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Abstract

Double-diffusive Hadley-Prats flow with a concentration based heat source is inves-
tigated through linear and non-linear stability analyses. The resultant eigenvalue
problems for both theories are solved numerically using Shooting and fourth order
Runga-Kutta methods, with the critical thermal Rayleigh number being evaluated
with respect to various flow governing parameters such as the magnitudes of the
heat source and mass flow. It is observed, in the linear case, that an increase in the
horizontal thermal Rayleigh number is stabilising for both positive and negative
values of the solutal Rayleigh number. In non-linear case, a destabilizing effect is
identified at higher mass flow rates. An increase in both the heat source and mass
flow results in destabilisation.
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Energy stability analysis.

1 Introduction

Double-diffusive convection in a fluid-saturated porous media has received much

attention during the last few decades, due to its many real-world applications such

as underground energy transport (Nagano et al. [1]), food processing, oil recovery, the

spreading of pollutants etc. (Bendrichi and Shemilt [2]; Reddy et al. [3]) and multiple
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environmental processes (Xi and Li[4] and Kwon et al. [5]). A collection of comprehensive

theories and experiments on double diffusive convection in porous media are presented

in Ingham and Pop [6], Vafai [7], Nield and Bejan [8].

Of particular interest to the present study are investigations focusing on the phe-

nomenon of double-diffusive convection in a shallow horizontal layer of a porous medium

subject to inclined thermal and solutal gradients at both walls. Concerning the mono-

diffusive case, non-homogeneity on the temperature conditions at both walls induces a

basic flow (Hadley flow), which was first studied by Weber [13], and extended by Nield

[14]. Nield et al. [15] further studied double diffusive Hadley flow due to inclined thermal

and solutal gradients in a fluid saturated horizontal porous medium. An extension of this

work with horizontal mass flow is due to Manole et al. [16]. If the flow is subjected to

horizontal mass flow along with inclined thermal gradients, the resultant flow is known

as Hadley-Prats flow (Barletta and Nield [17]). All the aforementioned works are related

to linear stability analysis, to determine the critical values of the problem parameters

and the nature of the instability in a well packed, low permeability porous media, so

that the flow in the porous medium can be represented by Darcy flow model.

In the Lyapunov sense, linear stability theory gives sufficient conditions for in-

stability, where the disturbance of the basic flow is unstable, whereas non-linear theory

provides a sufficient condition for the disturbance to be asymptotically stable. Several

problems in non-linear stability analysis using energy method are discussed by Kaloni

and his contributors (Guo and Kaloni [9]; Kaloni and Qiao [10]; Kaloni and Qiao [11]).

A collection of available studies for non-linear theory is given by Straughan [12]. The

development of both linear instability and energy stability theories allows for the assess-

ment of potential regions of subcritical instabilities in which convection could commence

before the linear instability threshold is reached.

The motivation of the present work is to investigate double-diffusive Hadley flow

in porous media induced by the active absorption of radiation, as demonstrated by
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Krishnamurti [18] for a viscous fluid in the absence of Hadely circulation and Hill [19]

for flows through porous media. Their model has received much attention in recent years

as it provides an accurate model of cumulus convection as it occurs in the atmosphere.

In addition to exploring a linear theory for the double-diffusive Hadley-Prats flow with

concentration based internal heat source, we develop a complementary energy theory.

The use of energy theory is the context of double-diffusive convection has been utilised

extensively including Carr [20], Guo and Kaloni [9] and Hill [19]. We organize the paper in

the following manner: section 2 constructs the governing equations of the model under

consideration; in sections 3 & 4 we discuss the basic-state solution and perturbation

equations; in sections 5 & 6 linear and non-linear analyses are performed, respectively,

with the results and conclusions being discussed in sections 7 and 8, respectively.

2 Governing Equations

An infinite shallow horizontal fluid saturated porous layer with height d, confined

between two isothermal and isosolutal fixed plates with concentration based internal heat

source Q∗ is considered. The Cartesian coordinates are chosen such that the z∗-axis is

vertically upwards and there is a net flow along the direction of x∗-axis with magnitude u0

as given in Fig. 1. A uniform concentration difference ∇S and a temperature difference

∇θ are maintained between the lower and upper plates. Flow in the porous medium

is governed by the Darcy law and the Oberbeck-Boussinesq approximation is invoked

(such that the density variations are assumed to be sufficiently small to be neglected

everywhere except in the body force term), and density ρ∗f of the fluid is given by

ρ∗f = ρ0 [1− γS (S∗ − S0)− γθ (θ∗ − θ0)] ,

where S∗ is the concentration, θ∗ is the temperature, γS and γθ are the volumetric

solutal and thermal expansion coefficients in the porous medium, and ρ0 is the density

at concentration S0 and temperature θ0. The governing system is given by the Darcy
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velocity in porous media, the concentration equation and the temperature equation such

that

∇∗· q∗ = 0 , (1)

µ

K
q∗ +∇∗P ∗ − ρ∗fg0k = 0, (2)

φ

(
∂S∗

∂t∗

)
+ q∗· ∇∗S∗ = Dm∇∗

2

S∗ (3)

(ρc)m

(
∂θ∗

∂t∗

)
+ (ρcp)f q

∗· ∇∗θ∗ = km∇∗
2

θ∗ +Q∗ (S∗ − S0) , (4)

where Eq. (1) is the incompressibility condition. The boundary conditions are given by

z∗ = −1

2
d : w∗ = 0, S∗ = S0 +

4S
2
− βSxx

∗ − βSyy
∗, θ∗ = θ0 +

4θ
2
− βθxx∗ − βθyy∗,

z∗ =
1

2
d : w∗ = 0, S∗ = S0−

4S
2
−βSxx

∗−βSyy
∗, θ∗ = θ0−

4θ
2
−βθxx∗−βθyy∗. (5)

Here q∗ = (u∗, v∗, w∗) is the velocity, P ∗ is the pressure, µ is the viscosity, Dm is the

solutal diffusivity, km is the thermