research was the first to develop a construction firms insolvency 

prediction model (CF-IPM) with: Big Data Analytics (BDA); combined qualitative and 

quantitative variables; advanced artificial intelligence tools such as Random Forest and Bart 

Machine; and data of all sizes of construction firms (CF), ensuring wide applicability 

The pragmatism paradigm was employed to allow the use of mixed methods. Top 

management team (TMT) of existing and failed CFs were interviewed. This included large, 

medium, small and micro (LMSM) CFs. The interview result was used to create a 

questionnaire with over hundred qualitative variables. A total of 531 usable questionnaires 

were returned, and oversampled to a total questionnaire sample of 1052 LMSM CFs. The 

financial data of the original and matched sample firms were downloaded. Using 

Cronbach’s alpha and factor analysis, qualitative variables were reduced to 13. Eleven 

financial ratios commonly reported by the sample LMSM CFs were identified as 

quantitative variables.  Using BDA, implemented through Amazon Web Services Elastic 

Compute Cloud, eleven variable selection methods were used to select the final seven 

qualitative and seven quantitative variables which were used to develop 13 BDA-CF-IPMs. 

A key finding was that the Decision Tree BDA-CF-IPM was the best model because it had 

high accuracy and was transparent enough to show where a potentially failing CF was 

deficient. Also, results showed that the normally high performing artificial neural network 

and support vector machine AI tools were not good at handling a combination of 

quantitative and qualitative variables. On the variables part, a key discovery was that while 

high immigration levels favour large CFs, it is a major challenge to medium, small and 

especially, micro (MSM) CFs. 

A key achievement and contribution was the successful implementation of BDA to develop 

CF-IPMs, eliminating the problem of long development days due to high computation 

intensity. Another achievement was the development of CF-IPMs with extreme accuracy 

levels of over 99% using contemporary AI tools. Also, the adopted methodology helped to 

contribute potential qualitative variables for interested future CF-IPM studies. Finally, the 

developed model was the first CF-IPM applicable to all sizes of CFs, including the MSM 

CFs which make up over 90% of the construction industry. 
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CHAPTER ONE 

1.0 INTRODUCTION 

1.1 Background 

The construction industry (CI) is a vital part of most countries’ economy (Zhao et al., 2012). 

On the global scale, the CI  had a staggering worth of US$7.4 trillion in 2010, has a 

projection of US$10.3 trillion in 2020 (Department for Business Innovation and Skills, 

2013a) and $15.5 trillion by 2030 (Global Construction Perspectives and Oxford 

Economics, 2015). 

According to the (Department for Business Innovation and Skills, 2013a), the CI in 2013 

was responsible for about £90 billion or 6.7 percent of the United Kingdom (UK) economy 

and covered more than 280,000 businesses, providing more than two million jobs. 

According to Rhodes (2015) in a House of Commons Library research paper, the CI in 2014 

contributed £103 billion in economic output, representing 6.5% of the total; it also provided 

2.1 million jobs or 6.2% of the UK total in 2015. The continuous mass failure witnessed in 

the construction industry thus cause real economic troubles, showing the need for 

improvement on insolvency prediction models. Such models are needed by construction 

firms for self-assessment, and by clients and financial institutions to ensure contracts and 

loans respectively are given to healthy firms.  

The record of firm failure in the UK CI is alarming. To mention a few, AD Utting 

Construction Limited, Duart Construction, TRS Services, Team Project Limited, Kitpac 

Building, Sunnydale Civil Engineering, Colin Amos Builders and John Kotes Construction 

and Site Services Limited, are just some of the companies that became insolvent in UK in 

December 2010 alone (The Construction Index, 2011). In 2012, a company insolvency 

ranking by sector showed that the UK construction sector ranked the third highest (at 14.4 

percent) among other business sectors in the UK. Overall, the industry has consistently 

featured among the top three in UK insolvency ranking by sector over the years including 

in the latest reports of 2016, where it ranks as number one (The Insolvency service, 2016).  

Researchers have attributed construction firms’ relative high failure rate to risks such as 

fluctuation in demand, policy changes affecting the economy, fluctuating cost of materials, 
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high rate of litigation, safety issues, cash flow problems, among others (Mason and Harris 

1979; Ng et al. 2011; Chen 2012). Enshassi et al. (2006) believe the main problem is the 

ease with which companies get into the industry, causing an influx which results in fierce 

competition thereby leading to a soaring rate of business failure. The Surety Information 

Office (2012), in their review, concluded that the main causes of construction firms’ failure 

are their low-performance level, illusory growth, account problems, character and 

management issues. With these identified risks and the potential complexity of managing 

them, the high volume of insolvency in the CI almost excuses itself. Nonetheless, high rate 

of insolvency is not something any industry can afford to live with. These identified risks 

(most are non-financial) also clearly indicate, as supported by many studies, that financial 

indicators alone cannot be used to identify a potential insolvency early enough. The truth is 

it is company/managerial activities, performance and characteristics that result in the 

financial situation of a firm (Abidali and Harris 1995) (see chapter three for more on 

indicators/variables).  

The fact that the record of failed firms in the construction industry is alarming and somehow 

proportionate to the risks involved makes it look like nothing is being done to tackle the rate 

of insolvency, yet some insolvency prediction models have been developed over time to 

help avoid insolvency. There are however two major questionable areas of insolvency 

prediction models built for construction firms: ‘data’ and ‘tool’. 

On data issue, the problem is that studies that build insolvency prediction models for the CI 

rely mainly on financial statements of the sample firms (e.g. Mason and Harris 1979; 

Langford et al. 1993; Chen 2012; Bal et al. 2013; Horta and Camanho 2013 among others). 

This step is in blind followership of pioneer insolvency prediction models (IPM) studies 

(i.e. Beaver 1966; Altman 1968) that had their own unique objectives that perfectly allowed 

exclusive use of financial ratios. "A financial ratio is a quotient of two numbers, where both 

numbers consist of financial statement items"  (Beaver 1966; pp. 71-72). This method is 

inadequate as it fails to properly take into account small and micro enterprise (SME) 

construction firms which represent over 97% of the UK construction industry (Department 

for Business Innovation and Skills, 2015). So how is this method inadequate? The answers 

are: (i) The method excludes firms with incomplete accounting data, a major feature of 

SMEs, from their model. (ii) Where SMEs have complete accounting data, they are usually 

misrepresenting statements because SMEs frequently outsource financial statement 

production with the main aim of meeting the legal requirement of annual production 
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(Balcaen and Ooghe 2006). (iii) Some SMEs simply do not produce statements at all. These 

answers/facts, coupled with long ago established the importance of non-financial variables 

(Argenti, 1980; Zavgren, 1985), clearly show the need for a robust model that combines 

financial (quantitative) and non-financial (especially qualitative) variables to be built for 

construction firms. 

On tools issue, following recommendations in Beaver’s Beaver (1966) univariate prediction 

model, Altman (1968) and Ohlson (1980) used multi-discriminant analysis (MDA) and logit 

analysis (LA) tools respectively to develop multivariate prediction models. These models 

that were more accurate than Beaver’s, widely accepted and improved over time. These 

tools were subsequently well applied to firms’ failure research in the CI (Mason and Harris 

1979; Langford et al. 1993; Abidali and Harris 1995; Ng et al. 2011; Bal et al. 2013). The 

various problems of these statistical tools, however, led to the rise and wider acceptance of 

artificial intelligence (AI) tools as their replacement (see section 5.2.1 for more on tools). 

Nonetheless, very limited studies have used AI tools to develop insolvency prediction 

models for the CI (e.g. Horta and Camanho 2013; Chen 2012 among others); in fact, no 

study has used AI tools to develop a model for the UK CI.  

Further, despite clear evidence that large data improves reliability, only very few IPM 

studies (e.g. Altman et al. 1994; Du Jardin 2010) have been able to use a good size of data 

with AI tools. Although Altman et al. 1994 used a relatively large sample of 1000 firms 

with artificial neural network (ANN), the parameters of the ANN were not tuned, which 

means the model achieved is not the optimum achievable with ANN.  Du Jardin (2010) used 

a smaller data set of 500 firms but tuned the (topology, learning rate, momentum term, 

weight decay) parameters of ANN, leading to a higher computational intensity and probably 

a much better model. As a result, “it took roughly five days to compute all network 

parameters with 30 PCs running Windows, and an additional day to calculate and check the 

final results” (Du Jardin 2010; p.2052). Contemporary technology such as Big Data 

Analytics can help to avoid such a tedious computation duration without sacrificing the 

necessary parameters tuning. 

Overall, the shortcomings of the developed models include: (i) The over-reliance on 

financial indicators i.e. financial ratios for building the models thereby maligning the more 

important SME construction firms. (ii) The refusal to adopt the most contemporary 

technology like well-tuned high performing AI tools and Big Data Analytics that can be 
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used to build more sophisticated models. These shortcomings and the continuing high 

construction business failures as earlier identified only emphasise the need for better robust 

insolvency prediction models. 

 

1.2 Concept of business insolvency 

In Wales and England, the word bankruptcy applies only to individuals and is governed by 

the Insolvency Rules 1986 (as amended) and Part IX of the Insolvency Act 1986 (as 

amended). Insolvency, which is more of the bankruptcy term for limited companies in the 

UK, is regulated by United Kingdom insolvency law which can easily call for compulsory 

liquidation (Gov.uk, 2014). It is supported mainly by the Insolvency Act 1986 and 

the Insolvency Rules 1986; both include numerous subs which can only be valid by a court 

sentence/order, making it very hard to have a single bankruptcy/insolvency definition. 

While Beaver’s (1966) seminal work gave a broad definition of insolvency, Scott (1981) 

noted that many subsequent studies limited their definitions to bankruptcy. Watson and 

Everett (1993) simple definition says that insolvency of business happens when one of four 

circumstances occur: (i) ending the business for any reasons; (ii) termination of trading and 

losses of credit; (iii) selling of business to avoid more losses; (iv) and not successfully 

starting the business   

In the research, insolvency will be defined as any firm that has gone through insolvency 

through receivership or liquidation under the United Kingdom insolvency law. These 

measures are straightforward, and this sort of firms are easily identifiable from the databases 

where financial data will be extracted for analysis. Although there are other types of 

distresses which may include informal support from the government, renegotiating loan 

terms, merging with a more stable firm, acute downsizing, among others, these are quite 

difficult to identify and are thus not considered in this work. The terms failure, bankruptcy 

and insolvency are used interchangeably throughout this thesis write up. 
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1.3 Big data and its concept 

John Mashey was the first person to use the set of words ‘Big Data’ together when he did a 

presentation on Silicon Graphics (SGI) slide titled “Big Data and the Next Wave of 

InfraStress” (Diebold, 2012a). The relativity of the word ‘big’ makes the definition of ‘big 

data’ complex but a generally accepted fact is that for data to qualify as big data, it must 

have either or all of three characteristics namely: velocity, volume and variety (Zikopoulos 

and Eaton 2011). Velocity has to do with speed of data, volume with size and variety with 

variability (Zikopoulos and Eaton 2011). Big data is commonly used to analyse unstructured 

data (Suthaharan and Shan 2014). However, contrary to popular understanding, structured 

data can also be Big Data in as much as such data have the aforementioned characteristics 

(Zikopoulos and Eaton 2011). The most common and complete Big Data framework is 

Apache Hadoop. 

Even though size is a vital feature to be assessed when trying to decide if a dataset qualifies 

as ‘Big Data’, the intensity of the computation required for the intended analysis on the 

dataset is important as much. This is most evident in Jacobs and Adam's (2009) research 

work where they fabricated data of the world’s population with focus on people’s 

demography (race, religion, income, employment, among others). This data was formulated 

in a table of more than 7 billion rows and about 10 columns, and was successfully stored on 

a 100 gigabyte hard disk. Modest commands written to answer simple questions like average 

height of world population were easily operational on a standard everyday computer hence, 

despite the large size of the  data, it did not qualify as Big Data. Jacobs and Adam (2009) 

tried unsuccessfully mount the fabricated data on an enterprise-grade database system 

(PostgreSQL6) operating on a high performance computer (a workstation with 20 gigabyte 

RAM and two terabytes of hard disk). Despits having not attempted any analysis, the task 

had to be terminated after six hours. In the event of waiting for successful mounting, 

potential analyis would probably hav taken very many days, thus qualifying the same data 

as Big Data, based strictly on analysis type. 

The given illustration is exactly why data of 100,000s of construction firms may or may not 

be taken as Big Data. A simple layout of such data on SPSS to find some mean averages 

will be easy and cannot be taken as ‘Big’. A more complicated analysis of the same data 

with highly tuned neural networks, for example, could take hours and qualify it as ‘Big 

Data’ 
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1.4 Justification of study  

The Department for Business Innovation and Skills (2013b) clearly stated that the 

construction sector is among the biggest sectors of the UK economy. The Department for 

Business Innovation and Skills (2013b)  went further to explain that  

“construction also has a much wider significance to the economy. It creates, 

builds and maintains the workplaces in which businesses operate and flourish, 

the economic infrastructure which keeps the nation connected, the homes in 

which people live and the schools and hospitals which provide the crucial 

services that society needs. A modern, competitive and efficient CI is essential 

to the UK’s economic prosperity. Its contribution is also vital if the UK is to 

meet its Climate Change Act commitments and wider environmental and 

societal obligations” (p. 2).  

According to Rhodes (2015)  in a House of Commons Library research paper, the CI in 

2014 contributed £103 billion in economic output, representing 6.5% of the total; it also 

provided 2.1 million jobs or 6.2% of the UK total in 2015. 

Despite the huge importance the CI has to the UK, the industry witnesses some of the highest 

rates of failures. In 2012 the construction sector insolvency rate in the UK was third highest 

at 14.4 percent (Dun and Bradstreet Limited, 2012). In England and Wales alone, 

construction businesses made up 23% of the total number of all businesses forced into 

compulsory liquidation in 2012 (Hodgson, 2013). Most recently, the industry again 

possessed the highest number of liquidated companies in the 12 months finishing in quarter 

two (Q2) of 2016 with a total of 2976 companies liquidated (The Insolvency service, 2016). 

This included 833 obligatory or forced liquidations and 2143 unforced liquidations (Figure 

1.1).  

Overall, the rate of construction business failure is unacceptable since it can lead to an 

economic downturn. Although efforts have been made to reduce the rate of failure, great 

success has not been achieved. Part of the efforts includes the development of insolvency 

prediction models (IPM) for multiple industries to aid early realisation of potential failure; 

this allows mitigation action to be taken early enough. The continuous failures, however, 
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show that there is a need for robust IPMs to be developed specifically for the CI of a 

particular region so as to improve performance. The is because the construction industry is 

quite distinct from other industries (Bal, Cheung and Wu, 2013). 

 

Figure 1.1: Total Company Liquidations in England and Wales by Broad Industry Sector, 

year ending 2013 Q2 (The Insolvency service, 2016)  

 

1.5 Research problem and gap in knowledge 

Most of the research conducted on developing IPMs are from finance professionals (e.g. 

Altman et al. 1994; Atiya 2001; Ko et al. 2001; Agarwal and Taffler 2008 and more), and 

were conducted to assess the creditworthiness of firms. Despite interest from owners and 

comparable stakeholders in preventing their firms from failing, only limited IPM studies 

(e.g. Ahn et al. 2000; Ko et al. 2001b) have made this their focus, none of which considered 

construction firms. Such IPMs take result transparency seriously because result 

interpretation is what allows the poor performance areas of a firm to be identified and given 

the required attention. Since the intention here was to help reduce failure of construction 

firms as explained in sections 1.1 and 1.4, transparency was a major requirement for the CF-

IPM developed. 
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Only very few CF-IPM studies have used AI tools for ther models despite their very many 

benefits over statistical tools as proven by many studies (e.g. Yoon and Kwon 2010; Kim 

2011; Huang et al. 2012; Wang et al. 2014). The adopted AI tools are the old but effective 

neural networks and support vector machine. None of the reffered studies had its focus on 

the UK construction industry (CI). Worst still, no CF-IPM study has adopted contemporary 

sophisticated AI tools like Bart Machine and Random Forest, leading to non-optimal 

models. Both old and contemporary AI tools were thus be used for model development in 

my research, with focus on the UK CI. 

The only study to have attempted to use a relatively large data of 500 sample firms and a 

well-tuned AI tool (artificial neural networks in this case) ran into tough computation 

intensity problems. The effect of this was a very good model and tedious computational 

duration of five days with 30 PCs running Windows. Since large data increases reliability, 

and high tuning of AI tools lead to high performance, they were deemed important for the 

model to be built here. To solve the computational intensity problem, Big Data Analytics 

was used for model development since it could handle days’ worth of computation in 

seconds. 

Further, virtually all IPM studies have used only financial ratios (quantitative variables) to 

build models, neglecting the non-financial indicators usually in the form of qualitative 

variables. This is however not a very robust approach, as pointed out by many researchers 

(Argenti 1980; Zavgren 1983; Keasey, and Watson 1987; Kangari 1988; Hall 1994; Abidali 

and Harris 1995; Becchetti and Sierra 2003 among others), for at least three important 

reasons: 

1) The exclusive use of financial ratios readily excludes firms with incomplete accounting 

data, a major feature of medium small and micro (MSM) construction firms. Also, some 

MSMs simply do not produce statements at all, and where MSMs have complete 

accounting data, they can easily be misrepresentations due to MSMs’ common practice 

of outsourcing financial statement simply to meet legal requirements (Balcaen and 

Ooghe 2006). The exclusion of MSMs does not reflect the skewed distribution in the 

construction industry according to its statistics: the industry boasted over 950,000 small 

and medium enterprise (SME) in 2015; the industry represents circa 20% of the UK 

private sector SMEs, making it the sector with the highest percentage of SME firms 

(Department for Business Innovation and Skills, 2015); over 96% of UK construction 
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firms as of 2001 are small or micro firms (Jaunzens, 2001); and 86% of employees in 

the sector work in small construction firms (Jaunzens, 2001). These statistics show that 

insolvency in the construction industry cannot be reduced if MSMs are not included in 

the proposed solution. The CF-IPM to be built in my study will thus take MSM 

construction firms into consideration.  

2) For a CF-IPM to have better early predictive capabilities, it needs to include qualitative 

variables which measure managerial decisions effect, company activities effect, the 

effect of personnel skill level, among others (Abidali and Harris 1995). This is because 

it is the result of these activities that translate into the numeral values of financial ratios. 

Early predictive capability of a CF-IPM is very important for firm owners and other 

stakeholders since the early prediction of potential failure allows more time for remedial 

actions to be taken (e.g. Hall 1994; Abidali and Harris 1995). Quantitative and 

qualitative variables will thus be combined for the CF-IPM to be developed in our 

proposed solution. 

3) Finally, the CI is quite distinct from other industries (Bal, Cheung and Wu, 2013) and 

deserves to have industry specific models that reflect its activities. Although the numeric 

values range of financial ratios might vary by industry, the use of only financial ratios 

still makes models somewhat generic as financial reports are not industry specific.  The 

use of qualitative variables on the other hand allows for industry specific events that will 

reflect the activities of the construction industry to be used. For example, measures for 

the effect of ‘fluctuation of material cost’, ‘percentage of bids won’, ‘percentage of 

works completed to schedule’ and the likes can and will be included as variables in the 

model to be developed as our proposed solution. This will guarantee that the model is 

customised to the CI and will avoid generic models as built in past studies.  

Overall, it can be concluded that to solve the identified research problems, the CF-IPM to 

be built must:   

1) be transperent enough to allow interpretability of result,  

2) be chosen based on a comparison of models built with various powerful AI tools,  

3) be built with relatively large data using Big Data Analytics,  

4) be built with combined quantitative and qualitative variables.  
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1.6 Research questions 

The research questions were formulated in consideration of the exposures in the ‘Research 

Problem and Gap in Knowledge’ section. They are as follows: 

1. What qualitative variables contribute to solvency/insolvency of construction firms? 

2. Which financial ratios are commonly reported by large, medium, small and micro 

construction firms?  

3. Which are the best combined quantitative and qualitative variables for a CF-IPM? 

4. How can dependability of the CF-IPM be assured in terms of tools and methods? 

5. How can a highly reliable CF-IPM be developed with large data and tuned AI tools 

without running into computing troubles? 

 

1.7     Aims, objectives and research questions 

The aim is to develop a transparent holistic CF-IPM using a combination of qualitative and 

quantitative variables with the most sophisticated artificial intelligence tools mounted on a 

Big Data Analytics platform. The objectives that will help to achieve this aim and answer 

the research questions include: 

1. To identify qualitative variables that contribute to solvency/insolvency of 

construction firms through literature review and fieldwork. 

2. To identify the quantitative variables (i.e. financial ratios)  that are commonly 

reported by large, medium, small and micro (LMSM) construction firms. 

3. To select the best combination of quantitative and qualitative for the CF-IPM 

4. To use advanced well-tuned AI tools and the best contemporary methods to ensure 

dependability of the CF-IPM 
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5. To solve the high computation intensity problem of large data and tuned AI tools by 

using Big Data Analytics to develop the CF-IPM. 

 

1.8 Unit of analysis 

Unit of analysis, according to Tainton (1990 p.5), “is the entity on which there are data and 

which will be subjected to analysis.” It is the social unit about which data is collected; 

hypotheses are designed, and conclusions are made (Yang and Miller 2008). Although these 

explanations sound fairly straightforward, it is not uncommon to confuse what the actual 

unit of analysis in a study is. Grünbaum (2007; p. 82) in his research was able to 

explain/conclude that “the key issue in selecting and making decisions about appropriate 

unit of analysis is to decide what it is you want to be able to say something about at the end 

of the study”. The unit of analysis is therefore absolutely dependent on the design of the 

study, and it is what viable conclusions about the study are mainly based on.  

With the afore clarifications, the unit of analysis of the research was resolved to be 

construction firms, which falls under the ‘organisations’ category of unit of analysis. This 

is because the data collected and analysed for the research were those of construction firms. 

Also, the conclusions were made mainly on construction firms.  

Although they are usually the same, the unit of analysis in a study might be different from 

the unit of observation which “is the entity on which the original measurements are made” 

(Tainton 1990, p.5). The original measurements in the research, e.g. financial ratios of 

construction firms, were made directly on construction firms hence the unit of observation 

was also construction firms. 

 

1.9 Methodology 

A major objective of the research was to involve qualitative variable in the IPM to be built 

for construction firms. There are a few studies (e.g. Kangari 1988; Hall 1994; Arditi et al. 

2000) that have focused on factors that lead to insolvency of construction firms over the 

years. Some of the qualitative variables required can be deduced from these established 

factors. However, these studies will be missing some important contemporary dynamic 
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factors. A very good example is the effect of immigration on the UK construction firms; is 

it positive or negative of large, medium, small and micro (LMSM) construction firms? There 

can also be issues with industry culture and the new sustainability policies. All these meant 

that it was good idea to talk to firm owners and senior management staff (respondents) of 

failed and existing construction firms to establish what contemporary factors have affected 

the solvency of their firms. This was done by interviewing respondents. The resulting factors 

were operationalized to form questionnaires. The result from the questionnaires (qualitative 

variables) and the financial ratios (quantitative variables) of sample firms were used 

together to create the CF-IPMs. This approach of using any combination of methods that 

best answer the research method, irrespective of the school of taught, is known as 

pragmatism (Tashakkori and Teddlie 1998). The method used was mixed method which 

normally ensures an all-round effectiveness research (Creswell and Plano Clark 2011). The 

sample, data collection and analysis methods are briefly expatiated on in the following 

paragraphs.  

Sample: The sample population was of failed and existing construction firms of all sizes in 

the UK. The failed construction firms considered were those that failed between 2009 (after 

the global recession) and 2016. To have a sample that is more representative of the 

population, medium, small and micro (MSM) construction firms constituted ‘at least’ 80% 

of the sample with large firms forming the rest. Although there are normally a lot more 

existing firms than failed firms, the variance in the proportion of failed to existing firms in 

the data was not allowed beyond a ratio of 6:4 to avoid variance problems in analysis.  The 

sampling methods are discussed in chapter six. 

Literature Review: A systematic review of studies that have identified factors that lead to 

failure of construction firms, and not necessarily developed a CF-IPM, was carried out. The 

factors deduced from the review were operationalized, along with factors realised from 

interviews, and used to create a questionnaire. 

Unstructured Interviews: The qualitative data was gotten using interviews. “The 

unstructured interviews take the form of free-flowing conversation” and are known for the 

advantage of not limiting respondent views (Latham and Finnegan 1993; p. 42). The 

unstructured interviews were conducted orally with owners and senior management staff of 

failed (or insolvent) and existing construction firms of various sizes. The interviewees were 

simply asked to talk freely about what they think had contributed to the failure or survival 
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of their construction firm. Every other question was generated from the responses given. 

The responses were recorded and analysed. The insolvency factors gathered from the 

unstructured interviews and literature review were subsequently operationalized and used 

to develop questionnaires.  

Questionnaires: The questionnaires developed from operationalizing factors gotten from 

literature review and interviews were distributed to a much larger number of respondents 

(i.e. owners and senior management staff of failed and existing construction firms). To 

encourage participation of target respondents, Likert scale questionnaires with closed-ended 

questions were used because Likert scale questionnaires are quite easy to deal with by 

respondents (Van Laerhoven, van der Zaag-Loonen and Derkx, 2004). Questionnaires were 

distributed and collected mostly by post, using prepaid envelopes, and by email where 

possible. The response from the questionnaires were used as qualitative variables’ values in 

building the CF-IPM. 

Company Documentation: Data for financial ratios of sample firms were downloaded from 

FAME (Forecasting Analysis and Modelling Environment) Bureau Van Dijk UK financial 

database. This database is available for free on the university system. The data downloaded 

were those of the firms whose representative completed the questionnaires. Only the 

financial ratios from the last year of operation, or year of failure where applicable, were 

used. Where the financial statement of last year of operation was not available, that of the 

preceding year was used. Where the financial statement of sample construction firm had 

very scanty information, the financial statement of a firm that was similar in features (i.e. 

size, turnover, number of employees, profit, date of establishment, insolvency date where 

applicable and location) was used as a replacement 

Analysis of Data: For analysis, the data collected was be split into two sets: 70 percent for 

model development and 30% for model testing. The proportion of failed to non-failed firms 

in each split was (approximately) the same. The quantitative and qualitative variables, as 

measured for all sample firms, were analysed using various statistical tests like ‘information 

gain’ to find the variables that best distinguished between failed and existing construction 

firms. The selected variables were subsequently used to build CF-IPMs using various 

powerful AI tools (e.g. AdaBoost, support vector machine, random forest, Bart machine, 

among others.) and the results compared to find out the best model. 
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1.10 Novelty of research 

With too many studies somewhat re-inventing the wheel, the importance of novelty in 

contemporary research is becoming more important than ever. Many studies have shown 

that novel research contributes significantly to the economy; this is very necessary as the 

research world itself consumes huge funds and needs to feed back into the economy 

somehow (Griliches, 1979; Etzkowitz et al., 2000).  

 

1.10.1  Academic and literature novelty 

The research work aspired to develop IPMs for early identification of potential failure of 

construction firms and was novel in a number of ways. It was the first time that the 

combination of quantitative and qualitative factors (variables) that are the best predictors of 

solvency of construction firms are identified together. It was also the first time mixed 

variables (qualitative and quantitative) were used to develop CF-IPMs, thereby being the 

first case to establish a mode of combining them in a CF-IPM. Further, it was the first time 

to consider, simultaneously, the effect of managerial decisions and construction industry or 

construction firms-specific activities on predicting potential failure of construction firms. 

The first systematic review of how tools perform in relation to CF-IPM development was 

carried out in the research work since no study has taken a holistic approach towards this 

area. The review exercise was used to identify what criteria each tool satisfied best and 

consequently the most fitting tools for various situations. Also, the best tool for predicting 

insolvency of LMSM construction firms was, for the first time, revealed in the research 

 

1.10.2  Practice novelty 

The Construction sector has always been, and remains, one of the most important sectors of 

any country. Apart from its huge economic importance, its role in providing and maintaining 

homes, vital infrastructures, schools, hospitals, and so forth means that large failure of 

construction businesses is always a national concern. In recognition of this and in a 
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pioneering effort, the development of CF-IPMs with early warning system for construction 

firm owners and other stakeholders who are interested in detecting potential failure early 

enough, to allow enough time for possible recovery, was implemented in the research work. 

This was done mainly by including qualitative variables in the development of the model. 

This differed from CF-IPM developed in other studies that used only quantitative variables 

since those CF-IPMs were meant for credit providers who are interested in checking credit 

worthiness of construction firms. Consequently, the model developed will help stem the tide 

of the relatively massive failures of construction firms 

The CF-IPM developed was practically novel in that it was the first to be developed with 

the data of large, medium, small and micro (LMSM), thereby being widely applicable and 

not neglecting the MSM construction firms that make up about 90% of the UK construction 

sector as done in previous studies.  

 

1.11 Scope and limitations 

The scope of any research work is very important to know how widely generalizable the 

results is.  The scope here is discussed mainly in two dimensions: type and size of 

construction firms. 

Regarding size, the scope of this work included all sizes of construction firms in the United 

Kingdom i.e. large, medium, small and micro.  However, to have a sample that is more 

representative of the population, medium, small and micro firms constituted ‘at least’ 80% 

of the sample with large firms forming the rest. The definition of firm sizes according to the 

European Union is given in Table 1.3 

Table 1.1: Categories of firm sizes according to the European Union 

Company category Staff headcount Turnover or Balance sheet total 

Large 250 and above > € 50 m  > € 43 m 

Medium-sized < 250 ≤ € 50 m ≤ € 43 m 

Small < 50 ≤ € 10 m ≤ € 10 m 

Micro < 10 ≤ € 2 m ≤ € 2 m 
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Regarding firm types, the construction firms considered in the research were those that are 

involved directly in on-site constructions. These are the ones classified by the UK Standard 

industrial classification of economic activities (SIC) 2007 as 41100 Development of 

building projects; 41201 Construction of commercial buildings; 42110 Construction of 

roads and motorways; 42120 Construction of railways and underground railways; 41202 

Construction of domestic buildings; 42130 Construction of bridges and tunnels; 42210 

Construction of utility projects for fluids; 42220 Construction of utility projects for 

electricity and telecommunications; 42910 Construction of water projects; 42990 

Construction of other civil engineering projects n.e.c.; 43110 Demolition; and 43120 Site 

preparation. It does not involve 43130 Test drilling and boring; 43210 Electrical 

installations; 43220 Plumbing, heat and air-conditioning installation; 43290 Other 

construction installation; 43310 Plastering; 43320 Joinery installation, etc.  

The main limitation of this work was the inability to recognise construction firms that 

declared false bankruptcy and got away with it legally. Such firms, having successfully 

declared bankruptcy under the law, could be wrongly included in the failed construction 

firms sample population. If such a firm is chosen as a sample construction firm, its attributes 

would be wrongly processed by an IPM tool with those of other failed firms, thereby 

reducing accuracy. It must, however, be mentioned that any construction firm with 

suspected false bankruptcy declaration was excluded from the samples to be used for the 

research. A relatively less critical limitation was the inability to interview all willing 

representative of construction firms who insisted on physical presence despite being located 

far from the author, because of the cost barrier. This reduced the number of interviews held. 

Another relatively less critical limitation was the consideration of construction firms that 

have failed over a seven-year period, i.e. from 2009 to 2016 since it might mean the firms 

considered were subjected to different external factors that led to their failure. However, the 

prediction tools can still find a pattern amongst these failures and ensure this limitation is 

reduced to the barest minimum. 

 

1.12 Thesis structure 

The structure of this thesis flows from this introductory chapter through a series of literature 

reviews touching on underpinning theories, variable influencing CF-IPMs, Big Data and 
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methodical issues with developing CF-IPMs. These reviews partly involved systematic 

reviews, some of which were subsequently used to decide the methodology of the thesis. 

Data from methodology was processed using analyses methods like Cronbach alpha 

reliability and factor analysis to create the variables to develop the CF-IPMs. The CF-IPMs 

were subsequently developed using Big Data Analytics and sophisticated AI tools. The 

results from the analyses were finally discussed and conclusions made. A framework of the 

thesis structure is provided in Figure 1.2. 
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Figure 1.2: A framework of this thesis structure 
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1.13 Key Achievements 

A major achievement in my research work was the successful development of a CF-IPM 

that is relevant for all sizes of construction firms: large, medium, small and micro. Despite 

its necessity (90% of the construction industry is made up of medium, small and micro 

firms), this feat has neither been attempted nor accidentally achieved by past studies. This 

is because past studies focused solely on large construction firms because they are thought 

to be more important. 

Another achievement was the successful use of combined qualitative and quantitative 

variables to develop a CF-IPM. The closest achievement to this was witnessed in Abidali 

and Harris' (1995) study where two separate CF-IPMs were developed, one with 

quantitative variables and the other with qualitative. 

A major accomplishment was the successful use of Big Data Analytics (BDA) to develop 

CF-IPMs with relatively large data and highly tuned AI tools.  The development of this type 

of CF-IPM would normally require days to complete due to the high computation intensity 

that results from the data and highly tuned AI tools. In this case however, the BDA platform 

helped ensure that the models development was completed in minutes, or even seconds in 

some cases.  

Finally, the use of contemporary powerful AI tools helped achieve CF-IPMS with over 99% 

accuracy, a rare feat among CF-IPM studies. 

 

1.14 Chapter summary 

This chapter gave an overview of the problem of high rate of construction firms failure in 

the UK and Europe and the effect of such failures on the economy. It explained the concept 

of failure and introduced the concept of Big Data. The relatively high rate of failure of 

construction firms was used to justify the research. The research problem and gaps in 

knowledge exposed the poor over-reliance on financial indicators of past construction 

industry IPM studies and their neglect of micro and SME construction firms which 

constitute over 90% of the CI. It also explains how the studies have failed to prioritise early 

predictive capabilities of IPMs which firm owners need to allow time for remedial actions 



20 

 

 

and in turn reduce the rate of firm failure in the CI. The proposed solution thus offers to 

combine financial (quantitative) and non-financial (qualitative) indicators (variables) to 

develop a robust IPM to help reduce the rate of construction firms’ insolvency. The 

proposed solution further offers to use large data set for reliability sake and state of the art 

tools, a combination which calls for the use of the contemporary Big Data Analytics, to 

develop the CF-IPMs.  

The unit of analysis was cleared up as being construction firms (failed and existing) which 

correspond to the ‘organisation’ category. In order avoid confusion during sample selection, 

the concept of failure is clearly explained and what failure refers to in the research is spelt 

out. A brief methodology section was used to highlight how pragmatism is the philosophical 

underpinning of the research and justify the mixed method approach used and a thesis 

structure provided 

The novelty of research section highlighted that the research is the first to combine 

qualitative and quantitative variables, use Big Data Analytics, and use the data of all sizes 

of construction firms (i.e. LMSM) to develop a holistic CF-IPM. Finally, the scope and 

limitation section defined the scope of the work according to construction firm types and 

sizes. A structure of the thesis was also given. 

Chapter two contains a discussion of the theories underpinning failure of construction firms. 

The theories were discussed from three major dimensions: external based theories, internal 

based theories and mixed (or combinatory) theories.
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CHAPTER TWO 

2.0 UNDERPINNING THEORIES OF CONSTRUCTION FIRMS 

FAILURE  

2.1 Chapter introduction 

Construction firm insolvency research has been approached principally from the accounting 

and finance standpoint by developing insolvency prediction models using financial ratios 

exclusively (e.g. Baum and Singh, 1996; Fadel, 1977; Horta and Camanho, 2013; Langford, 

Iyagba, and Komba, 1993; Mason and Harris, 1979; among others). For a wider, more 

rigorous approach, there is need to consider insolvency of construction firms from non-

financial theoretical perspectives such as organisational theories. This chapter introduces 

these theories and relates them to the failure of construction firms.  

The next section discusses organisational theory categories (external, internal and 

combinatorial or mixed) that are considered in the research. Section 2.3 is about external 

based theories, including organisation ecology and Porter’s perspective which is explained 

in subsections 2.3.1 and 2.3.2 respectively. Section 2.4 is about internal based theories, 

including the adaptationist perspective, Mintzberg’s perspective, upper echelon theory and 

resource based view which are explained in subsections 2.4.1, 2.4.2, 2.4.3 and 2.4.4 

respectively. Section 2.5 is a description of dynamic capabilities theory which is the mixed 

theory considered in the research. Section 2.6 is a highlight of the implications of the 

discussed theories. Section 2.7 provides a summary of the chapter 

 

2.2 Theory categories 

Organisational theory has to do with how the analysis of organisations are done in the sense 

of identification of difficulties and their solutions, and maximising efficiency, effectiveness 

and performance. It has to do with the structures put in place in an organisation and how an 

organisation is designed to function. It deals with internal and external, or even mixed 

(internal and external), relationships of an organisation (Figure 2.1). Regarding construction 
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firms, it deals with how the firm relates with its clients, suppliers, subcontractors, and the 

likes, as well as how the firm relates with its employees right from the director level to the 

junior engineers’ level. 

 

 

 

 

 

 

 

 

 

Figure 2.1: Structure of theories underpinning construction firm failure 

Given the multifaceted nature of insolvency and that no individual criteria can answer what 

determines insolvency of a firm, there are numerous contending theories attempting to reveal 

what helps to improve solvency (i.e. to avoid failure or insolvency). Many theories on what 

strategy to use to aid solvency have been developed over the years. The theories are quite 

variant and are not necessarily mutually exclusive, most of them having a different emphasis. 

The diverse and complex nature of strategy was attested to by Mintzberg, Ahlstrand, and 

Lampel (1998). After reviewing ten strategy models, they concluded that “strategy formation 

is judgmental designing, intuitive visioning, and emergent learning; it is 

about transformation as well as perpetuation; it must involve individual cognition and social 

interaction, cooperation as well as conflict; it has to include analysing before 

and programming after as well as negotiating during; and all of this must be in response to 
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what can be a demanding environment. Just try and leave any of this out and see what 

happens” (Mintzberg et al., 1998: pp 372-373).  The following sections describe some 

applicable theories to the research 

 

2.3 External based theories  

2.3.1 Organization ecology 

The organisational ecology perspective attempts to encompass the complete variety and 

diversity of firms through their beginning, development, change period, and death. 

According to George (2002), Hannah used the word ecology because he stumbled on a 

population ecology document while looking for conceptual models to support his ideology. 

Right from early days of organisational ecology, the very presence and different destinies 

of various firms that failed and survived mattered, none being more important than the other. 

Pioneering research in the area looked at entire populations irrespective of size or duration 

of firm existence. The smallest and biggest firms, short-lived and the very oldest firms, all 

are important in organisation ecology. Hannan and Freeman (1977) (Hannah in particular), 

the fathers of organisation ecology, conceptualised the idea in the form of rebuttal to 

organisation research’s focus on large firms. Hannah advocated the recognition of thousands 

of small firms that were unnoticed as data involving them could be key to solving 

organisational problems.  

More importantly, Hannan and Freeman (1977) rejected the idea that organisations do 

transform or adapt and questioned why many firms were failing if they could adapt. The 

idea, more or less, is similar to Darwin theory of natural selection. This theory postulates 

that the environment selects firms whose traits/characteristics are most fitting for survival 

while firms that have traits/characteristics that are not fitting to the environment will fail 

and get replaced by new ones (Kale and Arditi 1999). 

While arguing that all firms in a population are important and that all types of firms should 

be considered, proponents of organisational ecology contend that the population include 

firms that were considerably planned for but eventually did not start up. Some of these 
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planning activities normally result into successful start-ups while others result in 

abandonment or a ‘dead on arrival’ situation. Hannan and Freeman (1977) argue that a lot 

of time and resources are put into the said planning that the firms cannot be disregarded as 

part of the population. Disregarding these unsuccessfully started firms, in ecology as 

postulated by Hannah, leads to a serious underestimation of failed firms. Carroll and 

Hannan, (1995) successfully collected such data (covering from 1886 to 1994) in the 

automobile industry in an investigation in 1994 and realised that close to 4000 potential 

automobile production firms did not eventually get to production, meaning that about 89% 

of potential automobile firms failed to reach operation stage. As noted in George's (2002) 

article, collecting this sort of data is onerous and distressing and consumes hundreds of 

hours. This is partly why this part of organisational theory will be adopted in the research, 

especially as it is nearly impossible to do this with construction firms i.e. collect data of all 

unsuccessful start-up of construction firms. 

Organisational ecology’s take on competition argues that increase in population lead to 

legitimation and competition (Hannan and Freeman 1977). Legitimation is when a particular 

method of activity execution becomes the norm in the industry, and this leads to the birth of 

more firms. Competition has to do with when the number of firms is so much that the 

available resources, including customers, become insufficient (Amburgey and Rao 1996). 

This is a case of market saturation which is very common in the construction industry.  

 

2.3.2 Porter’s perspective 

The Porter’s perspective is famous for the five competitive forces model: supplier power, 

buyer power, competitive rivalry, the threat of substitution and threat of new entrants. 

According to (Rumelt, Schendel, and Teece, 1991: p.8), “the most influential contribution 

of the decade from economics was undoubtedly Porter’s competitive strategy (1980)”. It 

has been the basis for some strategy research in construction (e.g. Betts and Ofori, 1992; 

Budayan, Dikmen, and Talat Birgonul, 2013; Tansey, Spillane, and Meng, 2014). The threat 

of new entrant remains one of the most applicable forces to the construction industry as the 

entrance to the industry has no barrier and sometimes require little investment (Betts and 
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Ofori 1992). This is unlike some other industries like the computing and engineering 

industries in Japan where huge investments by larger companies are proving to be a barrier 

to entrance for potential smaller companies. Supplier power wise, there are usually many 

suppliers in the construction industry, however, keeping a good relationship with a small set 

of specific suppliers, thereby buying in high volumes from them could give a competitive 

advantage. This is because being a major buyer allows the firm to drive down prices of the 

supplier. It also ensures the firm is given priority when there is materials shortage. The threat 

of substitution refers to how easy it is for a client to replace one firm with the other. This 

threat is usually high in the construction industry as there are always too many firms 

competing for one job, hence being unique can give a competitive advantage here. 

Competitive rivalry, which is the fifth force is all about firms vying for a better/unique 

position to give them a competitive advantage. According to Betts and Ofori (1992), vying 

for position is a strong competitive force among small construction firms despite the low 

exit barrier of the industry. 

 

2.4 Internal based theories theory 

2.4.1  Adaptationist perspective 

The adaptationist perspective (Thompson, 2014; Child, 1972; March, 1981; Bourgeois, 

1984) is quite the opposite of organisational ecology in that it accepts that firms can change 

and adapt to the environment to survive. This is in line with Lamarck’s ideology, known as 

Larmakism, which stresses how important the adaptation aspect of an organisation is. As 

opposed to ecology research which prefers to consider the full population, research in the 

adaptationist world usually considers just one organisation (Kale and Arditi 1999). 

Adaptation in this sense has to do with the selections, pronouncements and general activities 

that the top management (or owner in the case of micro firms) of an organisation make to 

ensure it fits properly to its environment. Take for example, many construction firms in the 

United Kingdom (UK) are taking the steps of improving their expertise in the Building 

Information Modelling (BIM) area because the UK government activated the BIM mandate 

in April 2016. This mandate means any firm that cannot operate at BIM level 2 cannot get 
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a government contract. These steps have seen many firms change the way they do some 

things including documentation, construction methods and recruitment, among others. This 

sort of situation is clearly a case of adapting to a changing environment to ensure a better 

chance of survival than failure, especially if a firm in the case of the given example is very 

dependent on government projects for survival. 

Theories of Competition: The competition aspect of organisational theory has a take on 

Red Queen theory in which ecology and adaptationist perspectives cross path. The theory 

suggests that improvement of some firms in a competitive market is as a result of 

deteriorating conditions for others who must adapt to the climate of an evolved environment 

to survive (Barnett and McKendrick 2004). The adaptation comes in the form of some 

organisational learning as the deteriorating firms (or organisations) continue to understand 

the new environment within which they operate. Successfully adapted firms that were 

deteriorating, in turn, become upgraded and put pressure on the previously improved firms 

and vice versa, therefore causing an interminable circle of organisational learning and 

competition (Baum and Singh 1996). This leads to very fierce competition, as witnessed in 

the construction sector where bid writing, for example, has been learned so much by most 

firms. These firms are now able to submit an incomprehensibly low bid for jobs simply 

because of their expert knowledge of where extra savings or future charges to the client can 

be legally made. The competition is so fierce that firms use unrealistic tenders to win 

projects that consequently lead to failure of the firms (Arditi, Koksal and Kale, 2000). 

The Red Queen theory was well supported in Barnett and McKendrick's (2004) study where 

they were able to prove that firms that are very engaged in thick competition over time learn 

a lot and become stronger with a very reduced potential for failure. On the other hand, the 

avoidance of competition either by focusing on a particular region or on a particular area of 

the industry, although has its immediate benefits, is a less robust strategy that will hardly 

bring about learning and associated innovative knowledge. Engagement in thick 

competition in itself can be as a result of reduced availability of construction projects 

(Kangari, 1988). Although Kangari (1988) did not disagree with the organisational learning 

that comes with fierce competition, he clearly highlighted that a reduction in available 

construction projects and the resulting fierce competition leads to failure of construction 

firms. 
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Organisational learning and liability of newness: Organizational learning obviously has 

to do with age as learning takes place over time. Together with size, they have been given 

the most attention in research.  The fact that most start-up firms are of small size means it 

is almost impossible to separate the two of them according to Wholey and Brittain, (1986) 

but authors like  Ranger-Moore (1997) argue that age, which is associated with the liability 

of newness hypothesis, is more important than size. 

Liability of newness explains how external and internal factors lead to (in)solvency of new 

firms. Internal factors have to do with functions like organisational structure, positions in 

the structure, personnel skills and experience, relationship types and level among staff, 

among others (Freeman, Carroll and Hannan, 1983). Over time, these functions are 

improved upon by the company due to experience/organisational learning (Crossan, Lane 

and White, 1999). The firms that fail to learn and adapt thus end up failing. Although Carroll 

and Hannan (1995), talking from the ecology perspective, disagree with this concept by 

claiming data that supports this stance is heavily biased. They (i.e. Carroll and Hannan, 

1995) insist that most firms will normally fail, rather than adapt, in a changing environment 

and be replaced by new firms that are suited to the new environment hence the portended 

age effect is actually a size effect. Hannan and Freeman's (1977) earlier study, however, 

agrees that a firm learns how to do things in a more structured way over time, thereby 

improving its reliability, and this is the basis for the theory of `structural inertia’ according 

to (Levinthal and March 1993). The theory postulates that reliability, which stems from 

having an explicitly stated repeatable structured way of doing things due to organisational 

learning, leads to improved solvency of a firm. 

The external factors have to do mainly with an organisation’s external relations such as 

clients, sub-contractors, material suppliers, financiers, among others. Bruderl and Schussler 

(1990) argue that developing a very good reputation with external relations, through meeting 

or exceeding their expectations in prior projects, remains very key to the survival of an 

organisation. This process will usually put an organisation on the top of the list when there 

is competition for resources from the external relations. 
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2.4.2 Mintzberg’s perspective 

 The Mintzberg’s perspective is famous as it took a holistic and integrated approach to 

various strategy theories to develop what is known as the five P’s (plan, ploy, pattern, 

position and perspective). It has been the main or part basis for some strategy research in 

construction ( e.g. Chinowsky and Meredith, 2000; Dikmen and Birgönül, 2003). A strategy 

is more or less in itself regarded as a plan. Planning is the most popular and is virtually the 

default approach by managers. It is usually based on information hence having poor 

information can lead to poor strategy as plan. Ploy strategy mainly has to do with making a 

ploy to outwit competitors while the pattern is about the decision a firm takes over time 

which then becomes the firm’s way of doing things (Adams and Simon 1962). According 

to Mintzberg et al. (1998), it is the actions that a firm takes, and not the decisions, that lead 

to patterns; this is because the interconnection between decision making and actions in a 

firm is usually unclear. There is often a great deal of action with little decisions, and 

sometimes vice versa. Further, the actions and decisions are sometimes uncorrelated.  

According to Andrews (1987), strategy as position refers to positioning a firm in such a way 

that it stands out from others. This is very much about being unique. Perspective as strategy 

refers to the fact that the ways of thinking in a firm will largely influence the strategy the 

firm adopts. For example, a firm that encourages caution in resource consumption and waste 

generation is likely to have employees come up with more sustainable solutions. 

 

2.4.3 Upper echelon theory 

Upper echelon theory is a behavioural theory that suggests that the failure or existence of a 

firm partly has to do with those that constitute the top management (Huber and Glick 1993).  

The theory was proposed by Hambrick and Mason (1984) who reconciled preceding 

individual literature on how characteristics of the top management team partly affects the 

strategic fate of a firm. The top management team is usually defined in upper echelon theory 

as the people holding executive managerial position and member of the board of directors 

position simultaneously (Finkelstein and Hambrick 1990). Although many upper echelon 

theory applications have determined those involved in the top management team based on 
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convenience (Carpenter, Geletkanycz and Sanders, 2004). In upper echelon theory research 

studies, the top management team is usually taken as people occupying the topmost 

managerial positions like Managing Director, Chairman Board of Directors, and the likes, 

and is details are usually taken from publicly available information.  

The upper echelon theory argues that the knowledge, experience, education, social 

background, values, personality traits, among others, of top management teams influence 

the performance of a firm they lead. In essence, the outcome or potential status of a firm 

(whether it will fail or survive) can be predicted from top management team characteristics. 

According to Hambrick and Mason (1984), it is vital to consider the causal factors of the 

characteristics of the top management team when dealing with upper echelon theory. For 

example, the decisions and actions of members of the top management team that possess 

vast experience are more likely to be based on their experiences rather than their traits.  

In the United Kingdom construction industry, where a large proportion of the firms are 

micro, small or medium in size (Department for Business Innovation and Skills, 2015), it is 

not uncommon for the top management team to comprise of just the owner of the firm. Hall 

(1994) conducted a study on insolvency of small and micro construction firms and is one of 

the very few studies to have employed the upper echelon theory in this field. The nature of 

his study sample, i.e. small and micro construction firms, meant that the top management 

teams were simply the owners of the sample firms. The study used a questionnaire that 

asked about the age, qualification, management experience, professional training, 

professional membership, among others of the owners. In the result, age at which owner 

took charge of the construction firm and education level of owners turned out to be very 

important variables in determining (in)solvency of a construction firm according to a 

regression model. This clearly proves the potential applicability of the theory to the 

construction industry. 

Abatecola and Cristofaro (2016) tested the theory on ‘important’ construction firms in Italy 

with a focus on top management team members such as president, chief of operation, and 

partners. The construction industry was viewed from the value chain perspective by the 

authors hence it included preconstruction, post construction and other supporting actions. 

The result indicated similarity in the actions taken by members of the top management team 
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with similar characteristics. In this regard, educational background, education level, age and 

gender were all found to be significant, moderately indicating agreement with the result of 

Hall's (1994) study. This could mean the effect of upper echelon theory in construction firms 

is insensitive to size, a feature which favours part of the research’s objective of creating one 

model for big and small firms. 

 

2.5.4 Resource based view 

As opposed to external based theories like Porter’s five forces that focus on the industry 

rather than the firm’s ability, the resource based view is internal based and focuses on the 

resources of a firm. Resources in this sense include tangible and non-tangible resources. 

Tangible resources of a construction firm include, for example, owning facility for a special 

construction method (e.g. volumetric construction), owning special equipment (e.g. drones 

capable of measuring aggregate volume), owning contemporary software (e.g. BIM 

compatible software like AutoCAD, ArchiCAD, Navisworks, among others), among others. 

Non-tangible resources include the skills, knowledge and experience of the firm’s 

personnel, especially at managerial level. Non-tangible resources of construction firms, for 

example, include industry knowledge of the TMT, ability to use building information 

modelling (BIM) to execute projects, among others 

The resource based view portends that the resources and proficiencies of each firm are 

unique and the survival of a firm is based on these resources. The theory postulates that a 

firm’s resources are the main source of its competitive advantage. In fact, Wernerfelt (1984) 

explained that a firm is best looked at as a gummy assortment of resources. This gummy 

assortment of resources that defines a firm makes each firm unique and hard to replicate. 

Although one, two or more resources might be replicable, the holistic combination of the 

gluey assortment of resources is not. These resources can be rearranged for better 

performance and improved competitive advantage. 

Not each and every resource of a firm is unique to the firm and creates a competitive 

advantage. According to Barney (2000), the resources that will give a firm an edge in the 

competitive market must be valuable, unique, have no alternative and not be perfectly 
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imitable. According to Olavarrieta and Ellinger (1997), the more a firm uses its resources, 

especially the intangible ones like skills, the more it gets polished up, subtle and advanced 

it becomes. This continuous advancement and subtleness make the resource more unique to 

the firm and harder to replicate by other firms. One of many studies that have applied the 

resource based view theory to construction firms is Jaafar and Abdul-Aziz (2005). In the 

non-product based construction industry, uniqueness is usually about the method of 

execution, and this is normally dependent on the resources at the disposal of the firm (Korn 

and Pine 2014). 

 

2.5 Mixed or combinatory theory 

2.5.1 Dynamic capabilities theory 

Dynamic capabilities theory focuses on the dynamism of a firm regarding the use of its 

resources. It supports, but goes beyond the resource based view. Dynamic capabilities 

theory portends that a firm’ survival depends on in its ability to acclimatise its resources to 

the market demands to gain competitive advantage. According to Teece, Pisano, and Shuen 

(1997), dynamic capabilities is defined as a “firm's ability to integrate, build, and 

reconfigure internal and external competences to address rapidly changing environments” 

(p.516).  

The dynamic capabilities theory heralds that core capabilities can be used to alter temporary 

competitive posture which can be used to develop lasting competitive advantage. So as to 

tackle fresh challenges in a constantly changing market, some dynamic capabilities 

essential. One is the learning stage where the firm and its personnel need to learn very fast 

and develop strategic resources. Another is that new resources such as technology (e.g. 

model integration software like Navisworks), capability (e.g. ability to use BIM for 

construction operations),  among others, must be assimilated into the firm’s system. And 

finally, the existing firm’s resources must be converted and remodelled.  

The dynamic capabilities theory according to Teece’s perspective heralds that the important 

thing is for firms to possess corporate deftness, especially from three angles. Firstly, firms 
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need to have a high level of awareness and should be able to recognise opportunities and 

dangers. Secondly, firms must be able to take the opportunities and avoid the dangers. 

Thirdly, firms must be continually competitive by continually advancing, integrating, 

conserving and, if crucial, converting its tangible and intangible resources. 

 

2.5.2 Organisational co-evolution 

The organisational co-evolution theory is more or less a combination of the organisation 

ecology theory and the adaptationist perspective. It basically postulates that organizations 

evolve based on the evolution of other organizations, and this co-evolution contributes to 

the business environment evolution. In essence, the organizations do not just evolve based 

on the business environment, rather they evolve based on one other thereby causing a change 

(evolution) in the business environment. Organizational evolution and business 

environment evolution thus happen simultaneously. According to Lewin et al.’s (1999) 

perspective, organisational co-evolution theory postulates that the organization population, 

the business environment and an organization itself are all associated consequence of 

managerial actions 

This implies that strategies implemented through managerial actions are not simply lifeless 

reaction, instead they are a gung ho aim to transform both an organization and its 

environment. In the case of direct evolution, a pair of organizations go through evolution in 

reaction to each other while in the case of diffused evolution, one or many organisations go 

through evolution in reaction to numerous other organizations in the same business 

environment (Baum and Singh 1994). The organizational co-evolution theory has not been 

applied to the construction industry in research. According to Baum and Singh (1994), the 

theory’s potential for application lies with very complex situations. It was however 

discussed here because of its connections to the afore discussed organization ecology 

(external based) and adaptationist perspective (internal based). 
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2.6 Implication of theories on construction firm failures 

The discussed theories have various implications for construction firm failure (see Table 

2.1). The organisation ecology causes construction firms top management team (TMT) to 

focus on its processes or methods and try to be unique such that it can withstand market 

problems. Porter’s perspective provokes construction firms TMT to look at everything from 

a relative perspective as it seeks to have a better competitive advantage. Such TMT will 

seek to have a relatively better relationship with its client and suppliers among others, and 

possibly submit lower bids than its competitors. 

Table 2.1: Implication of Theories on Construction Firm failures 

Underpinning Theory Implication on failure of construction firms 

External based 

Ecology Will make Cause construction firms attempt to be unique to 

ensure environmental conditions does not lead to failure 

Porter’s perspective Cause construction firms TMT to view things relatively and 

improve relationship with stakeholders to improve solvency 

Internal based 

Adaptationist perspective Construction firms TMT do self-study and make decisions 

based on experience to adapt better to the industry and avoid 

failure. 

Mintzberg’s perspective Construction firms TMT do more planning and aim to stand 

out to get the competitive edge 

Upper echelon Construction firms TMT consider characters of people to be 

promoted/recruited to TMT level as characters will reflect 

decisive decisions that can decide the fate of firm. 
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Underpinning Theory Implication on failure of construction firms 

Resource based view Construction firms TMT focuses on getting the right 

resources to improve competitive advantage 

Mixed or combinatorial 

Dynamic capability Construction firms TMT instigates continual resource 

upgrade 

The adaptationist perspective causes construction firms’ TMT to take more actions based 

on experience as the firm adapts to the construction industry. The Mintzberg’s perspective 

provokes construction firms TMT to focus more on their own plans through which they try 

to achieve uniqueness and outwit competitors. Upper echelon theory leads to a construction 

firm’s TMT considering characters of people before they are promoted/recruited to join the 

TMT as their characters will reflect the decisions they take, which can ultimately decide the 

fate of the firm. Resource based view causes construction firms TMT to focus more effort 

on recruiting highly skilled and experienced people as well as procuring cutting edge 

contemporary equipment. The dynamic capabilities theory has more of a mixed effect in 

that it supports the resource based view and adaptationist perspective. It motivates a 

construction firm’s TMT to want to constantly upgrade/change the firm’s resources to meet 

contemporary demands in the construction market 

 

2.7 Chapter summary  

This chapter introduced and discussed some non-financial organisation theories in view of 

achieving one of this studies main objectives of using qualitative variables (together with 

quantitative variables). The three categories of theory discussed are external, internal and 

combinatorial or mixed. The external based theories include organisation ecology and 

Porter’s perspective. Organisation ecology suggests that the operating environment 

naturally selects the firms that will survive and leave those that will fail. Porter’s perspective 

is famous for the five competitive forces model: supplier power, buyer power, competitive 

rivalry, the threat of substitution and threat of new entrants. 
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The internal based theories include adaptationist perspective, Mintzberg’s perspective, 

upper echelon theory and resource based view. Adaptationist perspective contends that 

organisations do learn, improve and adapt over time, leading to fierce competition that 

causes failure of firms. The Mintzberg’s strategic theory considered in the research is the 

five P’s: plan, ploy, pattern, position and perspective.  The upper echelon theory explains 

how the characters of TMT members affect decisions that are key to the survival of a firm. 

Resource based view portends that the resources of each firm makes it unique and decides 

if it will fail or survive.  

The mixed or combinatorial theories discussed are the dynamic capabilities theory and 

organisational co-evolution.  Dynamic capabilities theory has a mixed effect in that it 

supports the resource based view and adaptationist perspective at the same time while 

organisational co-evolution supports both organisational ecology and adaptationist 

perspective. 

Literature on the qualitative and quantitative variables that have been used in developing 

construction firms insolvency prediction models were reviewed in chapter three. A review 

of qualitative variables affecting general insolvency of construction firms was also included.   
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CHAPTER THREE 

3.0 QUANTITATIVE AND QUALITATIVE VARIABLES 

INFLUENCING CONSTRUCTION FIRMS INSOLVENCY 

PREDICTION MODELS 

 

3.1 Chapter introduction 

The two key issues that most affect the performance of a construction firms insolvency 

prediction model (CF-IPM) are the variables and methods used. Variables are extremely 

important as they are the features that decide if an insolvency prediction model is for 

construction firms or not. One of the critical arguments on CF-IPMs is the relevance of the 

variables used to the construction firms because of the construction industry’s uniqueness. 

The vital importance of qualitative variables, as against qualitative variables, as the 

variables that can really reflect the construction industry features necessary to build a valid 

CF-IPM have long been advocated and are supported here. 

This chapter is thus geared towards a review of the literature on both types of variables. The 

idea is to expose how various studies have condemned the exclusive use of quantitative 

variables (i.e. financial ratios) established the necessity of the inclusion of qualitative 

variables in building CF-IPMs. After establishing this necessity, it is believed that the fairest 

investigative way forward is to review as many as possible studies that have developed CF-

IPMs to see how many included qualitative variables as a result; this was done using a 

systematic review.  

To achieve part of the first objective listed in chapter one which is ‘to identify and collect 

data on qualitative variables that contribute to solvency/insolvency of construction firms 

through literature review and fieldwork’, a systematic review of studies on the failure of 

construction firms was also done. This review can help reveal potential qualitative variables 

that can be used to build a robust CF-IPM in the research. 

The next section (i.e. section 3.2) is a state of the art literature review on the necessity of 

inclusion of qualitative variables in CF-IPMs. Section 3.3 is a systematic review of studies 
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on construction firms insolvency prediction model where the studies that have used 

qualitative variables in any form were identified. Section 3.4 is a systematic review of 

studies on failure of construction firms to unmask potential qualitative variables needed to 

build a high-performance CF-IPM in the research. Section 3.5 present a summary of 

discoveries made from the rigorous reviews in the chapter 

 

3.2 Types of variables used in construction firms insolvency prediction 

models  

As much as owners do not like to hear it, the high prospect of construction firm insolvency, 

in any case, is a real one. The negative impact of such insolvencies on the economy and 

society, in general, has led to the development of many insolvency prediction models. 

However, the effectiveness of an insolvency prediction model is dependent on, amongst 

other factors, the variables that are chosen to develop it.  

The exclusive use of financial ratios (quantitative variables) as variables is common with 

virtually all insolvency prediction models (IPMs), including those built for construction 

firms (e,g. Mason and Harris 1979; Langford et al. 1993; Abidali and Harris 1995; Singh 

and Tiong 2006; Thomas Ng et al. 2011; Horta and Camanho 2013 among others). The 

method (i.e. the exclusive use of financial ratios) is a case of ‘follow the crowd’ approach 

for most IPMs as this has been the prevailing method since the days of the pioneering IPM 

studies (i.e. Beaver 1966; Altman 1968). The method is also attractive because of the ease 

with which data, which is financial ratios, can be collected. Submission of annual financial 

statements, which contains elements for calculating financial ratios, is a legal requirement 

for registered (construction) firms; these submissions are normally readily available in third 

party databases. In the United Kingdom, for example, the financial data of all firms are 

available with ‘Company House’ for a token, an executive agency and trading fund of Her 

Majesty's Government, which serves as the United Kingdom's registrar of companies. The 

information is also available on databases such as FAME (Forecasting Analysis and 

Modelling Environment) Bureau Van Dijk UK. 
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Qualitative variables, on the other hand, are less popular because they are not readily 

available anywhere and information on them might require the rigorous task of interviewing 

surveying managers of many sample firms. This can be a Herculean task especially because 

it involves finding representatives of failed construction firms who can be very difficult to 

track down and might be unready to discuss their firm’s failure if it causes them pain. 

However, they (i.e. qualitative variables) remain extremely important and must be used if a 

robust prediction model is to be developed, especially for construction firms. This has been 

reiterated in many studies. 

Right from the very early stages of IPM research, Argenti (1976) who is a well-known 

professor of corporate failure proved the multiplicity of causes of failure by clearly 

highlighting how major books and studies on firm failure highlighted entirely different 

many reasons (as many as 10 in many cases) for failure of firms. He (Argenti, 1976) 

consequently argued that financial ratios are incapable of exclusively predicting failure as 

there are multiple causes. Argenti (1976) clearly established that the failure of firms, big or 

small, is not a sudden process, clarifying that micro or small and medium-sized enterprises 

(SME) can take years to fail while large firms can take decades. He noted the non-financial 

factors (i.e. qualitative variables) like defects in the top management team could be used to 

detect potential failure earlier. The defects highlighted included autocratic chief executive, 

many inactive board members, chief executive acting as chairman, unbalanced skills and 

knowledge of the board members, among others. Fraud and bad luck, which is agreed to 

cause 1% of firms’ failure, were also identified as non-financial factors 

Argenti (1976) explained that it is ‘creative accounting’ that causes a firm that is nearing 

failure to look stable. He (Argenti, 1976) gave an example of creative accounting where he 

explained about Rolls Royce that “because the company capitalized the annual R and D 

costs of the RB211 the company could demonstrate a fairly healthy profit and hence justify 

the continued dividend payments. In fact, it was making a loss.But no one wanted to know” 

(p. 13). This creative accounting results in financial ratios that are not true representations 

of a firm’s situation by depicting a very stable firm when it is failing. This further calls into 

question the exclusive use of financial ratios for IPMs.  

Kangari (1988), an active researcher and then associate professor in construction 

engineering and management, looked into the failure of construction firms in particular. He 
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(Kangari, 1988) was able to highlight very early (in 1988) that what was needed to prevent 

or reverse a construction firm’s impending failure was to establish common features of 

failing construction firms find a way of synthesising them. The emphasis in Kangari’s work 

was to understand “the mechanism behind the financial failure of construction companies” 

(Kangari 1988, p.173) rather using the financial information to understand failure. In 

essence, it is non-financial activities/events (i.e. qualitative variables) that actually dictate 

what the financial situation (or financial ratios) of a firm will look like. It is thus important 

to use qualitative variables if early prediction of failure that will allow some time for 

remediation is to be achieved 

Kale and Arditi (1999) lamented the fact that construction management research on 

construction firms’ failure is mainly approached from the perspective of finance 

(quantitative variables) while no one paid attention to the organisational theory perspective 

(qualitative variables). They noted    Hall (1994) as the only study which considered “the 

process which leads to construction business failures” and “explored the factors associated 

with the failure of construction companies” (Kale and Arditi 1999; p. 494). [Hall's (1994) 

work will be discussed in the next section where a systemic review of CI IPM studies is 

done]. Kale and Arditi (1999) highlight “the fragmented nature of the industry structure, the 

fragmented nature of the organization of the construction process, easy entry to the 

construction business, post-demand production, the one-off nature of projects, the high 

uncertainty and risk involved, the high capital intensiveness of the constructed facilities and 

the temporary nature and duration of exchange relationships” (p. 496) as characteristics that 

make the CI unique and hence the need to look beyond accounting variables to understand 

failure of its (i.e. the CI) firms 

Arditi et al. (2000) explained that studies that developed IPMs in the three decades to the 

year 2000, unfortunately, did so exclusively with financial ratio and expressed the same 

regret as Kale and Arditi (1999) about the scarcity of use of organisation theory, which 

requires qualitative variables. Arditi et al. (2000) condemned the exclusive use of financial 

ratios for CI IPMs by citing Argenti (1976)’s argument that financial ratios cannot detect 

the causes of failure and might be unreliable due to ‘creative accounting’ practices though 

they can detect some of the associated warning signs. Arditi et al. (2000) concluded that 

incorporating “data based on both organisational and managerial foundations rather than on 

financial ratios is still open to researchers in the construction industry” (p. 120). He (Arditi, 
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Koksal and Kale, 2000) went ahead to “explore the factors”, but his work did “not include 

the development of an empirical model for predicting business failure” (p. 120). 

This incisive review reveals how reputable studies have established that prediction of failure 

of construction firms cannot be well made with the exclusive use of financial information. 

The calls to use qualitative variables have been loud and clear. In order to establish CI IPM 

studies that have in any way attempted to use non-financial qualitative variables, a 

systematic review of CI IPM studies. 

 

3.3 Systematic review of construction firms insolvency prediction model 

studies with focus on variable types  

“A systematic review is a summary of the research literature that is focused on a single 

question. It is conducted in a manner that tries to identify, select, appraise and synthesise all 

high-quality research evidence relevant to that question.” (Bettany-Saltikov 2012: p.5). The 

systematic literature review method obligates a broad search of the literature (Smith et al., 

2011) with an unambiguous expression of exclusion and inclusion criteria (Nicolás and 

Toval 2009). Systematic review is renowned for yielding valid and repeatable/reliable 

results because it reduces bias to a minimum hence its high recognition and frequent use in 

the all-important medical research world (Tranfield, Denyer and Smart, 2003; Schlosser, 

2007) and its embracement in other research areas like IPM (Appiah, Chizema and Arthur, 

2015).  The general review of various existing knowledge and synthesising them is also a 

recognised method which contributes immensely to the progression and expansion of 

knowledge (Aveyard, 2014; Fink, 2010). This is the reason it has been widely employed as 

a methodology in various research areas including insolvency prediction (Balcaen and 

Ooghe 2006; Adnan Aziz and Dar 2006) and construction business failures (Edum-Fotwe, 

Price and Thorpe, 1996; Mahamid, 2012). 

Since results from peer reviewed journals are generally considered to be of high quality and 

validity (Schlosser, 2007), this systematic review employs only peer-reviewed journals. 

This will ensure a high validity of the review results. The databases searched for this review 

include Google Scholar (GS); Wiley Interscience (WI); Science Direct (SD); Web of 
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Science UK (WoS); and Business Source Complete (BSC). This is done in tandem with the 

latest published systematic review article on IPM (i.e. Appiah et al. 2015). Observations 

revealed that GS, WoS and BSC contained all the journal articles provided in Wiley and 

Science Direct since the later are publishers while the former are general databases. To 

further broaden the search, the Engineering Village (EV) database was added to the GS, 

WoS and BSC databases to perform the final search.  

Pilot searches revealed that studies use bankruptcy, insolvency and financial distress 

interchangeably to depict failure of firms. A search structure which included all these words 

was subsequently designed with the following defined string (“Forecasting” OR 

“Prediction” OR “Predicting”) AND (“Bankruptcy” OR “Insolvency” OR “Distress” OR 

“Default” OR “Failure”) AND (“Construction” OR “Contractor”). A process flow of the 

systematic review methodology is presented in Figure 3.1. 

To avoid database bias, ensure high repeatability and consistency of the research, and 

consequently high reliability and quality, all the relevant studies that emerged from 

searching the databases were employed in the review (Schlosser, 2007).  Since the databases 

host studies from around the globe, geographic bias was readily averted. Considering that 

the first set of IPM studies emerged in the 1960s (Beaver, 1966; Altman, 1968), a period of 

1960-2015 (the year this review was done) was used for the search. 

One of the inclusion criteria was for the IPM study to focus solely, or mainly, on the CI. 

Another is that the study must employ quantitative factors (i.e. financial ratios as variables). 

The titles and abstracts of the studies that the search returned were typically adequate to 

decide the ones qualified for use in the research. Where otherwise, articles’ introduction and 

conclusion were read to determine their suitability. The extent of reading was dependent on 

the information got from initial readings. In exceptional cases, the full-length article was 

read. In the end, GS produced 31 results, EV (14), BSC (11) and WoS (7). Most of the 

articles returned in searching EV, BSC and WoS were present in the GS search results. In 

fact, all EV results were present in the GS result, while BSC and WoS were only able to 

produce four and one unique articles respectively  
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Figure 3.1: A process flow of the systematic review methodology for CI IPM studies 

variables 

ROC: Receiver Operating Characteristic  

AUC: area under the curve 

The exclusion criteria included, among others, articles that were not written in the English 

language.  Although language constraint is not favoured in systematic review, it is 

unavoidable and thus acceptable when there is a lack of funds to pay for interpretation 
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services (Smith et al., 2011). An example of study excluded based on language is Wedzki 

(2005) which is written in Polish. Review studies were not considered as they did not 

develop any model and hence cannot be said to have used any particular type of variables. 

Unsuitable articles with titles like ‘default prediction for surety bonding’ (e.g. Awad and 

Fayek 2013) and ‘contractor default prediction before contract award’ which fixate on a 

contractor’s capability to successfully execute a specific kind of project (e.g. Russell and 

Jaselskis 1992) were taken out. After this step, only 28 studies were left. Note that 

‘contractor default prediction before contract award’ articles that fixated on insolvency 

probability as the main/only judging criteria were not excluded as the studies effectively 

built a form of CF-IPM. 

In the final 31 articles reviewed in this section, where multiple accuracy results are presented 

for multiple CF-IPMs, only the accuracy result of the proposed tool in the article is presented 

in the research. Where no particular tool is proposed, the highest accuracy result is presented 

here. Where the results for training and validation samples are given, the validation result 

is used here. Otherwise, the training result is adopted. Where error types are calculated 

independent of accuracy values, and the Receiver Operating Characteristic (ROC) curve is 

used to determine performance, the area under the curve (AUC) value in percentage is taken 

as the accuracy result. Where accuracy results of multiple years are given, the result of the 

first year is adopted to allow fair comparison since the first year result is the most commonly 

presented result in IPM studies. As required for systematic review, a meta-analysis based 

on variables used was done with data synthesised through the use of ‘Summary of Findings’ 

tables (Higgins and Green 2008; Smith et al. 2011) in Table 3.1. 

Looking at the table, no special analysis or statistics is needed to find out that only four 

(Hall 1994; Abidali and Harris 1995; Koksal and Arditi 2004; Horta and Camanho 2013) 

out of 31 studies used some form of non-financial qualitative variables in their studies, and 

each study had issues. 
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Table 3.1: Summary of findings table for quantitative factors 

S/N Author (Year) Financial (quantitative) variables category used Non-financial (qualitative) 

variables category used 

Accuracy of CF-

IPM (%) 

1.  Fadel (1977) Profitability  - 

2.  Mason and Harris (1979) Profitability, working capital position (liquidity), leverage, 

quick assets position, trend. 

 87 

3.  Kangari and Farid (1992) Profitability, Efficiency, Liquidity  - 

4.  Langford et al. (1993) Short term solvency, solvency, liquidity, profitability,   63.33 

5.  Hall (1994) 

 

 Firm characteristic, Management/ 

Owner Characteristics, Skills of 

the Workforce, Management 

decision making, Motivation 

 

6.  Abidali and Harris (1995) 

 

Profitability, Leverage, Activity/net asset, turnover, 

Liquidity, Trend measurement 

Management/ Owner 

Characteristics, Skill of workforce, 

Management decision making, 

Internal Strategic 

70.3 

7.  Russell and Zhai (1996) Trend, future position, volatility  78.3 

8.  Koksal and Arditi (2004)  Management/ Owner 

Characteristics 

 

9.  Singh and Tiong (2006) 

 

Short-term liquidity, cash position (cash flow),  long-term 

solvency,  profitability,  managerial performance 
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S/N Author (Year) Financial (quantitative) variables category used Non-financial (qualitative) 

variables category used 

Accuracy of CF-

IPM (%) 

10.  Chen (2009) Short-term liquidity and efficiency, Capital structure and 

Solvency, Profitability and market prospect, Economy 

 86.13 

11.  Huang (2009) Leverage, solvency, liquidity  88.5 

12.  Sueyoshi and Goto (2009) profitability, leverage, growth, size and risk  93.9 

13.  Stroe and Bărbuță-Mișu 

(2010) 

Profitability, solvency, liquidity, rate of financial expenses, 

rate of personnel costs 

 77.8 

14.  De Andrés et al. (2011) Liquidity, profitability, leverage, management efficiency  88.72 

15.  Ng et al. (2011) Operation, profitability, solvency and cash flow  96.9 

16.  Tserng et al. (2011) Stock market information  90% 

17.  Tserng et al. (2012) Management efficiency, solvency, leverage, activity ratio 

(management) 

 84.5 

18.  Tserng, Lin, et al. (2011) Management efficiency, liquidity, asset utilization.  80.31 

19.  Chen (2012) 

 

Profitability, management efficiency, growth, leverage, 

activity ratio, asset utilisation (management), liquidity 

 85.1 

20.  Sánchez-Lasheras et al. 

(2012) 

Liquidity, profitability, asset utilization (management), 

leverage, management efficiency 

 89.58 

21.  Tsai et al. (2012) Profitability, Activity, Leverage and Liquidity  87.32  

22.  Horta and Camanho (2013) profitability, liquidity, leverage, activity 

 

Company characteristics 97.6  
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S/N Author (Year) Financial (quantitative) variables category used Non-financial (qualitative) 

variables category used 

Accuracy of CF-

IPM (%) 

23.  Makeeva and Neretina 

(2013a) 

Liquidity, Turnover, Profitability, Financial Solidity  86.44 

24.  Makeeva and Neretina 

(2013b) 

profitability, liquidity, and turnover measures, size and 

interest coverage coefficients 

 86.44  

25.  Sun et al. (2013) Solvency, Profitability, Activity, Per-share ratio, Structural 

ratio, Growth ratio 

 93.07 

26.  Cheng et al. (2014) Liquidity, Activity, Profitability  92.13 

27.  Heo and Yang (2014) Working capital utilization (management), liquidity, asset 

utilization (management), asset structure 

 78.5 

28.  Muscettola (2014) Management efficiency, profitability, solvency, interest 

coverage ratio 

 80.94 

29.  Tserng et al. (2014) liquidity, profitability, leverage, activity and market factor  79.18 

30.  Cheng and Hoang (2015) liquidity, leverage, activity, and profitability  96.0 

31.  Tserng et al. (2015) Profitability, leverage, leverage group.  84.8 

Management efficiency include asset utilisation, activity ratio, working capital utilisation 

Solvency ratio is the same as leverage 

Growth ratios are a form of trend ratio  
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Analysing the studies in chronological order, Hall (1994) was the most comprehensive user 

of qualitative variables. Hall interviewed 28 and 30 owners of failed and existing small 

construction firms (i.e. with less than 100 employees) respectively, with the analysis of 

interviews leading to 93 potential variables. Only firms in the North-west of England were 

involved. An attempt to group the variables into principal components for a Logit model 

using Equamax rotation failed as it yielded only 14 components with a maximum number 

of two variables in each component. A stepwise Logit model was subsequently used 

“separately on each half of the variable set (odd and even numbered variables respectively)” 

(p.747) leading to a Logit model with six variables. 

Although Hall's (1994) work was the most distinctive and arguably the best in that it was 

able to focus on small construction firms and used the required qualitative variables for this 

purpose, it still had some major flaws. About the research, the first and most important was 

its total avoidance of financial ratios. Despite their flaws (i.e. financial ratios), they have 

been proven by many studies (e.g. Altman 1968b; Mason and Harris 1979; Kangari and 

Farid 1992; Russell and Zhai 1996; among others) to make some vital contributions to 

failure prediction hence combining them with qualitative variables is the best option. In fact, 

it is the exclusive use of financial ratios that has been condemned (Argenti, 1976) and not 

its inclusion in the first place 

Also,  Hall (1994)  used interviews of 58 construction firm owners (28 and 30 existing and 

failed respectively) to identify 93 variables but did not explain how the number value of the 

variables for each firm was gotten before being used in a Logit model. Were the respondents 

told to rate their firms in percentage or on a given scale (e.g. one to seven) for each variable? 

Or did Hall (1994) just assign each variable with a value for each firm based on how the 

respondents responded to his questions? This remains a myth.  

Further question marks over Hall's (1994) work include the claim of 95% accuracy achieved 

by the model as this was achieved with the data used to build the model rather than a separate 

test data. In essence, the model was neither validated nor tested hence any reported accuracy 

is unrealistic (see chapter five on review of methods). Finally, no justification for 

concentration on only firms from the North-west of England was given. 

The next study that employed qualitative variables in Table 3.1 is that of Abidali and Harris 

(1995). Although Abidali and Harris (1995) used both quantitative and qualitative variables 

as indicated in Table 3.1, they were used for separate models (Z-score and A-score models 
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respectively) rather than combined.   Abidali and Harris (1995) carried out a case study of 

failed firms to identify qualitative variables that can be used to predict failure and came up 

with 13 variables that are quite similar to ‘the management defects’ identified by Argenti 

(1976). A survey of a separate 28 firms was done on the 13 variables, and each variable was 

given a weight based on the percentage that ticked it as a contributing factor to failure of 

construction firms. Then the variables “were identified from the survey sample for 'solvent 

7' and 'at risk 7' groups based on their Z scores” (p. 194). This identification, together with 

the assigned weights based on the percentage responses, were used to create the A-model 

i.e. the model based on qualitative variables. 

The flaws in Abidali and Harris' (1995) attempt to use qualitative variables are similar to 

those of Hall's (1994) if not more. First Abidali and Harris (1995) did not combine the 

variables. Secondly, they did not explain how the number value of the variables for each 

firm was gotten. Instead, they simply said the variables “were identified from the survey 

sample for 'solvent 7' and 'at risk 7' groups based on their Z scores” (p. 194). What makes 

the model worse, in this case, is that the weights assigned to each variable were assigned 

using an unestablished statistical process of response percentage. Finally, the model was 

equally neither tested nor validated. 

Koksal and Arditi (2004), in a similar way to Hall (1994) used only qualitative variables but 

did not focus on small firms. Their (i.e. Koksal and Arditi 2004) approach was much more 

valid regarding methodology as respondents were required to “rate each potential cause of 

decline…  relative to the existing conditions in their company using a five-point  scale  

where  “1 = extremely  weak,”  “2 = weak,”  3 = fairly  strong,”  “4 = strong,”  and  “5 = 

extremely  strong.”” (p.803). In essence, Koksal and Arditi (2004) did not arbitrarily or use 

personal discretion to assign number values to variables. However, a major flaw is that 

Koksal and Arditi (2004) failed to include and construction firms/industry specific variables 

that can really indicate the potential future of construction firms in their 21 variables. 

Instead, the focus was on general management variables based on ‘organisation theory’. 

This makes their model somewhat generic as it has no specificity to the construction firms.  

Also, even though Koksal and Arditi (2004) clearly understand that “ideally, one should test 

a model by using cases that are independent of the cases used in the development of the 

model… this was not possible in the research” (p. 806). In essence, the model was more or 

less neither validated nor tested.  
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Horta and Camanho (2013) made the first attempt to combine quantitative and qualitative 

variables in a CF-IPM. The method is however flawed in that the qualitative variables were 

chosen arbitrarily and there were only three of them: main company activity, company size 

and headquarter geographic location. The arbitrariness means there is zero proof of the 

effectiveness of the variables. Looking at the variables chosen, it is clear that the authors 

(i.e. Horta and Camanho 2013) simply decided to use variables that are very easy to get 

from free sources such as financial statements, company websites, among others. The 

qualitative variables are at best, very poor when compared with the three initially discussed 

studies (i.e. Hall 1994; Abidali and Harris 1995; Koksal and Arditi 2004). 

Of the four studies, the only study (i.e. Horta and Camanho 2013) that used an Artificial 

Intelligence (AI) tools used only one tool (i.e. support vector machine) and thus could not 

compare models between different powerful AI tools. Other studies simply used the popular 

logit regression, also known as logistic regression. So overall, none of the studies that used 

qualitative variables in their models used and compare models from various powerful AI 

tools. 

The process in this research will address these identified flaws by combining quantitative 

and qualitative variables in various powerful AI tools thus allowing for comparison of 

models to allow selection of the best model. The qualitative variables will be generated 

based on literature review and interviews rather than arbitrarily while the numeric value of 

each variable in relation to each sample firm will be gotten through questionnaire survey 

responses of owners and directors of failed and existing construction firms. To identify 

potential qualitative variables from literature, a systematic review of studies that have dealt 

with the failure of construction firms using qualitative factors/variables is carried out in the 

next section. This will include the four studies discussed above (i.e. Hall 1994; Abidali and 

Harris 1995; Koksal and Arditi 2004; Horta and Camanho 2013) 

 

3.4 Systematic review of studies on failure of construction firms  

The systematic review of the studies that have dealt with failure of construction firms using 

qualitative factors/variables was done in a similar way to that of the CF-IPM studies review 

except for a few differences which are explained here. A search structure with the following 

defined string was designed: (“Business” OR “Firm” OR “Company”) AND (“Bankruptcy” 
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OR “Insolvency” OR “Distress” OR “Default” OR “Failure”) AND (“Construction” OR 

“Contractor”). A process flow of the systematic review methodology for qualitative factors 

is presented in Figure 3.2. 

Only eight suitable articles were found, in addition to the previously identified four (i.e. 

Hall 1994; Abidali and Harris 1995; Koksal and Arditi 2004; Horta and Camanho 2013), 

after a strenuous inspection of more than 500 articles. The result was improved by checking 

review articles and checking through their citations/references. Three more studies (Jannadi 

1997; Robinson and Maguire 2001; Arslan et al. 2006) were added using this method. With 

no resulting article identifying the role of environmental, social and governance (ESG) in 

failure of construction firms, the search words ‘sustainability practices and failure of 

construction companies’ were used on Google, and the first suitable article (i.e. Siew et al. 

2013) was selected. As a result, a total of 15 primary studies was reviewed altogether. As 

required for systematic review, a meta-analysis was done with data synthesised through the 

use of ‘Summary of Findings’ tables (Higgins and Green 2008; Smith et al. 2011) in Table 

3.2. 

The result of the systematic review, as presented in Table 3.2, represent the potential 

qualitative variables that can be used to build CF-IPMS. The factors identified in the 

systematic review coupled with the responses from the interviews will be carefully analysed 

and used to create a questionnaire of qualitative variables. Please see chapter six for further 

details. 

  



51 

 

 

Figure 3.2: A process flow of the systematic review methodology for qualitative factors 
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Table 3.2: Summary of findings table for qualitative factors 

S/N Author Year Qualitative variables employed Factors (Variables category) 

1.  
Kangari (1988) 

 

Rate of construction activity, Inflation, Influx of new firms Macroeconomic (including 

industry), Economic  

2.  
Hall (1994) Age, Education of owner, Skills of the Workforce, Use of Information (especially 

accounting info in decision making), Management of Cashflow, Motivation, Ploughed-back 

profit 

Firm characteristic, Management/ 

Owner Characteristics, Skills of 

the Workforce, Management 

decision making, Motivation 

3.  
Abidali and 

Harris (1995) 

autocratic chief executive, the same person as both chief executive and chairman, the 

company board, lack of engineering skills, lack of a strong financial director, defective 

managerial skills, incomplete accountancy system, defective bidding system, poor 

marketing skills, over‐trading, losses in projects, Acquisition of a potentially failing firm 

Management/ Owner 

Characteristics, Skill of workforce, 

Management decision making, 

Internal Strategic 

4.  
(Russell and Zhai 

1996) 

 

Value of new construction put in place, value of construction contracts Firm characteristics (size) 

5.  
(Jannadi, 1997) 

 

 Difficulty in acquiring work, bad judgment, lack of experience in the firm's line of work, 

difficulty with cash flow, lack of managerial experience, and low-profit margins. 

Management decision making, 

Skill of workforce 
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S/N Author Year Qualitative variables employed Factors (Variables category) 

6.  
(Kale and Arditi 

1999) 

 

Age, organisational learning, size, the turbulence of the construction industry, gaining 

legitimacy (i.e. company’s image) 

Firm characteristics, 

Macroeconomic (including 

industry) 

7.  
(Arditi, Koksal 

and Kale, 2000) 

Insufficient profits (heavy operating expenses, insufficient capital and burdensome 

institutional debt. All 

Budgetary/finance 

Industry weakness Macroeconomic (including 

industry) 

Lack of business knowledge Management/ Owner 

Characteristics 

8.  
(Robinson and 

Maguire 2001) 

 

 growing too fast, obtaining work in a new geographic region, dramatic increase in single 

job size, obtaining new types of work, high employee turnover, inadequate capitalization, 

poor estimating and job costing, poor accounting system, poor cash flow, and buying useless 

stuff. 

External strategic, Internal 

Strategic, Management decision 

making 

9.  
Enshassi et al. 

(2006) 

Lack of experience in the line of work Skill of workforce/ 

10.  
(Arslan et al., 

2006) 

 

difficulties with cash flow and poor relationship with the client drove the contractor failure, 

poor bid proposal that drives down profit 

Management decision making, 

Internal Strategic 
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S/N Author Year Qualitative variables employed Factors (Variables category) 

11.  
(Koksal and 

Arditi 2004) 

  

competitive strategy, defining competitive advantage, adaptation to advanced managerial 

practices, and adaptation to advanced construction technologies 

Internal Strategic 

absence of standardisation, defining the scope of the company, diversification of  the  

production  markets,  and  absence  of  specialisation 

Internal Strategic 

Level of business knowledge, level of work experience and level of managerial experience  Management/ Owner 

Characteristics 

12.  
Dikmen et al. 

(2010). 

 

 

Management incompetence, Poor value chain analysis at the corporate level, Poor strategic 

planning, Poor environmental scanning, Poor financial management Poor leadership, Poor 

human resource management, Poor communication, Poor planning and scheduling, Poor 

monitoring and control, Poor organisation of resources, Poor selection and management of 

supply chain, Poor quality management and control, Poor project risk management, Poor 

change order and claim management 

Management decision making, 

Management/ Owner 

Characteristics, Internal Strategic 

Lack of organisational knowledge, Poor technical and technological capacity, Poor relations 

with clients/government, Poor company image 

Internal Strategic, Firm 

characteristics 

Unsuccessful restructuring/reorganisation, saving non-value adding activities, Poor 

investment decisions, Wrong level of diversification, Wrong project selection, Poor project 

cost estimation, Excessive expansion 

External strategic, Management 

decision making, Management/ 

Owner Characteristics 

Difficulty in collecting money from the client, Unexpected change within the workforce, 

Sudden death of the company leader, Economic fluctuations, Shrinkage in construction 

demand, Change in politics 

Macroeconomic (including 

industry), Management/ Owner 

Characteristics 
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S/N Author Year Qualitative variables employed Factors (Variables category) 

13.  
 

Holt (2013) 

Rapid growth Rapid growth 

Inadequate capitalisation, Poor management, Requirement for cash flow, Poor systems, poor 

cost control 

Management/ Owner 

Characteristics, Management 

decision-making 

Economic External strategic 

Economic/market conditions Macroeconomic (including 

industry) 

Strategic errors contributing to failure, Catastrophe builds, management inaction, Single 

minded company attitude, Self before the company, Over-optimism/failure to perform, 

Financial failure from managerial performance 

Internal Strategic, Management/ 

Owner Characteristics, 

Management decision-making 

Liability of newness, Poor relationships with SMEs and customers, Poor intelligence or 

decision data, Inaccurate or improper financial reporting, Poor trained management 

Firm characteristics, Management/ 

Owner Characteristics, 

Management decision-making 

14.  
(Horta and 

Camanho 2013) 

company main activity, company size and headquarter geographic location Firm characteristics 

15.  
 

 

 

 

Direct emissions from facility or process, including those occurring in equity stakes, Indirect 

emissions associated with purchased electricity, Supply-chain carbon emissions, 

Opportunities to pass carbon costs on to customers, Opportunities to reduce carbon 

emissions and energy use, among others 

Sustainability 

Monetary values of fines and number of non-monetary sanctions for noncompliance with 

environmental laws and regulations, Environmental provisions as reported on the balance 

Sustainability 
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S/N Author Year Qualitative variables employed Factors (Variables category) 

 

 

 

 

 

(Siew, Balatbat 

and Carmichael, 

2013) 

 

sheet, Number and severity of transgressions of environmental license conditions, among 

others 

Type of waste produced by product and volume, Targets for the reduction of waste, % of 

waste re-used in the manufacturing process, Water consumed (by quality/source) and targets 

for reduction, % water recycled compared with base year, among others 

Sustainability 

Hazardous waste emissions and reduction, NOx, SOx and particulate emissions, Emissions 

of ozone-depleting substances by weight, Total water discharge by quality and destination, 

Details of toxic materials used in the manufacturing process, among others 

Sustainability 

Training courses offered or held, Audits actually conducted by independent parties; 

Monitoring conducted/initiatives; Incidents analysed breakdown, Number of near misses 

reported, % of hazards rectified 

health and safety 

Board oversight of HCM, Integration of HCM and people risks into risk management 

processes, Executive remuneration linked to achievement of HCM objectives, Employee 

diversity/anti-discrimination policies, Processes to monitor and address discrimination, 

among others 

Management decision-making 

Corporate codes of conduct, the extent of their application and associated training, 

Responsibility within the organisation for the code of conduct, Linkages between 

remuneration policies and code of conduct, among others 

Firm characteristics 

Basis for identifying the key stakeholders with which to engage, Frequency of key 

stakeholder engagement, Engagement mechanisms, Main issues arising from stakeholder 

engagement, Steps taken to respond to stakeholder feedback 

Management decision-making 

Risk management policies and implementation, The boards’ assessment of related party 

issues, Director selection and board succession planning process, among others 

Management decision-making 
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3.5 Chapter summary 

This chapter presented a literature review of the variables used in building CF-IPMs from 

the perspective of quantitative (i.e. financial ratios) and qualitative variables. Without 

building any form of CF-IPMs, Argenti (1976), Kangari (1988), Kale and Arditi (1999), and 

Arditi et al. (2000), among others, strongly established the need to include qualitative 

variables in developing CF-IPMS if they are to be very valid 

A systematic review of the studies that have built CF-IPMs revealed that only four (Hall 

1994; Abidali and Harris 1995; Koksal and Arditi 2004; Horta and Camanho 2013) out of 

31 reviewed studies, used some form of non-financial qualitative variables, and each study 

had issues. Issues identified include non-combinatory use of quantitative and qualitative 

variables (i.e. exclusive use of qualitative variables) in three studies four (Hall 1994; Abidali 

and Harris 1995; Koksal and Arditi 2004); unexplained or arbitrary assignment of values to 

variables (Hall 1994; Abidali and Harris 1995); non-use of advanced tools i.e. artificial 

intelligence tools like artificial neural network, support vector machine, (Hall 1994; Abidali 

and Harris 1995; Koksal and Arditi 2004), among others.  

The method of the only study that attempted to combine both variables (i.e. Horta and 

Camanho 2013) was flawed in that the qualitative variables were chosen arbitrarily and 

there were only three of them: main company activity, company size and headquarter 

geographic location. Arbitrariness translates to zero proof of the effectiveness of the 

variables. The selection was clearly based on variables that are very easy to get from free 

sources such as financial statements, company websites, among others. The qualitative 

variables are at best, very poor when compared with the three initially discussed studies (i.e. 

Hall 1994; Abidali and Harris 1995; Koksal and Arditi 2004). Horta and Camanho (2013) 

use of only one AI tool also meant they could not compare models between different 

powerful AI tools.  

These flaws will be properly addressed in the research. The last section of this chapter was 

used to systematically review studies on failure of construction firms thereby revealing 

many potential qualitative variables that can be used to the build the CF-IPM of the research. 
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In chapter four, an explanation of the concept of Big Data Analytics (BDA) and Big Data 

Engineering, as well as the justification for the use of BDA in the research were given.
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CHAPTER FOUR 

4.0 BIG DATA FOR CONSTRUCTION FIRMS INSOLVENCY 

PREDICTION 

4.1  Chapter introduction  

Big Data remain a ‘catch phrase’ in the present world and retains some level of 

contemporariness despite having been around for over five years now. It is even a lot newer 

to the construction industry that has not yet taken full advantage of its superior analytics 

capabilities. Big Data Analytics can be useful to the construction industry in many ways, 

one of which is in the area of construction firms insolvency prediction models (CF-IPM) 

research. The CF-IPM and the general insolvency prediction models (IPM) research areas 

have long struggled with the ability to combine the use of a large amount of data and well-

tuned sophisticated artificial intelligence tools. An attempt to do this by Du Jardin (2010) 

resulted in onerous computation that took a  duration of five days with 30 PCs running 

Windows. Such a difficulty has no place in the contemporary world where Big Data 

Analytics can be used to do the same purported ‘onerous computation’ in minutes or 

seconds. 

This chapter is an explanation of Big Data Engineering and Analytics and how they relate 

to construction firms insolvency prediction models (CF-IPM). It explains what makes a data 

qualify for Big Data and describes how the limitation of the most common Big Data 

processing model makes it unfit for CF-IPMS. The available options to solving problems as 

well are discussed in the context of CF-IPM. The approach to be used in the research and 

the associated reason, and why the data available qualifies as Big Data in the first place, are 

all explained. 

Section 4.2 introduces Big Data from its very origin and its two aspects: engineering and 

analytics. Section 4.3 is about Big Data Engineering. Subsection 4.3.1 is a description of 

Big Data’s most common programming model (or executioner) which is Hadoop 

MapReduce. The subsection is also used to highlight classification through iteration, which 

is the basic back-end processor of any CF-IPM, as a major problem of Hadoop MapReduce. 

Subsection 4.3.2 is used to describe the available initiatives that can help solve the 

classification through iteration problem, with 4.3.2.1 and 4.3.2.2 focusing on MapReduce 
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and Spark based initiatives respectively. Subsection 4.3.3 is used to present and justify the 

choice initiative that will be used to develop a Big Data CF-IPM in the proposed solution. 

It is also used to provide two frameworks: one for selecting the right initiative for other 

users and the other for developing CF-IPM with Big Data Analytics. Section 4.4 is about 

Big Data Analytics. Section 4.5 is a justification of why the available data is suitable for 

Big Data Analytics. Section 4.6 is a summary of this chapter 

 

4.2 Introduction to big data  

The combo of words ‘Big Data’ was coined by John Mashey who first used it in his Silicon 

Graphics (SGI) slide titled “Big Data and the Next Wave of InfraStress” (Diebold, 2012b). 

Though Big Data definition is complicated since the word ‘big’ is relative, the Big Data 

concept is clearly about three major characteristics (known as three V’s) of data namely: 

velocity, volume and variety (Zikopoulos and Eaton 2011). While volume relates to the size 

of data, velocity relates to the data generation speed and the need for analysis of such data, 

and variety has to do with the extent of variability of data (Zikopoulos and Eaton 2011). 

Veracity and value have also been recently added to make it five V’s (Hitzler and Janowicz 

2013). Big data mostly has to do with unstructured data (Suthaharan and Shan 2014). 

Contrary to widespread perception, however, structured data is also suitable for 

classification as Big Data as long as the dataset exhibit the necessary features (Zikopoulos 

and Eaton 2011). There are two main aspects of Big Data, both of which are vital to the 

proposed solution. They are Big Data Engineering and Big Data Analytics (Figure 4.1). 

  

 

 

 

 

 

 

 

Figure 4.1: Aspects of Big data 

Big Data 

Engineering Analytics 
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4.3  Big data engineering 

4.3.1  Hadoop, mapreduce and the problem of classification for prediction  

The most common and complete Big Data framework is Apache Hadoop. Apache Hadoop 

(see Figure 4.2) is a complete open-source Big Data framework for reliable, scalable and 

distributed computing. It supports processing of huge data distributed across a 

cluster/assemblage of computers using simple programming model i.e. MapReduce 

(Hadoop, 2014). Hadoop is fault tolerant and comprises of four modules which are very 

briefly described after Figure 4.2. The Hadoop Distributed File System (HDFS) and 

MapReduce are the key components. 

 

Figure 4.2: Hadoop Ecosystem 

(i) Hadoop common: This encompasses libraries and utilities required by other Hadoop 

modules 

(ii) HDFS: This is a file system that helps to store large data on many machines/nodes 

and provides direct simultaneous access to such data in a way that is more efficient 

than reading (the data) from just one machine/node (see Lee et al. 2014  for more). 

(iii) Hadoop Yarn: This is a framework designed to manage data distribution to nodes 

during computations (Hadoop, 2014) 
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(iv) Hadoop MapReduce: This is the computational engine of the Apache Hadoop 

framework. It is the piece that actually does the action.  

“MapReduce is a programming model and an associated 

implementation for processing and generating large data sets. Users 

specify a map function that processes a key/value pair to generate a set 

of intermediate key/value pairs, and a reduce function that merges all 

intermediate values associated with the same intermediate key” (Dean 

and Ghemawat 2008: p.107, see this citation for more).  

A diagrammatic representation of the MapReduce function is presented in Figure 4.3. 

 

Figure 4.3: How the MapReduce function works 

The classification problem of Hadoop: It is well known that artificial intelligence (AI) 

tools/algorithms formulate classification problems as optimisation problems and tend to 

perform a large number of iterations which eventually converge on the best solution (Wei 

and Lin 2010). Unfortunately, MapReduce is very inefficient for iterative data processing 

since it is only designed to analyse large data, from especially multiple nodes, in one cycle 

and not repeatedly (Park, 2013) thereby making it unsuitable for the classification analysis 
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required to develop CF-IPM. This has led to the development of some Big Data initiatives 

that are optimised for iterations (see subsection 4.3.2). 

4.3.2 Initiatives for construction firms insolvency prediction on big data platform  

None of the tools used for building insolvency prediction models (IPMs) for construction 

firms has the capability to carry out a robust analysis on any huge data that might require 

more than a single machine’s memory for analysis (Madden, 2012) as required in Big Data 

Analytics. Using AI tools to analyse Big Data directly is thus virtually impossible (Fan and 

Bifet 2013). None of the tools can also smoothly operate directly on Hadoop using 

MapReduce, the most common Big Data platform and the most common execution model 

respectively. Even when some AI tools operate partially successfully on Hadoop using 

MapReduce, execution of the much needed iterative computations required for 

classification when developing CF-IPMs are not achieved (Wei and Lin 2010). This has led 

to the development of some Big Data initiatives specifically built to support iterative 

computations which can be used to build CF-IPMs 

Presently, there exist some Big Data initiatives developed to optimise the iteration 

computation aspect of Big Data analysis required for CF-IPM classification of construction 

firms, most of which are MapReduce-based except one. All these initiatives are open source 

and can be freely accessed and implemented. The MapReduce-based initiatives include 

Microsoft's Project Daytona, University of Washington's HaLoop and Indiana University's 

Twister  (Madden, 2012) while the ‘Spark’ (a relatively new model) based initiative is 

Apache Mahout which was in itself previously MapReduce-based until April 2014. Another 

open source initiative currently under development is the Massive Online Analysis (Bifet et 

al., 2010).  Most of these initiatives are discussed in the following sub-subsections. Note 

that work is ongoing to expand the number of tools supported on all initiatives by their 

respective developers (Mahout 2015; Ekanayake et al. 2010; Barga et al. 2012; among 

others). 
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4.3.2.1  MapReduce Based Initiatives 

MapReduce is the most popular Big Data programming model that currently exist and many 

of the initiatives are based on it.  Most of these initiatives are either in a MapReduce 

Modified or runtime form. 

Haloop: This refers to a reworked version of the original Hadoop MapReduce framework 

to support iteration and some other task/analysis types (Bu et al., 2010). It supports some 

AI tools  (Agneeswaran, 2014) and is okay to develop IPMs for construction firms. Haloop 

can however only work on clusters and not on a single machine i.e. single node (Bu et al., 

2010). 

Twister: This is a not-heavy MapReduce runtime that enhances the performance of the 

MapReduce function in a task like iteration (Ekanayake et al., 2010); it is similar to Haloop. 

The enhancement is mainly in the form of efficiency thereby making MapReduce perform 

iterations faster. This makes it favourable for developing IPMs for construction firms. 

Twister works on any shared file system as well as cloud (Ekanayake et al. 2010; Zhanquan 

and Fox 2012) and supports some AI tools. 

Microsoft's Project Daytona: Daytona is a cloud service iterative MapReduce runtime (Lei 

et al., 2012)).  It is developed to specifically work with Microsoft Azure (previously known 

as Windows Azure). Microsoft Azure is an open source scalable hybrid-ready cloud 

computing platform and infrastructure which allows building, deploying and management 

of applications. Unlike traditional MapReduce runtimes, Daytona maximises the storage 

services given by Microsoft Azure’s cloud platform and infrastructure by using it as the data 

source as well as data destination (Barga, Ekanayake and Lu, 2012). Daytona supports a 

wide range of AI tools. The focus on iteration makes Daytona appropriate for developing 

CF-IPMs. It does not need a distributed file system for implementation  

 

4.3.2.2  Spark Based Initiative  

Spark represents an effective alternative to MapReduce. It presents an abstraction known as 

Resilient Distributed Datasets (RDDs) which efficiently supports artificial intelligence tools 

executing iterative tools (Zaharia et al., 2010). Unlike traditional MapReduce where the 

data are often read from and written to distributed file systems, DSS nullifies the need to 
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keep re-uploading data for each iteration thereby greatly increasing performance/efficiency 

(Zaharia et al., 2010). It allows data to be uploaded onto clusters where they can repeatedly 

be queried, thereby making the iterative process a lot faster. This is very important for CF-

IPMs since the classification process goes through a potentially long iterative process to 

come up with the optimal equation for the correct/best classification. It is claimed that RDDs 

enable Spark to outrun MapReduce up to 100 times in multi-pass analytics. The only Spark 

based initiative is Apache Mahout 

Apache Mahout: An open source scalable AI library in Big Data ecosystem. It allows some 

AI tools/algorithms (e.g. K-means, logistic regression, Naïve Bayes Family, Multilayer 

Perceptron, among others) to perform classification, clustering and collaborative filtering 

analysis on large volume data on its scalable distributed file systems or on a single machine 

(Mahout, 2015). Its codebase, which was previously implemented on Hadoop using 

MapReduce paradigm, has now been moved to support more execution efficient and richer 

programming model systems; mainly Apache Spark and H2O (Harris D., 2014). The old 

Mahout only scaled linearly and supported only AI tools that performed classification by 

linear analysis e.g. linear SVM (Ericson and Pallickara 2013); it was built on Hadoop and 

ran only on HDFS. 

 

4.3.3 Initiative selection framework and apache spark as the right initiative for 

the research 

Choosing the right option for developing a Big Data CF-IPM largely depends on the 

knowledge of the developer and where the construction firms’ data are located among other 

things. Except that it is not MapReduce-based, Apache Mahout with the Apache Spark 

model is currently the most flexible initiative as it works with almost any database and any 

distributed file system. The current Apache Mahout is a lot more flexible. It supports over 

20 AI tools, whether linear or non-linear, thereby easing the limitation of choice of AI tool 

for performing analysis on Big Data; it is also fault tolerant, making mistakes identification 

quite easy during model building (Ericson and Pallickara 2013); It can operate on single or 

cluster machines inclusive of using cloud as nodes. Apache Spark is thus the initiative that 

will be used build the CF-IPM in the proposed solution.  
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Other initiatives have certain restrictions that have to be followed for them to be 

implementable. For example, Microsoft Daytona is only implementable on Microsoft Azure 

cloud. Table 4.1 provides the features/requirements of each initiative while Figure 4.4 is a 

framework guide to the selection of initiatives for other users. 

 Table 4.1: Features of Big data initiatives capable of building CF-IPMs 

Big data 

analytics 

initiative 

Type/ 

processing 

systems 

Impleme

ntation 

Distribut

ed file 

system  

Single or 

cluster/cl

oud  

Suppo

rt AI 

tools 

 Fault 

tolerance 

(FT) 

Old Apache 

Mahout 

MapReduce Hadoop 

platform 

HDFS Both Yes+ Yes  

Daytona MapReduce 

runtime 

Microsoft 

Azure 

Not 

required¬  

Cloud-

based only 

Yes Yes 

Twister MapReduce 

runtime 

Twister 

platform 

Twister 

tool 

Both Yes No# 

Haloop Modified 

Hadoop 

Hadoop 

Platform 

HDFS Cluster/Cl

oud only 

Yes Yes 

Apache Spark Spark Any  Any Both Yes Yes 

+  For linear analysis only 

¬   Distributed file system is automatically provided by Microsoft Azure 

#  No for iterative computations which are required in classification analysis for IPMs, but 

is under development (http://www.iterativemapreduce.org/) 

 

 

Figure 4.4: A framework for selecting the most suitable Big Data initiative based on 

developer’s skills 

Self-management: Platform manages file system 

Code managed: Requires an input code on nodes to manage file system 

Any (file management system): Supports any file management system  
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Following the insights offered into the potentials and challenges of CF-IPM development 

and Big Data Analytics, a framework architecture on how to use each of the Big Data 

initiatives to develop CF-IPM is given in Figure 4.5. The framework starts with the 

collection of vast amount of construction firms’ data from various financial data sources 

into a set of computers (commodity servers) before the data is converted to the Key-Value 

Pair structure compatible with Big Data Analytics platforms/models. Depending on the Big 

Data initiative adopted, the relevant initiative platform is installed. The corresponding 

distributed file system is then installed/applied to the data in each of the computers in the 

commodity server. For example, this can be the installation/application of HDFS for 

Haloop; code implemented for Twister, or the data simply moved to Microsoft Azure cloud 

for Microsoft Daytona. With these steps, the Big Data initiative can be executed to carry out 

the iterative classification analysis required for developing the construction firms Big Data 

IPM.  
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                       Figure 4.5: Framework architecture for developing highly reliable construction firms IPM or CF-IPM using Big Data 

                      Note:   DFS = Distributed File system   
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4.4 Big data analytics 

With robust analytical and data mining capabilities, Big Data conducts advanced analytics 

such as predictive analytics, inferential analytics, prescriptive analytics and descriptive 

Analytics (Ohlhorst, 2013; Talia, 2013), among others. The type of analytics used in the 

proposed solution is predictive analytics hence will be described first ahead of other types. 

Table 4.2 presents some common iterative classifications tools and the Big Data Analytics 

initiatives that can implement them according to literature. 

Table 4.2: Some artificial intelligence classification tools supported by Big Data initiatives 

Tool Supporting Big Data Initiatives 

Logistic regression or Logit 

Analysis 

Mahout (Mahout, 2015); Daytona (Barga, Ekanayake 

and Lu, 2012)  

Multi-discriminant analysis Mahout (Mahout, 2015); Daytona (Barga, Ekanayake 

and Lu, 2012) 

Random Forest Mahout (Mahout, 2015); Daytona (Barga, Ekanayake 

and Lu, 2012) 

Support vector machines Mahout (Mahout, 2015); Haloop (Bu et al., 2010); 

Twister (Zhanquan and Fox 2012)  

Naïve Bayes or Bayesian 

Classifier  

Mahout; Daytona (Barga, Ekanayake and Lu, 2012) 

Artificial neural networks Haloop (Bu et al., 2010); Daytona (Barga, Ekanayake 

and Lu, 2012); Mahout  (Mahout, 2015); Twister (Gu, 

Shen and Huang, 2013)  

Predictive analytics: Prescriptive analytics is concerned with the prediction of future 

probabilities, trends and patterns within a dataset based on past happenings (Sagiroglu and 

Sinanc 2013). This is the aim of this study as given in section 1.7. Prescriptive analytics 

answers the question: what will happen? 

Inferential analytics:  Inferential analytics sometimes taken as a subordinate of predictive 

analytics. It focuses on the interactions of explanatory variables with the target variable in 

the dataset (LaValle, Lesser and Shockley, 2011). It is mainly used to check the independent 

variables that have the most impact on the target, and the type of relationship that exist them. 

This form of analytics is partly used in the proposed solution; it is used for the variable 

selection process 
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Descriptive analytics: Descriptive analytics is used to examine what particular event 

happened, usually using real-time data (Xindong Wu et al., 2014). It is used to answer the 

question: what happened? 

Diagnostic Analysis: Diagnostic analysis, as implied by its name, is used to diagnose an 

event by checking what led to the event. It is used to answer the question: why did it happen? 

Prescriptive analytics: Prescriptive analytics involves using optimisation and simulation 

algorithms to propose possible outcomes and answers (Boyd and Crawford 2012) to 

problems. It is used to answer the question: what is the best course of action? 

 

4.5 Justification of use of big data analytics for the construction firms 

insolvency prediction data to be used 

A dataset can be taken to be Big Data when its velocity, volume variety and (or) veracity 

become so much that current technological tools make a harsh of storing or processing it 

(Pflugfelder and Helmut 2013; Suthaharan and Shan 2014). Its size is such that it forces a 

search for new approaches away from the known and trusted ones. In the past, say around 

the 80s, it would have been a data size that required ‘tape monkeys’; presently, it is a data 

size that will require clusters of computer and/or cloud running concurrently and in a parallel 

mode to be analysed (Fan and Bifet 2013). Big Data Analytics can be defined as involving 

analysis of huge data in order to unmask valuable patterns/information (Suthaharan and 

Shan 2014). 

Although size is a key feature in qualifying data as ‘Big Data’, the nature of the analysis is 

as important as much. Jacobs and Adam (2009), in his experiment, showed why a dataset 

could qualify or not qualify to be classified as Big Data. Jacobs and Adam (2009) created a 

demographic data (religion, marital status, ethnicity, among others) of the world population 

in a table of circa ten columns and over 7 billion rows which were contained in a 100-

gigabyte hard disk. Simple programs written to return answers to queries like the mean age 

of the world population ran smoothly on a computer with low-performance CPU, thus not 

making the data viable to be classified as Big Data. An attempt to simply load the same data, 

without performing any analysis, on a commonly used enterprise-grade database system 

(PostgreSQL6) running on a super performance computer (an eight-core Mac Pro 
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workstation equipped with 20 gigabyte RAM and two terabytes of RAID 0 disk) had to be 

aborted after six hours of unsuccessful upload. A serious analysis of the created data on this 

database will obviously take days if not weeks or months hence it can be classified as Big 

Data, in this case, based mainly on analysis. 

The above example is what makes the data of hundreds of construction firms in a country 

over some years qualify as Big Data. A simple input of such data into columns and rows of 

Microsoft Excel and finding averages might not be considered as ‘Big’ in the present 

technological world. However, a more complex analysis (like iterative classification 

analysis which is used for insolvency prediction) of such data using a high computational 

demand AI tool will be very onerous on any computer. Such analysis hence qualifies the 

data for Big Data Analytics. The best example of this is a study by Du Jardin (2010) which 

used 500 firms with well tuned AI tool (artificial neural networks in this case) parameters. 

The effect of this was a very good model and tedious computational duration of five days 

with 30 PCs running Windows. With contemporary technology like Big Data Analytics 

which could do the same computation in seconds, there is no reason why large data and 

well-tuned AI tools should be avoided any longer in CF-IPM. The proposed solution will 

thus use a relatively large data (about a thousand construction firms), well-tuned and 

powerful AI tools, and Big Data Analytics. 

 

4.6 Chapter summary 

This chapter introduced Big Data and explained how it will be used to build a CF-IPM in 

the research. The general definition of Big Data is data with high velocity, volume and 

variety (as well as veracity and value) which the present technology cannot comfortably 

analyse. The most common Big Data framework is Apache Hadoop and the most common 

programming model or executioner is MapReduce. 

To build a CF-IPM, AI tools formulate classification problems as optimisation models and 

tend to perform a large number of iterations. MapReduce is however very inefficient for 

iterative data processing. However, on the positive side, there are some initiatives that have 

been developed to solve this problem, as presented in this chapter, including Microsoft's 

Project Daytona, University of Washington's HaLoop, Indiana University's Twister and 

Apache Mahout which currently uses University of California’s Spark. Compared to others, 
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Apache Mahout (Spark) is a lot more flexible and supports over 20 AI tools, whether linear 

or non-linear, and is thus the initiative that will be used build the CF-IPM in the research. 

Regarding Big Data Analytics, the proposed solution will be using predictive analytics since 

the future probability of failure of construction firms will be predicted using past (from last 

year) data of existing and failed construction firms 

The suitability of about a thousand construction firms, which is what will be used as data in 

the proposed solution, for Big Data Analytics was also justified in this chapter. For example, 

Du Jardin (2010) used 500 firms with a well tuned AI tool, taking a duration of five days 

with 30 PCs running Windows. Over 500 firms (about a thousand), which is the sample size 

for the proposed solution, with well-tuned AI tools will take longer and (or) more PCs hence 

the need to use Big Data Analytics in the proposed solution, which could do this tedious 

computation in minutes. 

A comprehensive review of CF-IPM journal articles with focus on methodical issues that 

have led to poor performing CF-IPMs were presented in chapter five. 
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CHAPTER FIVE 

5.0 METHODICAL ISSUES IN INSOLVENCY PREDICTION 

MODELS FOR CONSTRUCTION FIRMS 

 

5.1 Chapter introduction 

The methods used to develop a construction firms insolvency prediction models (CF-IPM) 

can make or break the model and have long been scrutinised by researchers. Many studies 

have ignorantly used invalid, less rigorous or questionable methods to develop their CF-

IPMs simply by copying earlier studies. There are many studies that have in fact neglected 

the responsibility of justifying their methods. This chapter is a review of the methods 

involved in developing construction firms insolvency prediction models (CF-IPM). It deals 

with the types of tools, sample characteristics and model testing features of CF-IPM studies. 

In each case, the model feature being analysed is briefly explained, the trend in CF-IPM is 

presented in a table, and (or) charts, and the most effective and (or) poorest ways of 

implementing the features are discussed along with the CF-IPM trend. After this, a statement 

on how the best practice of implementing the feature will be adopted in the proposed 

solution will be made. Thus the final paragraph in each sub-section could as well be the 

most important (especially for a quick read).  

The next section (i.e. section 5.2) uses the ‘systematic review of construction firms 

insolvency prediction model studies’ presented in section 3.3 of chapter three but excludes 

the Hall's (1994) study for its unclear methods. However, a new summary of findings table 

on the methodical features of the studies is presented here. All the work in this chapter is 

based on this systematic review and a new summary of findings table. Subsection 5.2.1 is a 

review of the trend on the types of tools that are used in CF-IPM research and what tools 

have been ignorantly left out. Subsection 5.2.2 is a review of the data characteristics of the 

data used to build CF-IPMs regarding dispersion and explains what is best to be used. 

Subsection 5.2.3 is an examination of how CF-IPM studies have validated their models over 

the years with a view to identifying best practice. Subsection 5.2.4 is a scrutiny of CF-IPM 

studies on their consideration of error cost, or otherwise, and explains the best practice on 

this.  Section 5.3 is a presentation of the summary of this chapter. 
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5.2 Systematic review of construction firms insolvency prediction model 

studies with focus on methods  

The method used to carry out the systematic review in this section is the same as that 

presented in section 3.3. However, Hall's (1994) study was removed from the 31 studies 

reviewed in this section because it was not clear about its methods. In essence, only 30 of 

the 31 systematically reviewed studies in section 3.3 are examined here. To assess the 

methods of the 30 primary studies (i.e. the systematically reviewed studies), the tools used, 

characteristics of data or sample used, the process of validating the model, and the 

consideration of error cost of the model in the studies were assessed. The trends were 

checked against what is more fitting for construction firms and (or) what is more common 

in the insolvency prediction model (IPM) literature. As required for systematic review, a 

meta-analysis based the methods used in the studies was done with data synthesised through 

the use of ‘Summary of Findings’ tables (Higgins and Green 2008; Smith et al. 2011) in 

Table 5.1. 

 

5.2.1 Tools used (accuracy and transparency) 

The tool used to build a construction firms insolvency prediction model (CF-IPM) plays a 

big role in the performance of such model. The norm is to use a number of tools to build a 

model and compare so as to select the one that produces the better model. The two main 

categories of tools are the statistical and artificial intelligence tools, although there is also 

the uncommon option-based model formula. The most popular statistical tools as noted by 

Balcaen and Ooghe (2006) in their comprehensive review of insolvency prediction models 

(IPMs) are multiple discriminant analysis (MDA) and Logistic regression (LR). The most 

popular artificial intelligence (AI) tools as advocated by (Adnan Aziz and Dar 2006; Ravi 

Kumar and Ravi 2007) in their comprehensive reviews are artificial neural network (ANN), 

support vector machines (SVM), genetic algorithm (GA) and decision tree (DT).  
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Table 5.1: Summary of finding showing data, tools and model testing related features of the primary studies 
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1.  Fadel (1977) LR LR SPR AEF - - 102 - - N - 2 FR 68-73 

2.  Mason and 

Harris (1979) 
MDA  SP CE 87 - 40 50 50 11 

firms 

 6 FR 69-77 

3.  Kangari and 

Farid (1992) 
LR - Lit rev CE - - 126 - - - - 6FR 82-88 

4.  Langford et al. 

(1993) 
MDA  Lit rev CE; 

BD 

63.33 N 3 0 100 Y 100 5 FR 90-93 

5.  Abidali and 

Harris (1995) 
MDA and A-

score 

UB SPDA CE 70.3 Y 112 19.6 80.4 HOV 72.3 7 FR 78-86 

6.  Russell and Zhai 

(1996) 
Discriminant 

function using 

SPR 

UB SPR CE 78.3  143 58.7 41.3 HOV 16 6 Fin 

vars 

75-93 

7.  Koksal and 

Arditi (2004) 
FA; LR UB  CE - - 53 79.2 20.8 R2 

value 

- 21 non-

Fin vars 

 

8.  Singh and Tiong 

(2006) 
MCDM - Lit rev -  - - - - 5 

firms 

 5 FR  
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9.  Chen (2009) ordinary least-

squares 

 SPR BM 86.13 - 42   HOV 30  97-06 

10.  Huang (2009) Structural 

model and LR 

Univariate 

UB LR CE 88.5 ROC 40 75 25 - - 4FRand 

3MVR 

99-06 

11.  Sueyoshi and 

Goto (2009) 
 DEA–DA; PA; 

LR 

DEA 

feature 

Lit rev IM 93.9 N 215 90.7 9.3   5FR 98-05 

12.  Stroe and 

Bărbuță-Mișu 

(2010) 

MDA - - BM 77.8 - 11 - - 10 

firms 

- 5 FR 01-06 

13.  De Andrés et al. 

(2011) 
SOM and 

MARS hybrid.  

 SPDA  AEF 

and 

ME 

88.72 Y 6310

7 

99.6 0.4 CV 20 5FR 07-08 

14.  Ng et al. (2011) MDA UB  SP CE 96.9 N 35 88.5 11.5 N   - 7 FR  

15.  Tserng et al. 

(2011) 
BSM; CB; BS USP OMV CE 

and 

AEF 

90% ROC 87 66.7 33.3 Y - SM 70-06 
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16.  Tserng et al. 

(2012) 
Barrier option 

model; MDA 

UB OMV 

 

CE 

and 

AEF 

84.5 ROC 121 76 24 CV - 6OMVa

nd 4FR 

70-06 

17.  Tserng, Lin, et 

al. (2011) 
ESVM; LR OSP SPDA CE 80.31 ROC 168 69.6 30.4   7 FR  

18.  Chen (2012) Hybrid SFNN UB All in 

FS 

CE 85.1 - 42 35 65 CV 10 25 FR 98-08 

19.  Sánchez-

Lasheras et al. 

(2012) 

SOM and 

MARS hybrid. 

UB SPDA CE, 

ME 

and 

AEF 

89.58 Y 6310

7 

99.6 0.4 CV 20 5 FR  

20.  Tsai et al. (2012) BSM and LR 

hybrid  

UB SPR CE 

and 

AEF 

87.32   121 76 24 CV  4FR and 

1OMV 

70-06 

21.  Horta and 

Camanho (2013) 
SVM USP and 

OSP 

Lit rev Engin

eering 

97.6  ROC 1055

9 

85 15 HOV 20 6FR and 

3Strat. 

var 

08-10 

22.  Makeeva and 

Neretina (2013a) 
MDA; LR; PA BA FAand 

SPR 

AEF 86.44 Y 120 50 50 - - 6FR 02-10 
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23.  Makeeva and 

Neretina (2013b) 
MDA; LR; PA USP FAand 

SPR 

AEF 86.44  Y 120 50 50 - - 22 FR 02-10 

24.  Sun et al. (2013) ANN-AB 

hybrid; ANN 

bagging hybrid; 

ANN 

USP t-test, 

CA 

and 

SPDA 

AEF 93.07 6.93 85 61.2 38.8 CV 33.3 9 FR 01-10 

25.  Cheng et al. 

(2014) 
LS-SVM and 

DE hybrid; 

SVM; ANN 

OSP by 

SMOTE  

SPDA CE 92.13 ROC 76 82.9 17.1 CV 20 7 FR 70-11 

26.  Heo and Yang 

(2014) 
AB; DT; ANN; 

SVM; MDA 

USP Lit rev CoE 78.5 Y 2762 50 50 HOV 20 5FR 08-12 

27.  Muscettola 

(2014) 
LR UB SPR AEF 80.94 Y 1338 87.2 12.8 HOV - 9FR 07-11 

28.  Tserng et al. 

(2014) 
Univariate and 

LR multivariate 

UB LR CE 79.18 ROC 87 66.7 33.3 CV - 4FR and 

1MVR 

70-06 

29.  Cheng and 

Hoang (2015) 
KNNand FFA 

hybrid, SVM; 

MDA; LR 

OSP Lit rev CE 96.0 ROC 76 82.9 17.1 CV  20 20 FR 70–11 
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30.  Tserng et al. 

(2015) 
GST - GST CE 84.8 - 92 73.9 26.1 - - 8 FR 72-08 

-: Not stated or not clear or not done or not applicable AB: AdaBoost  DT: Decision tree  AEF: Accounting and/or Finance/ and/or 

Economics  ANN: Artificial neural network BD: Building Department  BSM: Black-Scholes-Merton 

BA: balanced or equally dispersed data  BM: Business Management or Business Administration   BS: Bharath and Shumway naïve 

model  CA: Correlation analysis  CB: Crosbie and Bohn model  CE: Civil Engineering or Construction Engineering CoE: Computer engineering 

 CV: Cross-validation DEA–DA: Data Envelopment Analysis–Discriminant Analysis ESSVM: enforced support vector machine FA: Factor 

analysis FFA: firefly algorithm  FR: financial ratio  FS: financial statements  GST: Grey system theory HOV: Holdout 

validation IM: Information ManagementKNN: K-nearest neighbour  Lit rev: Literature review LR: Logistic regression  MARS: 

Multivariate Adaptive Regression Splines.  

MCDM: Multiple-criteria decision-making  MDA: Multiple discriminant analysis   ME: Manufacturing engineering Nikkei Needs 

Corporate Financial Database MVR: market value ratio N: No OMV: Option model variables  

OSP: Oversampling Probit analysis: PA ROC: Error cost considered using Receiver Operating Characteristic Curve  

SFNN: self-organizing feature map optimisation, fuzzy, and hyper-rectangular composite Neural Networks  SM: Stock market variables 

SMOTE: Synthetic Minority Over-sampling Technique  SOM: Self-Organizing Maps Neural Networks   SP: Stepwise SPDA: discriminant 

analysis 

SPR: Stepwise regression Strat. Var: Strategic Variables  SVM: Support vector machine UB: unbalanced data USP: Undersampling Y: 

Yes 
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Figure 5.1a, b and c contain statistical charts of used tools. The figures consider each tool 

category used as one study hence if a study used both statistical and AI tools, it is considered 

it as two studies. From Table 5.1 and Figure 5.1a, it is clear that CF-IPM studies have used 

more statistical tools from inception till date. This is not surprising as very early works 

simply followed in the footsteps of Altman (1968) and Ohlson (1980) who pioneered MDA 

and LR respectively in the IPM research area. Figure 5.1b is a chart of relatively recent 

works from 2006, when Balcaen and Ooghe (2006) clearly identified the rising popularity 

of AI tools in the IPM world, until present. The figure portrays that the CF-IPM studies have 

not adequately adopted the use of AI tools despite the many disadvantages of statistical 

tools. 

Considering that the use of AI tools in corporate insolvency prediction started as far back 

as the early 80s (Tserng, Lin et al. 2011), Figure 5.1c shows that CF-IPM studies were 

clearly too slow to take up AI tools. In fact, CF-IPM studies only started using AI tools and 

option models in or after 2010. However, AI tools increased frequency of use in more recent 

times (i.e. from 2010 to 2015) is encouraging but should improve because of the many 

disadvantages of statistical tools and advantages of AI tools, though some studies only 

employ statistical tools for comparison purpose (e.g. Heo and Yang 2014; Cheng and Hoang 

2015). 
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b) Frequency of tools used in CF-IPM since 2006 

 

c)  Frequency of tools used in in landmark periods 

Figure 5.1: The frequency of use of tools in the CF-IPM research area 

AI: artificial intelligence OP: option-based model 

The many disadvantages of statistical tools, which have been identified in many studies over 

the years, are normally in form of restrictive assumptions that data need to satisfy for 

statistical tools to perform optimally (Altman 1993; Balcaen and Ooghe 2006; Chen 2009; 

du Jardin and Séverin 2011; Joy et al. 1975; among others). Some of these assumptions 

include: (i) that independent variables must have multivariate normality, (ii) that each group 

data (i.e. failed and existing firms’ data) must have equal variance-covariance, (iii) that 

groups must be discrete and non-overlapping, among others (Balcaen and Ooghe 2006; 
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Sueyoshi and Goto 2009; Ng et al. 2011; Tserng et al. 2015). All these restrictive 

assumptions can barely be satisfied together by one data set hence are violated in part or in 

totality in all cases i.e. in many studies (Richardson and Davidson 1984; Zavgren 1985; 

Chung et al. 2008). Nonetheless, LR is deemed relatively less demanding compared to 

MDA (Altman 1993; Balcaen and Ooghe 2006; Jackson and Wood 2013) hence the high 

use of LR compared to MDA and probit analysis (PA) in CF-IPM studies (Figure 5.2) is 

commendable. 

It is accepted and well proven in many IPM studies that AI tools produce better IPMs (Chen 

2012; Divsalar et al. 2012; Heo and Yang 2014; Tserng, Lin et al. 2011; Yoon and Kwon 

2010; Zhou, Lai, and Yen 2014; among many others). A major reason for the slow take-up 

of AI tools in CF-IPM studies could be as a result of the reluctance of construction 

academics, who are responsible for two third of the primary studies (see Figure 5.3), to learn 

how to use them as they usually require some level of computing skills. An increase in the 

use of AI tools will ensure better models are built in CF-IPM studies. 

 

Figure 5.2: Frequency of use of statistical tools in the CI IPM study area 
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Figure 5.3: Proportion of CF-IPM studies by authors’ background 

Overall, the more contemporary issue with the CF-IPM studies is the limitation of use of AI 

tools to mainly ANN, SVM and DT, with the exemption of few studies like Sun et al. (2013) 

that used Bagging and Adaboost, Heo and Yang (2014) that used Adaboost and Cheng and 

Hoang (2015) that used KNN. There needs for increased use of AI tools like Adaboost, 

bagging and KNN to allow better comparison selection of the best performing models based 

on tools used. There is also need to adopt and compare (models created by) other high 

performing AI tools like random forest, Adabag Boosting, Extremely Randomized Trees, 

Naive Bayes, Clustered Support Vector Machines, among others. This will ensure the very 

best model is selected from the multitude produced from these high performing tools. This 

is hence the method that will be adopted in this work. 

 

5.2.2 Data or sample characteristics 

Data or sample characteristics are very important to the performance of CF-IPMs or even 

any IPM at all. Data dispersion, defined as the ratio of failing to non-failing (or existing) 

construction firms or vice versa in a sample data, plays a significant role in building a CF-

IPM. Data with equal or near equal dispersion between failing and non-failing construction 

firms is the very perfect type of data for the optimal performance of any tool.  However, the 

relatively high number of existing construction firms compared to failed firms means that 

data available to build CF-IPMs are normally highly skewed, a situation which drastically 
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reduces the predictive performance of virtually all tools, especially the statistical ones 

(Boritz et al. 1995; Balcaen and Ooghe 2006). According to du Jardin (2015), highly skewed 

data normally means that “data that characterised failed firms would be hidden by those that 

represent non-failed firms, and therefore would become rather useless” (p.291) hence it is 

best to have equal dispersion (Jo, Han and Lee, 1997). This problem has long been identified 

and some techniques have been proposed as a solution:  

 Tool’s balancing feature: the process whereby the tool employed to develop the model 

has a special feature that is used to balance/equalise the data dispersion.  

 Over (under) sampling: the process whereby the smaller (larger) group is increased 

(decreased) until the number of construction firms in it equal that of the larger (smaller) 

group. The increment in oversampling is usually done by using average values of 

variables of the firms in the smaller group to form data of new fictional firms for the 

group until it has equal (or almost equal) number of firms with the larger group. The 

decrement in undersampling is done by matching firms with similar properties (size, 

turnover, among others) from the larger group to those of the smaller group until all the 

firms in the smaller group have a pair in the larger group, then the excess in the larger 

group is discarded. 

Of the 30 primary studies reviewed, only 25 studies clearly presented the level of dispersion 

of data, showing that not all studies recognise the importance of the data dispersion 

characteristic. The unrecognised studies include some that are published as recent as in the 

2000s (see Table 5.1). Of the 25 that clearly presented data details, less than a fifth (or four 

studies) used equal data dispersion, about a quarter used some form of data balancing while 

more than half used unequal data dispersion (Figure 5.4). This problem does not appear to 

be time-related as it has been highlighted since the pioneering days of IPM studies (Altman, 

1968; Ohlson, 1980; Boritz, Kennedy and Albuquerque, 1995). More so, only two of the 

primary studies reviewed were published before 1990 and a total of six before 2004 (see 

Table 5.1) making 24 primary studies, or 80% of the reviewed studies, relatively recent. 
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Figure 5.4: Percentage of studies with equal, modified equal and unequal data dispersions 

Critics of undersampling are sceptical that discarded data might be those that are crucial to 

the learning/development process of any tool (Cheng and Hoang 2015). Critics of data 

balancing, in general, have also argued that it leads to sampling bias and thus the entire 

population should be used (Agarwal and Taffler 2008; Tserng et al. 2012).  However, it is 

well established that using skewed data results in the model being more accurate for 

predicting the larger group (Boritz et al. 1995; Sueyoshi and Goto 2009; Ng et al. 2011; du 

Jardin 2015). This means the model will be more likely to predict an insolvent firm as being 

solvent than vice versa incorrectly; this is the costlier of the two IPM error types (see section 

5.3.4) and needs to be well avoided hence equal data dispersion is more appropriate for 

developing CF-IPMs. The proposed solution will hence use data with equal or almost equal 

dispersion, employing the undersampling technique with matched samples. With more than 

half CF-IPM studies using unequal data dispersion, many CF-IPMs must have been 

suboptimal.  

 

5.2.3 Model validation 

In the early days of IPM research (Altman, 1968; Ohlson, 1980), it was common to test a 

developed model with the data used to build the model. Such tests yielded very accurate 

results. However, with the models not performing as well in practice, further research by 
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Joy et al. (1975) quickly revealed that IPM developers confused ex-post classification 

results with ex-ante predictive abilities. Some studies (Joy et al. 1975; Taffler 1983; among 

others) hence rightly recommended that a built model should be tested on separate data apart 

from that which was used to build it if there is to be any confidence in the model. This 

practice has now almost become a norm in the IPM research world with the separate data 

usually referred to as test or validation data. 

Normally the data is pre-divided, usually in a ratio of between 80-20 or 70-30, the bigger 

portion used for training the model and the smaller used for validation. The case where the 

validation (or test) samples are removed in batches such that the entire sample, at different 

times, form part of the training or validation sample is known as cross-validation.  

The research reveals the relatively poor trend of CF-IPM studies where less than two third 

of them validated their model (Figure 5.5). Although Ng et al. (2011), authors of one of the 

primary studies, claimed to have validated their model, the research disagrees with that 

claim because the validation was done using earlier years’ data of the sample used to build 

the CF-IPM. Unfortunately, the immediate earlier year’s data of a model building sample is 

not an acceptable replacement for data of firms that were not used in the model building 

process. No wonder the model misclassified only one firm out of the 32 firms selected from 

the model building sample to validate the firms. This single misclassification was even put 

down to unequal data dispersion by Ng et al. (2011) as they unjustifiably tried to explain 

the perfection of the model.  

Of the 11 studies that did not test/validate their models, two did not report a clear accuracy 

result while eight of the remaining nine reported accuracy values of over 80% (Figure 5.6), 

depicting highly accurate models. Such accuracy values are clearly unsatisfactory and 

unacceptable at the very least. In fact, with AI tools like ANN and SVM, it is possible to 

build a model with a 100% prediction accuracy when tested on training (i.e. model building) 

data. However, such models are not usually very good on test/validation data and are 

normally condemned for what is known as ‘overfitting’ to the training data; this makes such 

models rather poor (Ahn, Cho, and Kim 2000; Ravi Kumar and Ravi 2007; Tseng and Hu 

2010; among others). 
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Figure 5.5: Percentage of studies that validated or did not validate their model 

 

Figure 5.6: Accuracy value range of studies with validated and un-validate their models 

In essence, the true accuracy or general performance of a model can only be assessed using 

a separate data from the one the model was trained or built with. This is because the actual 

users, which are construction firms in this case, will be using the data of their firms which 

does not constitute part of the model building data; and will be expecting to get a reliable 

result about the status (failing or healthy) of their construction firms. The approach in the 

proposed solution is thus to set aside a minimum of 20% of the data for testing any built 

model. 
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5.3.4 Error cost consideration 

There are two types of error in construction firms insolvency prediction. Type I error where 

an insolvent construction firm is wrongly predicted as healthy, and type II error where a 

healthy construction firm is wrongly predicted as failing. It is common knowledge that type 

I error is costlier than type II error. For example, the cost of a firm that takes on expansion 

or profit spending steps because it thinks it is very solvent/healthy when it is failing is much 

more than that of a construction firm taking remedial steps because it thinks it is failing 

when it is solvent/healthy. Also, the cost of awarding contracts to an impending contractor 

who might fail will typically be much larger than the cost of rejecting a healthy contractor. 

To consider error cost in developing a CF-IPM, it is either a study reports overall accuracy 

and error values for both type of errors, or simply use sensitivity analysis employing the 

receiver operating characteristic (ROC) curve where the area under the curve (AUC) 

represents the accuracy of the model. The curve is drawn by plotting type II error against 

one minus type I error (see section 8.5.3 for more). The curve generalises various compared 

performances through all achievable cut-off points associated with the error costs and gives 

some form of cost-benefit analysis for decision-makers (Hosmer, Lemeshow, and 

Sturdivant 2013; Tserng, Lin et al. 2011). With sensitivity analysis, model developers can 

develop models that will minimise the costlier error by ensuring that a failing construction 

firm is barely ever predicted as being healthy. Although this increases the confidence of 

users, it causes an increase in the less costly error 

Table 5.1 shows that only 50% of the studies considered error type either directly or through 

the use of sensitivity analysis; this gives a poor outlook. However, a further breakdown 

reveals that majority of the recent studies have embraced this criterion in their studies 

(Figure 5.7) showing a positive trend, especially as most of the primary studies are relatively 

recent. This trend shows the slow adoption by CF-IPM studies. However, the recent surge 

in error cost consideration will bring more confidence to CF-IPM users since it ensures that 

a failing firm is barely ever mistakenly predicted as a healthy one. This means stakeholders 

of firms predicted as healthy can be double sure the firm is healthy while stakeholders of 

firms wrongly predicted as failing will take steps that will ensure their firms become even 

healthier thereby losing almost nothing. This will also ensure bankers or clients never give 

loan or contract respectively to a failing construction contractor/firm. The only disadvantage 

in this case, which is less costly compared to other explained options, is the possibility of a 
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healthy construction contractor/firm missing out on loan or contract because it is wrongly 

predicted as failing. Overall, despite being the better technique, only 26.7% of the studies 

used sensitivity analysis for error type consideration, representing a poor outlook. 

 

Figure 5.7: Proportion of studies that considered error types over different periods 

Since sensitivity analysis is the more sophisticated method of error consideration which 

gives users more confidence, it is the technique that will be adopted for all the models built 

in the research to allow for fair comparisons 

 

5.3 Chapter summary 

This chapter presented a literature review on the methodical issues in building CF-IPMs, 

looking at the tools used, characteristics of data or sample used, the model validation 

process, and the consideration of error cost of the model.  While it appears that there is an 

improvement in relation to some method trends, improvement on other methods appears 

quite stagnant. The review in this chapter shows that the use of advanced artificial 

intelligence (AI) tools in building models has been better embraced since 2010 but with the 

limitation of use to mainly ANN, SVM and DT. There is a need to adopt and compare 

(models created by) other high performing AI tools like random forest, Adabag Boosting, 
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Extremely Randomized Trees, Naive Bayes, Clustered Support Vector Machines, among 

others. This will ensure the very best model is selected from the multitude produced from 

these high performing tools. This is hence the method that will be adopted in this work 

The use of skewed data made up of many existing construction firms and few failed 

construction firms still occurs in the CF-IPM world despite the popular knowledge that, 

with all tools, it leads to skewed accuracy in favour of the larger group. The argument, used 

in few of the studies that used skewed data, that applying data balancing techniques like 

over (under) sampling leads to bias does not relatively hold water. These sampling 

techniques are well established and there are many cases where the total population cannot 

be used due to the size. Moreover, the skewed accuracy is even more biased and easily leads 

to a costlier error of predicting a failing construction firm as a healthy one. The proposed 

solution will hence use data with equal or almost equal dispersion, employing the 

undersampling technique with matched samples.  

Another unacceptable feature of CF-IPM studies is the poor or non-existent validation 

technique, where the data used to build a model is used to test it. It is disappointing to have 

as many more than a third of the primary studies to be involved in this. It is not excessive 

to say any study that does not validate its CF-IPM with a separate data has not tested it for 

practical use hence its results should not be accepted. The approach to be used in the 

proposed solution is thus to set aside a minimum of 20% of the data for testing any built 

model. 

Like the use of AI tools, the consideration of error cost in testing models has been well 

embraced since 2010.  However, despite being the better technique of error type 

consideration, only 26.7% of the systematically reviewed studies used sensitivity analysis 

for error type consideration, representing a poor outlook. Since sensitivity analysis is the 

more sophisticated method of error consideration which gives users more confidence, it is 

the technique that will be adopted for all the models built in the research to allow for fair 

comparisons. 

The first part of the chapter six contains a review of methodological perspectives of CF-

IPM studies with focus on identification of key methodological flaws to be avoided in the 

research work. The second part contains an explanation of the methodology used in the 

research work 
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CHAPTER SIX 

6.0 RESEARCH METHODOLOGY 

6.1 Chapter introduction 

The research methodology used in construction firms insolvency prediction model (CF-

IPM) studies has become fixated over time as a result of the copycat approach of the studies. 

Although the fixation would not be a problem if the methodology were right or optimal, it 

is not so in this case. The refusal of studies to even look into potential improvement of the 

methodology of developing CF-IPMs is in itself condemnable. This chapter uses a 

systematic review method to review the methodological positions of CF-IPM studies and 

consequently identify areas that can be improved upon, with the improvements implemented 

for the research. 

Section 6.2 is a systematic review of the methodological positions of CF-IPM studies with 

more focus on paradigm (subsection 6.2.1), ontology and epistemology (subsection 6.2.2). 

Section 6.3 explains the implication of the narrow methodology CF-IPM studies are fixated 

on. This is followed by proposed improvements that are adopted in the research in section 

6.4. Section 6.5 justifies the unit of analysis of the research. Section 6.6 and 6.7 explain how 

the qualitative and quantitative aspects of the research were executed respectively, with 

6.7.1 and 6.7.2 describing the execution of the survey and company documentation 

strategies. Section 6.8 is used to summarise the chapter. 

 

6.2 Systematic review of construction firms insolvency prediction model 

studies with focus on methodological positions 

The method used to carry out the systematic review in this section is the same as that 

presented in section 5.2 which is based on the review in section 3.3. As done in section 5.2, 

Hall's (1994) study is excluded. In essence, all the 30 systematically reviewed studies in 

section 5.2 are examined here. To assess the methodological positions of the 30 primary 

studies (i.e. the systematically reviewed studies), the paradigm or philosophical 

underpinning, ontology, epistemology and research approaches are appraised.  The details 

to support this review can be found in the ‘Summary of Findings’ table (Table 5.1) in chapter 

five. 



92 

 

6.2.1 Paradigm of construction firms insolvency prediction model studies 

This subsection explores the philosophical underpinning or research paradigms of 

construction firms insolvency prediction model (CF-IPM) studies. Thomas Kuhn, who 

popularised the idea of a paradigm, defined paradigms in Kuhn (1962) as "universally 

recognised scientific achievements that, for a time, provide model problems and solutions 

for a community of researchers". Paradigm, according to relatively recent studies (Guba 

1990; Johnson and Onwuegbuzie 2004; Scotland 2012)  is a research culture, a set of 

assumptions, values and belief, which comprise of but is not limited to epistemology, 

axiology, ontology, methodology, and aesthetic beliefs.  

The data collection trend in CF-IPM studies appears to be that of independent observers as 

most of the primary studies either used only financial ratios, or financial ratios in 

combination with stock market information (Table 5.1). A few others used stock market 

information alone while only three studies used some form of non-financial variables 

(Figure 6.1). All variables are generally used to measure the health of a construction firm, 

giving the studies a positivist outlook since the positivism paradigm believes that research 

can mainly be done by observations and measurements (Trochim and Donnelly 2008).  

 

Figure 6.1: Types of variables used in the primary studies 

While financial ratios data was collected from some form of financial databases, stock 

market information was collected from stock exchange organisations e.g. New York Stock 
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Exchange. These financial variables (financial ratios and stock market information) are 

common in CF-IPM studies mainly for two reasons:  

1) Financial ratios are the variables used by the two successful pioneering studies (i.e. 

Altman, 1968; Beaver, 1966) that most IPM studies are emulating 

2) Financial data are usually readily available from third party or in publicly available 

company archives and thus makes data collection very easy for a researcher (Laitinen 

1992; Dirickx and Van Landeghem " ’ 1994).  

Of the three primary studies that used non-financial variables (see Table 5.1), Horta and 

Camanho (2013) combined three strategic variables with six financial ratios; Abidali and 

Harris (1995) built two separate models, one with seven financial ratios and another with 

13 managerial variables; while Koksal and Arditi (2004) used a large number of non-

financial variables. Horta and Camanho (2013) chose their strategic variables from their 

previous study. The value for each of the three variables (company main activity, company 

size and headquarter geographic location) was accessible from company archives and 

financial databases. Abidali and Harris (1995) and Koksal and Arditi (2004) got the non-

financial variables from the literature and used questionnaire to collect the data. Both 

questionnaire and archival data (from databases) are forms of independent observation 

which is a positivist approach. A positivist researcher is normally independent (of the 

subject) as an observer, reduces a phenomenon to simpler measurable factors/elements, 

explains the elements in terms of how they affect the phenomenon (cause and effect) and 

usually uses large samples (Burrell and Morgan 2008; Easterby-Smith et al. 1991). 

Positivism seeks to explain and predict what happens in the social world by searching for 

patterns and relationships (Burrell and Morgan 2008).  

In CF-IPM studies, it is the complex failure process (phenomenon) that is reduced to 

measurable variables, usually financial ratios (simpler elements) measured from databases. 

The relationship between each variable and the failure process is then explained in the 

studies and the importance of each variable highlighted, usually through a statistical process, 

before they are used.  Example quotes of where primary studies explained a used variable 

relationship to failure are as follows: 

The ratio of turnover to net assets is a “measure of how well a company has 

used its productive capacity” (Abidali and Harris, 1995: p.191).  
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The activity ratio measures “how well a company has been using its resources” 

(Ng, Wong, and Zhang, 2011: p.601). 

Apart from Langford, Iyagba, and Komba (1993) who simply tested an existing model using 

three firms, and Stroe and Bărbuță-Mișu (2010) that used a sample size of 11 construction 

firms, the least sample size in the primary studies is 40 construction firms. The mean average 

sample size of the 29 studies that clearly indicated their sample sizes is 4930. [Note that 

studies with the largest sample sizes did not use optimally tuned artificial intelligence tools 

hence might not have executed onerous computing like in Du Jardin's (2010) study where 

30 computers were needed for analysing a sample of 500 firms]. Marshall, Cardon, Poddar, 

and Fontenot (2013) in their comprehensive review of sample sizes in qualitative research, 

using 83 qualitative studies from top international journals, clearly proved a sample size of 

30 to be high and that saturation is normally reached before reaching this number (i.e. 30). 

Figure 6.2 shows the sample size ranges used in the primary studies. It is clear from the 

figure that majority of the studies used a large sample size, well beyond the 30 limit in 

qualitative studies, which clearly depicts them as quantitative studies. In fact, more than 

50% of the studies used more than 100 sample firms. Using large samples and quantitative 

methods, as noted earlier, is a feature of positivism.  

In positivism, research is “seen as the way to get at truth, to understand the world well 

enough so that we might predict and control it” (Trochim and Donnelly, 2008: p.18).  This 

is exactly the aim of most CF-IPM studies. In the studies, an attempt is made to understand 

failure of construction firms and to identify failure indicators; then there is an effort to 

predict potential failure in order to aid control of the situation by owners taking mitigating 

steps or financiers making decisions on loans. The aim of CF-IPM studies thus in itself, to 

an extent, lend them to positivism.  

According to Burrell and Morgan (2008), the functionalist/positivist is always seeking to 

find implementable solutions to real problems and is more concerned with controlling social 

affairs. This is well in line with the aim of CF-IPM studies which try to provide IPM as a 

solution to the real problem of either high rate of construction firms failure or to the problem 

of identifying healthy companies for loans or contract. CF-IPM studies have used mainly 

quantitative data, usually in the form of financial ratios, which is a common feature of 

positivism (Phillips and Burbules 2000; Mukherji and Albon 2010). Further, positivists tend 

to use statistical analysis so as to aid generalisation (Alvesson and Sköldberg 2000; 
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Mukherji and Albon 2010); this is typical of CF-IPM studies since the model (i.e. the CF-

IPM) is built using a statistical method. Note that artificial intelligence (AI) tools are 

advanced statistical/mathematical methods. 

 

Figure 6.2: Sample size ranges used in the primary studies. Many of the primary studies 

used a large sample size. 

From all the evidence given in this subsection, it appears that the positivism/functionalism 

paradigm is predominant in the CF-IPM literature. This is well understandable since 

prediction, the main aim of the studies, is a main feature of positivism. Although critical 

realism also supports quantitative data and analysis, and possess some features similar to 

those of positivism, it is not used mainly for prediction. A critical realist is also not an 

independent observer, i.e. an objectivist, as is with CF-IPM researchers. A brief look at the 

ontology and epistemology of the reviewed studies can shed more light on this area of 

discussion. 

 

6.2.2 Ontology, epistemology and research approaches of construction firms 

insolvency prediction model studies  

Ontology deals with the assumption researchers have on how knowledge exists (Burrell and 

Morgan 2008). It is defined by Blaikie (2007) as the science or study of being and it deals 

with the nature of reality. Epistemology deals with how to learn that reality/knowledge 
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(Burrell and Morgan 2008). The realist ontology and objective epistemology are features of 

positivism (Kolakowski 1972; Burrell and Morgan 2008; Easterby-Smith et al. 1991) and 

are the adopted forms in CF-IPM studies.  Realism “assumes that social and natural reality 

exist independently of our cognitive structure: an extra-mental reality exists whether or not 

human beings can actually gain cognitive access to it” (P. Johnson and Duberley, 2000: 

p.67). The realism ontology is in itself quite embedded in the nature of CF-IPM enquiries 

since the statistics of mass failure of construction firms is repeatedly available in many 

financial and government reports. The failure is real whether or not human beings can 

access, assess, prevent or hasten it, or whether human beings know about it at all or not. 

This is pretty much the opposite of idealism ontology which “assumes that what we take to 

be external social and natural reality is merely a creation of our consciousness and 

cognitions” (Johnson and Duberley 2000). 

Epistemology wise, objectivism is the widely used option in CF-IPM studies. Objectivism 

accepts that reality and its meaning exists independent of any awareness or recognition and 

can be learned (Crotty, 1998); it focuses on the object with absolutely no regards for the 

subjects (Burrell and Morgan 2008). CF-IPM studies are directly concerned with only the 

object i.e. the construction firms. In the primary studies reviewed, developing the CF-IPMs 

was done in virtually all cases with absolutely no contact with the subject i.e. any 

representative of the sample construction firms (e.g. owner, employee, firm’s lawyer, 

among others). The information used to develop the CF-IPMs were mainly in the form of 

financial variables gotten from financial databases and stock exchange organisations (e.g. 

New York Stock Exchange), independent of the subjects of sample construction firms. In 

the very rare cases where non-financial variables are used, questionnaires, which are also 

objective, are used to get the variables. The exclusive use of the objective approach in CF-

IPM studies has however been an area where improvement can be made since it has always 

been an area of contention between experts, plus the construction industry is quite dynamic. 

The use of information from databases and questionnaire implies the use of archival and 

survey research strategies respectively. The research approach of the primary studies can 

also be concluded to be deductive, another feature of positivism (Easterby-Smith, Thorpe 

and Jackson, 2008). A deductive approach is used when there is plenty of literature on the 

research area and one of the existing theories in the literature is to be tested (Easterby-Smith, 

Thorpe and Jackson, 2008; Holloway, 1997; Robson, 2011). Nearly all the primary studies 

initially collected financial variables from existing literature and then followed in the 
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footsteps of previous studies (e.g. Altman, 1968; Edmister, 1972; Ohlson, 1980; Zavgren, 

1983; among others) to build their models. They always tested the theory that a certain 

selection of variables and a/some statistical tool(s) (including AI tools and option-based 

models) can be used together to build a high performing model for predicting failure of 

construction firms. 

 

6.3  Implication of the narrow methodological positions in CF-IPM studies 

The restricted use of positivism in CF-IPM studies has led to the continuous, exclusive use 

of the objective epistemology, through the use of multivariate analysis of financial ratios. 

Unfortunately, this singular dimension approach does not fully represent the insolvency 

situation of construction firms as highlighted in various studies; and due to the dynamism 

of the construction industry.  

On facts highlighted in various studies, a countless number of non-financial indications of 

insolvency, such as management mistakes, do come up a lot earlier than financial distress 

(Abidali and Harris 1995). Financial distress only tends to be noticeable when the failure 

process is almost complete, around the last two years of failure according to Abidali and 

Harris (1995). The truth is that it is adverse managerial actions and other social factors that 

lead to poor financial standings and in turn cause insolvency. Accordingly, many 

management experts have reiterated that financial variables alone are insufficient for the 

early depiction of disastrous factors like shambolic management, acquisition of a failing 

construction firm, economic decline, among others (Argenti, 1980). Many construction 

firms insolvency researchers (e.g. Abidali and Harris, 1995; Arditi, Koksal, and Kale, 2000; 

Kale and Arditi, 1999; Kangari, 1988; among others) have   also stressed that financial ratio 

models are not enough to predict insolvency of construction firms until they are used with 

other economic, managerial and social factors. Further, the tendency of accountants to 

amend important financial ratios, known as window dressing or creative accounting, 

reduces the reliability of financial ratios as factors for predicting insolvency (Arditi et al., 

2000; Argenti, 1976; Balcaen and Ooghe, 2006; Rosner, 2003; among others)  [Please see 

chapter three for more]. 

In addition, in many countries (including the UK and France among others) only certain 

firms that meet some specific criteria like a pre-set minimum asset size, number of 
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employees, among others, are required by law to produce financial statements periodically. 

Hence micro, small and medium construction firms which make up an overriding majority 

of the construction industry might not have periodic financial statements (Balcaen and 

Ooghe 2006). The statistics of the UK construction industry are clear: the industry boasted 

over 950,000 small and medium enterprise (SME) in 2015; the industry represents circa 

20% of the UK private sector SMEs, making it the sector with the highest percentage of 

SME firms (Department for Business Innovation and Skills, 2015); over 96% of UK 

construction firms as of 2001 are small or micro firms (Jaunzens, 2001); and 86% of 

employees in the sector work in small construction firms (Jaunzens, 2001). A lot of SMEs 

do not have a good accounting system and hence only produce/submit incomplete and 

inadequate financial statements; this automatically nullifies the possibility of their 

involvement in CF-IPM studies since incomplete financial statements are normally 

discarded of in IPM studies (Tucker 1996; Balcaen and Ooghe 2006). This means most CF-

IPM studies build models that are not applicable to small construction firms despite the fact 

that they (i.e. micro firms and SMEs) are well known to make up a larger percentage of the 

failing firms.  

Another problem is that some SMEs do outsource their account management to independent 

accounting firms with the sole intention of ensuring periodic production of their financial 

statement in order to satisfy legal/government requirements. This sometimes leads to 

misrepresented financial statements based solely on the amount of information provided to 

the accounting firm by the construction firm. In a similar fashion, some SME firms simply 

produce poor and inaccurate statements themselves simply to fulfil the legal requirements. 

Any CF-IPM developed from such statements will have limited practical usefulness 

On the dynamism of the construction industry, the dynamic nature of the industry with 

constantly changing trends (Chang, 2001; Chen, 2009; R. Navon, 2007; Ronie Navon, 2005; 

Odusami, Iyagba, and Omirin, 2003; Razak Bin Ibrahim, Roy, Ahmed, and Imtiaz, 2010; 

among others) means the main causes of failure of construction firms will vary from time 

to time. This implies that key players like owners, directors, managers, among others (i.e. 

subjects), will have to be spoken to in order to understand key reasons behind failure of 

construction firms at different times. Ultimately, leaving out the subjects appears not to be 

a wise choice if a valid CF-IPM is to be built. 
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The need to involve social factors, which can mainly be considered through a subjective 

approach, and the need to talk to subjects to understand the timely dynamics of the 

construction industry, both call strongly for the adoption of the subjective epistemology in 

CF-IPM studies. Remenyi (1998: p.35) stressed the importance of investigating “the details 

of the situation to understand the reality or perhaps a reality working behind them”. This is 

only achievable subjectively since subjectivism emphasises on seeking explanation to 

understand a social phenomenon (Burrell and Morgan 2008). A very good understanding of 

the failure process of construction firms by a CF-IPM developer will definitely contribute 

to an improved model. 

 

6.4 Proposed improvements adopted for the research’s methodology  

Concerning paradigms, having reviewed numerous CF-IPM studies, the paradigm proposed 

for the research is pragmatism. Pragmatism argues that the main determinant of the 

methodology to be used in research should be the research questions rather than strictly 

following a particular paradigm because of a sociological belief, or so as to copy past studies 

as done in CF-IPM studies (Johnson and Onwuegbuzie 2004). Pragmatists are more 

concerned with the practical consequences of the research findings and as such believe that 

one standpoint can never be suitable for answering all types of research questions and there 

may be multiple realities (Dewey 1920; Murphy and Rorty 1990; James 1995). This is the 

maximalist view noted by Callon (2006) and Johnson and Onwuegbuzie (2004) which 

argues that nothing in a research phenomenon can escape pragmatics. Pragmatists neither 

agree with positivists in that demands of a research cannot be fully satisfied by a theory 

(falsify-ability, objectivity, among others), nor with interpretivists in that demands of a 

research can be satisfied (at least partly) by almost any theory (Powell, 2001). This is in 

similarity to the Actor-network theory (ANT) which "privileges neither natural (realism) 

nor cultural (social constructivism) accounts of scientific production, asserting instead that 

science is a process of heterogeneous engineering in which the social, technical, conceptual, 

and textual are puzzled together (or juxtaposed) and transformed (or translated)" (Ritzer, 

2004: p.1). Pragmatism thus allows the use of any, or a mix of multiple methods, 

approaches, choices, tools, among others, as long as they will help to answer the research 

questions properly (Johnson and Onwuegbuzie 2004).  It allows the researcher to “study 

what interests you and is of value to you, study in the different ways in which you deem 
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appropriate, and use the results in ways that can bring about positive consequences within 

your value system” (Tashakkori and Teddlie, 1998: p.30). 

The relative rigidity of other paradigms as to the methodological positions that fit a research 

can limit steps needed to be taken to complete quality research.This is confirmed by 

Saunders, Lewis, and Thornhill, (2009: p.109) that “the practical reality is that a particular 

research question rarely falls neatly into only one philosophical domain”. Further, a good 

CF-IPM study should focus on failure of construction firms (a problem) experienced by 

construction firms owners (people) and the effect of developing a CF-IPM which will allow 

timely intervention that can prevent potential failure (consequence of inquiry). Such focus 

is synonymous with pragmatism which “emphasises the practical problems experienced by 

people, the research questions posited, and the consequences of inquiry” (Giacobbi, 

Poczwardowski, and Hager, 2005: p.18).  

The realist ontology used for CF-IPM studies is very appropriate and is consequently used 

here. There is only one reality, and it is that ‘construction firms do fail and failing 

construction firms have certain similar attributes’. Finding the most effective attributes to 

develop a CF-IPM is what is tricky. This is one of the reasons there are many CF-IPM 

studies, each trying to prove certain attributes are more effective than others.  

Although the objective epistemological stance is suitable for developing a CF-IPM, a 

combined subjective and objective approach in a facilitation manner is proposed and used 

here. While the objective approach will aid the use of existing factors and variables, the 

subjective approach can be used to identify temporal factors and variables that can be used 

to develop a timely and robust CF-IPM; this would have taken the dynamism of the 

construction industry into consideration. The subjective approach can also help identify 

important social and managerial factors that contribute to insolvency of construction firms. 

This has long been advocated by many construction management (CM) authors (e.g. Dainty, 

2008; Seymour, Crook, and Rooke, 1997), who queried the focus on objects when at the 

centre of most CM research is people (subjects), justifying the need for greater emphasis on 

qualitative enquiry. Management level staff and owners of failed and existing construction 

firms can use their practical experience to contribute vital information regarding factors that 

affect insolvency and survival of construction firms hence they need to, and will be engaged 

in the research. 
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Since both the objective and subjective epistemology are vital for a valid CF-IPM, the 

integration of quantitative and qualitative research approach is proposed and used in the 

research. This is in line with the much advocated methodological pluralism in CM (Seymour 

et al. 1997; Mingers and Gill 1997) which combines methodologies from varying paradigms 

to provide richer insights into relationships and their interconnectivity (between factors and 

firm failure in this case); this is the best approach to solving research problems (Mingers 

and Gill 1997). The use of the dual epistemology approach is only possible with mixed 

methods which in itself is a feature of pragmatism (Hoshmand 2003; Johnson and 

Onwuegbuzie 2004). Mixed method can combine the strengths of different methods to 

provide a more robust approach to answering a research question and avoid preconceived 

biases (Sechrest and Sidani 1995) which might exist in past studies that are being copied. 

For example, many CF-IPM studies wrongly ended up using unequal data dispersion simply 

by copying methodologies of past studies 

In this vein, the proposed methodology to be used in the research agrees with the popular 

Seymour and Rooke's (1995) work which clearly argued that different researches require 

different methods and no method should be ruled out a priori. However, it does not support 

their opposition to the multi-paradigm (see Rooke, Seymour, and Crook, 1997) approach 

which pragmatism allows if it is what will bring about a valid methodology to answer the 

research question in focus. In fact, such opposition is tantamount to nullifying some methods 

a priori since selecting a particular paradigm readily nullifies some methods; an act Rooke 

et al. (1997) themselves preach against. An improved research methodology framework for 

developing a CF-IPM which is used in the research is given in Figure 6.3.  

The subjective epistemology aspect of the work is executed with the multiple case study 

strategy. Case study is defined by Mitchell (1983: p. 192) as a “detailed examination of an 

event (or series of related events) which the analyst believes exhibits (or exhibit) the 

operation of some identified general theoretical principles”. Yin (1994: p. 13) defined a case 

study as “an empirical inquiry that investigates a contemporary phenomenon within its real-

life context, especially when the boundaries between phenomenon and context are not 

clearly evident. Yin (1994) went ahead to explain that case studies usually require more 

than one source of evidence.  The case study will be executed using interviews 

The temporal factors obtained (because the construction industry is dynamic) will be 

analysed to identify befitting measuring variables which can then be measured with a survey 
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research strategy.  This process of identifying new factors and discovering patterns from the 

field culminates in an inductive research approach (Easterby-Smith, Thorpe and Jackson, 

2008). 

The objective epistemology aspect, which is the quantitative study, will be executed using 

survey and archival research strategies. Survey will be executed with a Likert scale 

questionnaire. Archival research strategy, which involves collecting financial data from 

companies’ archives, financial databases or stock market is the norm in CF-IPM.  The term 

‘archival’ in this strategy does not directly mean ‘old’ in any way as pointed out by Bryman 

(1989) hence using recent financial statements also fall under this category.  

This proposed strategy culminates in facilitation which involves the “use of one data 

collection method or research strategy to aid research using another data collection method 

or research strategy within a study” (M. Saunders and Paul, 2013: p.154). In the research, 

the unstructured interview data collection method aids the questionnaire data collection 

method. The proposed strategy also shows the intended mixed method approach (qualitative 

and quantitative data collection and analysis). The mixed method approach is very good 

since it ensures an all-round effectiveness of research (Creswell and Plano Clark 2011) and 

is well in line with the proposed pragmatism philosophical stance (Giacobbi, 

Poczwardowski and Hager, 2005) in the research. The methodological positions taken in 

the research are summarised in Table 6.1 
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Figure 6.3: An improved research methodology framework used for developing CF-IPM in 

the research (AI: artificial intelligence, ROC: receiver operating characteristics) 
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Table 6.1: Critical Choices in Research Designs 

Areas of Research 

Options 

Options available Appropriately selected option 

Research Philosophy 

or Paradigm 

1. Positivism 

2. Interpretivism 

3. Critical realism 

4. Direct realism 

5. Pragmatism 

Pragmatism 

Ontology 1. Realism 

2. Idealism 

1. Idealism and 

2. Realism 

Epistemology 1. Objectivism 

2. Subjectivism  

3. Constructivism 

1. Subjectivism and 

2. Objectivism 

Research Approach 1. Deduction 

2. Induction 

3. Abduction 

4. Retroduction 

1. Induction and 

2. Deduction 

Research Strategy  

 

1. Experiment 

2. Survey 

3. Case Study 

4. Action Research  

5. Grounded Theory  

6. Ethnography  

7. Archival Research 

1. Case Study,  

2. Survey and  

3. Archival Research 

Type of Case 

Design/Studies 

1. Single-Case Designs  

2. Multiple-Case Designs 

1. Multiple-Case Designs 

Research 

Methods/Choices  

1. MonoMethod 

2. Multi-Method 

3. Mixed Method 

1. Mixed Method 

Reasons for Using 

Mixed Method 

1. Triangulation 

2. Facilitation 

3. Complementarity 

4. Aid Interpretation and more 

1. Facilitation 

 

Data Collection 

Methods  

 

1. Direct Observation 

2. Interviews 

3. Focus Group Discussion 

4. Questionnaires 

5. Company Documentation 

6. Reporting 

1. Interviews (unstructured), 

2. Questionnaires and 

3. Company Documentation 
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Areas of Research 

Options 

Options available Appropriately selected option 

Data Analysis 

Techniques  

Many 1. Thematic analysis 

2. Reliability analysis 

3. Factor analysis among 

others 

 

6.4.1 Justification for using interviews  

The case studies in the research was executed with the storytelling strategy using 

unstructured interviews. The unstructured interviews for case studies was used to get 

answers to questions like: what are the common factors that lead to insolvency and how do 

these factors affect insolvency? This reason goes down well with case study’s superb 

capability of obtaining answers to the ‘what?’ and ‘why?’ questions (Saunders, Lewis and 

Thornhill, 2000).  

Since the intention was to get a limitless an in-depth examination of how construction firms 

fail based on the experience of respondents, there were no pre-determined or pro-ordered 

set of questions; the unstructured interview is meant for this sort of scenarios (i.e. no pre-

set questions) hence the reason it was adopted. “The unstructured interviews take the form 

of free-flowing conversation” and are known for the advantage of not limiting respondent 

views (Latham and Finnegan 1993; p. 42). The flexibility of the method (i.e. unstructured 

interview) allows an interviewer to ask further questions on any part of the answer of the 

interviewee, thereby giving the research the opportunity to destroy ambiguity at the data 

collection stage. Further, it was believed that the informal setting which comes with 

unstructured interview would help put the respondents in a relaxed and comfortable mode, 

thereby letting them freely provide as much information as possible. 

One issue common with the investigation of construction firms failures (not just CF-IPM 

studies) is that when interviews are used, the respondents are usually asked for their views 

when some of them cannot judge best what some key problems were as they have repeatedly 

failed with subsequently established firms. Those unidentified key problems are referred to 

as the deeper truths which are unattainable with direct observation; a viewpoint rejected by 

positivism and empiricism but well accepted by structuralism, hermeneutics and 

psychoanalysis (Gabriel and Griffiths 2004). On using the subjective approach (i.e. 



106 

 

interviews) to search for the deeper truth, it is usually onerous to detach the more or less 

important insolvency criteria by respondents in research. Ordinarily, the owner, manager, 

employee, among others, of a failed firm is more tilted to blaming other stakeholders 

although, such blames are sometimes true. The research thus elucidated the complex process 

of failure of construction firms by analysing the ‘stories’ of owners, directors, managers and 

(or) employees of failed and existing construction firms as was deemed fit. This was done 

by listening to their accounts of the life of the construction firm from its establishment (or 

stage of involvement) to insolvency (where applicable) or time of interview. By using the 

storytelling method, any form of prior assumptions about the criteria that lead to insolvency 

was prevented and a chance to conduct a narrative analysis of the stories to identify what 

events, actions, or occasions contributed to (in)solvency was created. Storytelling can be of 

unstructured interview as was in the research, or semi-structured in other cases (Gabriel and 

Griffiths 2004). The adopted process ensured that the first objective of the research was met 

(see section 1.7) 

 

6.4.1.1 Advantages and disadvantages of interview 

Interviews have a number of pros and cons. The major advantage of unstructured interview 

is that it allows respondents to explain things to the fullest and allows ambiguity to be 

cleared immediately (Merton and Kendall 1946). It allows issues to be investigate in depth 

and can be a source of lead to other respondents (Ryan, Coughlan and Cronin, 2009). These 

advantages allowed a comprehensive understanding of construction firms insolvency to 

achieved in the qualitative aspect of my research. Interviews can also be relatively 

inexpensive as the require a relatively low number of respondents; saturation is normally 

reached after only 12 interviews (Guest, Bunce and Johnson, 2006) 

On the negative side, unstructured interviews can yield a lot of unimportant information 

since the method restricts the intervention of interviewee while the respondent is talking 

(Hycner, 1985). The method also encourages the respondent to talk as much as possible and 

can be time consuming in the case of a highly willing talkative respondent (Roberta and 

Cowton 2000). The subjective nature also means that respondents can share personal views 

which they think affect the situation under examination but do not, thereby giving inaccurate 
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information. This was guarded against by using the story telling method. Finally, interviews 

can be difficult to analyse as was the case in the research. 

 

6.4.2 Justification for using questionnaire 

The survey strategy was executed with the questionnaire method.  To stimulate responses 

from target respondents, the Likert scale questionnaires with closed-ended question was 

used since it is quite easy to deal with by respondents (Van Laerhoven, van der Zaag-Loonen 

and Derkx, 2004). The use of Likert scale questionnaire was important in the research 

because it represented a way of allowing respondents to rate the extent to which each 

qualitative variable (factor), identified from the unstructured interviews, applied to their 

construction firm. This was vital because the ratings put some form of numbers on the 

qualitative variables. The use of these numbers was the only way the qualitative variables 

could have been used together with the quantitative variables, as input variables during the 

development of the CF-IPM; this is a key objective of the research (see objective number 

three in section 1.7). 

 

6.4.2.1 Advantages and disadvantages of questionnaire 

The questionnaire method has an advantage of ensuring that all respondents are exposed to 

exactly the same questions and are given exactly the same options to pick from (Foddy, 

1993). This helps to avoid any potential bias in the questioning method. It also eliminates 

the case of a respondent forgetting to give some relevant answers. A major advantage of 

Likert scale questionnaire is that it helps to provide structured data which can be easy to 

analyse (Smith and Hakel 1979). This was very helpful for the initial analysis in the 

research, when reliability and factor analysis were carried out (see subsections 7.3.1 and 

7.3.4).  Also, responses can be gathered from a large number of respondents as done in the 

research, thereby helping to improve reliability  

On the flip side, questionnaires can be expensive to distribute and collect if it is not done 

online using free mediums like Google forms (Wright, 2005). Most of the questionnaires in 

the research had to be posted, using prepaid return envelopes, to the available addresses on 
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databases. This was done for two reasons: 1) insolvent construction firms had dormant email 

addresses on databases so questionnaires were sent to the current work addresses of former 

owner/directors, 2) Many MSM firms did not have an email address at all and response rate 

from the big firms’ respondents through email was critically poor.  In addition, with 

questionnaires, respondents cannot make clarifications on questions they do not understand, 

and their expressible response/views are limited (Reja et al., 2003). Finally, Likert scale 

questionnaire provides discrete variables which could be a pro or con. It turned out to be a 

con here as the discrete data proved to be tricky for the AI tools to handle. 

 

6.5 Unit of analysis 

Unit of analysis, according to Tainton (1990: p.5), “is the entity on which there are data and 

which will be subjected to analysis.” This idea is used to define the main entity which is 

analysed in a study (Trochim and Donnelly 2008). The unit of analysis is therefore 

absolutely dependent on the design of the study. Although they are usually the same, the 

unit of analysis in a study might be different from the unit of observation which “is the entity 

on which the original measurements are made” (Tainton 1990: p.5). The following are the 

categories of unit of analysis according to (Bless, Higson-Smith and Kagee, 2006): 

 Individuals: The case where the research studies and analyses a set of individuals that 

belong to a particular group such as young girls, carpenters, white Muslims, among 

others. Each individual is a unit. This category is the most popular unit of analysis  

 Groups: This involves studying different groups and probably comparing the groups. 

In this case, each group, and not the individual members of the group, represents a 

unit  

 Organisations: Organisations are a type of group that is commonly used as unit of 

analysis in social science research, each organisation in the study representing a unit. 

Some organisations can be compared based on their profits, proportion of employees 

of certain background, policy effectiveness, corporate social responsibility, and so 

forth  

 Social artefact: These are “products of social beings and can be anything from poems 

and letters to automobiles and farming implements. A systematic analysis of such 
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artefacts may provide valuable information about the individuals and groups that 

created or use them” (Bless et al., 2006: p. 73). 

 Period of time: This involves analysing how something has changed over time. 

It is clear from above that unit of analysis and unit of observation are well related to the 

samples that will be used in a study. The research intends to build a robust IPM for 

construction businesses to detect potential failure very early. To do this, data about 

construction businesses have to be taken, carefully studied and analysed hence both the unit 

of analysis and the unit of observation for the research are construction firms i.e. 

organisations as unit of analysis. The sample construction firms used in the research are the 

ones whose area of operation are mainly in the UK. 

 

6.6 Qualitative study 

6.6.1 Sampling for Interviews 

The criteria used to select target participants/respondents were that  

1) They are, or were, owners/directors of large, medium, small or micro construction 

firms. The construction firm could be existing or could have failed 

2) They were in the aforementioned position for at least one year. 

These are the people in charge of the daily affairs of the firm hence they have a good amount 

of knowledge/information about the company. Although the preferred minimum number of 

years of experience was three, the difficulty in getting respondents prompted a change to 

one year minimum in order to increase the pool to choose from.   However, concerted effort 

was made to get relatively more respondents with minimum of three years’ experience and 

this was partially successful as is evident in tables 6.3 and 6.5. 

The database used for sampling in the research is FAME (Forecasting Analysis and 

Modelling Environment) Bureau Van Dijk UK financial database which contains the details 

of most of the firms in the United Kingdom. Details in the database include firms’ general 

details like trading address, website, email address, trade, year of establishment, among 
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others. The database also contains contact details of owners, directors, accountants and 

secretaries of firms. 

For existing firms, only random sampling was used. The method was combined with the 

convenience and snowballing methods for failed firms. The contact for owners/directors of 

existing firms were gotten by searching FAME the fame database. The search for large 

construction firms was done separately from that of micro, small and medium (MSM) 

construction firms. The number of employees option on the FAME database website was 

used to separate the searches for the construction firm sizes (please see section 1.11 in 

chapter one for firm size definition by number of employees according to the European 

Union). The search criteria and the selected options for existing MSM and large construction 

firms are displayed in Table 6.2. 

Table 6.2: Search criteria and selected options for existing MSM and large construction 

firms 

Search criterion Selected option(s) 

Active/Inactive Active (for existing firms) 

Major sectors Construction 

 

Country prime trading 

address 

England 

Scotland 

Wales 

Northern Ireland 

Number of employees, 

using estimates 

[min = 1 and max = 249] for micro, small and medium firms 

search 

 [min = 250 and max = (no input value)] for large firms search 

The searches returned over 230,000 MSM construction firms and over 650 large 

construction firm. For large construction firms, every 10th firm was then selected until 50 

firms were selected. For the MSM firms, the search returned, the results were arranged 

according to number of employees in the descending order so that the first set of firms on 

display had 249 employees (i.e. medium sized firms). Every 50th firm was then selected 

until 20 firms were selected (some of which had below 249 employees but not below 50). 

The ‘next’ button was then clicked until firms with a maximum number of 49 were displayed 

(i.e. small firms). Again, every 50th firm was then selected until 20 firms were selected. For 

micro firms with a maximum of nine employees, every 1000th firm was selected until 50 

firms were selected. This approach was used because the search breakdown gave 2757 
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medium firms, 8962 small firms and over 226,233 micro firms. Where the firm to be 

selected did not fall under the UK Standard industrial classification of economic activities 

(SIC) 2007 listed in section 1.11 (scope and limitation) of chapter one, the next one that did 

so was selected. All the contacts selected were served with an interview request. Table 6.3 

presents the demographics of the respondents that agreed to participate. A picture of the 

summary result of the search for medium (50-249 employees) existing construction firms is 

given in Figure 6.4 The process was monitored to ensure the number of respondents for 

existing construction firms were not a lot more than those for failed construction firms, and 

vice versa. 

Table 6.3: Demographics of the respondents for existing firms 

No. of respondents 

for large construction 

firms 

No. of respondents 

for MSM 

construction firms 

No. of years of ownership/ 

directorship experience with the firm 

in question 

1 (snowball) 3 1-2 

1 2 3-5 

0 3 6-10 

2 1 11 - 20 

0 0 21 and above 

Total = 4 Total =9  

Note: All respondents of existing firms, as given in this table, were selected based on 

random sampling as mentioned earlier in this section 

 

Figure 6.4: A picture of the summary result of the search for medium (50-249 employees) 

existing construction firms 

For failed or insolvent firms, random sampling was combined with the convenience and 

snowballing methods. First, FAME financial database was used to identify directors of 

construction firms that failed between the years 2009 and 2016, and subsequently to identify 

existing firms where those directors currently work. This is easy in FAME as it displays the 
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work history, including current positions, of any director whose name is left-clicked on the 

computer mouse. Most of the directors in the case of MSM construction firms 

unsurprisingly turned out to be the owner of the firms. The search criteria and the selected 

options are displayed in Table 6.4. 

The searches returned over 159,000 MSM construction firms and over 146 large 

construction firm. In the random sampling method, for large construction firms, every 2nd 

firm was then selected until 50 firms were selected. For the MSM firms, the firms were 

selected the same way as was done for existing firms. The search breakdown gave 1000 

medium firms, 3851 small firms and over 154,613 micro firms. For the convenience 

sampling, the author of this thesis used his position as a part-time college lecturer on 

construction apprentice programmes. The apprentices were persuaded to talk to colleagues 

and bosses at work in order to identify those that have worked in, managed or owned a now 

defunct micro, small and (or) medium construction firms. Some apprentices were, by 

themselves, suitable respondents as they once owned firms and most agreed to respond 

positively to the request of talking to colleagues and bosses. Convenience sampling method 

has been used in some construction studies before (e.g. Li, Akintoye, Edwards, and 

Hardcastle, 2005; Oyedele, 2013). This sampling method became necessary because of the 

inherent difficulty in finding stakeholders of insolvent construction firms. 

Table 6.4: Search criteria and selected options for failed MSM and large construction firms 

Search criterion Selected option(s) 

 

Active/Inactive 

Active (for existing firms) 

Dissolved (for failed firms) 

Liquidated (for failed firms) 

Major sectors Construction 

Date of 

liquidation/dissolution* 

On or after 01/01/2009 

Up to and including 31/08/2016 

 

Country prime trading 

address 

England 

Scotland 

Wales 

Northern Ireland 

Number of employees, 

using estimates 

[min = 1 and max = 249] for micro, small and medium firms 

search 

[min = 250 and max = (no input value)] for large firms search 
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The snowballing sampling was also employed for both size categories of firms in that 

interviewees were requested to supply contacts sample targets like them if they did not mind. 

Since insolvent firms are virtually impossible to trace because of their non-functioning-

anymore contacts (Everett and Watson 1998; Stokes and Blackburn 2002; Harada 2007), 

the interviews/stories from the research supplied a unique resource.  All of the contacts 

gotten were served with an interview request. Table 6.5 presents the demographics of the 

respondents and the firms. The convenience (using position as a lecturer in a college) and 

snowballing sampling methods yielded 42.86% of the respondents, indicating that the 

random sampling from FAME search is less effective for failed construction firms 

Table 6.5: Demographics of the respondents for failed firms 

No. of 

respondents for 

Big 

construction 

firms 

No. of respondents 

for MSM 

construction firms 

No. of years of 

ownership/ 

directorship 

experience with the 

firm in question 

No. of owner 

respondents that 

currently own 

another firm* 

1 (S) 2 (R and C) 1-2 1 

1 (S)  2 (R)  3-5 2 

0 3 (R) 6-10 0 

1 (R) 1 (C) 11 - 20 1 

1 (S) 2 (R and C) 21 and above 0 

Total = 4 Total = 10  Total = 4 

* for MSM firms only 

Note: letters in bracket represent the sampling method used to select/recruit the respondent. 

C: Convenience  R: Random  S: Snowball   

 

6.6.2 Pilot interviews for qualitative study 

A total of five construction firms were used for the pilot study. This included two large 

construction firms (one existing and one failed), and three MSM construction firms (one 

existing and two failed). All the respondents were people I knew one way or another as they 

were recruited through the snowballing sampling method explained in subsection 6.6.1. The 

respondents were made aware that the study was a pilot one. The respondents were simply 
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asked: ‘please tell me the story of (name of the construction firm in question) from when 

you have known it till failure (or till now in the case of existing firms). Please be free as 

much as possible and remember that total confidentiality is guaranteed. Please note that no 

information is irrelevant to me and no stories are unnecessary, as long as they relate to the 

(name of the construction firm in question) construction firm.  

Every other question was generated from the responses given. For example, when a 

respondent of a failed MSM firm lamented about high immigration levels, I asked him to 

please expatiate on how this affected the (name of the construction firm in question) 

construction firm. 

The main feedback from the pilot study was that the words ‘insolvency’, ‘failure’, ‘bust’ or 

their synonyms should be avoided by the interviewee since some respondents might still 

feel bad about their firm’s insolvency. The respondent unanimously agreed to the validity 

of the questions. 

 

6.6.3 Execution of the story telling interviews 

As explained in subsection 6.6.2, the questions used in the interviews were designed such 

that they were not restricting to avoid pre-determined responses and to evoke stories about 

how the firm’s failure (or survival) came about. Although it was referred to as being in its 

infancy stage in 2004 (Gabriel and Griffiths 2004), the storytelling method is now a widely 

accepted and used method (see for example Bouwen and Steyaert, 1997; Hill and 

McGowan, 1999; Marcella and Illingworth, 2012; Rae, 2000 among others). In fact, 

Denning (2005) emphasised that research that does not value storytelling as a way of 

understanding firm performance cannot give a complete account of that firm. 

Storytelling or narratives are taken to be especially valuable and appropriate when 

researching sensitive topics such as insolvency of firms (Marcella and Illingworth 2012). 

Insolvency can be a bad experience for some owners which they do not want to recall or 

discuss. Extra effort was thus made to make the questions as non-judgemental as possible. 

More time was spent with respondents that delivered more or longer stories; this what is 

required when the story topics (i.e. construction firms in this case), as against the 
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storytellers, are the unit of analysis (Gabriel and Griffiths 2004) as is the case in the research. 

Incidents that related to insolvency or firm problems were explored further after the stories 

by seeking elicit accounts of the incidents through direct or indirect tactic; this is appropriate 

for the storytelling method according to Gabriel and Griffiths (2004). 

In the case of insolvent firms, the stories elicited from the respondents of MSM construction 

firms can be categorised as tragic considering the four categories of stories (comic, epic, 

tragic and romantic) presented by Gabriel and Griffiths (2004). This is not too surprising as 

many owners of insolvent MSM construction firms were not happy about the insolvency. 

Some stories, however, sounded epic, or a combination of tragedy and epic, as the 

respondents tried more to show how they made mistakes and learned from them and then 

defiantly started (or are willing to start) another firm which is now (will be) a success. For 

big firms, most of the respondents practically blamed the members of the senior 

management team and barely found their contribution to the failure of the firms. 

 

6.7 Execution of quantitative study 

This section explains the quantitative aspect of the work which comprises the survey and 

archival research strategies. The survey strategy was executed with questionnaire data 

collection while the archival research was executed with company documentation in which 

case the financial ratios of firms were downloaded from a financial database 

6.7.1 Questionnaire data 

6.7.1.1 Pilot study for questionnaire 

The criteria used to select respondents is as explained in subsection 6.6.1. The themes that 

resulted from analysing the qualitative data (see section 7.2) were used to develop a 

preliminary questionnaire to determine how relevant each identified variable/criterion is in 

determining (in)solvency of construction firms. Where multi-scale beyond two points was 

applicable, a Likert scale of one to five points was used. This preliminary questionnaire was 

used as a pilot study with the aim of evaluating its relevance/correctness, complexity, length 

and layout before being sent out to a wider set of target respondents. An initial pilot study 

was conducted using 20 colleagues with experience in the construction industry. Then a 
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final pilot study was conducted with 11 volunteer respondents from the interviewees (two 

and three from existing big and MSM construction firms respectively, and two and four 

from failed/insolvent big and MSM construction firms respectively).  

The key feedback was to reduce the number of questions which initially stood at 200. This 

was cut back to 111. There were also suggestions to rephrase some questions in order to 

make them more concise. Another vital feedback was the notification that some questions 

were not valid and should be removed. An example of identified invalid question was ‘what 

percentage of the directors are/were married?’ All feedback/suggestions were diligently 

implemented.  

6.7.1.2 Sampling and execution of survey (questionnaire) strategy 

To conduct the actual survey for the research, the sampling strategies used for the qualitative 

study (see subsection 6.6.1) were repeated but extended to reach more potential respondents. 

For existing firms, an onerous exercise of identifying 1200 firm directors/owners was done 

using random sampling and a hard copy questionnaire, addressed to each target respondent 

and attached with an official return envelope, was posted to each of them. A proportion of 

20% for large firms and 80% for MSM firms was used in recognition of the skewed nature 

of the construction industry in terms of firm size. Where the target respondent email was 

traceable, a link to an online version of the questionnaire was sent to him/her via email 

instead  

For failed firms, having realised that the random sampling using FAME search was 

relatively less effective, an extra onerous exercise of searching for present contacts of 1428 

directors/owners of failed construction firms was done. All failed large construction firms 

whose directors could be traced were selected, resulting in a representation of 128 firms of 

the 146 returned in the search. The remaining 1300 contacts gotten were for failed MSM 

construction firms. The convenience sampling for the survey was extended by involving all 

construction apprentices in the college. Further, using the author and his college colleagues’ 

links with other lecturers in other colleges, the questionnaires were also distributed to 

construction apprentices of another three colleges to pass on to potential respondents. In 

addition, all author’s contacts, old or new, who have worked in the construction industry 

were contacted for help to give the questionnaire to any fitting respondents. The 

convenience sampling resulted in the distribution of another over 350 questionnaires, 
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totalling around 3028 questionnaires distributed for failed and existing firms. A hard copy 

questionnaire addressed to each target respondent and attached with an official return 

envelope was sent to all identified potential respondents. Where the potential respondent 

was not known, as was with many convenience sample respondents, the questionnaire was 

addressed to ‘respondent’.  

Overall, a total of 553 questionnaires were returned representing approximately an 18.3% 

return rate. This consisted of 284 and 269 from respondents of existing and failed 

construction firms respectively. Only 7.7% and 11.9% of the of the questionnaires from 

respondents of existing and failed construction firms respectively were for large 

construction firms. A preliminary assessment of the questionnaires revealed that in some 

very few cases, more than one (usually two) questionnaires were completed by respondents 

of a particular firm. In such cases, the average values of the values chosen by the two 

respondents were used to create a new questionnaire response for such firms.  After doing 

this, the total usable number of questionnaires were 272 and 259 for existing and failed 

construction firms respectively.   

The variables used in the questionnaire along with the theory bounding them are presented 

in Table 6.6. Only the variables in sections C to G of the questionnaire are presented in the 

table because sections A and B are about the demographics of the respondent and firm; they 

were not involved in the analysis. A complete sample of the distributed questionnaire for 

failed and existing firms is given in Appendix A. 

Table 6.6: Questionnaire variables created from analysing the qualitative study and the 

theories bounding them 

Section Variables developed from analysing qualitative 

study 
Theory 

   

 Section C  

C Senior management and finance questions  

C1. The firm is/was owned by a single person Upper echelon theory 

C2. The owner is/was the same person as the chief 

executive (CEO)/president/ Managing Director 

(MD) of the firm 

Upper echelon theory 

C3. The firm has/had a board of directors Upper echelon theory 

C4. If yes, how many directors does/did the firm have? Upper echelon theory 

C5. The firm took over another firm at some point in 

time 
Mintzberg’s 5Ps Perspective 
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Section Variables developed from analysing qualitative 

study 
Theory 

C6. If yes, was the takeover as a result of financial or 

other types of distress? 

Mintzberg’s 5Ps perspective 

C7. The firm has/had a clear bidding strategy Porter’s perspective 

C8. There is/was a clear sub-contractor selection process Mintzberg’s 5Ps perspective 

C9. The firm has/had a long term strategic goal Organization ecology 

C10. The firm is/was specialised in a particular trade or 

service 
Organization ecology 

C11. Has the range of trade/services broadened over time Adaptationist perspective/ 

Dynamic capabilities 

C12. The firm change its main specialisation of 

construction work (e.g. from public to private 

project, or from building residential homes to 

commercial stores, among others) at some point in 

time   

Adaptationist perspective/ 

Dynamic capabilities 

C13. The owner is/was on a fixed salary Upper echelon theory 

C14. There is/was a dedicated financial director Upper echelon theory 

C15. The financial director is/was performing another 

role at the same time 

Upper echelon theory 

C16. The company account is/was clearly separated from 

any personal accounts 

Upper echelon theory 

C17. Was account management fully computerised Adaptationist perspective/ 

Dynamic capabilities 

C18. The firm consistently run/ran negative cash flow Mintzberg’s 5Ps perspective 

C19. The firm went through an expansion programme 

less than two years ago or within two years before 

closing down 

Dynamic capabilities 

   

 Section D  

D Proportion of firms’ professionals with high 

qualifications/skills and involvement 
 

D1. Percentage of passive members on the board of 

directors 

Upper echelon theory 

D2. Percentage of directors that worked in the firm Upper echelon theory 

D3. Percentage of directors that had construction 

background 

Upper echelon theory 

D4. Percentage of directors that had 

management/administrative background 

Upper echelon theory 

D5. Percentage of directors educated to at least a degree 

level 

Upper echelon theory 

D6. Percentage of personnel educated to at least a 

degree level   

Upper echelon theory 

D7. Percentage of works usually subcontracted during 

projects   
Mintzberg’s 5Ps perspective 

/ Adaptationist perspective 

D8. Percentage of successful bids   Adaptationist perspective 
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Section Variables developed from analysing qualitative 

study 
Theory 

D9. Percentage of firm’s earnings invested in properties Mintzberg’s 5Ps perspective 

/ Adaptationist perspective 

D10. Percentage of firm’s earnings used in construction 

operations 
Mintzberg’s 5Ps perspective 

/ Adaptationist perspective 

D11. Percentage of professional workers that were 

registered with professional bodies 

Strategy theory 

   

 Section E  

E The effect of external, industrial and firm 

characteristic factors 
 

E1. The 2008 global financial crises [Economic 

recession(s)] 
Organization ecology/ 

Porter’s perspective 

E2. High immigration levels in the UK Organisation ecology/ 

Porter’s perspective 

E3. Influx of firms into the industry, (from across the 

country and outside the country) 
Porter’s perspective 

E4. Fluctuation in construction material costs Porter’s perspective 

E5. Construction industry culture Porter’s perspective/ 

Organization ecology 

E6. Construction industry environmental sustainability 

agenda 
Adaptationist perspective/ 

Dynamic capabilities 

E7. Type/Quality of workforce available for 

employment 
Organization ecology 

E8. Newness [i.e. how did newness (first four years) 

affect the performance of the firm in its early 

years?] 

Adaptationist perspective 

E9. The company size Adaptationist perspective 

E10. Fraud (if fraud ever happened, how it affected the 

firm?) 
- 

E11. Natural disasters (whether directly on the firm or its 

projects) 
Organization ecology 

   

 Section F  

F Frequency of occurrence of some project related 

factors 
 

F1. Very late collection of payment for completed 

works 

Organizational theory 

F2. Unsuccessful collection of payment for completed 

works 

Resource based view 

F3. Get cash-strapped on projects (cash flow) Resource based view 

F4. Reach debt limit with bank/financier Resource based view 

F5. Renegotiate loan terms Resource based view 

F6. Make profit on projects Mintzberg’s 5Ps perspective  
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Section Variables developed from analysing qualitative 

study 
Theory 

F7. Produce complete financial statements  Mintzberg’s 5Ps perspective 

F8. Bid for jobs outside firm’s speciality Adaptationist perspective 

F9. Executed project cost more than the bidding price 

used to win contract  

Resource based view 

F10. Submit very low bids because of fierce competition Adaptationist perspective 

F11. Rely on government projects Mintzberg’s 5Ps perspective 

F12. Rely on private projects Mintzberg’s 5Ps perspective 

F13. Firm win major bids it submitted Porter’s perspective 

F14. Firm completes project within stipulated time frame Resource based view 

F15. Firm completes project within bidding budget Resource based view 

F16. Firm executes project to time and cost without 

conflict 

Resource based view 

F17. Internal conflict arises within the firm  Adaptationist perspective 

F18. Internal conflict within the organisation gets 

uncomplicatedly resolved 
Adaptationist perspective 

F19. Firm gets project through referral from another 

customer 

- 

F20. Expansion of firm  Dynamic capabilities 

F21. Conflicts with clients on projects Adaptationist perspective 

F22. Conflicts with subcontractor in terms of 

subcontractors not showing up, performing low-

quality works. 

Adaptationist perspective 

F23. Delay of payments to subcontractors. Mintzberg’s 5Ps perspective 

F24. Conflicts with other major parties on projects Adaptationist perspective 

F25. Conflict /litigation/legal issues / dispute arise from 

completed projects 
Adaptationist perspective 

F26. Losing out in conflict /litigation/legal issues 

/dispute cases  
Adaptationist perspective 

F27. Customers offer repeat business Porter’s perspective 

F28. Repeated use of particular sub-contractor(s) Porter’s perspective 

F29. Materials are supplied to firm on credit Porter’s perspective/ 
Resource based view 

F30. Debts payment to suppliers are delayed Resource based view 

F31. Legal advice sorted for contracts taken Mintzberg’s 5Ps perspective 

F32. Problems with labour cost Resource based view 

F33. Execution of multiple projects simultaneously Adaptationist perspective/ 

Dynamic capabilities/ 

Mintzberg’s 5Ps perspective 

F34. Bid for projects outside main geographical area of 

comfort (city, county, region, among others) 
Adaptationist perspective 

F35. Register accidents on its site Mintzberg’s 5Ps perspective 
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Section Variables developed from analysing qualitative 

study 
Theory 

F36. Replace key personnel Dynamic capabilities/ 
Resource based view 

F37. Execute a highly financially challenging project Resource based view 

   

 Section G  

G The characteristics and performance level of the 

firm, its management and its staff 
 

G1. Enthusiasm of the project management team Upper echelon theory 

G2. Level of overall competence of top management 

team 

Upper echelon theory 

G3. The willingness of the top management team to take 

risk  

Upper echelon theory 

G4. The motivation of the CEO/directors Upper echelon theory 

G5. The tolerance of the CEO Upper echelon theory 

G6. The decisiveness of the CEO/directors Upper echelon theory 

G7. Leadership support of CEO/directors to employees Upper echelon theory 

G8. The creativity/innovation of the CEO/directors Upper echelon theory 

G9. The integrity/transparency of the CEO/directors Upper echelon theory 

G10. The flexibility of the CEO/directors Upper echelon theory 

G11. The reliability/dependability of the CEO/directors Upper echelon theory 

G12. The construction industry knowledge of the 

CEO/directors of the firm 

Upper echelon theory/ 
Adaptationist perspective 

G13. The CEO’s/directors’ ‘response to feedback’ Upper echelon theory 

G14. Commitment of project management team Upper echelon theory 

G15. Level of firm’s response to market change Porter’s perspective 

G16. The effectiveness of the financial director Upper echelon theory 

G17. The profit levels of the firm Resource based view 

G18. The liquidity level of the firm Resource based view 

G19. Firm’s reception to latest technologies Dynamic capabilities 

 

6.7.2 Company documentation data 

Using the FAME financial database, the financial data of the 272 and 259 existing and failed 

construction firms with usable questionnaire data were downloaded. This means the 

financial data of a total of 531 construction firms were downloaded. Only the data of the 

final year of failed construction firms and the most recent financial data of existing firms 

were downloaded for use in building the construction firms insolvency prediction model 
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(CF-IPM) of the research. A typical financial ratio section of the financial data of all 

categories of sample construction firms are given in Table 6.7 

 

Table 6.7: Typical financial ratios section of the financial statement of the sample 

construction firms 

Financial 

ratios category  

Financial ratios (variable) 

name 

Big 

existing 

firms 

Big 

failed 

firms 

MSM 

Existing 

firms 

MSM 

failed 

firms 

      

 

 

 

 

Profitability 

ratios 

Return on Shareholders 

Funds (%) 

22.56 6.07 2.38 -9.52 

Return on Capital Employed 

(%) 

17.95 6.07 2.38 -9.52 

Return on Total Assets (%) 14.88 2.12 2.37 -4.39 

Profit margin (%) 18.84 0.55 87.72 n.s. 

Gross margin (%) 21.67 10.15  n.s. 

Berry ratio  2.70 1.06   

EBIT margin (%) 19.95 0.57 86.21 n.s. 

EBITDA margin (%) 21.26 0.57  n.s. 

      

 

 

Operational 

ratios 

Net Assets Turnover  0.95 11.09 0.03 n.s. 

Fixed Assets Turnover  2.34 n.s. 0.03 n.s. 

Interest Cover  15.27 21.75   

Stock Turnover  2.67    

Debtors Turnover  4.38 4.24 0.69 n.s. 

Debtor Collection (days) 83.43 86.07 531.91 n.s. 

Creditors Payment (days) 34.66 41.63 35.72 n.s. 

      

 

 

 

 

Structure ratios 

Current ratio  3.87 1.54 38.19 0.57 

Liquidity ratio  2.14 1.54 38.19 0.57 

Shareholders liquidity ratio  3.90 
   

Solvency ratio (Asset based) 

(%) 

65.98 34.99 99.74 46.11 

Solvency ratio (Liability 

based) (%) 

n.s. 53.82 n.s. 85.57 

Asset Cover  5.91    

Gearing (%) 27.41 32.89   
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Financial 

ratios category  

Financial ratios (variable) 

name 

Big 

existing 

firms 

Big 

failed 

firms 

MSM 

Existing 

firms 

MSM 

failed 

firms 

 

 

Per employee 

ratios 

Profit per employee (unit) 65,255 643 493 -444 

Turnover per employee 

(unit) 

346,414 117,589 562 n.s. 

Salaries/Turnover 16.07 25.41 11.30 n.s. 

Average Remuneration per 

employee (unit) 

55,655 29,884 64 7 

Shareholders’ Funds per 

employee (unit) 

n.s. 10,605 20,746 4,666 

Working Capital per 

employee (unit) 

176,179 14,318 764 -5,330 

Total Assets per employee 

(unit) 

438,448 30,310 20,801 10,119 

EBIT: Earnings before interest and tax 

n.s.: not available/applicable.  

 

6.8 Validity and reliability 

A major step towards validity was the pilot studies for the interview and the questionnaire 

as explained in subsections 6.6.2 and 6.7.1.1 respectively. For the interviews, the 

respondents unanimously agreed that the initial question asked in the interview was valid. 

Each respondent also agreed with the validity of the follow up questions that were asked. 

For the questionnaire, a few invalid questions were identified by the respondents while all 

questions in the final questionnaire were unanimously agreed to be valid. Question validity 

is vital to validity of research according to Bailey (1994). 

The second validation step taken with the interview data was to ensure coding validity. This 

was done by having another experienced researcher, my second supervisor in this case, code 

the interview data (i.e. carry out a thematic analysis) independently. His codes/themes were 

subsequently compared with mine and there was reasonable agreement between the results. 

This code/theme validation process remains one of the most common and acceptable check 

of validity of interview data (Bailey 1994; Mays and Pope 1995; Rolfe 2006). 

The predictive validity test, which is a criterion related validity test, was used as the second 

validation method for the questionnaire data and the first and only validation method for the 
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archival data (i.e. the final ratios). This test is commonly used for measurements (Van Dyne 

and LePine 1998) e.g. questionnaire ratings and financial ratios in this case. It is used to 

predict future event or outcome of interest. The process involved splitting the data and 

putting the questionnaire and archival data of some of the sample firms together to develop 

CF-IPMs. The data of the remaining sample firms was then fed into the CF-IPMs to predict 

if the firms were failing or existing. The CF-IPMs had great prediction accuracy (see table 

8.21 in subsection 8.55), thus confirming the validity of the data. This is the main aim of 

the research work as given section 1.7. More on data split can be found in section 8.3 while 

more on presentation of the prediction results can be found in subsection 8.5.3 

Reliability of research refers to the degree to which the research is consistent or repeatable. 

In terms of data collection, the fewer the number of respondents, the more tendency the data 

collected will vary from that of another researcher because each researcher might have 

encountered entirely separate respondents. In essence, the higher the number of respondents, 

the higher the reliability of data. 

Marshall, Cardon, Poddar, and Fontenot (2013) in their comprehensive review of sample 

sizes in qualitative research, were able to establish that saturation is reached in interview 

data long before interviewing 30 respondents. Guest et al. (2006) had earlier been able to 

identify the required number of respondents for saturation in qualitative research to be 12 

respondents. Saturation is the point at which no new information comes out of subsequent 

interviews and does represent a point at which reliability can be said to have been met. The 

conduction of interviews for 13 and 14 respondents (both greater than 12) to investigate the 

construction firms survival and failure phenomenon respectively (see tables 6.3 and 6.5 

respectively) thus make the interview data in the research reliable. 

One of the ways of measuring reliability for questionnaire surveys is by checking the 

relative response rate (Fincham, 2008). Baruch and Holtom's (2008) comprehensive review 

of 490 organization research studies that used questionnaire revealed the standard response 

rate for studies that focused on organizations (e.g. construction firms as in this case) was 

35.7% with a standard deviation of 18.8%. This indicates a minimum response rate of 

17.4%. The response rate of 18.3% achieved in the research thus gives a comparable data 

reliability with other organization research studies. The other measure used to check the 

reliability of the questionnaire data was to run a reliability test using the Cronbach’s alpha 

analysis. A detailed explanation of this can be found in subsection 7.3.1 
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6.9  Chapter summary 

The methodological positions of CF-IPM studies were reviewed in this chapter with more 

focus on paradigm, epistemology and ontology than other areas. The review exposed the 

blind followership act of CF-IPM studies where they restrict themselves to the use of 

positivism paradigm, realism ontology and objectivism epistemology. This singular 

dimension approach, which normally involves the exclusive of financial ratios, does not 

fully represent the insolvency situation of construction firms as highlighted in various 

studies; and due to the dynamism of the construction industry. The need to involve social 

factors, which can mainly be considered through a subjective approach, and the need to 

talk to subjects to understand the timely dynamics of the construction industry, both call 

strongly for the adoption of the subjective epistemology in CF-IPM studies. 

The research thus combines the subjective and objective epistemologies, using the 

pragmatism paradigm which allows a research to use or combine any set of research 

positions as long as they will best answer the research question. The subjective 

epistemology was established using the multiple case study approach. This was done using 

the storytelling strategy which was executed with unstructured interviews. The objective 

epistemology was established using the survey strategy executed with questionnaires.  

The unit of analysis is construction firms. The target respondents were owners and 

directors of large and MSM construction firms. The random sampling method alone, 

based on search results from FAME database, was used to identify potential respondents 

for existing construction firms. The method was combined with the convenience and 

snowballing sampling methods for respondents of failed/insolvent firms. The variables 

used in the questionnaire was formulated based on literature review and result of the 

qualitative study (i.e. unstructured interviews), depicting a facilitation approach. A total of 

272 and 259 (total = 531) usable questionnaires for existing and failed construction firms 

respectively were gotten. The financial data of the 531 firms were subsequently 

downloaded from FAME. 

Chapter seven contains a presentation of the types of analyses carried out on the 

qualitative and quantitative data. These included narrative and thematic for qualitative 

data, as well as reliability and factor analysis among others for quantitative data.
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CHAPTER SEVEN 

7.0 DATA ANALYSIS AND RESULTING VARIABLES FOR 

MODEL DEVELOPMENT 

7.1 Chapter introduction 

Data collected through the unstructured interview, questionnaire and company 

documentation methods (see chapter six) are analysed in this chapter to create the qualitative 

and quantitative variables for the construction firms insolvency prediction model (CF-IPM) 

to be developed in the next chapter. Section 7.2 is used to explain how narrative and thematic 

analyses were used to analyse the qualitative data collected through unstructured interview 

using the storytelling method (see section 6.6). The resulting themes were used to create 

questionnaire variables which have already been presented in table 6.6 of subsection 6.7.1. 

Section 7.3 is used to present various analyses which eventually produced the initial 

variables for the CF-IPM development process. Subsection 7.3.1 is used to present the 

reliability analysis of the questionnaire variables and the results. Subsection 7.3.2 is used to 

present how the financial ratios that will be used as quantitative variables for the research’s 

CF-IPM were chosen based on being applicable to micro, small and medium (MSM) as well 

as large construction firms, thereby satisfying one of the objectives of the research. 

Subsection 7.3.3 is used to present how the sample matching method and synthetic minority 

over-sampling technique (SMOTE) algorithm were used to oversample financial and 

questionnaire data respectively from 531 construction firms to 1062 construction firms. 

Subsection 7.3.4 is a description of dimension reduction of the questionnaire variables. 

Section 7.4 provides a summary of the results of the analyses through a table showing all 

the 24 quantitative and qualitative variables created for the CF-IPM development process. 

Section 7.5 is a summary of the chapter 

 

7.2 Qualitative data analysis  

There are a number of approaches to analysing qualitative data, each approach stemming 

from different traditions. The research used the narrative and thematic qualitative analyses 

to analyse the qualitative data collected through unstructured interview using the 

storytelling method (see section 6.6). The narrative analysis, which is the usually employed 

technique for storytelling was used first, but in a secondary manner (Saunders, Lewis and 

Thornhill, 2000). In analysing and interpreting each respondent’s stories, the transcripts 
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were carefully read and each one was disaggregated into a number of recognisable 

insolvency episodes (D’hondt, 1994). 

To identify factors and variables affecting (in)solvency of construction firms, thematic 

analysis was subsequently performed on all the episodes (Saunders, Lewis and Thornhill, 

2000) using the Nvivo software. Both prior categories and new categories were used and 

developed respectively during the thematic analysis. Prior categories refer to issues already 

identified from the literature review of construction firms’ insolvency studies (see section 

3.4 of chapter three) while any issue identified during reading through the episodes were 

also used to construct conceptual categories which characterised major themes. The Nvivo 

software word frequency search was also used to create themes. Examples of coding of prior 

and new themes and the respondents’ statements they were taken from are presented in 

Table 7.1. 

In developing the themes, the transcripts were read repeatedly and discussed with 

supervisors, who also read them separately, in relation to both prior and newly constructed 

categories. Extra effort was made to maintain awareness of the effect of research process on 

the stories obtained during the interpretation and analysis of obtained data. It is 

acknowledged that many components of the research process such as respondent’s talkative 

ability, command of interview/story language (i.e. English language), level of experience, 

social class, among others, may have had an effect on the eventual output. The findings are 

thus taken to be a construction process between the researchers and the respondents, as not 

representing a single truth, but instead as some possible stories of many potential stories. 

The resulting themes and sub-themes, commonly identified by the researcher and the 

supervisory team, were subsequently used as variables in the questionnaire used in the 

research, as presented in Table 6.6 under subsection 6.7.1 in chapter six. 

Table 7.1: Example of coding from prior and new themes and the respondents’ statements 

they are taken from 

Theme Prior or 

new 

Statements Respondent 

type* 

New entrant’s 

threats (Porters 

theory) 

New ‘The works dried out because people now prefer 

to give the jobs to some European immigrants 

that will do a shoddy job for a token.' 

Respondent 

1 (failed 

micro firm) 

Collection of 

receivables 

 

Prior and 

new 

Construction is very interesting. You bring your 

stuff and workers in, get the job done and get 

paid. Easy money… But I stopped because 

Respondent 

8 (failed 

micro firm) 
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Theme Prior or 

new 

Statements Respondent 

type* 

people don’t pay up. You make several 

fruitless efforts that even cost you money.  

Conflict 

management 

capability and 

Legal cost 

 

New 

But I stopped because people don’t pay up… 

And they take you to court if you dismantle the 

job despite you will incur losses on that. 

Respondent 

5 (failed 

small firm) 

Over-reliance 

on accounting 

books to make 

decision 

 

Prior and 

new 

We made took our time and always consulted our 

books before making decisions. In fact, we 

ensured almost no financial decision was taken 

without checking our account books 

Respondent 

13 (failed 

medium 

firm) 

 

Sustainability 

issue 

 

Prior and 

new 

Many people don’t know what they want. They 

want you to use only environmental friendly 

stuff for them, yet they also want the cheapest 

price. They want to get what they don’t want to 

pay for 

Respondent 

3 (Existing 

medium 

firm) 

 

 

 

Strategy as 

plan 

(Mintzberg’s 5 

Ps), Economic 

recession 

 

 

 

 

 

 

Prior  

I understand property investment and always 

buy houses and lands and sell them later. 
Brother, this brings more money to do the 

building [i.e. construction]. The stupid problem 

with economy [recession] caused all my 

property to go down [i.e. devalue]. Brother, 

why is America problem our problem (hisses). 

Respondent 

17 [Existing 

micro firm 

(this firm 

was 

recovering 

according to 

the owner] 

The management invested too much in 

properties and the company incurred many 

losses during the recession... Although I strived 

to convince them against some investments, they 

wouldn’t listen 

Respondent 

2 (failed 

large firm) 

* Note that name and firm of the respondent cannot be disclosed for confidentiality reasons 

 

7.3 Quantitative data analysis 

7.3.1 Reliability analysis 

As recommended by many social scientists (Field, 2009; George and Mallery, 2003; 

Nunnally and Bernstein, 1994; Spector, 1992; among others), the research used the 

Cronbach’s alpha coefficient test to examine the reliability of the questionnaire data. 

Mathematically, according to Oyedele, (2013), Cronbach’s alpha is written as 
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α =             N2 COV          . 

       ∑S2
criteria + ∑COVcriteria 

The goal of the test was to check the consistency of the obtained data to establish if the 

variables and their associated Likert scale are really measuring the construct they were 

intended to measure (Field, 2009). The construct, in this case, is the title given to each 

section/group of variables as related to the failure/survival of construction firms. Cronbach's 

alpha coefficient value ranges from 0 to 1 and as a thumb rule, 0.7 is suggested as the lowest 

acceptable score and 0.8 as an indication of good internal consistency, 0.9 and above 

represent high consistency (George and Mallery 2003).  Table 7.2 presents the Cronbach’s 

alpha coefficient test results gotten from SPSS. The reliability test was run and the overall 

Cronbach’s alpha coefficient gotten for sections D, E, F and G variables were more than 0.8 

(see details in Table 7.2), depicting good internal consistency of the data. This makes them 

useful for the research. The group C variables, however, returned a Cronbach’s alpha 

coefficient of 0.523, a value much lesser than the lowest acceptable score. For this reason, 

the group C variables were not included in the development of the construction firms 

insolvency prediction model (CF-IPM) of the research. 

Table 7.2: The questionnaire construction firms’ (in)solvency variables and associated 

reliability analysis scores 

Section Variables per section Cronbach’s 

alpha if item 

deleted 

   

 Section C  

C Senior management and finance questions  

 Overall Cronbach’s alpha coefficient for section G variables = 

0.523 

 

   

C1. The firm is/was owned by a single person 
0.518 

C2. The owner is/was the same person as the chief executive 

(CEO)/president/ Managing Director (MD) of the firm 0.245 

C3. The firm has/had a board of directors 
0.559 

C4. If yes, how many directors does/did the firm have? 
0.278 

C5. The firm took over another firm at some point in time 
0.209 

C6. If yes, was the takeover as a result of financial or other types of 

distress? 0.359 



130 

 

Section Variables per section Cronbach’s 

alpha if item 

deleted 

C7. The firm has/had a clear bidding strategy 
0.294 

C8. There is/was a clear sub-contractor selection process 
0.440 

C9. The firm has/had a long term strategic goal 
0.247 

C10. The firm is/was specialised in a particular trade or service 
0.384 

C11. Has the range of trade/services broadened over time 
0.594 

C12. The firm change its main specialisation of construction work (e.g. 

from public to private project, or from building residential homes to 

commercial stores, among others) at some point in time   

0.231 

C13. The owner is/was on a fixed salary 0.482 

C14. There is/was a dedicated financial director 0.328 

C15. The financial director is/was performing another role at the same time 0.224 

C16. The company account is/was clearly separated from any personal 

accounts 
0.364 

C17. Was account management fully computerised 0.311 

C18. The firm consistently run/ran negative cash flow 0.431 

C19. The firm went through an expansion programme less than two years 

ago or within two years before closing down 
0.298 

   

   

 Section D  

D Proportion of firms’ professionals with high qualifications/skills 

and involvement 
 

 Overall Cronbach’s alpha coefficient for section G variables = 

0.886 

 

   

D1. Percentage of passive members on the board of directors 0.839 

D2. Percentage of directors that worked in the firm 0.823 

D3. Percentage of directors that had construction background 0.808 

D4. Percentage of directors that had management/administrative 

background 
0.863 

D5. Percentage of directors educated to at least a degree level 0.852 

D6. Percentage of personnel educated to at least a degree level   0.846 

D7. Percentage of works usually subcontracted during projects   0.787 

D8. Percentage of successful bids   0.804 

D9. Percentage of firm’s earnings invested in properties 0.860 

D10. Percentage of firm’s earnings used in construction operations 0.836 

D11. Percentage of professional workers that were registered with 

professional bodies 
0.870 
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Section Variables per section Cronbach’s 

alpha if item 

deleted 

   

 Section E  

E The effect of external, industrial and firm characteristic factors  

 Overall Cronbach’s alpha coefficient for section E variables = 

0.892 

 

   

E1. The 2008 global financial crises [Economic recession(s)] 0.863 

E2. High immigration levels in the UK 0.879 

E3. Influx of firms into the industry, (from across the country and outside 

the country) 0.871 

E4. Fluctuation in construction material costs 0.862 

E5. Construction industry culture 0.884 

E6. Construction industry environmental sustainability agenda 0.889 

E7. Type/Quality of workforce available for employment 0.819 

E8. Newness [i.e. how did newness (first four years) affect the 

performance of the firm in its early years?] 0.871 

E9. The company size 0.876 

E10. Fraud (if fraud ever happened, how it affected the firm?) 0.853 

E11. Natural disasters (whether directly on the firm or its projects) 0.877 

   

 Section F  

F Frequency of occurrence of some project related factors  

 Overall Cronbach’s alpha coefficient for section F variables 

=0.822 

 

   

F1. Very late collection of payment for completed works 0.786 

F2. Unsuccessful collection of payment for completed works 0.786 

F3. Get cash-strapped on projects (cash flow) 0.787 

F4. Reach debt limit with bank/financier 0.790 

F5. Renegotiate loan terms 0.805 

F6. Make profit on projects 0.796 

F7. Produce complete financial statements  0.795 

F8. Bid for jobs outside firm’s speciality 0.803 
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Section Variables per section Cronbach’s 

alpha if item 

deleted 

F9. Executed project cost more than the bidding price used to win 

contract  0.808 

F10. Submit very low bids because of fierce competition 0.798 

F11. Rely on government projects 0.803 

F12. Rely on private projects 0.806 

F13. Firm win major bids it submitted 0.810 

F14. Firm completes project within stipulated time frame 0.782 

F15. Firm completes project within bidding budget 0.789 

F16. Firm executes project to time and cost without conflict 0.790 

F17. Internal conflict arises within the firm  0.803 

F18. Internal conflict within the organisation gets uncomplicatedly 

resolved 0.772 

F19. Firm gets project through referral from another customer 0.772 

F20. Expansion of firm  0.807 

F21. Conflicts with clients on projects 0.797 

F22. Conflicts with subcontractor in terms of subcontractors not showing 

up, performing low-quality works. 0.791 

F23. Delay of payments to subcontractors. 0.809 

F24. Conflicts with other major parties on projects 0.805 

F25. Conflict /litigation/legal issues / dispute arise from completed projects 0.813 

F26. Losing out in conflict /litigation/legal issues /dispute cases  0.803 

F27. Customers offer repeat business 0.789 

F28. Repeated use of particular sub-contractor(s) 0.783 

F29. Materials are supplied to firm on credit 0.801 

F30. Debts payment to suppliers are delayed 0.810 

F31. Legal advice sorted for contracts taken 0.806 

F32. Problems with labour cost 0.809 

F33. Execution of multiple projects simultaneously 0.773 

F34. Bid for projects outside main geographical area of comfort (city, 

county, region, among others) 0.809 

F35. Register accidents on its site 0.804 

F36. Replace key personnel 0.803 

F37. Execute a highly financially challenging project 0.793 



133 

 

Section Variables per section Cronbach’s 

alpha if item 

deleted 

   

 Section G  

G The characteristics and performance level of the firm, its 

management and its staff 
 

 Overall Cronbach’s alpha coefficient for section G variables = 

0.925 

 

   

G1. Enthusiasm of the project management team 0.907 

G2. Level of overall competence of top management team 0.866 

G3. The willingness of the top management team to take risk  0.876 

G4. The motivation of the CEO/directors 0.868 

G5. The tolerance of the CEO 0.881 

G6. The decisiveness of the CEO/directors 0.872 

G7. Leadership support of CEO/directors to employees 0.873 

G8. The creativity/innovation of the CEO/directors 0.866 

G9. The integrity/transparency of the CEO/directors 0.872 

G10. The flexibility of the CEO/directors 0.870 

G11. The reliability/dependability of the CEO/directors 0.884 

G12. The construction industry knowledge of the CEO/directors of the firm 0.882 

G13. The CEO’s/directors’ ‘response to feedback’ 0.916 

G14. Commitment of project management team 0.879 

G15. Level of firm’s response to market change 0.872 

G16. The effectiveness of the financial director 0.919 

G17. The profit levels of the firm 0.922 

G18. The liquidity level of the firm 0.878 

G19. Firm’s reception to latest technologies 0.862 

To check if all the variables are contributing to the internal consistency of the data, the 

‘Cronbach's alpha if item deleted’, located in column three of Table 7.2 is further 

investigated. A variable that is not contributing to the overall reliability of a section’s set of 

variables will normally have a higher associated ‘Cronbach’s alpha if item deleted’ value 

than the data’s overall Cronbach’s alpha coefficient (Field, 2009). This higher value depicts 

that if the variable with the value is deleted, the overall reliability of the data will increase 
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(Field, 2009). In this context, all the variables in sections D, E, F and G contribute positively 

to the sections’ reliability. On the other hand, variables C3 and C11 with ‘Cronbach’s alpha 

if item deleted’ scores of 0.559 and 0.594 respectively, which are each greater than section 

C’s overall Cronbach’s alpha coefficient of 0.523, do not contribute to the reliability of the 

group. This, however, does not really matter in this case as the section has a poor overall 

Cronbach’s alpha coefficient and its variables will not be involved in model building as 

clarified earlier 

 

7.3.2  The financial ratios used as quantitative variables 

The initial financial ratio selection was based on the second objective listed in section 1.7 

(aims and objectives) of chapter one which is to identify the quantitative (financial) 

variables that are commonly reported by micro, SME and large construction firms. This was 

very important as the data clearly indicated a pattern whereby micro, small and medium 

(MSM) construction firms always omitted reporting certain financial ratios. The financial 

statements of the sample firms were carefully studied and the 11 ratios, out of the available 

29 (see Table 6.7 in subsection 6.7.2 of chapter six), most reported by all categories of firms 

(i.e. large, MSM, failed and existing) were identified.  These ratios are presented in Table 

7.3 and are coded with the letter ‘R’ to represent ratio. Hence the quantitative variables are 

represented with letter ‘R’ in the research 

Table 7.3: The ratios most reported by all categories of construction firms (i.e. large, MSM, 

failed and existing) 

Financial ratios 

(variable) category 

Financial ratios (variable) name Assigned 

(quantitative) 

variable code 

 

Profitability ratios 

Return on Shareholders Funds (%) R1 

  Return on Capital Employed (%) R2 

  Return on Total Assets (%) R3 

   

 

Structure ratios 

  Current ratio  R4 

  Liquidity ratio  R5 

  Solvency ratio (Asset-based) (%) R6 
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Per employee ratios 

  Profit per employee (unit) R7 

  Average Remuneration per employee (unit) R8 

  Shareholders Funds per employee (unit) R9 

  Working Capital per employee (unit) R10 

  Total Assets per employee (unit) R11 

 

7.3.3  Oversampling and pairing of financial and questionnaire variables 

Financial data oversampling: Using the sample matching method, the financial data of 

another 531 construction firms, in addition to the previously downloaded 531 financial data, 

were downloaded to have a total sample size of 1062 construction firms comprising of 518 

and 544 existing and failed construction firms respectively. This is a method of 

oversampling (see subsection 5.2.2 of chapter five). Sample matching is a process where, 

for each firm in a sample, a search is done for a firm with very similar characteristics and 

added to the sample. In this case, the characteristics used to match the sample construction 

firms include, trade specialism, turnover, number of employees, year of establishment, year 

of failure where applicable and number of directors. All of this information is available in 

the FAME database. 

Questionnaire data oversampling: Using the ‘R’ software, the Synthetic Minority Over-

Sampling Technique (SMOTE) algorithm was used to double (oversample) the number of 

questionnaire responses available from 531 to 1062, just as done with the financial data. 

The algorithm does not give a repeat of any of the existing data. Rather it studies the data 

pattern and creates new ones based on the study (Chawla, Bowyer and Hall, 2002). This 

means it creates data for the same number of large, MSM, failed and existing construction 

firms as present in the original data hence the oversampled data equally contained 518 and 

544 existing and failed construction firms respectively as the original data. 

Pairing financial and questionnaire data: The original questionnaire data of 531 

construction firms and their corresponding financial data downloaded from FAME were 

paired to make each firm have questionnaire and financial variables (i.e. qualitative and 

quantitative variables respectively). The 531 SMOTE oversampled questionnaires were 

then carefully studied in comparison to the original 531 questionnaires to identify the ones 

that represented various groups, (i.e. MSM failed firms, MSM existing firms, large failed 

firms and large existing firms). Using the sample matching method for the financial data 
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meant that the group each oversampled financial statement belonged to was readily known. 

The oversampled questionnaire data belonging to each group were subsequently randomly 

paired with oversampled financial data in the same group thereby ensuring that financial 

and questionnaire data from different groups were never paired. Paired questionnaire and 

financial variables (i.e. qualitative and quantitative variables respectively) for a total 

of 1062 sample firms were thus available as data for developing CF-IPMs 

 

7.3.4  Factor analysis and the developed qualitative variables 

An initial attempt to build models using the very many questionnaire variables combined 

with financial variables did not work out as the optimisation runs required for classification 

did not converge due to too many questionnaire variables. The decision was thus taken to 

reduce the number of questionnaire variables using ‘dimension reduction’ executed with 

factor analysis. The explorative factor analysis was carried out using the SPSS software. 

The ‘principal component’, ‘generalised least squares’, ‘maximum likelihood’ and 

‘principal axis factoring’ methods were initially used in succession to extract the factors in 

an attempt to decide the right number of factors to be extracted. All methods resulted in a 

total number of 13 factors. 

For the final factor extraction, the ‘maximum likelihood’ method and ‘direct oblimin’ 

oblique rotation were used as methods of factor extraction and rotation respectively. Having 

noticed that rotation did not converge with the default 25 iterations setting during the initial 

extractions, a value of 50 was entered for ‘maximum iterations for convergence’ in the 

rotation dialogue box. Kaiser-Meyer-Olkin (KMO) and Bartlett tests of sphericity measure 

of sampling adequacy were conducted to check the appropriateness of the data for factor 

analysis. Since the ‘Eigenvalue greater than one’ criterion has been established to be based 

on misemployment of the internal consistency reliability formula (Cliff, 1988), the scree 

plot and the initial application of four different extraction methods were used to decide that 

13 factors were to be extracted. A value of 13 was thus entered in the number of ‘factors to 

extract:’ box for the analysis. To create new representative variables for each extracted 

factor, the ‘save as variables’ box was ticked in the scores dialogue box, with the default 

regression method selected to create the variables. 
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The result of the analysis produced values of 0.839 (above 0.5) and 0.00034965 (less than 

0.05) were gotten for KMO and Bartlett tests of sphericity respectively, demonstrating that 

the data set is suitable for factor analysis and the sampling is adequate (Pallant, 2013). 

According to Pallant (2013), the closer the KMO value to one, the more the appropriate the 

use of factor analysis. Table 7.4 presents the details of the total variance of the 13 extracted 

factors. 

 

Table 7.4: Total Variance Explained 

Factor 

(i.e. new 

variables 

create) 

Initial Eigenvalues Extraction Sums of Squared 

Loadings 

Rotation 

Sums of 

Squared 

Loadingsa 

Total % of 

Variance 

Cumulati

ve % 

Total % of 

Variance 

Cumulative 

% 

Total 

1)  20.603 26.414 26.414 20.358 26.099 26.099 6.879 

2)  11.308 14.498 40.911 10.947 14.034 40.134 8.300 

3)  8.264 10.595 51.506 8.188 10.498 50.631 7.638 

4)  6.373 8.171 59.677 6.174 7.916 58.547 10.983 

5)  3.743 4.799 64.476 3.468 4.447 62.993 5.933 

6)  3.587 4.599 69.075 3.423 4.389 67.382 4.050 

7)  3.019 3.871 72.946 2.809 3.601 70.983 8.937 

8)  2.318 2.971 75.917 1.974 2.531 73.515 10.433 

9)  2.155 2.763 78.680 2.194 2.813 76.328 6.593 

10)  1.540 1.974 80.654 1.374 1.761 78.090 7.057 

11)  1.405 1.801 82.455 1.147 1.471 79.561 8.879 

12)  1.273 1.632 84.088 1.120 1.435 80.996 5.736 

13)  1.034 1.325 85.413 .915 1.173 82.169 7.238 

Total     82.168   

Extraction Method: Maximum Likelihood. 

a. When factors are correlated, sums of squared loadings cannot be added to obtain a total 

variance. 

Although the ‘Eigenvalue greater than one’ criterion has been discredited (Cliff, 1988), the 

Eigenvalues (5th column) of all the extracted factors were greater than one except in the case 
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of the 13th extracted factor, whose Eigenvalue was also very close to one. The extracted 

factors represented 82.168% of total variance (see the base of 6th column) as presented in 

Table 6.4; this portrays a good proportion of representation. As against the percentage of 

variance (6th column), the varimax rotated solution (8th column) produced values that 

portray a more evenly representation of the data by the extracted factors after redistribution, 

thereby giving more credence to the variance of the factors. 

The pattern matrix table in the SPSS factor analysis result, which is used to select the 

variables representing each extracted factor, was used to produce Table 7.5. For factor 

grouping (i.e. to select variables representing an extracted factor), questionnaire variables 

with a factor loading of +0.3 and above or -0.3 and below were taken as part of the offspring 

of their principal factor (Child, 2006). No questionnaire variable in this analysis had a factor 

loading outside this range as evident in Table 7.5.  

The questionnaire variables under each extracted factor are arranged in descending order in 

Table 7.5 based on the factor loading value, the variable with the highest factor loading 

value appearing in the first row of each extracted factor. This arrangement did not take the 

sign (positive or negative) of the factor loading value into consideration. However, only 

variables of the same sign can be, and were, taken as offspring/representing any one 

extracted factor. As such, offspring variables with the most common sign under a particular 

extracted factor were taken as variables contributing to that factor. For example, the 

offspring variables of 1st Extracted Factor are D5, D7, D2, F1 and D9 in that order (see 

Table 7.5). While D5, D7, D2, and D9 have negative factor loading values, F1 has a positive 

factor loading value and was thus considered not to be contributing to the 1st extracted 

factor. On the other hand, there are nine offspring of the second extracted factor, six with 

positive factor loading values and the remaining three with negative values; the three with 

negative factor loading values (a minority in this case) were thus not considered to be 

contributing to the extracted factor. All non-contributory offspring variables are given in 

italics font in Table 7.5. Further, any questionnaire variable that loaded significantly on 

more than one extracted factor was totally excluded i.e. not considered as part of any of the 

two or more extracted factors (Tabachnick and Fidell 2007). This is the case with D4 which 

loaded significantly on the third and fourth extracted factors. This questionnaire variable 

(i.e. D4) is thus given in italics font and underlined at the same time in Table 7.5. 

Each extracted factor now represents a qualitative variable that will be used in the 

development process of the CF-IPMs. Each has been given a name based on the contributing 
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constituent/offspring questionnaire variables (see column six of Table 7.5). Where all the 

contributing offspring questionnaire variables cannot be represented with a single name, a 

double-barreled name is used with the conjunction ‘and’. An example of this is the 4th 

Extracted Factor which is named ‘strategic issues and external relations’. In this case, some 

offspring represent strategic issues while others represent external relations. There are also 

a few instances where one of the offspring variables was not represented despite the use of 

a double barrelled name. Again, an example of this is the 4th extracted factor where the D1 

variable (‘percentage of passive members on the board of directors’) does not fit the double-

barreled extracted factor name: ‘strategic issues and external relations’.  In such cases, 

nothing was done. 

Lastly, there was a special case where the offspring of two of the extracted factors (third 

and twelfth) represent more or less the same thing hence they were given the same name 

which was separated with numbers: top management characteristics 1 and 2 for third and 

twelfth extracted factors respectively. The 13 extracted factors are finally coded Q1 to Q13, 

the letter ‘Q’ representing questionnaire (i.e. qualitative) variables.  
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Table 7.5: The extracted factors and the qualitative variables formulated from them 

 Questionnaire variables used in the factor analysis Factor 

loadings 

Percentage 

of variance 

Eigenvalue Extracted factor 

(qualitative variable) 

assigned name 

Assigned 

variable 

code 

       

 Offspring variables of 1st Extracted Factor      

D5 Percentage of directors educated to at least a degree level -0.724  

 

 

26.099 

 

 

 

 

20.358 

 

 

 

Management 

knowledge and 

involvement 

 

 

 

Q1 

D7 Percentage of works usually subcontracted during projects   -0.677 

D2 Percentage of directors that worked in the firm -0.515 

F1 Very late collection of payment for completed works 0.448 

D9 Percentage of firm’s earnings invested in properties -0.441 

       

 Offspring variables of 2nd Extracted Factor       

F15 Firm completes project within bidding budget 0.788  

 

 

 

 

14.034 

 

 

 

 

 

 

10.947 

 

 

 

 

 

Construction 

Organization 

experience 

 

 

 

 

 

Q2 

F16 Firm executes project to time and cost without conflict 0.765 

F14 Firm completes project within stipulated time frame 0.681 

E8 Newness [i.e. how did newness (first four years) affect the 

performance of the firm in its early years?] 
0.556 

F29 Materials are supplied to firm on credit 0.546 

E3 Influx of firms into the industry, (from across the country 

and outside the country) 
0.505 

F11 Rely on government projects -0.374 

F8 Bid for jobs outside firm’s speciality -0.373 
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 Questionnaire variables used in the factor analysis Factor 

loadings 

Percentage 

of variance 

Eigenvalue Extracted factor 

(qualitative variable) 

assigned name 

Assigned 

variable 

code 

D6 Percentage of personnel educated to at least a degree 

level   
-0.368 

       

 Offspring variables of 3rd Extracted Factor       

G10 The flexibility of the CEO/directors 0.892  

 

 

 

10.498 

 

 

 

 

 

8.188 

 

 

 

 

 

Top management 

characteristics 1 

 

 

 

 

Q3 

G8 The creativity/innovation of the CEO/directors 0.874 

G7 Leadership support of CEO/directors to employees 0.843 

G2 Level of overall competence of top management team 0.693 

G1 Enthusiasm of the project management team 0.674 

G6 The decisiveness of the CEO/directors 0.559 

G4 The motivation of the CEO/directors 0.508 

F25 Conflict /litigation/legal issues / dispute arise from 

completed projects 
-0.429 

D4 Percentage of directors that had 

management/administrative background 
0.348 

    

       

 Offspring variables of 4th Extracted Factor      

F26 Losing out in conflict /litigation/legal issues /dispute cases 0.966  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F36 Replace key personnel 0.83 

F35 Register accidents on its site 0.653 

E2 High immigration levels in the UK 0.533 
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 Questionnaire variables used in the factor analysis Factor 

loadings 

Percentage 

of variance 

Eigenvalue Extracted factor 

(qualitative variable) 

assigned name 

Assigned 

variable 

code 

E1 The 2008 global financial crises [Economic recession(s)] 0.519  

 

7.916 

 

 

 

6.174 

 

 

 

Strategic and external 

issues 

 

 

Q4 
F23 Delay of payments to subcontractors. 0.467 

D4 Percentage of directors that had 

management/administrative background 
0.447 

G9 The integrity/transparency of the CEO/directors -0.409 

E10 Fraud (if fraud ever happened, how it affected the firm?) -0.393 

E11 Natural disasters (whether directly on the firm or its 

projects) 
-0.39 

D1 Percentage of passive members on the board of directors 0.373 

       

 Offspring variables of 5th Extracted Factor       

F27 Customers offer repeat business 0.913  

 

4.447 

 

 

 

3.468 

 

 

Performance on 

projects 

 

 

Q5 
F33 Execution of multiple projects simultaneously 0.639 

F37 Execute a highly financially challenging project 0.446 

F19 Firm gets project through referral from another customer 0.35 

       

 Offspring variables of 6th Extracted Factor      

D8 Percentage of successful bids   0.873  

4.389 

 

 

3.423 

 

 

Bidding issues 

 

Q6 F13 Firm win major bids it submitted 0.45 

F34 Bid for projects outside main geographical area of comfort 

(city, county, region, among others) 
0.438 



143 

 

 Questionnaire variables used in the factor analysis Factor 

loadings 

Percentage 

of variance 

Eigenvalue Extracted factor 

(qualitative variable) 

assigned name 

Assigned 

variable 

code 

       

 Offspring variables of 7th Extracted Factor       

F22 Conflicts with subcontractor regarding subcontractors not 

showing up, performing low-quality works. 
-0.864 

 

 

3.601 

 

 

 

2.809 

 

 

 

Project related 

(external) conflict 

 

 

Q7 F21 Conflicts with clients on projects -0.849 

F24 Conflicts with other major parties on projects -0.522 

       

 Offspring variables of 8th Extracted Factor       

D10 Percentage of firm’s earnings used in construction 

operations 
0.544 

 

 

 

 

 

 

2.531 

 

 

 

 

 

 

 

1.974 

 

 

 

 

 

 

Finance and conflict 

related issues 

 

 

 

 

 

 

Q8 

F10 Submit very low bids because of fierce competition 0.524 

G19 Firm’s reception to latest technologies -0.499 

D11 Percentage of professional workers that were registered 

with professional bodies 
-0.495 

F3 Get cash-strapped on projects (cash flow) 0.487 

F17 Internal conflict arises within the firm 0.47 

G18 The liquidity level of the firm 0.447 

F5 Renegotiate loan terms 0.42 

F4 Reach debt limit with bank/financier 0.408 

F12 Rely on private projects 0.328 
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 Questionnaire variables used in the factor analysis Factor 

loadings 

Percentage 

of variance 

Eigenvalue Extracted factor 

(qualitative variable) 

assigned name 

Assigned 

variable 

code 

 Offspring variables of 9th Extracted Factor       

E6 Construction industry environmental sustainability agenda 0.762  

 

 

 

 

2.813 

 

 

 

 

 

2.194 

 

 

 

 

 

External factors and 

management decisions 

 

 

 

 

 

Q9 

E5 Construction industry culture 0.719 

E9 The company size 0.661 

E4 Fluctuation in construction material costs 0.617 

E7 Type/Quality of workforce available for employment 0.499 

F20 Expansion of firm 0.425 

G3 The willingness of the top management team to take risk 0.411 

F18 Internal conflict within the organisation gets 

uncomplicatedly resolved 
0.362 

       

 Offspring variables of 10th Extracted Factor       

F6 Make profit on projects 0.777  

1.761 

 

 

1.374 

 

 

Profit issues 

 

Q10 F9 Executed project cost more than the bidding price used to 

win contract 
0.4 

       

 Offspring variables of 11th Extracted Factor       

G15 Level of firm’s response to market change -0.634     

D3 Percentage of directors that had construction background 0.585  

 

 

 

 

 

 

 

 

 

 

 
F32 Problems with labour cost -0.472 

F30 Debts payment to suppliers are delayed -0.468 
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 Questionnaire variables used in the factor analysis Factor 

loadings 

Percentage 

of variance 

Eigenvalue Extracted factor 

(qualitative variable) 

assigned name 

Assigned 

variable 

code 

G17 The profit levels of the firm -0.451 1.471 

 

1.147 

 

Cash flow and market 

issues 

Q11 

G16 The effectiveness of the financial director -0.424 

   

 Offspring variables of 12th Extracted Factor       

G11 The reliability/dependability of the CEO/directors 0.829     

G13 The CEO’s/directors’ ‘response to feedback’ 0.645  

 

1.435 

 

 

 

1.120 

 

 

 

Top management 

characteristics 2 

 

 

Q12 

 

G14 Commitment of project management team 0.599 

G5 The tolerance of the CEO 0.533 

F28 Repeated use of particular sub-contractor(s) -0.477 

   

 Offspring variables of 13th Extracted Factor       

G12 The construction industry knowledge of the CEO/directors 

of the firm 
0.811 

    

F2 Unsuccessful collection of payment for completed works 0.511  

 

1.173 

 

 

0.915 

 

Industry 

contract/project 

knowledge 

 

 

Q13 
F31 Legal advice sorted for contracts taken 0.488 

F7 Produce complete financial statements -0.413 
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7.4 The complete set of quantitative and qualitative variables 

The simple purpose of this section is to provide a summary result of all the analyses in this 

chapter. This is done with Table 7.6 which gives the complete set of quantitative (R1 to 

R11) and qualitative (Q1 to Q13) variables used in the CF-IPM development process in the 

next chapter 

Table 7.6: Quantitative and qualitative variables used in the CF-IPM development process 

Variable 

category 

Serial 

number 

Variable name Assigned 

variable code 

 

 

 

 

 

 

Quantitative 

variables 

1.  Return on Shareholders’ Funds (%) R1 

2.    Return on Capital Employed (%) R2 

3.    Return on Total Assets (%) R3 

4.    Current ratio  R4 

5.    Liquidity ratio  R5 

6.    Solvency ratio (Asset-based) (%) R6 

7.    Profit per employee (unit) R7 

8.    Average Remuneration per employee (unit) R8 

9.    Shareholders’ Funds per employee (unit) R9 

10.    Working Capital per employee (unit) R10 

11.    Total Assets per employee (unit) R11 

    

 

 

 

 

 

 

 

Qualitative 

variables 

12.  Management knowledge and involvement Q1 

13.  Construction Organization experience Q2 

14.  Top management characteristics 1 Q3 

15.  Strategic issues and external relations Q4 

16.  Performance on projects Q5 

17.  Bidding issues Q6 

18.  Project related (external) conflict Q7 

19.  Finance and conflict related issues Q8 

20.  External factors and management decisions Q9 

21.  Profit issues Q10 

22.  Cash flow and market issues Q11 

23.  Top management characteristics 2 Q12 

24.  Industry contract/project knowledge Q13 
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7.5  Chapter summary 

The data collected through unstructured interview (story telling method), questionnaire and 

company documentation methods were analysed in this chapter with the sole aim of creating 

the initial variables to be used in the development process of the proposed solution’s CF-

IPM. The stories were analysed using the commonly used narrative analysis with stories 

disaggregated into a number of recognisable insolvency episodes. To establish factors and 

variables affecting (in)solvency of construction firms, thematic analysis was subsequently 

performed on all the episodes using the Nvivo software. The resulting themes and sub-

themes were subsequently used as variables in the questionnaire used in the proposed 

solution, as presented in Table 6.6 under subsection 6.7.1 in chapter six 

A reliability analysis of the questionnaire variables was conducted. The result indicated that 

the scale used to measure section C variables of the questionnaire were not reliable hence 

they were excluded from any further analyses. Then the financial ratios from the financial 

statement of the sample firms, which were to be used as quantitative variables for the 

proposed solution’s CF-IPM, were chosen based on being applicable to micro, small and 

medium (MSM) as well as large construction firms, thereby satisfying one of the objectives 

of the research. A total of 11 ratios were selected and coded with letter ‘R’ (i.e. R1 to R11). 

After the selection of the financial ratios (quantitative variables), the sample matching 

method and SMOTE algorithm were used to oversample financial and questionnaire data 

respectively from 531 construction firms’ data to 1062 construction firms’ data. Afterwards, 

the oversampled questionnaire data belonging to each group (i.e. MSM failed firms, MSM 

existing firms, large failed firms and large existing firms) were randomly assigned to 

oversampled financial data in the same group thereby ensuring that financial and 

questionnaire data from different groups were never paired. Paired questionnaire and 

financial variables (i.e. qualitative and quantitative variables respectively) for a total of 1062 

sample firms were thus available as data for developing CF-IPMs 

Finally, a dimension reduction analysis of the questionnaire variables was done using the 

factor analysis method. This was because the initial attempt to build CF-IPMs using the very 

many questionnaire variables combined with financial variables did not work out as the 

optimisations did not converge due to too many variables. The dimension reduction resulted 

in thirteen variables (Q1 to Q13) used as qualitative variables, with letter ‘Q’ representing 

questionnaire. 
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Chapter eight was used to present the process of developing the Big Data CF-IPMs of the 

research work. The process discussed include the set-up of Big Data Analytics platform, the 

variable selection process and the actual model development phase.
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CHAPTER EIGHT 

8.0 DEVELOPMENT OF BIG DATA PREDICTIVE ANALYTICS 

MODELS FOR CONSTRUCTION FIRMS  

8.1 Chapter introduction 

This chapter is a presentation of the details of how Big Data Analytics with some powerful 

predictive tools/algorithms were used to develop construction firms insolvency prediction 

models (CF-IPM) by first analysing and then employing some of the final quantitative and 

qualitative variables presented in chapter seven. Section 8.2 is an explanation of how the 

Big Data Analytics platform was set up with Apache Spark as the computation engine. The 

details include the cloud computing set up with the Amazon Elastic Compute Cloud and its 

‘spot instances’ bought to hold data and execute computations. The details of the proportion 

of data used for training and testing the model are given in section 8.3. Section 8.4 is about 

how the variables used to develop the Big Data CF-IPMs were selected. Subsection 8.4.1 is 

a description of the 11 variable selection methods used, 8.4.2 is a detail of the 

implementation of the methods while 8.4.3 is a presentation of the result.  The full details 

of how the Big Data CF-IPMS were developed are given in section 8.5.  Subsection 8.5.1 is 

a description of the data pre-processing steps taken to improve the validity of the models. 

Some of the predictive tools/algorithms used to develop the Big Data CF-IPMs are lightly 

described in subsection 8.5.2. In subsection 8.5.3, the features of the Big Data CF-IPMs to 

be developed were explained to aid readers’ understanding of the models. The 13 Big Data 

CF-IPMs developed were presented in subsection 8.5.4, each given a sub-subsection 

number (i.e. 8.5.4.1 to 8.5.4.13). The Big Data CF-IPMs include 

1) Big Data Linear (Multiple) Discriminant Analysis CF-IPM 

2) Big Data Quadratic (Multiple) Discriminant Analysis CF-IPM 

3) Big Data Logistic Regression CF-IPM 

4) Big Data Naïve Bayes CF-IPM 

5) Big Data Support Vector Machine CF-IPM 

6) Big Data K-Nearest Neighbour CF-IPM 

7) Big Data Artificial Neural Network CF-IPM 

8) Big Data Decision Tree CF-IPM 

9) Big Data Random Forest CF-IPM 

10) Big Data Bart Machine CF-IPM 

11) Big Data Adaptive Boosting CF-IPM 
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12) Big Data Propositional Rule Learner CF-IPM 

13) Big Data Kohonen CF-IPM 

Subsection 8.5.5 is a presentation of the summary of the results of the Big Data CF-IPMs 

developed. Section 8.6 is a summary of the chapter. 

 

8.2  Setting up the big data platform and the apache spark computation 

engine  

The software chosen to develop the models is the ‘R’ programming language because it is 

very powerful and is less restricting in terms of operations compared to generic tools like 

SPSS and less generic tools like WEKA. Like any other programming language, ‘R’ 

requires a user to have knowledge of its codes for smooth operation. 

Apache Spark is the framework or computation engine selected for the Big Data Analytics 

part of the proposed solution (see subsections 4.3.2 and 4.3.3 of chapter four). One of the 

reasons for its selection is its flexibility. Unlike Hadoop MapReduce that can only be used 

with Java, Apache Spark has an application programming interface (API) in the ‘R’ 

programming language, as well as in Java, Python, and Scala, which makes it very easy to 

run. 

The data server used in the proposed solution is the Amazon Web Services Elastic Compute 

Cloud (AWS EC2) because of its provision for rationed usage that helps to reduce cost (in 

money) significantly. Rather than make full payment for the use of the server, the very cheap 

Spot Instances on the AWS EC2 were requested and used. Instances are virtual servers that 

have the capability to run applications. For the Amazon Machine Image of the instances, 

the ‘Ubuntu Server 14.04 LTS (HVM), SSD Volume Type’ option was selected. The 

‘Instance’ option selected was ‘m4.large’ because of it was the cheapest option to include 

optimized-Elastic Block Store (EBS). This option allows volume size to be saved every time 

it is not in use. The saved portion then helps to provide a burst for 3000 seconds every time 

more volume than subscribed for is required. For ‘Instance Details’ configuration, six 

number of ‘Instances’ were requested with the maximum bid price set at £0.03 to reduce the 

possibility of losing the instance to a higher bidder.  

Spark can execute iterations because it keeps data in its internal memory, using a storage 

model called resilient distributed datasets (RDD), for reuse. This means a large disk space 



151 

 

is normally required to operate Spark . Hence the ‘Instance’ storage was set to 200gigabyte 

per ‘Instance’, and the ‘Magnetic’ option was chosen to reduce cost, though it reduces 

performance. The ‘Spot Instance’ was named ‘CF-IPM.BigDataCluster’. The ‘Configure 

Security Group’ option was set to OPEN_TO_ALL to make things easy because this option 

allows all IP addresses to access the instances. Restricting access could create troubles when 

working from different sources. When prompted for General Purpose volume, the ‘continue 

with Magnetic as boot volume’ option was selected. This action completed the setting up of 

the server/cloud for the Apache Spark to function as a Big Data Computation engine. 

For installations, first, the ‘R’ programming language software was installed on the 

computer to be used. Then the Hadoop framework was installed because Apache Spark is 

partly dependent on it. With each of the six EC2 ‘Spot Instances’ taken as a node, five of 

the ‘Instances’ were run as Hadoop DataNodes and one as Hadoop NameNode. The Hadoop 

NameNode was subsequently configured as Spark Master. Finally, the data of the 1062 

construction firms were uploaded to the five DataNodes making the system set for the Big 

Data Analytics development of CF-IPMs. 

 

8.3  Details of model training and testing data  

As proposed in Figure 6.3 in chapter six, the data for the proposed solution was divided into 

70% and 30% for model (i.e. CF-IPM) training and testing respectively. The data in each 

case maintained the same ratio of existing to failed firms. The actual data contains 1062 

construction firms including 544 and 518 existing and failed construction firms respectively 

representing a ratio of 51:49; this gives the required (very nearly) equal data dispersion. The 

details of the data composition for training and testing the models are given in Table 8.1. 

The ‘R’ codes used to execute the data split is given here. 

split = sample.split(FacLogData$Status, SplitRatio = 0.7) 

split 

Train = subset(FacLogData, split == TRUE) 

Test = subset(FacLogData, split == FALSE) 
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Table 8.1: Details of model training and test data for the CF-IPMs 

 Existing 

construction firms 

Failed construction 

firms 

Total number of 

construction firms 

Training data 381 363 744 

Testing Data 163 155 318 

Complete data 544 518 1062 

 

8.4 Selection of variables  

Variable selection is an important aspect of CF-IPM development. The most common 

variable selection method/technique in CF-IPM studies is the stepwise method (see Table 

5.1 in chapter five) which normally employs the F-test or t-test. The stepwise technique 

has however been condemned for various reasons (Harrell, 2001) and is not a very 

sophisticated method. Other techniques used include regression, factor analysis, grey 

system theory, correlation analysis, among others. All these techniques give different but 

comparable results, and none is widely accepted as the best.  

 

8.4.1 The techniques used 

The proposed solution used some eleven sophisticated selection techniques in the ‘R’ 

programming language. Variable selection is considered as part of the model training 

process, as against model testing, hence only the training data was used in this process. A 

brief description of these techniques are as follows: 

1. Information gain: This technique uses the decision tree to compare the information 

each independent variable contributes to making the correct classification (failed or 

existing construction firm class in this case) (Manning, Raghavan and Schutze, 2008).  

2. Kruskal test: This technique is not computationally expensive (Ali Khan et al., 2014). 

It measures the ability of each independent variable in separating two classes (failed and 

existing construction firm in this case). It yields a P-value for each variable. The closer 

the P value of an independent variable to zero, the more its predictive ability and 

importance.  
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3. Minimum redundancy, maximum relevance filter (mRMR): This is a very powerful 

technique which picks independent variables using two criteria simultaneously. The first 

is correlation where the independent variable that correlates most to the dependent 

variable is taken as the most importance. The second is multicollinearity; when two or 

more ‘collinear’ independent variables correlate to the dependent variable, it gives the 

less correlated variable(s) a negative sign and pushes it/them to the bottom of the pile 

(Acid, de Campos and Fernandez, 2011). This criterion guarantees the very important 

exclusion of multicollinearity in the selected variables 

4. Chi-squared:  This technique tests how uninfluential an independent variable is on the 

dependent variable by calculating an X2 score. The higher the score, the less independent 

and the more important the independent variable is. Chi-squared is not a very accurate 

technique according to (Manning, Raghavan and Schutze, 2008).   

5. Gain ratio: This is an extension of the information gain technique. It uses the C4.5 

algorithm of decision tree to check how much an independent variable can separate the 

two classes (Gowda Karegowda, Manjunath and Jayaram, 2010) 

6. Analysis of variance (ANOVA) test: ANOVA uses the sum of squared errors values 

to assess the extent of variation, between the two classes, each independent variable can 

explicate. The more variation a variable can explicate, the better it is. 

7. Cforest importance: Cforest uses multiple (ensemble) decision trees and places each 

independent variable on each node before resampling to permute. The variables that 

show the best dependencies based on this process have the highest importance 

8. oneR: This technique uses the association rule to associate each independent variable 

with the dependent variable and check which independent variable singularly makes the 

highest number of correct decisions or errors. oneR is more or less a univariate model 

developing process. The independent variable with the highest number of error 

classification is the least important.  

9. Relief:  This is a filter based variable selection technique which randomly selects the 

variables. It uses a small number of training and can only deal with a maximum of two 

classes (Rosario and Thangadurai 2015) as in this case.  
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10. RF importance: This technique uses the random forest algorithm to build multiple 

decision trees in order to rate the independent variables in order of importance.  

11. Symmetrical Uncertainty (SU): This is a filter based approach that ranks the 

independent variables based on a calculated score. Like mRMR (Singh, Kushwaha and 

Vyas, 2014), its process include the consideration of multicollinearity, making it a 

strong selector (Senthamarai Kannan and Ramaraj 2010). 

 

8.4.2 Implementation of the variable selection techniques 

To implement the variable selection techniques discussed, the data was pre-processed as 

will be explained in section 8.5.1 and the necessary packages were installed before their 

libraries were unloaded. Libraries are computer packages required to run various algorithms 

(techniques) on the ‘R’ programing language. The following codes were used to install and 

unload the packages and libraries respectively, run the variable selection methods, plot the 

charts and export the tables 

>install.packages("mlr") 

>install.packages("mRMRe") 

>install.packages("FSelector") 

>install.packages("randomForestSRC") 

>install.packages("kohonen") 

>install.packages("party") 

>library(mlr) 

>library(mRMRe) 

>library(FSelector) 

>library(randomForestSRC) 

>library(kohonen) 

>library(party) 

>fv=generateFilterValuesData(task, method = c("information. 

gain", "kruskal.test", "mrmr", "chi.squared", "gain.ratio", 

"anova.test", "cforest.importance",  "oneR", "relief", 

"rf.importance", "symmetrical.uncertainty")) 

>fv$data 

>plotFilterValuesGGVIS(fv) 

http://rpackages.ianhowson.com/cran/FSelector/
http://rpackages.ianhowson.com/cran/FSelector/
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>newobject=xtable(fv) 

>print.xtable(newobject,type="html",file="VarSeltnFile.html"

) 

8.4.3  Result of independent variables selection and the dependent variable 

The raw variable scores from the analyses are given in Table 8.2 and Figures 8.1 to 8.11. 

The results in Table 8.2 are sectioned into quantitative and qualitative variables. Each set of 

variables are arranged sequentially (i.e. R1-R11 for quantitative variables and Q1-Q13 for 

qualitative variables). The charts in Figures 8.1 to 8.11 on the hand display bar plots of the 

independent variables arranged according to their scores for each the 11 selection 

techniques. The bars in the chart are an indication of the importance level attached to each 

variable by the associated selection method.  It can be seen from Figure 8.3 that the mRMR 

selection method even assigned negative importance to some variables, showing that they 

may be of multicollinearity with some other variables. Since there is serious disagreement 

over which technique is best, two voting systems (Tables 8.3 and 8.4) were used to rank the 

variables while a combined ranking from the two systems (Table 8.5) was used for the final 

selection of the variables. Table 8.6 is a full presentation of the quantitative and qualitative 

variables selected to develop the CF-IPM. The voting and ranking systems are explained. 

Percentage score ranking system: The score ranking system was implemented by adding 

the score assigned to each independent variable by all the selection techniques to give a total 

score. Since the scales of the scores used by the selection techniques were very different 

(see Table 8.2), the scores for the quantitative and qualitative variables could not be added 

directly to avoid bias. To ensure equal contribution from all techniques, the scores were 

converted to percentage under each selection technique. In essence, the total quantitative 

and qualitative variables scores were each taken as 100%. The percentage scores were then 

added to give a total score for each variable, and the rankings of the variables were done 

based on these total percentage scores (see Table 8.3). One advantage of this system is that 

it takes into consideration the difference in score between variables, under each technique, 

even if they are ranked next to each other. An example of such case is in the gain ratio 

method where the difference in the score of the best and second best quantitative variables 

(R6 and R8 respectively) is much more than the difference between the second and 5th best 

quantitative variable (R1). 

Summed ranking system: In this system, under each selection method, each independent 

quantitative and qualitative variable was ranked according to the score assigned by each 
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technique. The rankings of individual variables were subsequently summed up across the 

13 techniques. Positions were then assigned to each variable based on the summed ranking 

(see Table 8.4). In this system, the smaller the summed ranking value, the higher the position 

of the variable since, for example, a value of one (i.e. first) is better than five (i.e. fifth). 

This system gives all selection techniques equal chances of contribution to the final rank of 

each variable. 

Final ranking system: This system was simply based on the average value of the 

percentage score ranking and summed ranking. A re-ranking of the variables was carried 

out based on this average values (see Table 8.5). Like in the case of the summed ranking 

system, the smaller the average rank value, the better the new position of the variable. Using 

this final ranking system, the top 7 quantitative and qualitative variables were selected to 

develop the models. These are presented along with the dependent variable in Table 8.6.  

The dependent variable is named ‘status’, referring to the status of the construction 

firms (i.e. failed or existing). It is a binary variable with a value of one for existing firms 

and a value of zero for failed firms.  A threshold of 0.5, which is the default threshold 

variable selection and model building, was used to separate the classes. In essence, a 

construction firm with a predicted value of over 0.5 is classified (predicted) as 

existing/healthy while one with a predicted value of below 0.5 is classified (predicted) as 

failed/failing.  
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Table 8.2: The raw scores assigned to the variables by each selection method 

Variables Inform

ation 

gain 

Kruskal 

test 

mRM

R 

Chi-

squared 

Gain 

ratio 

ANOVA 

test 

Cforest 

importa

nce 

oneR Relief RF 

importa

nce 

SU 

Quantitative 

R1 0.18 164.34 0.09 0.56 0.18 152.53 0.02 1.73 0.02 0.02 0.21 

R2 0.19 165.83 0.03 0.57 0.18 149.13 0.02 1.74 0.02 0.03 0.22 

R3 0.1 108.27 0.04 0.44 0.15 88.99 0.01 1.89 0.01 0.01 0.15 

R4 0.11 81.95 0 0.43 0.13 95.73 0.01 1.75 0.04 0.01 0.14 

R5 0.12 69.84 0.15 0.45 0.14 60.8 0.01 1.75 0.04 0.01 0.15 

R6 0.38 341.11 0.01 0.8 0.34 135.37 0.04 1.9 0.08 0.12 0.42 

R7 0.09 48.3 -0.05 0.4 0.09 34.27 0 1.41 0.02 0.01 0.1 

R8 0.37 157.6 -0.01 0.76 0.25 223.79 0.06 1.45 0.07 0.07 0.34 

R9 0.1 40.49 0.13 0.42 0.09 28.85 0.01 1.45 0.05 0.01 0.11 

R10 0.28 281.14 0 0.69 0.2 340.27 0.06 1.7 0.12 0.05 0.27 

R11 0.05 0.76 0.04 0.29 0.08 1.88 0.01 1.69 0.04 0.01 0.08 

Qualitative 

Q1 0.24 13.76 0 0.62 0.11 6.15 0 0.88 0.11 0.02 0.17 
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Variables Inform

ation 

gain 

Kruskal 

test 

mRM

R 

Chi-

squared 

Gain 

ratio 

ANOVA 

test 

Cforest 

importa

nce 

oneR Relief RF 

importa

nce 

SU 

Q2 0.22 27.11 -0.03 0.62 0.13 36.92 0 1.27 0.1 0.01 0.18 

Q3 0.22 22.5 0.02 0.61 0.11 40.61 0.01 0.47 0.11 0.01 0.16 

Q4 0.28 102.82 0.01 0.67 0.17 132.04 0.04 1.33 0.07 0.06 0.24 

Q5 0.14 8.93 0.15 0.48 0.18 16.07 0.01 1.91 0.04 0.02 0.19 

Q6 0.08 5.45 -0.01 0.37 0.08 0.95 0.01 1.52 0.07 0.01 0.09 

Q7 0.09 39.98 0.02 0.4 0.21 18.55 0 1.96 0.08 0.02 0.16 

Q8 0.23 140.78 0 0.63 0.16 131.14 0.04 1.2 0.12 0.06 0.22 

Q9 0.18 26.25 0.02 0.54 0.1 13.96 0 0.82 0.05 0.01 0.14 

Q10 0.05 57.97 0.11 0.31 0.07 50.3 0.01 1.75 0.09 0.01 0.07 

Q11 0.04 19.25 0.09 0.27 0.07 29.09 0 1.69 0.05 0.01 0.06 

Q12 0.12 25.2 
 

0.46 0.1 18.09 0.01 1.13 0.12 0.02 0.13 

Q13 0.12 101.74 0.03 0.46 0.12 87.6 0.02 1.72 0.04 0.03 0.14 

MRMR: Minimum redundancy, maximum relevance filter 

SU: Symmetrical Uncertainty 
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Figure 8.1: Chart of scores assigned by the Information Gain selection method 

 

 

Figure 8.2: Chart of scores assigned by the Kruskal Test selection method 
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Figure 8.3: Chart of scores assigned by the mRMR selection method 

 

 

Figure 8.4: Chart of scores assigned by the Chi-Squared selection method 
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Figure 8.5: Chart of scores assigned by the Gain Ratio selection method 

 

 

Figure 8.6: Chart of scores assigned by the ANOVA Test selection method 
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Figure 8.7: Chart of scores assigned by the CForest Importance selection method 

 

 

Figure 8.8: Chart of scores assigned by the oneR selection method 
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Figure 8.9: Chart of scores assigned by the Relief selection method 

 

 

Figure 8.10: Chart of scores assigned by the Rf importance selection method 

 



164 

 

 

 

Figure 8.11: Chart of scores assigned by the Symmetrical uncertainty selection method 
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Table 8.3: Ranking based on Percentage score of quantitative and qualitative variables under each selection method 

 

Variab

les 

Percentage score of variable under each selection method Total 

Percent

age 

Rankin

g Inform

ation 

gain 

Kruskal 

test 

mRMR Chi-

squared 

Gain 

ratio 

ANOV

A test 

Cforest 

import

ance 

oneR Relief RF 

import

ance 

SU 

Quantitative 

R1 4.52 8.01 10.71 4.57 5.23 8.06 5.00 4.79 1.28 3.13 5.07 60.38 4th  

R2 4.77 8.08 3.57 4.65 5.23 7.88 5.00 4.82 1.28 4.69 5.31 55.29 5th  

R3 2.51 5.28 4.76 3.59 4.36 4.70 2.50 5.23 0.64 1.56 3.62 38.77 8th  

R4 2.76 3.99 0.00 3.51 3.78 5.06 2.50 4.85 2.56 1.56 3.38 33.96 9th  

R5 3.02 3.40 17.86 3.67 4.07 3.21 2.50 4.85 2.56 1.56 3.62 50.33 6th  

R6 9.55 16.63 1.19 6.53 9.88 7.15 10.00 5.26 5.13 18.75 10.14 100.22 1st  

R7 2.26 2.35 -5.95 3.27 2.62 1.81 0.00 3.90 1.28 1.56 2.42 15.52 11th  

R8 9.30 7.68 -1.19 6.20 7.27 11.82 15.00 4.02 4.49 10.94 8.21 83.73 3rd  

R9 2.51 1.97 15.48 3.43 2.62 1.52 2.50 4.02 3.21 1.56 2.66 41.47 7th  

R10 7.04 13.70 0.00 5.63 5.81 17.97 15.00 4.71 7.69 7.81 6.52 91.90 2nd  

R11 1.26 0.04 4.76 2.37 2.33 0.10 2.50 4.68 2.56 1.56 1.93 24.09 10th  

Qualitative 

Q1 6.03 0.67 0.00 5.06 3.20 0.32 0.00 2.44 7.05 3.13 4.11 32.00 8th  

Q2 5.53 1.32 -3.57 5.06 3.78 1.95 0.00 3.52 6.41 1.56 4.35 29.91 10th  

Q3 5.53 1.10 2.38 4.98 3.20 2.15 2.50 1.30 7.05 1.56 3.86 35.61 6th  

Q4 7.04 5.01 1.19 5.47 4.94 6.97 10.00 3.68 4.49 9.38 5.80 63.97 2nd  

Q5 3.52 0.44 17.86 3.92 5.23 0.85 2.50 5.29 2.56 3.13 4.59 49.88 3rd  
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Variab

les 

Percentage score of variable under each selection method Total 

Percent

age 

Rankin

g Inform

ation 

gain 

Kruskal 

test 

mRMR Chi-

squared 

Gain 

ratio 

ANOV

A test 

Cforest 

import

ance 

oneR Relief RF 

import

ance 

SU 

Q6 2.01 0.27 -1.19 3.02 2.33 0.05 2.50 4.21 4.49 1.56 2.17 21.41 13th  

Q7 2.26 1.95 2.38 3.27 6.10 0.98 0.00 5.43 5.13 3.13 3.86 34.49 7th  

Q8 5.78 6.86 0.00 5.14 4.65 6.93 10.00 3.32 7.69 9.38 5.31 65.07 1st  

Q9 4.52 1.28 2.38 4.41 2.91 0.74 0.00 2.27 3.21 1.56 3.38 26.66 12th  

Q10 1.26 2.83 13.10 2.53 2.03 2.66 2.50 4.85 5.77 1.56 1.69 40.77 5th  

Q11 1.01 0.94 10.71 2.20 2.03 1.54 0.00 4.68 3.21 1.56 1.45 29.33 11th  

Q12 3.02 1.23 0.00 3.76 2.91 0.96 2.50 3.13 7.69 3.13 3.14 31.45 9th  

Q13 3.02 4.96 3.57 3.76 3.49 4.63 5.00 4.76 2.56 4.69 3.38 43.81 4th  
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Table 8.4: Ranking based on summation of ranking of quantitative and qualitative variables under each selection method 

 

Varia

bles 

Ranking of variable according to score under each selection method Sum of 

all 

positio

ns 

Summe

d 

Rankin

g 

Infor

matio

n gain 

Kruska

l test 

mRM

R 

Chi-

square

d 

Gain 

ratio 

ANO

VA 

test 

Cfores

t 

impor

tance 

oneR Relie

f 

RF 

impor

tance 

SU 

Quantitative 

R1 5 4 3 5 4 3 4 6 8 5 5 52 5th  

R2 4 3 6 4 4 4 4 5 8 4 4 50 4th  

R3 8 6 4 7 6 7 6 2 11 6 6 69 7th  

R4 7 7 8 8 8 6 6 3 5 6 8 72 8th  

R5 6 8 1 6 7 8 6 3 5 6 6 62 6th  

R6 1 1 7 1 1 5 3 1 2 1 1 24 1st  

R7 10 9 11 10 9 9 11 11 8 6 10 104 11th 

R8 2 5 10 2 2 2 1 9 3 2 2 40 3rd 

R9 8 10 2 9 9 10 6 9 4 6 9 82 9th 

R10 3 2 8 3 3 1 1 7 1 3 3 35 2nd 

R11 11 11 4 11 11 11 6 8 5 6 11 95 10th 

Qualitative 

Q1 2 11 9 3 7 12 9 11 3 4 5 76 8th 

Q2 4 6 13 3 5 6 9 8 5 8 4 71 7th 

Q3 4 9 5 5 7 5 4 13 3 8 6 69 6th 
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Varia

bles 

Ranking of variable according to score under each selection method Sum of 

all 

positio

ns 

Summe

d 

Rankin

g 

Infor

matio

n gain 

Kruska

l test 

mRM

R 

Chi-

square

d 

Gain 

ratio 

ANO

VA 

test 

Cfores

t 

impor

tance 

oneR Relie

f 

RF 

impor

tance 

SU 

Q4 1 2 8 1 3 1 1 7 8 1 1 34 1st 

Q5 7 12 1 7 2 10 4 2 12 4 3 64 4th 

Q6 11 13 12 11 11 13 4 6 8 8 11 108 13th 

Q7 10 5 5 10 1 8 9 1 7 4 6 66 5th 

Q8 3 1 9 2 4 2 1 9 1 1 2 35 2nd 

Q9 6 7 5 6 9 11 9 12 10 8 8 91 11th 

Q10 12 4 2 12 12 4 4 3 6 8 12 79 9th 

Q11 13 10 3 13 12 7 9 5 10 8 13 103 12th 

Q12 8 8 9 8 9 9 4 10 1 4 10 80 10th 

Q13 8 3 4 8 6 3 3 4 12 3 8 62 3rd 
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Table 8.5: Ranking based on average values from percentage score and summed ranking 

systems 

Variables Percentage 

score 

ranking 

Summed 

ranking 

Average of 

percentage score and 

summed ranking 

Ranking based 

on average 

values 

Quantitative 

R1 4 5 4.5 4th  

R2 5 4 4.5 4th  

R3 8 7 7.5 7th  

R4 9 8 8.5 9th  

R5 6 6 6 6th 

R6 1 1 1 1st 

R7 11 11 11 11th 

R8 3 3 3 3rd 

R9 7 9 8 8th 

R10 2 2 2 2nd 

R11 10 10 10 10th  

Qualitative 

Q1 8 8 8 8th 

Q2 10 7 8.5 9th 

Q3 6 6 6 5th 

Q4 2 1 1.5 1st 

Q5 3 4 3.5 3rd 

Q6 13 13 13 13th 

Q7 7 5 6 5th 

Q8 1 2 1.5 1st 

Q9 12 11 11.5 11th 

Q10 5 9 7 7th 

Q11 11 12 11.5 11th 

Q12 9 10 9.5 10th 

Q13 4 3 3.5 3rd 

 

Table 8.6: Details of the top seven ranked quantitative and qualitative independent 

variables selected to develop the model and the dependent variable 

Variable 

category 

Serial 

number 

Variable name Assigned 

(quantitative) 

variable code 

 

Quantitative 

variables 

 

1.    Solvency ratio (Asset-based) (%) R6 

2.    Working Capital per employee (unit) R10 

3.    Average Remuneration per employee (unit) R8 

4.  Return on Shareholders’ Funds (%) R1 

5.    Return on Capital Employed (%) R2 
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Variable 

category 

Serial 

number 

Variable name Assigned 

(quantitative) 

variable code 

Quantitative 

variables 

6.    Liquidity ratio  R5 

7.    Return on Total Assets (%) R3 

    

 

 

 

Quantitative 

variables 

1.  Strategic and external issues Q4 

2.  Finance and conflict related issues Q8 

3.  Performance on projects Q5 

4.  Industry contract/project knowledge Q13 

5.  Project related (external) conflict Q7 

6.  Top management characteristics 1 Q3 

7.  Profit issues Q10 

    

Dependent 

Variable 

 Status (failed or existing)  

 

8.5  Model development 

8.5.1 Data pre-processing 

To develop the model, the default working directory of the ‘R’ programming language 

software was set to the ‘Spot Instances’ on the AWS EC2 while the executioner in ‘R’ was 

configured to operate with the Spark Master on the NameNode. The full data on the Hadoop 

DataNodes was subsequently assigned a new name: ‘FacLogData1’.  

Since the data was arranged in such a way that those of the failed construction firms were 

grouped together on one side and those of the existing on the other, there was a potential 

problem of the prediction tools recognising this pattern and making predictions based on 

the arrangement. The first step was thus to randomise the arrangement of the data in such a 

way that data for failed and existing construction firms are interwoven in no specific pattern. 

The ‘runif’ command was used to execute this process. 

Next step was to install ‘sparklyr’ which is the Spark executor on ‘R’. The sparklyr was 

subsequently connected to the Spark Master on the NameNode on the AWS EC2 using the 

spark_connect function to connect the Instance address which is CF-IPM.BigDataCluster 

(see section 8.2). The ‘mlr’ machine learning executor with CRAN on ‘R’ was installed to 

be used with Spark. Subsequently the ‘makeClassifTask’ function was used to create the 
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task on the data using the 70% of the data required for training and specifying the target 

(dependent) variable as ‘status’. The task was named ‘task’ and was used to create all the 

models using the ‘mlr’ executor with the integrated tools/algorithms. The packages and 

libraries of the integrated tools/algorithms were installed and unpacked. The code for these 

processes, including packages for some of the tools/algorithms used, are given. 

>gp = runif(nrow(FacLogData1)) 

>FacLogData1 = FacLogData1[order(gp),] 

>str(FacLogData1) 

>summary(FacLogData1) 

>SP = spark_connect(master = "spark://local: CF-IPM.BigData 

Cluster") 

>task = makeClassifTask(data = Train, target = "Status") 

>install.packages("sparklyr") 

>install.packages("mlr") 

>install.packages("randomForestSRC") 

>install.packages("imp.learner ") 

>install.packages("kernlab ") 

>install.packages("caTools ") 

>install.packages("GA") 

>install.packages("ada") 

>install.packages("kohonen ") 

>install.packages("stats") 

>install.packages("nnet") 

>Libraray(sparklyr) 

>Libraray(mlr) 

>library(imp.learner) 

>library(randomForestSRC) 

>library(kernlab) 

>library(caTools) 

>library(GA) 

>library(ada) 

>library(stats) 

>library(nnet) 
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8.5.2 The prediction tools/algorithms used to build the models 

Thirteen tools/algorithms, including very powerful unpopular artificial intelligence tools, 

were used to develop more than 13 construction firms insolvency prediction models (CF-

IPM). Some of the popular ones, including multiple discriminant analysis, logistic 

regression, support vector machines, K-nearest neighbour and adaptive boosting, are 

explained. 

Multiple Discriminant Analysis (MDA): Though MDA can be linear (LDA) or quadratic 

(QDA), the LDA is much simpler and much more popular (Balcaen and Ooghe 2006) hence 

it will be the one explained here. The MDA model uses a linear combination of variables, 

which are normally financial ratios, which best differentiate between failing and surviving 

firms to classify firms into one of the two groups. The first MDA model, called Z-score or 

Z model, was developed by Altman (1968) and was first applied to the construction industry 

by Mason and Harris (1979). The MDA function, constructed after variable selection, is as 

follows (Altman 1968): 

Z = c1X1 + c2X2 + ……………….. + cnXn 

Where c1, c2, ……………….. cn,  = discriminant coefficients 

And  X1, X2, ……………..  Xn = independent variables 

The LDA calculates the discriminant coefficients, cj, while Xj represents values of the 

selected variables, Where j = 1,2, …………. N. The function can be used to calculate the 

Z-score of any firm which possesses the independent variables in the function. A cut-off Z-

score is chosen based on the scores of failing and surviving sample firms and used to classify 

newly assessed firms.  

Logistic regression (LR): LR is a “conditional probability model which uses the non-linear 

maximum log-likelihood technique to estimate the probability of firm failure under the 

assumption of a logistic distribution” (Jackson and Wood, 2013, p. 190). It was first applied 

to bankruptcy prediction by (Ohlson, 1980). Based on (Hosmer, Lemeshow and Sturdivant, 

2013), the LA function, constructed after variable selection, is as follows (Ohlson, 1980): 

P1(Vi) = 1/[1 + exp - (b0 + b1Vi1 + b2Vi2 + b2Vi2 +…...+ bnVin)] = 1/[1 + exp - (Di)] 

where P1(Vi) = probability of failure given the vector of attributes Vi;  

Vij = value of attribute or variable j (j = 1, 2, ….., n) for firm i;  

bj = coefficient for attribute j;  b0 = intercept   Di = logit of firm i. 
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Artificial Neural Network (ANN): ANN was created to imitate how the neural system of 

the human brain works and was first applied to insolvency prediction by Odom and Sharda 

(1990). A typical ANN is a network of nodes interconnected in layers.  There are some 

parameters, architectures, algorithms, and learning/training methods that can be used to 

develop an ANN (Jo, Han and Lee, 1997) and choosing the best combination can be 

demanding. The architecture of the ANN refers to the number of layers, number of nodes in 

each layer and the method of interconnectivity between nodes.  Common architectures for 

ANNs include Multi-layer perceptron (MLP), self-organizing mapping and Perceptron 

(Chung, Tan and Holdsworth, 2008). 

Support vector machines (SVM): SVM employs a linear model to develop an optimal 

separating hyperplane by using a highly non-linear mapping of input vectors into a high-

dimensional feature space (Ravi Kumar and Ravi 2007). It constructs the boundary using 

binary class. The variables closest to the hyperplane are called support vectors and are used 

to define the binary outcome (failing or non-failing) of assessed firms. All other samples 

are ignored and are not involved in deciding the binary class boundaries (Vapnik, 1998). 

SVM is very simple because its mathematical analysis is easy to execute(Ravi Kumar and 

Ravi 2007). Like ANN, it has some parameters that have to be varied to perform optimally  

K-nearest neighbour (KNN): This is a very straightforward algorithm that classifies a new 

sample (i.e. construction firm) based on the properties of the nearest neighbours. Where the 

properties of the neighbours differ widely (e.g. properties of failed and existing construction 

firms), the new sample is classified based on the majority class neighbours (Cunningham 

and Delany 2007). The distance away from the new sample within which other samples can 

be classified as nearest neighbours can be decided by the programmer. 

Random forest (RF): This is an ensemble classifier which uses the bagging method. 

Ensemble classifiers use a particular algorithm repeatedly with various settings, which 

create a bootstrap sample of the data set, to yield different results (Liaw and Wiener 2002). 

A majority vote is then used for the final prediction. Random forest uses the decision tree 

algorithms (e.g. C4.5, CART, among others) for its ensemble. 

Adaptive Boosting (AB): This is an ensemble classifier which uses the boosting method 

and like random forest, uses the decision tree algorithms for its ensemble. For every new 

tree in this ensemble, the classifier assigns extra importance to wrongly predicted objects in 

prior trees (Schapire et al., 1998). 
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8.5.3  Understanding the features and outputs of the models 

The tools/algorithms used have various levels of transparency. With some, a visible model 

(not necessarily interpretable) is created during development while with others, there is no 

visible model. In this subsection, the details that are later presented with the developed CF-

IPMs are explained 

Model: The model developed (on the training data) if available, usually appears in the form 

of equation (e.g. with LDA or LR) or a network diagram (e.g. with ANN). In the case of an 

equation, it is usually the case that the greater the coefficient assigned to an independent 

variable, the more important the variable is. Not all equation models are interpretable in this 

manner, however. With networks, networks of algorithms like decision trees are 

interpretable while those of ANN are not. 

The model processing: This is the output given by ‘R’ when running the model. It applies 

to very few tools/algorithms 

Confusion matrix:  Each model will be presented alongside its confusion matrix. A 

confusion matrix is a 2 x 2 matrix (see Table 8.7) that displays the simplest form of result 

that emerges from the model testing/validation process. The result is based on the test data. 

Very important parameters like overall accuracy, sensitivity (or true positive rate), 

specificity (or true negative rate), Type I error (or false positive error rate) and Type II error 

(or false negative error rate) can be calculated from the confusion matrix 

Table 8.7: A Standard confusion matrix result for a model (Torgo, 2011) 

 Predicted class (failed 

firm) = 0 

Predicted class (existing 

firm) = 1 

Actual class (failed firm) = 0 True Negatives (TN) False Positives (FP) 

Actual class (existing firm) = 1 False Negatives (FN) True Positives (TP) 

 

Overall accuracy: This is the ratio of the total number of correctly predicted classes to the 

total number of sample construction firms in the test data. The equation used to calculate 
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overall accuracy from the confusion matrix is given here. The ‘N’ in the equation represent 

total number of sample construction firms in the test data 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑁
 (Torgo 2011) 

Sensitivity: This is also known as true positive rate. It is the ratio of existing construction 

firms correctly predicted as existing to the total number of existing construction firms in the 

test data. It reveals the percentage of the actual existing construction firms predicted 

correctly by a model. The equation used to calculate sensitivity from the confusion matrix 

is: 

Sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(Torgo 2011) 

Specificity: This is also known as true negative rate. It is the ratio of failed construction 

firms correctly predicted as failed to the total number of failed construction firms in the test 

data. It reveals the percentage of the actual failed construction firms predicted correctly by 

a model. The equation used to calculate specificity from the confusion matrix is: 

Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (Torgo 2011) 

Type I error: This is also known as false positive error rate. It is the ratio of failed 

construction firms wrongly predicted as existing to the total number of failed construction 

firms in the test data. It reveals the percentage of the actual failed construction firms 

predicted wrongly by a model. Type I error is costlier than Type II error. The equation used 

to calculate Type I error from the confusion matrix is: 

Type I error =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 (Torgo 2011) 

Type II error: This is also known as false negative error rate. It is the ratio of existing 

construction firms wrongly predicted as failed to the total number of existing construction 

firms in the test data. It reveals the percentage of the actual existing construction firms 

predicted wrongly by a model. The equation used to calculate Type II error from the 

confusion matrix is: 

Type II error =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 (Torgo 2011) 
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Receiver operator characteristic (ROC) curve: Each model will be presented alongside 

its ROC curve which is a plot of sensitivity (true positive rate) on the y-axis against 

specificity (false positive rate) on the x-axis. The threshold of the model, which varies from 

zero to one with a scale of 0.1, is normally shown on the vertical axis to the right of the plot 

and sometimes on the curve as well. The plot can be used to identify the best threshold, 

usually between 0.1 and 0.9, as against just adopting the default 0.5 threshold. A better 

threshold can increase the accuracy of a model based on reduced costlier error type (i.e. 

Type I error in this case). The threshold in the proposed solution will not be changed from 

the default value to allow a fairer comparison between the models. 

Area under the curve (AUC): This is the area under the ROC curve which is widely 

accepted as the best measure of the performance of a model. The AUC value of similar 

models could even be different, making it easy to pick the better model. Since the maximum 

value of specificity and sensitivity which make up the axes of ROC curve are one, then the 

maximum AUC value, which represents excellent accuracy, is one. A model with an AUC 

value below 0.5 has a less than average performance which is considered to be very poor. 

 

8.5.4  Details of the development of the CF-IPMs 

The task created with the ‘makeClassifTask’ function, using training data (i.e. 70% of the 

data), was used in the process of developing the models. The ‘makeLearner’ function 

combined with ‘classif.algorithm’ was used to create the necessary prediction algorithm, 

which is normally termed as the learner in mlr. The learner was trained with the task created 

using the ‘train’ function, thereby developing a CF-IPM. The CF-IPM was then tested by 

running it on the test data (i.e. the remaining 30% of the data) using the ‘Task.pred’ function. 

The confusion matrix of the result of the test, which provides the information that allows a 

fair comparison of the results, is then called using the ‘getConfMatrix’ function. This is 

followed by plotting the ROC curve using the ‘plotROCCurves’ and 

‘generateThreshVsPerfData’ functions. Finally, the AUC value, which allows for an even 

more accurate models’ performance comparison to the smallest of margins, is generated 

using the ‘as.numeric’ and ‘convert, "auc"’ functions.  

Tables 8.8 to 8.20 in the model presentation in the following pages display the confusion 

matrices of the 13 Big Data CF-IPMs developed in the proposed solution while Figures 8.12 

to 8.26, excluding Figures 8.18 and 8.20, display the ROC plots of the Big Data CF-IPMs. 
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Figures 8.18 and 8.20 are displays of the Big Data artificial neural network and decision 

tree models. Once the necessary codes were entered, the system developed the models in 

seconds because of the use of Big Data Analytics. As a simple process to check the effect 

of the Big Data Analytics platform, an ANN model which was highly tuned with 1e9 

iterations was attempted on a regular computer. The model was not developed in over two 

days. The process was consequently aborted 
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8.5.4.1  The Big Data linear (multiple) discriminant analysis CF-IPM 

 

 

 

 

 

 

 

 

 

 

 

The code of the Big Data Linear Discriminant Analysis (LDA) CF-IPM 

LDA_lrn = makeLearner("classif.lda", predict.type = "prob")  

LDA_mod = train(LDA_lrn, task) 

LDA_task2 = makeClassifTask(data = Test, target = "Status") 

LDA_Task.pred = predict(LDA_mod, LDA_task2, predict.type = "prob") 

getConfMatrix(LDA_Task.pred) 

LDA_ROCR_MLR =  

plotROCCurves(LDA_ROCR_MLR) 

LDA_ROCRconvert = asROCRPrediction(LDA_Task.pred) 

LDA_ROCR_ROCRcalc = ROCR::performance(LDA_ROCRconvert, "tpr", 

"fpr") 

LDA_auc = as.numeric(performance(LDA_ROCRconvert, "auc")@y.values) 

LDA_auc 

𝐓𝐡𝐞 𝐋𝐃𝐀 𝐦𝐨𝐝𝐞𝐥:  131.40R6  − 1.07R10 + 1.16R8 + 123.35R1 + 6.73R2 − 0.23R5 
−  130.54R3 − 1.84Q4 − 0.41Q8 −  0.18Q5 − 0.32Q13 + 0.27Q7 − 0.43Q3 
− 0.27Q10 

 

Table 8.8: The confusion matrix of the Big Data LDA CF-IPM 
 Predicted as failed firm (0) Predicted as existing firm (1) 

Actual failed firm (0) 116 39 

Actual existing firm (1) 44 119 

 

Figure 8.12: The ROC curve of the Big Data LDA CF-IPM 

The AUC value of the Big Data LDA CF-IPM = 0.821095 
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8.5.4.2  The Big Data quadratic (multiple) discriminant analysis CF-IPM 

 

 

 

 

 

 

 

 

 

 

 

  

The code of the Big Data Quadratic Discriminant Analysis (QDA) CF-IPM 

QDA_lrn = makeLearner("classif.binomial", predict.type = "prob")  

QDA_mod = train(QDA_lrn, task1) 

QDA_task2 = makeClassifTask(data = Test1, target = "Status") 

QDA_Task.pred = predict(QDA_mod, QDA_task2, predict.type = "prob") 

getConfMatrix(QDA_Task.pred) 

plotROCCurves(QDA_ROCR_MLR) 

QDA_ROCRconvert = asROCRPrediction(QDA_Task.pred) 

QDA_ROCR_ROCRcalc = ROCR::performance(QDA_ROCRconvert, "tpr", 

"fpr") 

QDA_auc = as.numeric(performance(QDA_ROCRconvert, "auc")@y.values) 

QDA_auc 

𝐓𝐡𝐞 𝐐𝐃𝐀 𝐦𝐨𝐝𝐞𝐥: − 60.59 +  30.68R6 −  0.24R10 +  0.27R8 +  28.80R1 +  1.57R2 

−  0.05R5 −  30.48R3 −  0.43Q4 + −0.09Q8 −  0.04Q5 −  0.07Q13 

+  0.06Q7 −  0.10Q3 −  0.06Q10 

Table 8.9: The confusion matrix of the Big Data QDA CF-IPM 
 Predicted as failed firm (0) Predicted as existing firm (1) 

Actual failed firm (0) 110 45 

Actual existing firm (1) 46 117 

 

Figure 8.13: The ROC curve of the Big Data QDA CF-IPM 

The AUC value of the Big Data QDA CF-IPM = 0.8210548 
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8.5.4.3  The big data logistic regression CF-IPM 

 

 

 

 

 

 

 

 

 

 

 

  

The code of the Big Data Logistic Regression (LR) CF-IPM 

LR_lrn = makeLearner("classif.logreg", predict.type = "prob")  

LR_mod = train(LR_lrn, task1) 

LR_task2 = makeClassifTask(data = Test1, target = "Status") 

LR_Task.pred = predict(LR_mod, LR_task2, predict.type = "prob") 

getConfMatrix(LR_Task.pred) 

plotROCCurves(LR_ROCR_MLR) 

LR_ROCRconvert = asROCRPrediction(LR_Task.pred) 

LR_ROCR_ROCRcalc = ROCR::performance(LR_ROCRconvert, "tpr", "fpr") 

LR_auc = as.numeric(performance(LR_ROCRconvert, "auc")@y.values) 

LR_auc 

𝐓𝐡𝐞 𝐋𝐑 𝐦𝐨𝐝𝐞𝐥: − 60.59 +  30.68R6 −  0.24R10 +  0.27R8 +  28.80R1 +  1.57R2 

−  0.05R5 −  30.48R3 −  0.43Q4 + −0.09Q8 −  0.04Q5 −  0.07Q13 

+  0.06Q7 −  0.10Q3 −  0.06Q10 

Table 8.10: The confusion matrix of the Big Data LR CF-IPM 

 Predicted as failed firm (0) Predicted as existing firm (1) 

Actual failed firm (0) 110 45 

Actual existing firm (1) 46 117 

 

Figure 8.14: The ROC curve of the Big Data LR CF-IPM  

The AUC value of the Big Data LR CF-IPM = 0.8210548 
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8.5.4.4  The big data naïve bayes CF-IPM 

 

 

 

 

 

 

 

 

 

 

 

  

The code of the Big Data Naïve Bayes (NB) CF-IPM 

NB_lrn = makeLearner("classif.naiveBayes", predict.type = "prob")  

NB_mod = train(NB_lrn, task1) 

NB_task2 = makeClassifTask(data = Test1, target = "Status") 

NB_Task.pred = predict(NB_mod, NB_task2, predict.type = "prob") 

getConfMatrix(NB_Task.pred) 

NB_ROCR_MLR = generateThreshVsPerfData(NB_Task.pred, measures = 

list(fpr, tpr, mmce)) 

plotROCCurves(NB_ROCR_MLR) 

NB_ROCRconvert = asROCRPrediction(NB_Task.pred) 

NB_ROCR_ROCRcalc = ROCR::performance(NB_ROCRconvert, "tpr", "fpr") 

ROCR::plot(NB_ROCR_ROCRcalc, colorize=TRUE, 

print.cutoffs.at=seq(0,1,0.1), text.adj=c(-0.2,1.7)) 

NB_auc = as.numeric(performance(NB_ROCRconvert, "auc")@y.values) 

NB_auc 

 

 

The Big Data NB Model Processing  

... generating 1000 nodes ... 
 total number of nodes in initial set                   : 1143 
 total number of nodes after removal of identical nodes : 375  
 ... computing node means ...  
 ... computing node weights ... 
 dimension of null space of I                           : 221 
 number of selected nodes                               : 31 

 

 

Table 8.11: The confusion matrix of the Big Data NB CF-IPM  

 Predicted as failed firm (0) Predicted as existing firm (1) 

Actual failed firm (0) 153 2 

Actual existing firm (1) 9 154 
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Figure 8.15: The ROC curve of the Big Data NB CF-IPM  

 

The AUC value of the Big Data NB CF-IPM = 0.9896135 

 

 

 



183 

 

8.5.4.5  The Big Data support vector machine CF-IPM 

 

 

 

 

 

 

 

 

 

 

 

  

The code of the Big Data Support Vector Machine (SVM) CF-IPM 

SVM_lrn = makeLearner("classif.ksvm", predict.type = "prob")  

SVM_mod = train(SVM_lrn, task1) 

SVM_task2 = makeClassifTask(data = Test1, target = "Status") 

SVM_Task.pred = predict(SVM_mod, SVM_task2, predict.type = "prob") 

getConfMatrix(SVM_Task.pred) 

SVM_ROCR_MLR = generateThreshVsPerfData(SVM_Task.pred, measures = 

list(fpr, tpr, mmce)) 

plotROCCurves(SVM_ROCR_MLR) 

SVM_ROCRconvert = asROCRPrediction(SVM_Task.pred) 

SVM_ROCR_ROCRcalc = ROCR::performance(SVM_ROCRconvert, "tpr", "fpr") 

ROCR::plot(SVM_ROCR_ROCRcalc, colorize=TRUE, 

print.cutoffs.at=seq(0,1,0.1), text.adj=c(-0.2,1.7)) 

SVM_auc = as.numeric(performance(SVM_ROCRconvert, "auc")@y.values) 

SVM_auc 

Table 8.12: The confusion matrix of the Big Data SVM CF-IPM  

 Predicted as failed firm (0) Predicted as existing firm (1) 

Actual failed firm (0) 131 24 

Actual existing firm (1) 47 116 

 

Figure 8.16: The ROC curve of the Big Data SVM CF-IPM  

The AUC value of the Big Data SVM CF-IPM =     0.8498792 
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8.5.4.6  The Big data k-nearest neighbour CF-IPM 

 

 

 

 

 

 

 

 

 

 

 

  

The code of the Big Data K-Nearest Neighbour (KNN) CF-IPM 

KNN_lrn = makeLearner("classif.kknn", predict.type = "prob")  

KNN_mod = train(KNN_lrn, task1) 

KNN_task2 = makeClassifTask(data = Test1, target = "Status") 

KNN_Task.pred = predict(KNN_mod, KNN_task2, predict.type = "prob") 

getConfMatrix(KNN_Task.pred) 

KNN_ROCR_MLR = generateThreshVsPerfData(KNN_Task.pred, measures = 

list(fpr, tpr, mmce)) 

plotROCCurves(KNN_ROCR_MLR) 

KNN_ROCRconvert = asROCRPrediction(KNN_Task.pred) 

KNN_ROCR_ROCRcalc = ROCR::performance(KNN_ROCRconvert, "tpr", "fpr") 

ROCR::plot(KNN_ROCR_ROCRcalc, colorize=TRUE, 

print.cutoffs.at=seq(0,1,0.1), text.adj=c(-0.2,1.7)) 

KNN_auc = as.numeric(performance(KNN_ROCRconvert, "auc")@y.values) 

KNN_auc 

Table 8.13: The confusion matrix of the Big Data KNN CF-IPM  

 Predicted as failed firm (0) Predicted as existing firm (1) 

Actual failed firm (0) 150 5 

Actual existing firm (1) 11 152 

 

Figure 8.17: The ROC curve of the Big Data KNN CF-IPM  

The AUC value of the Big Data KNN CF-IPM = 0.9877617 
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8.5.4.7  The Big Data artificial neural network CF-IPM 

 

 

 

 

 

 

 

 

 

 

 

  

The code of the Big Data Artificial Neural Network (ANN) CF-IPM 

NN_lrn = makeLearner("classif.nnet", predict.type = "prob")  

NN_mod = train(NN_lrn, task1) 

NN_task2 = makeClassifTask(data = Test1, target = "Status") 

NN_Task.pred = predict(NN_mod, NN_task2, predict.type = "prob") 

getConfMatrix(NN_Task.pred) 

NN_ROCR_MLR = generateThreshVsPerfData(NN_Task.pred, measures = 

list(fpr, tpr, mmce)) 

plotROCCurves(NN_ROCR_MLR) 

NN_ROCRconvert = asROCRPrediction(NN_Task.pred) 

NN_ROCR_ROCRcalc = ROCR::performance(NN_ROCRconvert, "tpr", "fpr") 

ROCR::plot(NN_ROCR_ROCRcalc, colorize=TRUE, 

print.cutoffs.at=seq(0,1,0.1), text.adj=c(-0.2,1.7)) 

NN_auc = as.numeric(performance(NN_ROCRconvert, "auc")@y.values) 

NN_auc 

 

 

Figure 8.18: The Big Data ANN model 
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The Big Data ANN Model Processing 
# weights:  34 
initial  value 519.513226  
iter  10 value 445.686837 
iter  20 value 379.240846 
iter  30 value 361.568140 
iter  40 value 355.856524 
iter  50 value 351.326360 
iter  60 value 313.384281 
iter  70 value 301.255120 
iter  80 value 294.838171 
iter  90 value 277.662100 
iter 100 value 272.933870 
final  value 272.933870  
stopped after 100 iterations 
# weights:  34 
initial  value 516.019522  
iter  10 value 409.624922 
iter  20 value 352.495937 
iter  30 value 291.794723 
iter  40 value 253.041152 
iter  50 value 246.975451 
iter  60 value 236.415214 
iter  70 value 232.481877 
iter  80 value 230.153951 
iter  90 value 228.536660 
iter 100 value 227.356759 
final  value 227.356759  
stopped after 100 iterations 
# weights:  34 
initial  value 544.862409  
iter  10 value 403.566351 
iter  20 value 320.817777 
iter  30 value 291.152796 
iter  40 value 274.266547 
iter  50 value 272.364560 
iter  60 value 261.857779 
iter  70 value 249.627742 
iter  80 value 247.529683 
iter  90 value 246.587405 
iter 100 value 246.518700 
final  value 246.518700  
stopped after 100 iterations 
# weights:  34 
initial  value 561.494376  
iter  10 value 395.895633 
iter  20 value 324.171856 
iter  30 value 297.816891 
iter  40 value 275.978679 
iter  50 value 265.922132 
iter  60 value 263.089715 
iter  70 value 262.991677 
iter  70 value 262.991677 
final  value 262.991677  
converged 
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# weights:  34 
initial  value 525.096494  
iter  10 value 417.425941 
iter  20 value 322.737804 
iter  30 value 295.386522 
iter  40 value 264.441029 
iter  50 value 249.023055 
iter  60 value 244.558910 
iter  70 value 244.524399 
iter  80 value 244.511842 
iter  90 value 244.492043 
final  value 244.491997  
converged 

 

Table 8.14: The confusion matrix of the Big Data ANN CF-IPM 

 Predicted as failed firm (0) Predicted as existing firm (1) 

Actual failed firm (0) 133 22 

Actual existing firm (1) 19 144 

 

 

Figure 8.19: The ROC curve of the Big Data ANN CF-IPM 

The AUC value of the Big Data ANN CF-IPM = 0.880394525 
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8.5.4.8  The Big Data decision tree CF-IPM 

 

 

 

 

 

 

 

 

 

 

 

  

The code of the Big Data Decision Tree (DT) CF-IPM 

DTCART_lrn = makeLearner("classif.rpart", predict.type = "prob")  

DTCART_mod = train(DTCART_lrn, task1) 

DTCART_task2 = makeClassifTask(data = Test1, target = "Status") 

DTCART_Task.pred = predict(DTCART_mod, DTCART_task2, predict.type = 

"prob") 

getConfMatrix(DTCART_Task.pred) 

DTCART_ROCR_MLR = generateThreshVsPerfData(DTCART_Task.pred, 

measures = list(fpr, tpr, mmce)) 

plotROCCurves(DTCART_ROCR_MLR) 

DTCART_ROCRconvert = asROCRPrediction(DTCART_Task.pred) 

DTCART_ROCR_ROCRcalc = ROCR::performance(DTCART_ROCRconvert, "tpr", 

"fpr") 

ROCR::plot(DTCART_ROCR_ROCRcalc, colorize=TRUE, 

print.cutoffs.at=seq(0,1,0.1), text.adj=c(-0.2,1.7)) 

DTCART_auc = as.numeric(performance(DTCART_ROCRconvert, 

"auc")@y.values) 

DTCART_auc 

 

 

Figure 8.20: The Big Data DT model 
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Table 8.15: The confusion matrix of the Big Data DT CF-IPM 

 Predicted as failed firm (0) Predicted as existing firm (1) 

Actual failed firm (0) 150 15 

Actual existing firm (1) 19 144 

 

 

 

 

Figure 8.21: The ROC curve of the Big Data DT CF-IPM 

 

The AUC value of the Big Data DT CF-IPM = 0.9432648953 
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8.5.4.9  The Big Data random forest CF-IPM 

 

 

 

 

 

 

 

 

 

 

 

  

The code of the Big Data Random Forest (RF) CF-IPM 

RF_lrn = makeLearner("classif.randomForest", predict.type = "prob")  

RF_mod = train(RF_lrn, task1) 

RF_task2 = makeClassifTask(data = Test1, target = "Status") 

RF_Task.pred = predict(RF_mod, RF_task2, predict.type = "prob") 

getConfMatrix(RF_Task.pred) 

RF_ROCR_MLR = generateThreshVsPerfData(RF_Task.pred, measures = 

list(fpr, tpr, mmce)) 

plotROCCurves(RF_ROCR_MLR) 

RF_ROCRconvert = asROCRPrediction(RF_Task.pred) 

RF_ROCR_ROCRcalc = ROCR::performance(RF_ROCRconvert, "tpr", "fpr") 

ROCR::plot(RF_ROCR_ROCRcalc, colorize=TRUE, 

print.cutoffs.at=seq(0,1,0.1), text.adj=c(-0.2,1.7)) 

RF_auc = as.numeric(performance(RF_ROCRconvert, "auc")@y.values) 

RF_auc 

Table 8.16: The confusion matrix of the Big Data RF CF-IPM 

 Predicted as failed firm (0) Predicted as existing firm (1) 

Actual failed firm (0) 155 0 

Actual existing firm (1) 3 160 

 

Figure 8.22: The ROC curve of the Big Data RF CF-IPM 

The AUC value of the Big Data RF CF-IPM = 1.0 
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8.5.4.10 The Big Data bart machine CF-IPM 

 

 

 

 

 

 

 

 

 

 

 

  

The code of the Big Data Bart Machine (BM) CF-IPM 

BM_lrn = makeLearner("classif.bartMachine", predict.type = "prob")  

BM_mod = train(BM_lrn, task1) 

BM_task2 = makeClassifTask(data = Test1, target = "Status") 

BM_Task.pred = predict(BM_mod, BM_task2, predict.type = "prob") 

getConfMatrix(BM_Task.pred) 

BM_ROCR_MLR = generateThreshVsPerfData(BM_Task.pred, measures = 

list(fpr, tpr, mmce)) 

plotROCCurves(BM_ROCR_MLR) 

BM_ROCRconvert = asROCRPrediction(BM_Task.pred) 

BM_ROCR_ROCRcalc = ROCR::performance(BM_ROCRconvert, "tpr", "fpr") 

ROCR::plot(BM_ROCR_ROCRcalc, colorize=TRUE, 

print.cutoffs.at=seq(0,1,0.1), text.adj=c(-0.2,1.7)) 

BM_auc = as.numeric(performance(BM_ROCRconvert, "auc")@y.values) 

BM_auc 
 

 

The Big Data BM Model Processing  

 
bartMachine vars checked... 
bartMachine java init... 
bartMachine factors created... 
bartMachine before preprocess... 
bartMachine after preprocess... 10 total features... 
bartMachine sigsq estimated... 
bartMachine training data finalized... 
Now building bartMachine for classification ...Missing data 
feature ON.  
building BART with mem-cache speedup... 
Iteration 100/1250  mem: 26.8/519MB 
Iteration 200/1250  mem: 36.5/519MB 
Iteration 300/1250  mem: 27.6/519MB 
Iteration 400/1250  mem: 37.8/519MB 
Iteration 500/1250  mem: 34.2/519MB 
Iteration 600/1250  mem: 43.4/519MB 
Iteration 700/1250  mem: 50/519MB 
Iteration 800/1250  mem: 54.7/519MB 
Iteration 900/1250  mem: 46.5/519MB 
Iteration 1000/1250  mem: 61.8/519MB 
Iteration 1100/1250  mem: 56.9/519MB 
Iteration 1200/1250  mem: 72.3/519MB 
done building BART in 6.228 sec  

 
burning and aggregating chains from all threads... done 
evaluating in sample data...done 
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Table 8.17: The confusion matrix of the Big Data BM CF-IPM 

 Predicted as failed firm (0) Predicted as existing firm (1) 

Actual failed firm (0) 154 1 

Actual existing firm (1) 5 158 

 

 

 

 

Figure 8.23:The ROC curve of the Big Data BM CF-IPM 

 

The AUC value of the Big Data BM CF-IPM = 0.9965378422 
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8.5.4.11 The Big Data adaptive boosting CF-IPM 

 

 

 

 

 

 

 

 

 

 

 

  

The code of the Big Data Adaptive Boosting (AB) CF-IPM 

AB_lrn = makeLearner("classif.ada", predict.type = "prob")  

AB_mod = train(AB_lrn, task) 

AB_task2 = makeClassifTask(data = Test, target = "Status") 

AB_Task.pred = predict(AB_mod, AB_task2, predict.type = "prob") 

getConfMatrix(AB_Task.pred) 

AB_ROCR_MLR = generateThreshVsPerfData(AB_Task.pred, measures = 

list(fpr, tpr, mmce)) 

plotROCCurves(AB_ROCR_MLR) 

AB_ROCRconvert = asROCRPrediction(AB_Task.pred) 

AB_ROCR_ROCRcalc = ROCR::performance(AB_ROCRconvert, "tpr", "fpr") 

ROCR::plot(AB_ROCR_ROCRcalc, colorize=TRUE, 

print.cutoffs.at=seq(0,1,0.1), text.adj=c(-0.2,1.7)) 

AB_auc = as.numeric(performance(AB_ROCRconvert, "auc")@y.values) 

AB_auc 

Table 8.18: The confusion matrix of the Big Data AB CF-IPM 

 Predicted as failed firm (0) Predicted as existing firm (1) 

Actual failed firm (0) 154 1 

Actual existing firm (1) 1 162 

 

Figure 8.24: The ROC curve of the Big Data AB CF-IPM 

The AUC value of the Big Data AB CF-IPM = 0.9999604196 
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8.5.4.12 The Big Data propositional rule learner CF-IPM 

 

 

 

 

 

 

 

 

 

 

 

  

The code of the Big Data Propositional Rule Learner (PRL) CF-IPM 

PRL_lrn = makeLearner("classif.JRip", predict.type = "prob")  

PRL_mod = train(PRL_lrn, task1) 

PRL_task2 = makeClassifTask(data = Test1, target = "Status") 

PRL_Task.pred = predict(PRL_mod, PRL_task2, predict.type = "prob") 

getConfMatrix(PRL_Task.pred) 

PRL_ROCR_MLR = generateThreshVsPerfData(PRL_Task.pred, measures = 

list(fpr, tpr, mmce)) 

plotROCCurves(PRL_ROCR_MLR) 

PRL_ROCRconvert = asROCRPrediction(PRL_Task.pred) 

PRL_ROCR_ROCRcalc = ROCR::performance(PRL_ROCRconvert, "tpr", 

"fpr") 

ROCR::plot(PRL_ROCR_ROCRcalc, colorize=TRUE, 

print.cutoffs.at=seq(0,1,0.1), text.adj=c(-0.2,1.7)) 

PRL_auc = as.numeric(performance(PRL_ROCRconvert, "auc")@y.values) 

PRL_auc 

Table 8.19: The confusion matrix of the Big Data PRL CF-IPM 

 Predicted as failed firm (0) Predicted as existing firm (1) 

Actual failed firm (0) 149 6 

Actual existing firm (1) 13 150 

 

Figure 8.25: The ROC curve of the Big Data PRL CF-IPM 

The AUC value of the Big Data PRL CF-IPM = 0.9589573269 
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8.5.4.13 The Big Data kohonen CF-IPM 

 

 

 

 

 

 

 

 

 

 

 

  

The code of the Big Data Kohonen (KHN) CF-IPM 

KHN_lrn = makeLearner("classif.bdk", predict.type = "prob")  

KHN_mod = train(KHN_lrn, task1) 

KHN_task2 = makeClassifTask(data = Test1, target = "Status") 

KHN_Task.pred = predict(KHN_mod, KHN_task2, predict.type = "prob") 

getConfMatrix(KHN_Task.pred) 

KHN_ROCR_MLR = generateThreshVsPerfData(KHN_Task.pred, measures = 

list(fpr, tpr, mmce)) 

plotROCCurves(KHN_ROCR_MLR) 

KHN_ROCRconvert = asROCRPrediction(KHN_Task.pred) 

KHN_ROCR_ROCRcalc = ROCR::performance(KHN_ROCRconvert, "tpr", "f") 

ROCR::plot(KHN_ROCR_ROCRcalc, colorize=TRUE, 

print.cutoffs.at=seq(0,1,0.1), text.adj=c(-0.2,1.7)) 

KHN_auc = as.numeric(performance(KHN_ROCRconvert, "auc")@y.values) 

KHN_auc 

Table 8.20: The confusion matrix of the Big Data KHN CF-IPM 

 Predicted as failed firm (0) Predicted as existing firm (1) 

Actual failed firm (0) 135 20 

Actual existing firm (1) 18 145 

 

Figure 8.26: The ROC curve of the Big Data KHN CF-IPM 

The AUC value of the Big Data KHN CF-IPM = 0.9046900161 
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8.5.5  Summary of results of CF-IPMs developed 

Table 8.21 is a presentation of the comparison of the 13 Big Data CF-IPMs developed. 

These models (i.e. Big Data CF-IPMS) will be discussed in the next chapter. As explained 

earlier in subsection 8.5.3, the calculations for overall accuracy, specificity, sensitivity and, 

Types I and II error are based on the confusion matrix of each model. 
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Table 8.21: Summary of the results of the Big Data CF-IPMs developed 

S/N Tool/Algorithm True 

negatives 

True 

positives 

AUC Overall 

accurac

y 

Sensitivit

y 

Specificit

y 

Type I 

error 

Type II 

error 

1)  Big Data Linear Discriminant Analysis 116 119 0.82109 0.739 0.730 0.748 0.252 0.270 

2)  Big Data Quadratic Discriminant Analysis 110 117 0.82105 0.714 0.718 0.710 0.290 0.282 

3)  Big Data Logistic Regression 110 117 0.82105 0.714 0.718 0.710 0.290 0.282 

4)  Big Data Naïve Bayes 153 154 0.98961 0.965 0.945 0.987 0.013 0.055 

5)  Big Data Support Vector Machine 131 116 0.84987 0.777 0.712 0.845 0.155 0.288 

6)  Big Data K-Nearest Neighbour 150 152 0.98776 0.950 0.933 0.968 0.032 0.067 

7)  Big Data Artificial Neural Network 133 144 0.88039 0.871 0.883 0.858 0.142 0.117 

8)  Big Data Decision Tree 145 139 0.91326 0.925 0.883 0.968 0.032 0.117 

9)  Big Data Random Forest 155 160 1.00000 0.991 0.982 1.000 0.000 0.018 

10)  Big Data Bart Machine 154 158 0.99653 0.981 0.969 0.994 0.006 0.031 

11)  Big Data Adaptive Boosting 154 162 0.99996 0.994 0.994 0.994 0.006 0.006 

12)  Big Data Propositional Rule Learner 149 166 0.95895 0.940 0.922 0.964 0.036 0.078 

13)  Big Data Kohonen 135 160 0.90469 0.881 0.889 0.870 0.130 0.111 
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8.6 Chapter summary 

The development of the Big Data Analytics CF-IPMs is detailed in this chapter. The ‘R’ 

programming language was used to develop the CF-IPMs. The AWS EC2 and six ‘Spot 

Instances’ were used to set up the Big Data Analytics platform with Apache Spark 

computation engine.  Five of the Instances were run as Hadoop DataNodes and one as 

Hadoop NameNode which was subsequently configured as Spark Master. The data was 

uploaded to the DataNodes and split into model (i.e. CF-IPM) training (70%) and testing 

(30%) data. The variables to be used to develop the CF-IPMs were selected using a voting 

system on the results of 11 variables selection techniques including information gain, 

Kruskal test, minimum redundancy, mRMR, chi-squared, gain ratio, among others. 

The selected variables were used to develop 13 different Big Data Analytic CF-IPMs using 

Apache Spark with 13 predictive tools/algorithms including ANN, SVM, KNN, RF, AB, 

KNN, LR, LDA, QDA, NB DT, PRL and KHN. The details presented with each model 

include the execution code, the model (where physical model exist), the model processing 

(where ‘R’ displays it), confusion matrix, ROC curve, and AUC value. Finally, a summary 

table displaying the true negatives, true positives, AUC, overall accuracy, sensitivity, 

specificity, Type I error and Type II error, for each of the 13 models is given.  

A discussion of the results was presented in chapter nine. The results discussed include 

analytical results, the variables proven to affect insolvency of construction firms, and 

implication of the result on theory. 
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CHAPTER NINE 

9.0 MODEL SELECTION (RESULT) AND DISCUSSION 

9.1 Chapter introduction 

This chapter is a presentation of the results of the research alongside its discussion. The 

results discussed include those of the 13 developed Big Data construction firms insolvency 

prediction models (CF-IPM) and the factors produced by the best Big Data CF-IPM. Section 

9.2 is an explanation of how the best CF-IPM was selected based on three selection criteria 

that are important to the aim of the research: (i) accuracy, (ii) error type levels and (iii) 

transparency. Subsection 9.2.1 is used to explain how the best CF-IPMs based on accuracy 

were selected. Subsections 9.2.2 and 9.2.3 are used to explain how the best CF-IPMs based 

on error type levels and transparency were selected respectively.  Subsection 9.2.4 is a 

presentation of the best CF-IPM which is the Decision Tree CF-IPM. Section 9.3 is a 

description of the most important factors affecting (in)solvency of construction firms based 

on the factors (i.e. variables) produced by the best CF-IPM. Subsections 9.3.1 and 9.3.2 

were used to describe the quantitative and qualitative factors respectively. Section 9.4 is an 

explanation of the implication of the research on theory in terms of its support for a multi-

theory basis for the (in)solvency of construction firms. Section 9.5 is a summary of the 

chapter. 

 

9.2 Selection of the best big data CF-IPM  

Selecting the best out of a number of models is absolutely dependent on the intention of the 

developer which is based on the aim of the user. A financier, for example, will be mainly 

interested in the accuracy of a CF-IPM to decide whether or not to give a loan to the 

construction firm. In the research, the main target users were construction firm’s owners 

and the overall intention is to reduce the rate of failure of firms in the construction industry. 

Accuracy, transparency and a reduction in Type I error are thus vital to the selection of the 

best CF-IPM.  

The Big Data CF-IPM of choice in the research is selected based on the afore-mentioned 

three attributes. The summary of the results of the Big Data CF-IPMs developed are re-

presented here in Table 9.1 with the overall accuracy, sensitivity, specificity and error types 

expressed as percentages. Table 9.1 also gives the transparency condition of each of the Big 

Data CF-IPMS  
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Table 9.1: Summary of the results of the Big Data CF-IPMs developed and their transparency condition 

 Tool/Algorithm True  

-tives 

True 

+tives 

AUC Overall 

accura

cy (%) 

Sensiti

vity 

(%) 

Specifi

city 

(%) 

Type I 

error 

(%) 

Type 

II 

error 

(%) 

Trans

parent 

1.  Big Data Linear Discriminant Analysis (LDA) 116 119 0.82109 73.90 73.01 74.84 25.16 26.99 Yes 

2.  Big Data Quadratic Discriminant Analysis 

(QDA) 

110 117 0.82105 
71.38 71.78 70.97 29.03 28.22 

Yes 

3.  Big Data Logistic Regression (LR) 110 117 0.82105 71.38 71.78 70.97 29.03 28.22 Yes 

4.  Big Data Naïve Bayes (NB) 153 154 0.98961 96.54 94.48 98.71 1.29 5.52 No 

5.  Big Data Support Vector Machine (SVM) 131 116 0.84987 77.67 71.17 84.52 15.48 28.83 No 

6.  Big Data K-Nearest Neighbour (KNN) 150 152 0.98776 94.97 93.25 96.77 3.23 6.75 No 

7.  Big Data Artificial Neural Network (ANN) 133 144 0.88039 87.11 88.34 85.81 14.19 11.66 No 

8.  Big Data Decision Tree (DT) 145 139 0.94326 92.45 88.34 96.77 3.23 11.66 Yes 

9.  Big Data Random Forest (RF) 155 160 1.00000 99.06 98.16 100.0 0.00 1.84 No 

10.  Big Data Bart Machine BM) 154 158 0.99653 98.11 96.93 99.35 0.65 3.07 No 

11.  Big Data Adaptive Boosting (AB) 154 162 0.99996 99.37 99.39 99.35 0.65 0.61 No 

12.  Big Data Propositional Rule Learner (PRL) 149 166 0.95895 94.03 92.02 96.13 3.87 7.98 No 

13.  Big Data Kohonen (KHN) 135 160 0.90469 88.05 88.96 87.10 12.90 11.04 No 

No.: Number  -tives: negatives  +tives: positives 
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9.2.1 Model accuracy 

As with any target user, accuracy is vital for construction firm owners (or top management 

team) since too many wrong predictions make a CF-IPM unreliable and more or less useless 

for construction firms (i.e. the target users). For a test data set that contains absolutely equal 

number of failed and existing construction firms, a simple rough prediction stating that all 

the firms exist (or have failed) will give a 50% accuracy; an accuracy level unacceptable by 

the standards of any set of target users. In fact, it is a gamble level accuracy. A CF-IPM thus 

has to do much better with accuracy levels of well over 85%, or even 90%, if it has to 

influence key business decisions. The cost of misclassifying a single construction firm alone 

can be devastating. A construction firm wrongly classified as failing might end up truly 

failing simply because clients can avoid awarding contracts to such firm on the premise of 

the misclassification.  

Overall, more than 50% of the 13 CF-IPMs developed have an accuracy of over 90% on 

test data, depicting a very good model development process. Table 9.1 shows that CF-IPMs 

developed with ensemble AI tools (RF, AB and BM) are in particular extremely accurate 

with accuracy values of over 98%. RF CF-IPM and AB CF-IPM are more accurate than BM 

CF-IPM as they have over 99% accuracy. Although AB CF-IPM seems to be 0.3 percent 

more accurate the RF CF-IPM, the RF CF-IPM is the best model in terms of accuracy 

performance because its AUC value is 1.0, depicting a perfect model. The AUC value of 

1.0 implies that the RF CF-IPM is totally trusted to give a superb performance on any new 

data beyond the test data. The AB CF-IPM is however not a distant second best in terms of 

accuracy as its AUC value of 0.99996 is as close to 1.0 as it can get. All other artificial 

intelligence (AI) tools but SVM, ANN and KHN produced CF-IPMs with high accuracy 

(i.e. over 90% overall accuracy). Overall any of the seven CF-IPMs with high accuracy (see 

Table 9.1) can be selected in the research depending on how they satisfy the two remaining 

selection criteria. Although the Type I error of the all the highly accurate CF-IPMs (apart 

from RF CF-IPM) could be reduced by moving the threshold. This act will increase an 

already ‘not too satisfactory’ Type II error of some of the CF-IPMs (e.g. ANN, KHN, among 

others) hence there is no point doing this. 

The statistical tools’ CF-IPMs (i.e. LDA, QDA and LR) appear to be far behind the AI tools’ 

CF-IPMs apart from SVM which, alongside ANN, which inexplicably underperformed as 

they are widely known to be very accurate AI tools (Liang, Tsai, and Wu, 2015; Tseng and 

Hu, 2010; Yeh, Chi, and Lin, 2014, among others). These tools’ (i.e. SVM and ANN) 
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underperformance could probably be attributed to two elements of the CF-IPM development 

process in the research. One element is the tools’ possible inability to handle qualitative 

variables since all studies that proved their high accuracy used only quantitative variables. 

Such possibility will mean a reduction in the fitness of these tools to developing CF-IPMs. 

This is proclaimed because it has long been established that the fitness of any insolvency 

prediction model (IPM) to construction firms is dependent on its use of qualitative variables 

among other factors (Arditi, Koksal, and Kale, 2000; Hall, 1994; Horta and Camanho, 2013; 

Kale and Arditi, 1999; Kangari, 1988, among others). Another element is that SVM and 

ANN look like they underperformed because they were compared some stronger AI tools 

like RF and AB that use ensemble methods (see subsection 8.5.2). This is, however, less 

likely to be the case since other standard (i.e. non-ensemble) AI tools like KNN and NB 

returned results with a very high accuracy of over 90%. More so, the poor overall accuracy 

of SVM in particular barely distinguished it from statistical tools. Although KHN did not 

perform much better than ANN, it cannot be singled out for criticism like ANN and SVM 

since it is not popularly known for high accuracy in developing IPMs. In fact, it is not 

popular with IPM developers. 

 

9.2.2 Model error type levels 

The cost of error is another CF-IPM feature of great interest to construction firms and other 

potential users. Type I error, which is the costlier, happens when a failing firm is wrongly 

predicted as being healthy. The main cost of this error stems from the fact that it deceives a 

failing construction firm into thinking it is healthy thereby causing the top management 

team (TMT) to carry out operations as normal without seeking redress to the firm’s situation. 

This error type will thus not aid the reduction in the number of failing construction firms, 

as advocated by the research. In fact, it will increase the number in that, a construction firm’s 

TMT that senses the firm is in some troubles will be wrongly reassured that there is no 

problem after a Type I error misclassification. Type II error, on the hand, will give a healthy 

firm’s management a wrong feeling of impending failure thereby causing it to take remedial 

steps. Such steps can make the construction firm even stronger. Type II error, however, has 

its own cost though lesser than Type I. For example, although it is not a common practice, 

a construction firm’s management can easily decide to shut down in order to minimise loss 

if the firm is predicted to be failing (Kuo, 2013). Type II error can thus cause an existing 

construction firm to fail, though this happens very sparingly. 
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The CF-IPMs from eight tools performed well in terms of reducing Type I error. RF CF-

IPM leads the way with zero Type I error. Although AB’s Type I error is greater than its 

Type II, both errors are negligible at values less than 0.7%. In fact, the AB CF-IPM 

misclassified (or wrongly predicted) only one existing and failed firm and produced the 

joint second lowest Type I error along with BM CF-IPM. The CF-IPMS developed with 

NB, KNN, DT, and PRL all produced Type I error values of less than 4%, surpassing the 

10% acceptable error benchmark used in the proposed solution, making them very strong 

models.  

The statistical tools (i.e. LDA, QDA and LR) alongside SVM, ANN and KHN appear to 

be the poorest regarding reducing Type I error. CF-IPMs developed with each of these 

tools produced Type I error values of above 10%, depicting less than 90% prediction 

accuracy on failed construction firms. The statistical tools are in particular worse off with 

Type I error values of above 25% or even close to 30%. Of the poor tools mentioned, only 

LDA and SVM produced lower Type I error than Type II.   

 

9.2.3 Model transparency 

For construction firm owners, transparency is the most important feature of a CF-IPM after 

accuracy, especially for construction firms predicted to be failing. A non-transparent CF-

IPM with 100% accuracy will not do a construction firm predicted to be failing many 

favours after the prediction. Although the firm TMT will understand the imminent danger, 

they would not have been helped with identifying the problems. The firm will eventually 

set into panic mode, and making decisions will become extremely difficult. A transparent 

model will do a lot better by displaying the exact factors (or variables) causing problems for 

the construction firm, making the task of preventing the impending failure somewhat easier.  

Transparency of a model normally comes in one of two ways; either as an equation or as an 

interpretable network diagram. Of the 13 tools used to build the 13 CF-IPMs, only four are 

transparent enough to understand their results. These four include the three statistical tools 

and the DT CF-IPM. While the statistical tools CF-IPM produced equations, the DT CF-

IPM produced an interpretable network diagram (see Figure 8.20). The fact that the QDA 

and LR produced exactly the same model (see sub-subsections 8.5.4.2 and 8.5.4.3) is not 

too surprising since quadratic equation is also referred to as logistic difference equation. 

The remaining nine other tools CF-IPMS are not transparent enough to allow understanding 
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of result. Although ANN produced a network diagram, the diagram is not interpretable. This 

is why ANN, as well as SVM, are known as ‘black box’ tools. Although the ensemble 

classifier models (i.e. RF and AB CF-IPMs) are not transparent, their likely set of most 

important variables can be gotten from the CForest variable selection technique. This is 

because CForest is also an ensemble technique and the three (i.e. CForest, RF and AB) are 

most likely to select the same set of variables as the most important, given a group of 

variables. 

The coefficients assigned to variables in the equation produced by the statistical methods 

represent the importance of the variables. The higher the coefficient value of a variable, the 

more important that variable is. The equations of the statistical tools’ CF-IPMs, as presented 

in sub-subsections 8.5.4.1, 8.5.4.2 and 8.5.4.3show that the models found only quantitative 

variables to be important. While the coefficient assigned to all qualitative variables by the 

model were below 1.0 (negligible), the ones assigned to the best quantitative variables in 

the model ranged between 28 and 131. This proves the statistical models are unfit to produce 

very effective IPMs for construction businesses since they cannot handle qualitative 

variables which are very important for predicting insolvency of construction firms as 

highlighted earlier. This is probably why their results are exceptionally poor relatively. 

 

9.2.4 Decision tree CF-IPM as the Choice Model in the research 

The choice CF-IPM of the research is easily the DT CF-IPM. It is the only CF-IPM to satisfy 

the three selection criteria. It has over 90% overall accuracy (and an AUC value of 0.94), 

less than 5% Type I error, and high transparency. The model (i.e. DT CF-IPM) also made a 

judicious use of both the quantitative and qualitative variables (see Figure 9.1). RF and AB 

CF-IPMs could have easily been the joint best choices given their non-existent Type I error 

and extreme accuracies regarding AUC and overall accuracy. Their opacity, however, 

implies that they lack a feature (i.e. transparency), or cannot satisfy a criterion, that is of 

high importance to construction firm’s owners. They hence fall behind DT in selecting the 

overall best model. The DT model is re-presented here in Figure 9.1. Table 9.2 shows the 

criteria each of the 13 CF-IPMs satisfies. 



205 

 

Table 9.2: Selecting the model of choice for the research 

S/N Tool/Algorithm Selection criteria Selected 

model of 

choice 
High Accuracy 

(>90%) 

Low Type I error 

(<10%) 

Transpar

ency 

1.  Big Data LDA ✕ ✕ ✓ 
 

2.  Big Data QDA ✕ ✕ ✓ 
 

3.  Big Data LR ✕ ✕ ✓ 
 

4.  Big Data NB ✓ ✓ ✕ 
 

5.  Big Data SVM ✕ ✕ ✕ 
 

6.  Big Data KNN ✓ ✓ ✕ 
 

7.  Big Data ANN ✕ ✕ ✕ 
 

8.  Big Data DT ✓ ✓ ✓ ● 

9.  Big Data RF ✓ ✓ ✕ 
 

10.  Big Data BM ✓ ✓ ✕ 
 

11.  Big Data AB ✓ ✓ ✕ 
 

12.  Big Data PRL ✓ ✓ ✕ 
 

13.  Big Data KHN ✕ ✕ ✕ 
 

The DT model is quite easy to read. The most important factors affecting the (in)solvency 

of construction firms, as given by the DT CF-IPM in Figure 9.1 are R3, R5, R6, Q3, Q4, 

Q8, Q13. Having produced four qualitative variables and three quantitative variables, the 

model clearly displays the importance of qualitative variables to predicting insolvency of 

construction firms. These seven variables, produced by the DT CF-IPM, will be discussed 

in the next section. 

Interpreting the model, the structure indicates R6 to be the most important variable, but the 

variable cannot independently give a final prediction. The R3 and Q13 variables are the 

joint second variables and are totally dependent R6. The Q13 variable is, however, able to 

give a final prediction. So a construction firm that possesses an R9 value greater than 1.90 

simply needs to use the Q13 variable to predict its status (i.e. failing or healthy).  If a 

construction firm possesses an R9 value less than 1.90, then it goes through R3 and 

continues down the chain until a final prediction is made in the line of Q3 and Q4, or Q8 

andR5. The rest of the tree (i.e. the DT CF-IPM) can be interpreted as explained here.  
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Figure 9.1: The DT model 

 

9.3  Factors affecting (in)solvency of construction firms 

The factors affecting the (in)solvency (i.e. failure or survival) of a construction firm, based 

on the result of the selected CF-IPM are discussed in this section. Factors in this section 

refer to the variables produced by the DT CF-IPM. The factors are listed in Table 9.3. The 

qualitative factors (variables) are discussed based on some of their offspring factors gotten 

from factor analysis (see Table 7.5) 

Table 9.3: Factors affecting the (in)solvency of a construction firm 

Variable category Serial 

number 

Variable name 

Quantitative 

variables 

R3   Return on Total Assets (%) 

R5   Liquidity ratio  

R6   Solvency ratio (Asset-based) (%) 

   

 Q3 Top management characteristics 1 

Qualitative variables Q4 Strategic issues and external relations 

 Q8 Finance and conflict related issues 

 Q13 Industry contract/project knowledge 
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9.3.1 Quantitative factors 

Return on Total Assets: This is a measure of profitability of a firm. Profitability ratios 

are used to measure the entire accomplishment, or returns, which a construction firm’s 

management has realised(Edum-Fotwe, Price and Thorpe, 1996). Profitability is obviously 

an important factor for the solvency of any business including construction firms; after all, 

most businesses are started to make profit.  In Beaver’s (1966) pioneering work, the 

profitability ratio was the second most important ratio for insolvency prediction after cash 

flow ratios. The profitability factor’s contribution to insolvency prediction is very high 

(Altman 1968; Taffler 1982; Horta and Camanho 2013) hence it has featured vehemently 

in predictions models. According to Dimitras, Zanakis, and Zopounidis (1996), 

profitability reveals the viability of a firm.  

 A review of the CI literature clearly reveals that profitability is one of the most important 

financial factors to be considered if an effective IPM is to be built for construction 

companies (e.g. Bal, Cheung, and Wu, 2013; Chen, 2012; Edum-Fotwe et al., 1996; Horta 

and Camanho, 2013; Horta, Camanho, and Moreira da Costa, 2012; B. R. Kangari and Farid, 

1992; Kapliński, 2008; Mason and Harris, 1979; Russell and Zhai, 1996). According to 

Arditi et al. (2000), the single most common budgetary factor that has led to the failure of 

construction firms is insufficient profit. This is because of the extremely aggressive bidding 

with far from accurate estimates and the ‘one-off and custom- made production’ systems 

that are synonymous with the construction industry (CI). Horta et al. (2012) noted that 

innovation is key to the profitability of a construction firm.  

Ideally, the higher the profitability ratio of a construction firm, the more solvent the firm is 

taken to be. However, developers using the multi-discriminant analysis (MDA) statistical 

tool to develop a CF-IPM need to be careful as the tool sometimes wrongfully assign a 

negative sign to the profitability ratio (see Abidali and Harris, 1995; Mason and Harris, 

1979). This problem is commonly known as the counter-intuitive sign problem and has been 

suggested to be a result of highly collinear variables 

 

Liquidity ratio: Liquidity is generally concerned with a construction firm’s “ability to meet 

its short-term commitments” (Edum-Fotwe et al. 1996: p.190). It has to do with how quickly 
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a firm can turn its assets into liquid cash. The liquidity factor is a very important financial 

factor required to measure the solvency of construction firms and is consequently common 

in CF-IPM studies (Altman 1968; Kangari and Farid 1992; Koksal and Arditi 2004; 

Kapliński 2008; Horta et al. 2012; Bal et al. 2013; Horta and Camanho 2013). Liquidity 

factor’s importance is evidenced in the interests many stakeholders like material suppliers, 

site employees and staff in general have in it. The interest is because liquidity indicates to 

what extent a company can meet its commitments without ‘liquidating the non-liquid assets’ 

(Horta et al. 2012; Horta and Camanho 2013); inability to cover such liabilities which 

generally leads to insolvency. Generally, the more liquid a construction firm is, the healthier 

(Edum-Fotwe, Price and Thorpe, 1996).  

It has however been noticed that liquidity ratios are not stable over a long period and are 

thus not effective for early warning systems that are developed to predict potential failure 

from over four years before actual failure [Bilderbeek (1977) as cited by Altman (1984)]. 

Liquidity might be poor for early prediction but is very important for construction firms as 

cash availability is vital for construction projects. 

Evaluation of liquidity depends on how organisational assets and liabilities are classified 

(Saleem, Ur and Rehman, 2011); such classification can greatly affect the insolvency 

prediction of a certain construction firm. Imagine an asset reclassification that allows more 

assets of a construction firm to be classified as liquid! The firm suddenly becomes more 

solvent without any changes at all. 

Solvency ratio: This is the same as leverage ratio and, from its name, is obviously important 

to insolvency prediction. Leverage, as opposed to equity, refers to the amount of borrowed 

money that is used to finance a firm. According to McGurr and DeVaney (1998)  and 

Dimitras et al., (1996), solvency/leverage ratios are the most vital discriminants and vary 

by industry characteristics (Saleem, Ur and Rehman, 2011). They are deemed the most 

powerful indicators of insolvency prediction for construction firms (Edum-Fotwe et al. 

1996). Typically, the lesser the leverage (ratios) of a firm, the better, although there is no 

maximum value that depicts automatic insolvency of a construction firm  

As opposed to liquidity, leverage ratios measure long-term solvency and thus contribute 

greatly to early warning systems for the construction firms (Horta and Camanho 2013). 

Because construction work is normally paid for only when they have been completed, 

usually on a monthly basis or longer when delayed, construction contractors are exposed to 

high debt (leverage) normally acquired to pay subcontractors and suppliers. TRhese debts 



209 

 

make construction firms more susceptible to failure from leverage (Arditi, Koksal and Kale, 

2000). 

 

9.3.2 Qualitative factors 

Top management (TM) characteristics 1: This includes TM flexibility (i.e. non-

autocratic), creativity or innovation, support to staff, competence, motivation, among others 

(see Table 7.5 for offspring factors). Autocracy leads the race in this class and is 

synonymous with an executive with too much power or a person holding multiple executive 

positions, all which cause failure of construction firms. A very powerful dual-position 

CEO/chairman, nullifying the all-important managerial power of the chairman being able 

to sack a defective CEO, is a common feature of failed construction firms (Abidali and 

Harris 1995; Hall 1994). On the reverse, more flexible executives with each holding a single 

role will bring about a balanced power, ensuring there are checks and balances to cut any 

excesses from any angle. A more balanced executive system will help improve the solvency 

of a construction firm as each TM delegation can perform its duty under the supervision of 

another. For example, a construction firm with a balanced board without bias for particular 

personnel will ensure construction project managers are being monitored and cannot make 

unsupervised/unjustified decisions (Pearce and Zahra 1992). In such a system, construction 

project managers will be aware that their jobs can be on the line if a project is deviating 

from plan, and will thus put in the right effort to ensure projects go according to plan 

The indecisiveness and inflexibility of a construction company’s owner/TM lead to not 

realising the available opportunities and threats to the business. When business is slow, a 

construction firm specialised in pile foundation installation, for example, should be able to 

decisively identify opportunities of excavation projects and use its excavators for executing 

such projects. There is a need for the owner/TM of construction companies to be always 

alert to alternative opportunities. Failure to do this will lead to no reliable strategy formed 

to avert or take threats or opportunities respectively.  

Demotivation of construction project managers, even where there is no autocracy or 

extremely powerful CEO, can be a root cause of insolvency of a firm (Abidali and Harris 

1995). The same thing applies to the general workforce of a construction firm where the 
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absence of experienced or motivated project personnel can cause poor project execution and 

lead to company failure(Hall, 1994). 

Strategic issues and external relations: The offspring factors here include conflict 

/litigation/legal issues, high immigration and delay of payments to subcontractors, among 

others.   The construction industry’s high tendency of having poorly worded contracts, 

increased project cost and duration, poor quality project delivered, among others, make 

conflict synonymous with construction projects (Jaffar, Tharim and Shuib, 2011). Conflict 

can thus stand as another word for construction projects; its root causes, according to various 

studies, are numerous (Kumaraswamy, 1997; Jaffar, Tharim and Shuib, 2011). Most 

construction conflicts usually result in litigation. A firm with continuous problems of 

litigations and legal costs as well as fines and damages payments will probably fail in the 

long run (Mitkus and Mitkus 2014)  

Economic recession is probably the most severe market force for construction firms 

insolvency as identified by interview respondents and in other studies (e.g. Arditi et al., 

2000; R. Kangari, 1988; Kapliński, 2008; Ng, Wong, and Zhang, 2011). For example, an 

interview respondent said, 

“I understand property investment and always buy houses and lands and 

sell them later. Brother, this brings more money to do the building [i.e. 

construction]. The stupid problem with economy [recession] caused all my 

property to go down [i.e. devalue]. Brother, why is America problem our 

problem (hisses)” 

 Although economic recession does not happen too frequently, its effect, when it does, can 

be devastating. Virtually everyone in the country is hit somehow and plans for new build, 

renovations, expansions, among others, are widely cancelled if they are not absolutely 

necessary. The result is a higher contractor/projects ratio. Bigger construction firms that 

lose out on the few bids available in their class suddenly become hawkish and encroach on 

the projects small construction firms would normally take, putting them in more danger of 

shutting down. This makes firms focus a lot on their competitors as a means of survival. A 

small firm, for example, will do anything to know how much its competitor has put in for a 

bid and will want to beat it all cost, even if it is at a minor loss, with the hope of repeat 

business and starving the competitor to death. One potential solution to the economic 

recession effect is to continuously seek proper information (Marcella and Illingworth 2012) 

as there are usually hints about such events (economic recession), then create a strategic 
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plan (Mintzberg’s perspective). With this, owners can proactively take decisive actions e.g. 

closing firm down early before any losses in the worst case. 

On ‘immigration’, the challenge highlighted by interview respondents was the open EU 

border that allows people from other EU countries to work unrestrictedly in the UK. The 

major complaint was that some probably unregistered skilled workers were able to take 

especially small renovation and refurbishment jobs for unbelievably low prices.  On the 

other hand, cheap construction labour immigrants favour big construction firms as 

employing or contracting them helps reduce their cost/wages (Beaverstock and Hall 2012). 

The immigration problem is somewhat similar to that of too many new firms springing up 

as they both represent threat of new entrants (see section 9.4).  

Delayed payment to subcontractors is highly related to the leverage and liquidity levels of 

a construction firm. As noted earlier, because construction work is normally paid for only 

when they have been completed, usually on a monthly basis or longer when delayed, 

construction contractors are exposed to high debt (leverage) typically acquired to pay 

subcontractors (Arditi, Koksal and Kale, 2000). If a contractor reaches its debt limit and 

consequently make very late payments to subcontractor/suppliers, there will be a distrust 

from the subcontractors/suppliers and future collaborations can be highly bumpy. In the 

worst cases, subcontractors/suppliers could decline to offer services or request for payment 

before or during service execution. Both cases can make things more difficult for a 

construction firm and eventually lead to its insolvency.  

Finance and conflict related issues: The offspring factors here include the percentage of 

firm’s earnings used in construction operations, cash flow and submission of very low bids 

because of fierce competition, among others. A construction firm is substantially reliant 

upon the success of its construction projects hence for a construction firm to be more 

solvent, a reasonable size of the firm’s cash flow must be employed in operations with a 

reduced cash in investment (Arditi, Koksal and Kale, 2000; Chen, 2012). This is because of 

the cash flow conditions of firms in the CI where: 

 Client only pays for completed work that has been financed by the firm, usually on 

a monthly basis 

 A percentage (normally 10%) of payment is held back by client for potential 

omissions and defects 
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It is thus almost impossible for firms to recover expenses, not to mention make profit, before 

completion of projects. A robust cash flow plan for operations is thus necessary to avoid 

extreme leverage, being cash strapped or having a negative cash flow, all of which risk the 

survival of a construction firm (Kale and Arditi 1999). The challenge is to achieve a positive 

cash flow from project(s) since a negative cash flow increases risk of its survival 

The more successful bids a construction firm gets, the more it grows and the more solvent 

it becomes; lack of successful bids is tantamount to failure (Bal, Cheung and Wu, 2013). 

Bidding in an area of expertise ensures a competitive low bid thus a firm must have an, or 

identify its, area of strength where it is unique over competitors. The importance of 

competitiveness cannot be over emphasised. However, when the economy is not booming, 

and the ratio of available projects to construction firms is very low, competitions get extreme 

and construction firms get to submit unrealistically low bids, leading to terminal losses 

(Arditi, Koksal and Kale, 2000). 

Industry contract/project knowledge: The possibility of a construction firm piling up 

business knowledge and skills through organisational learning is largely dependent on its 

age(Arditi, Koksal and Kale, 2000).  Such learning over time, and the resulting knowledge 

and skills, help a construction firm to identify favourable markets (e.g. foundation 

specialisation, residential housing, road construction, among others) for the resources it 

possesses; create a positive image; establish the important partnership with construction 

materials suppliers and subcontractors; build positive relationship with financial institutions 

and potential clients; easily adapt to latest technologies [e.g. Building information 

modelling (BIM) software; drones on large construction sites, and so on], among others, 

(March, 1991), all of which their combined absence can lead to a firm’s failure. 

The problem of ‘collecting receivables’ is a big one, especially for small construction, firms 

(Arditi, Koksal and Kale, 2000). This is because construction firms are known for carrying 

out services in advance of payment hence a poor debt collection system can be quite 

detrimental (Arditi, Koksal and Kale, 2000). From the stories of respondents, it appears 

collecting payment for work done has been a ‘pain in the neck’ for small construction firms 

especially. A potential solution might be to check pattern of collections and analyse what 

has led to quick collection of receivables in the past. The successful patterns can then be 

retained while ferocious effort is made to dumping elements that have led otherwise. 
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9.4 Implication to theory 

The result clearly indicates the multi-theory basis of construction firm’s insolvency. The 

theory underpinning the offspring factors of the qualitative factors (i.e. variables) were 

given in Table 6.6. A careful look at the table shows how the most important factors to 

construction firms insolvency prediction, as discussed in the prior section, are underpinned 

by internal related, external related, and combinatorial theories (see chapter two). 

For instance, when the economy is in recession like in the case of ‘the 2008 global financial 

crises’, the ratio of available projects to construction firms is very low. The inevitable failure 

of some construction firms simply as a result of this poor economic situation will then 

materialise; this failure is underpinned by the organisation ecology theory. The poor 

economy, in this case, can be regarded as the environment (ecology) which is naturally 

picking the firms that will fail or survive. 

The immigration problem (‘high immigration levels in UK’) is somewhat similar to that of 

too many new firms springing up as they both represent threat of new entrants. When there 

is no barrier to entry (Porter’s theory), as is the case in the construction industry, and anyone 

or any firm can decide to start construction works, then the market can be easily over flooded 

with firms, leading to tipped balances, fierce competition and insolvencies (Burtonshaw-

Gunn, 2009). Using strategy as ploy (Mintzberg’s 5P’s theory) to distract or deter 

competitors, for example reporting unregistered workers who avoid tax might increase 

likelihood of survival. This sort of ploy is quite applicable in this case since the main 

complaint from the interview respondents is that of skilled Europeans (non-UK) who offer 

very cheap works because they are unregistered and do not pay taxes or national insurance. 

The immigration problem could be further viewed as an organisation ecology theory 

underpinned issue with the mass immigration actively changing the environment to a harsh 

one for small construction firms that focus on small jobs that can be easily done by a single, 

or two, skilled person(s). The same environment will be supportive of big construction firms 

as they get the opportunity to employ skilled Europeans for a cheaper salary. 

The submission of very low bids due to fierce competition is very much underpinned by the 

adaptationist perspective through organisational learning (or experience). This is because 

the bid submitted by a firm is highly dependent on its experience. This assertion can be 

supported from various positions. One position is that an inexperienced firm will have less 

understandings of cost of materials and especially processes and can thus unknowingly turn 

in an unrealistically low bid.  Another is that firms who have continually been unsuccessful 
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in their bids will keep driving the total cost of their subsequent bids down out of desperation 

to secure a contract. The firm uses its experience from previously submitted bids to 

continually reduce prices on the items in a bid on a relative basis, partially ignoring loss 

problems. Finally, a very experienced firm could submit a very low bid simply because it 

understands the industry well and knows how it will make money from other activities 

attached to the project but not directly stated in the bid. In the last two cases, the construction 

firms are simply adapting to the environment of the construction industry in order to survive. 

The problem of ‘unsuccessful collection of payment for completed works’ is a big one as 

highlighted in the previous section. The problem occurs usually because small firms do not 

possess the resources (resource based view) required to force clients to pay e.g. powerful 

lawyers, or the luxury to arrange for a stringent payment process that will ensure non-

default. They need to find quick solutions to this common construction industry issue i.e. 

they need to adapt quickly or they will fail (adaptationist perspective).  

The case of less flexible TMT/CEO with high resistance to change normally leads to 

innovation killing. Such a behaviour of TMT, underpinned by the upper echelon theory, can 

lead to rejection of the contemporary resources (resource based view) that can increase the 

competitive advantage of a construction firm. For example, a construction firm’s TMT that 

rejects, or rejected, the adoption of Building Information Modelling (BIM) as a 

contemporary construction process will now be ineligible for all UK government contracts. 

This ineligibility will be as a result of the UK government BIM Mandate policy which came 

into force in April 2016. If a high percentage of such a construction firm is from the 

government, then it is staring insolvency in the face. 

Overall, there is no singular theory that seems to perfectly explain the holistic (in)solvency 

situation of construction firms as demonstrated in the prior paragraphs. Neither is there is a 

singular group of theories (external, internal or combinatorial) that does so. The implication 

of the research on theory is that it clarifies the need to amalgamate and refine various 

relevant parts of existing theories, or existing group of theories, to fully or almost fully 

explain the (in)solvency situation of construction firms.  
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9.4 Chapter summary  

The results of the CF-IPMs developed in chapter eight were presented and discussed in 

this chapter. The best model was selected based on three selection criteria that are 

important to the aim of the research: accuracy, error type levels and transparency. The DT 

CF-IPM appeared to be the only model that satisfied the three criteria to very high levels. 

Although RF and AB CF-IPMs possessed exceptional accuracy and extremely low Type I 

error, they did not satisfy the important transparency criterion 

The quantitative and qualitative factors (i.e. variables) affecting (in)solvency of 

construction firms as produced by the DT CF-IPM include: Return on Total Assets (R3), 

Liquidity ratio (R5), Solvency ratio (Asset-based) (R6), Top management characteristics 1 

(Q3), Strategic issues and external relations (Q4), Finance and conflict related issues (Q8) 

and Industry contract/project knowledge (Q13). Each of these factors was discussed in 

relation to construction firms and the construction industry 

The most important factors to construction firms’ insolvency prediction, as produced by the 

DT CF-IPM, are underpinned by the internal related, external related, and combinatorial 

theories, discussed in chapter two. Overall, no singular theory was found to flawlessly 

explain the holistic (in)solvency situation of construction firms. The result supports the 

multi-theory perspective to the insolvency of construction firms. The implication of the 

research on theory is that it clarifies the need to amalgamate and refine various sections of 

existing theories, or existing group of theories, to fully or almost fully explain the 

(in)solvency situation of construction firms.    

Chapter ten contains a comprehensive conclusion to the research and the contributions of 

the study. The conclusions are based on the five objectives of the study
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CHAPTER TEN 

10.0 CONCLUSIONS 

10.1 Chapter introduction 

This chapter is a conclusion of the research. Section 10.2 is a presentation of the summary 

of findings by study objectives and the conclusions made based on the findings. Subsections 

10.2.1 through 10.2.4 are presentations of findings’ summary and conclusions for objectives 

one through four of the research respectively. Section 10.3 is a highlight of the contributions 

of the research. While the contributions to academic knowledge are given in subsection 

10.3.1, contributions to industry are given in subsection 10.3.2. Sections 10.4 and 10.5 are 

presentations of limitations of the research and future research opportunities respectively. 

Section 10.6 is a summary of the chapter 

 

10.2 Summary of findings 

10.2.1   Objective One: To identify qualitative variables that contribute to 

solvency/insolvency of construction firms through literature review and fieldwork. 

The identification of qualitative variables was through systematic reviews of past CF-IPM 

and construction firm failure studies, as well as through interviews with past owners and 

directors of failed and existing construction firms. The result from these processes were 

used to formulates questionnaires with ratings that eventually represented the qualitative 

variables. The qualitative variables discovered covered areas including management/owner 

characteristics, firm characteristics, among others. 

It can be concluded that the importance of the qualitative variables to the CF-IPMs 

developed cannot be overemphasized since the overall best CF-IPM (i.e. DT CF-IPM) used 

a total number of seven variables, four of which were qualitative. Further, four (Q8, Q4, 

Q13 and Q10, in that order) out of the ten leading variables of the most accurate models [i.e. 

random forest (RF) and adaptive boosting (AB) CF-IPMs] were also qualitative. Although 

RF and AB, which are ensemble classifiers and produced CF-IPMs with extreme accuracy, 

are not transparent, their likely set of most important variables were gotten from the CForest 

variable selection technique (see Figure 8.7 for variable ranking by CForest technique). This 

is because CForest is also an ensemble technique. 
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Since the variables used by the highly accurate CF-IPMs and the overall best CF-IPM (i.e. 

DT CF-IPM) included a reasonable number of qualitative variables, it can be assuredly 

concluded that qualitative variables stand as essential for the development of CF-IPMs. This 

did not come as a big surprise since many studies, as highlighted in chapter three, have 

already established that the most valid insolvency prediction model (IPM) for construction 

firms cannot be developed without qualitative variables. The onerous task of obtaining data 

for these variables, compared to getting financial ratios from financial statements, however, 

explains why they have been left out of most studies.  

 

10.2.2   Objective Two: To identify the quantitative variables (i.e. financial 

ratios) that are commonly reported by large, medium, small and micro 

construction firms. 

Information on construction firms’ financial ratios, which represented quantitative 

variables, were gotten from FAME (Forecasting Analysis and Modelling Environment) 

Bureau Van Dijk UK financial database. A thorough study of the financial statements of 

numerous large and MSM construction firms hosted on the database revealed that there are 

some financial ratios commonly reported by all sizes of construction firms. Out of the 29 

standard financial ratios provided by the database, 11 were recognized to be commonly 

reported by all categories of construction firms (i.e. large, MSM, failed and existing).   

It can be concluded that the significance of the quantitative variables to the CF-IPMs 

developed cannot be overstated because the overall best CF-IPM (i.e. DT CF-IPM) utilised 

three quantitative variables as part of its seven variables for development. Further, 

quantitative variables constituted more than five (R10, R8 R6, R1, R2 and R4, in that order) 

of the ten significant variables utilized by the highly accurate CF-IPMs (see Figure 8.7 for 

variable ranking by CForest technique). In fact, some CF-IPMs like the ones developed with 

statistical tools [i.e. LDA, QDA and LR) recognised only financial variables as being 

important  

Considering the accuracy levels achieved by the CF-IPMs developed, it is concluded that 

the possiblility of developing one robust and valid CF-IPM for all sizes (i.e. large and MSM) 

of construction firms is high and real.  This is against the popular perception that only firms 

of similar sizes should be used as a sample for a CF-IPM. In fact, this combination of sizes, 

with more MSM firms in the sample, is more representative of the size distribution in the 
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construction industry hence, the CF-IPMs developed here can be concluded to be more 

representative and are more valid.  

Revelation of the importance of the quantitative variables is quite expected because 

financial ratios have long been established to be very good predictors of insolvency for all 

types of firms including construction.  Although their exclusive use for CF-IPMs is 

questionable, their general validity was never in doubt and that has been reiterated by the 

results here.  

 

10.2.3  Objective Three: To select the best combination of quantitative and 

qualitative for the CF-IPM. 

To achieve the third objective, 11 advanced techniques were used to select the best 

combination of quantitative and qualitative variables.  The results from the techniques were 

different, explaining why there is a disparity in the variables selected in different past studies 

that used differing variable selection techniques. A voting system was used to select the 

final variables for model development. The high-performance levels exhibited by most of 

the CF-IPMs makes it concludable that the final combination of variables selected to 

develop them were clearly the best. 

Since the overall best and most accurate CF-IPMs utilised both the qualitative and 

quantitative variables in achieving their results, it can be concluded that the best IPMs for 

construction firms can only be developed using a combination of qualitative and quantitative 

variables as advocated by a number of studies (see chapter three on variables). The 

following facts further reinforce this conclusion: 

(i) The only past CF-IPM study (Hall, 1994) that utilised only qualitative variables 

failed in its attempt 

(ii) that all the CF-IPMs studies that utilised mainly quantitative variables (i.e. the 

statistical tools’ CF-IPMs) all performed sub-optimally 

(iii) that no variable selection technique selected all variables of a particular type, 

quantitative or qualitative, before selecting the other. 
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10.2.4  Objective Four: To use advanced well-tuned AI tools and the best 

contemporary methods to ensure dependability of the CF-IPM  

Thirteen tools were used to build the CF-IPMs including ten well-tuned AI tools. This 

caused some computation intensity challenges which were dealt with and concluded on in 

subsection 10.2.5. Results showed that the more popular AI tools, i.e. support vector 

machine (SVM) and artificial neural network (ANN), underperformed along with statistical 

tools, when compared to the more advanced AI tools. Although high performances from 

ANN and SVM are well documented in IPM studies, those performances were based on 

exclusive use of financial ratios as variables. In addition, the counterpart poor statistical 

tools’ CF-IPMs in the proposed solution clearly did not attach any importance to the 

qualitative variables. It can thus be concluded that contemporary AI tools (e.g. RF, AB, 

among others) are best for developing CF-IPMs since only they adequately handled 

qualitative variables which are instrumental to the validity of CF-IPMs. It is also concluded 

CF-IPM sudies need to start exploring more AI tools since over 20 of them are available. 

Overall, ensemble classifiers (i.e. RF and AB) produced the most accurate models but have 

no transparency 

With no CF-IPM performing overly well on predicting one class (i.e. failed or existing class) 

over the other, it can be concluded that the use of data with nearly equal dispersion brought 

about unbiased CF-IPMs. The use of contemporary measures like receiver operator 

characteristic (ROC) curve and area under curve (AUC) accuracy values aided successful 

comparison of closely performing CF-IPMs from two tools:  RF and AB (see section 9.2). 

The model validation/testing process ensured the CF-IPMs were correctly tested while error 

type consideration ensured that models were evaluated based on the aim of the study rather 

than just overall accuracy. For instance, despite having a slightly higher overall accuracy, 

the AB CF-IPM was ranked below the RF CF-IPM because while the RF CF-IPM had zero 

percent Type I error (the costlier error), the AB CF-IPM had 0.65%. It can thus be concluded 

that the use of contemporary methods was essential to building high performing CF-IPMS, 

and selection of the best model. 

10.2.5  Objective Five: To solve the high computation intensity problem of 

large data and tuned AI tools by using Big Data Analytics to develop the CF-IPM. 

The data used to build the CF-IPMs contained 14 variables of more than a thousand sample 

construction firms. A CF-IPM development attempt with highly tuned ANN, using this data 
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on a normal computer, had to be aborted after two days without success. It can be recollected 

that Du Jardin's (2010)  attempt with 500 firms’ data took a duration of five days with 30 

computers. Despite these facts, the same data of over a thousand construction firms was 

‘eventually’ used to develop highly tuned sophisticated CF-IPMs in ‘seconds’, simply by 

using Big Data Analytics. It can thus be concluded that a highly tuned, sophisticated and 

very reliable CF-IPM with massive data can now be developed easily and quickly by using 

a contemporary analytics technology: Big Data Analytics. It can also be concluded that Big 

Data analytics is useful for, applicable to, and can help, construction firms and the 

construction industry. 

 

10.3 Contributions of study 

10.3.1 Contribution of Study to Academic Knowledge 

One of the greatest contributions of the research is that it has demonstrated how Big Data 

Analytics can be used to develop CF-IPM. It has been successfully shown in the research 

that a very large amount of data can be used with highly tuned AI tools to develop IPMs for 

construction firms in seconds rather than in days. 

Analysing narratives of respondents, including top management team members and owners 

of large and MSM construction firms, the research has contributed a number of qualitative 

variables for developing IPMs for construction firms to the CF-IPM literature. The study 

has also shown how quantitative and qualitative variables can be combined to develop IPMs 

for construction firms. 

Another contribution of the research is the establishment of the fact the LDA, QDA, LR, 

ANN and SVM are unfit for developing CF-IPMs if the all-important step of combining 

qualitative and quantitative variables is to be taken. This is a very important contribution 

since most of these tools are quite common with CF-IPM studies. It must, however, be 

emphasised that this conclusion is only valid when qualitative variables are utilised as ANN 

and SVM are known to perform very well when using only quantitative variables. 

Further, the research has exposed this area of research to more powerful AI tools such as 

RF, AB and Bart machine, among others. This will enlighten other authors and expose them 
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to the fact that there are many powerful AI tools out there other than the ones that are 

commonly used in CF-IPM or general IPM studies. 

 

10.3.2 Contribution of Study to Practice 

There are two major contributions of the research to the industry. The first is the capability 

of the CF-IPMs developed in the research to identify potential failure relatively early. This 

is because of the qualitative variables involved in their development. It is well known that 

financial ratios only reflect failure of a firm at the point of death of the firm. In fact, financial 

ratios are a late reflection of earlier managerial decisions which are only measured with 

qualitative variables. Qualitative variables thus improve early predictive capabilities of CF-

IPMs. 

The second major contribution is the CF-IPMs capability to carry out predictions for large 

and MSM firms, as against previous CF-IPMs which focus on just larger, and maybe 

medium sized, firms because of the completeness of their financial statements. This is very 

important for the construction industry as it consists mainly of micro and small construction 

firms compared to a relatively few medium and large construction firms. The CF-IPMs also 

used qualitative variables, giving a better chance of usage to small and micro construction 

firms who may have incomplete financial statements. 

 

10.4 Limitations of study 

Every research comes with some form of limitations and the research is not an exemption. 

The chief limitation of the research is the inability to recognise construction firms that have 

falsely declared bankruptcy or falsified insolvency conditions. It is almost practically 

impossible to recognise such construction firms because perpetrators normally understand 

bankruptcy/insolvency laws well enough to lawfully declare bankruptcy or be declared 

insolvent. The trouble with the potential inclusion of such construction firms in the data for 

the research is that many of its untampered with features (i.e. variables) could easily 

represent those of an existing/healthy construction firm. Its placement among insolvent 

construction firms would thus be wrong and could affect accuracy levels of the CF-IPMs.   
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A less impacting limitation of the research is the oversampling of the 531 questionnaire data 

to achieve another 531 in order to have data of 1062 firms. There is no doubt that having 

data from 1062 firms directly would be more realistic and better. However, high-level 

oversampling techniques, like the synthetic minority over-sampling technique (SMOTE) 

algorithm employed in the research, have been proven over the years to be very effective. 

Further, the fact that the CF-IPMs had very high accuracy levels predicting classes of real 

and oversampled firms is a testament to the effectiveness of the technique. In addition, the 

oversample questionnaire data was paired with real financial data, thereby improving 

legitimacy of each oversampled construction firm data.   

 

10.5 Future research opportunities 

Based on the process and output of the research, one area that future research should look 

into is the possibility of developing a form of qualitative variables document which will 

serve as equivalent to financial statement. This document can then be completed annually 

by construction firms making IPMs for construction firms much easier to develop. 

The research also successfully proved the multiple theory basis of insolvency of 

construction firms. It gives the opportunity for future studies to create a holistic theory, from 

the established set of theories, underpinning the failure of construction firms.  

 

10.6 Chapter summary 

It is concluded in this chapter that the utilisation of both quantitative and qualitative 

variables by the best performing CF-IPMs shows the extreme importance of combining both 

types of variables to insolvency prediction of construction firms. The high-level 

performances achieved by many of the CF-IPMs is proof that it is very possible to build one 

robust and valid model for all category sizes (i.e. large and MSM) of construction firms. 

The inclusion of more MSM firms in the research’s sample makes it more representative of 

the construction industry. From the results, it can further be concluded that LDA, QDA, LR, 

ANN and SVM are all unfit for developing IPMs for construction firms since they cannot 

handle qualitative variables which are instrumental to the validity of IPMs for construction 

firms.  
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The research has contributed some qualitative variables to the CF-IPM research area and 

has clearly established that there are many other high-performing AI tools (e.g. RF and Bart 

machine among others) that are not yet being explored in the CF-IPM research area. The 

contribution to industry is the early predictive capability of the CF-IPMs and their industry-

wide usefulness in terms of being relevant to all sizes of construction firms  

The chief limitation of the research is the inability to recognise construction firms that have 

falsely declared bankruptcy or falsified insolvency. A less impacting limitation of the 

research is the use of oversampling of the 531 questionnaire data to achieve another 531 in 

order to have data of 1062 firms. Future research should look into is the possibility of 

developing a form of qualitative variables document which will serve as equivalent to 

financial statement. They should also seek to create a holistic theory, from the established 

set of theories, underpinning the failure of construction firms. 
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 APPENDIX A 

A1: Example questionnaire addressed to a top management team member of a 

failed construction firm 

 

 

Address  

Dear (name of identified respondent) 

Factors Affecting Failure/Insolvency of UK Construction Firms 

I am a doctoral researcher at the Bristol Enterprise Research and Innovation Centre (BERIC) 

in University of the West of England (UWE) under the supervision of Professor Lukumon 

Oyedele. I am researching the factors that contribute to the failure/insolvency of 

construction firms and this questionnaire is created to provide the necessary information to 

complete my research successfully. This questionnaire specifically requires responses from 

especially owners, directors or management level staff of existing and/or insolvent (or 

dormant, failed, etc.) construction firms. I believe you have the experience required to 

complete this questionnaire because you have been identified as a former director of the 

now defunct (name of failed construction firm) and a current director of the existing (name 

of existing construction firm where respondent is currently a TMT member) through a 

financial database. I am thus using this opportunity to plea with you to please help me 

complete this questionnaire in relation to (name of failed construction firm). I assure and 

guarantee you that all information provided will be kept confidential. A free return envelope 

with my supervisor’s (Professor Lukumon Oyedele) address as correspondent address has 

been enclosed with this questionnaire. Thank you very much for your anticipated 

contribution. 

Hafiz Alaka 

Doctoral Researcher | Bristol Enterprise, Research and Innovation Centre (BERIC) 

University of the West of England, Bristol 

Email: Hafiz2.Alaka@live.uwe.ac.uk  

Tel: +44(0)7574819428 | +44 (0)7535018889  

Professor Lukumon O. Oyedele 
Director of Bristol Enterprise, Research and Innovation Centre (BERIC) 

Bristol Business School 

University of the West of England, Bristol 

Frenchay Campus 

Bristol BS16 1QY 

E-mail: L.Oyedele@uwe.ac.uk 

mailto:Hafiz2.Alaka@live.uwe.ac.uk
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Tel: +44 (0) 117 32 83443 

 

Section A –  Respondent’s Details 

Please mark answers with an ‘x’ where tick boxes are provided 

1. Name of construction firm your answers are based on (confidentiality is assured).   

(name of failed construction firm). 

2. Number of employees that works/worked for firm:  1-10         11-50       

 51-250             over 250 

3. Total number of years of construction industry experience of respondent  

 1-5         6-10          11-15        16-20        21-25        26-30                           

31-35        36-40             over 40 

4. Position(s) respondent holds/held in the firm (tick as many as applicable):  

 Owner  CEO/MD/President/CE   Chairman   Director   

 Board member                        Senior manager             Project manager  

 others (please specify)    ___________________ 

5. Highest Qualification of respondent: 

 A-Level  HND   Degree  Masters   PhD     

 others (please specify) __________ 

6. How many branch offices does/did the firm have?  ________________________   

 

 

Section B –  Top Management Characteristics 

Please note: CEO = Chief executive officer/President/MD/Chief executive (or owner, 

where the owner is the CEO) of the firm 

1. Age of CEO?        16-20  21-30  31-40  41-50     51-70     

 above 70 

2. Gender of CEO  Male   Female   Others  

3. Nationality of CEO (if not sure, then fill in the continent CEO):     

_____________________________________________ 

 

4. Highest Qualification of CEO 

 A-Level  HND   Degree  Masters   PhD        

 others (please specify) __________ 

5. Does CEO have any form of management training?  Yes   No 

6. Number of years CEO has spent with firm  

 1-5         6-10          11-15        16-20        21-25        26-30       

 31-35     36-40         over 40 

7. Total number of years of construction industry experience of CEO  
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 1-5         6-10          11-15        16-20        21-25        26-30      

  31-35    36-40         over 40 

8. Profession of CEO  

 Builder            Civil/Structural engineer       Architect  

 Quantity surveyor    Land surveyor         Project manager      

 Accountant      Others (please specify) ___________________ 

 

 

 Section C –  Senior Management and Finance Questions 

 Please answer Y = Yes or N = No for the following questions Y N 

C1. The firm is/was owned by a single person   

C2. The owner is/was the same person as the chief executive 

(CEO)/president/Managing Director (MD) of the firm 

  

C3. The firm has/had a board of directors   

C4. If yes, how many directors does/did the firm have?  

C5. The firm took over of another firm at some point in time   

C6. If yes, was the take over as a result of financial or other types of distress?   

C7. The firm has/had a clear bidding strategy   

C8. There is/was a clear sub-contractor selection process   

C9. The firm has/had a long term strategic goal   

C10. The firm is/was specialized in a particular trade or service   

C11. Has the range of trade/services broadened over time   

C12. The firm change its main specialization of construction work (e.g. from 

public to private project, or from building residential homes to commercial 

stores, etc.) at some point in time   

  

C13. The owner is/was on a fixed salary   

C14. There is/was a dedicated financial director   

C15. The financial director is/was performing another role at the same time   

C16. The company account is/was clearly separated from any personal accounts   

C17. Was account management fully computerized   

C18. The firm consistently run/ran negative cash flow   

C19. The firm went through an expansion programme less than 2 years ago or 

within 2 years before closing down 
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Section D –  Proportion of firms’ professionals with high qualifications/skills and 

involvement 

Please indicate the percentage proportion/fraction of the following factors in your firm, 

giving actual or approximate answers. The scale of relevance is 1-5 where: 

1 = 0-20% 2 = 21-40% 3 = 41-60% 4 = 61-80% 5 = 81-100% 

 What fraction of the following factors exists/existed in the 

firm  

Factor 

Fraction 

1 2 3 4 5 

D1. Percentage of passive members in the board of directors      

D2. Percentage of directors that worked in the firm      

D3. Percentage of directors that had construction background      

D4. Percentage of directors that had management/administrative 

background 

     

D5. Percentage of directors educated to at least a degree level      

D6. Percentage of personnel educated to at least a degree level        

D7. Percentage of works usually subcontracted during projects        

D8. Percentage of successful bids        

D9. Percentage of firm’s earnings invested in properties      

D10. Percentage of firm’s earnings used in construction operations      

D11. Percentage of professional workers that were registered with 

professional bodies 

     

 

 

Section E –  The effect of external, industrial and firm characteristic factors 

Please ignore questions that do not apply to the firm.  Please indicate how the following 

factors have affected the firm, giving actual or approximate answers. The scale of 

relevance is 1-5 where: 

1 = Very negatively  2 = Negatively     3 = No real effect 4 = Positively 5 = 

Very Positively 

 How are/have any of the following factors affecting/affected 

your firm? 

 

Effect of 

Factor  

1 2 3 4 5 

E1. The 2008 global financial crises [Economic recession(s)]      

E2. High immigration levels in UK      

E3. Influx of firms into the industry, (from across the country and 

outside the country) 

     

E4. Fluctuation in construction material costs      

E5. Construction industry culture      

E6. Construction industry environmental sustainability agenda      
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E7. Type/Quality of workforce available for employment      

E8. Newness [i.e. how did newness (first four years) affect the 

performance of the firm in its early years?] 

     

E9. The company size      

E10. Fraud (if fraud ever happened, how it affected the firm?)      

E11. Natural disasters (whether directly on the firm or its projects)      

 

Section F –  Frequency of occurrence of some project related factors 

Please ignore questions that do not apply to the firm.  Please mark the frequency of 

occurrence of the following factors in your firm. The scale of relevance is 1-5 where: 

1 = Not at all 2 = Rarely 3 = Sometimes 4 = Fairly often  5 = 

Very often 

 How often do/did the following factors happen in the firm? Factor 

Frequency 

1 2 3 4 5 

F1. Very late collection of payment for completed works      

F2. Unsuccessful collection of payment for completed works      

F3. Get cash strapped on projects (cash flow)      

F4. Reach debt limit with bank/financier      

F5. Renegotiate loan terms      

F6. Make profit on projects      

F7. Produce complete financial statements       

F8. Bid for jobs outside firm’s specialty      

F9. Executed project cost more than the bidding price used to win 

contract  

     

F10. Submit very low bids because of fierce competition      

F11. Rely on government projects      

F12. Rely on private projects      

F13. Firm win major bids it submitted      

F14. Firm completes project within stipulated time frame      

F15. Firm completes project within bidding budget      

F16. Firm executes project to time and cost without conflict      

F17. Internal conflict arises within the firm       

F18. Internal conflict within the organization gets uncomplicatedly 

resolved 

     

F19. Firm gets project through referral from another customer      

F20. Expansion of firm       
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 How often do/did the following factors happen in the firm? Factor 

Frequency 

1 2 3 4 5 

F21. Conflicts with clients on projects      

F22. Conflicts with subcontractor in terms of subcontractors not 

showing up, performing low quality works. 

     

F23. Delay of payments to subcontractors.      

F24. Conflicts with other major parties on projects      

F25. Conflict /litigation/legal issues / dispute arise from completed 

projects 

     

F26. Losing out in conflict /litigation/legal issues /dispute cases       

F27. Customers offer repeat business      

F28. Repeated use of particular sub-contractor(s)      

F29. Materials are supplied to firm on credit      

F30. Debts payment to suppliers are delayed      

F31. Legal advice sorted for contracts taken      

F32. Problems with labour cost      

F33. Execution of multiple projects simultaneously      

F34. Bid for projects outside main geographical area of comfort (city, 

county, region, etc.) 

     

F35. Register accidents on its site      

F36. Replace key personnel      

F37. Execute a highly financially challenging project      

 

Section G –  The characteristics and performance level of the firm, its management 

and its staff 

Please note: CEO = Chief executive officer/President/MD/Chief executive (or owner, 

where the owner is the CEO) of the firm 

Please ignore questions that do not apply to the firm. Please mark the extent to which the 

firm and/or is staff exhibit(ed)/perform(ed) each of the following factors, giving actual or 

approximate answers. The scale of relevance is 1-5 where: 

1 = Very low 2 = Low  3 = Moderate 4 = High  5 = Very high 

 Please rate the performance of the firm and its staff with 

regards to the following factors? 

Performance 

Level 

1 2 3 4 5 

G1. Enthusiasm of the project management team      

G2. Level of overall competence of top management team      
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 Please rate the performance of the firm and its staff with 

regards to the following factors? 

Performance 

Level 

1 2 3 4 5 

G3. The willingness of the top management team to take risk       

G4. The motivation of the CEO/directors      

G5. The tolerance of the CEO      

G6. The decisiveness of the CEO/directors      

G7. Leadership support of CEO/directors to employees      

G8. The creativity/innovation of the CEO/directors      

G9. The integrity/transparency of the CEO/directors      

G10. The flexibility of the CEO/directors      

G11. The reliability/dependability of the CEO/directors      

G12. The construction industry knowledge of the CEO/directors of 

the firm 

     

G13. The CEO’s/directors’ ‘response to feedback’      

G14. Commitment of project management team      

G15. Level of firm’s response to market change      

G16. The effectiveness of the financial director      

G17. The profit levels of the firm      

G18. The liquidity level of the firm      

G19. Firm’s reception to latest technologies      
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Please write any additional comments in the box below (You can staple additional 

sheet if need be) 

 

                                                                                                                                                      

 


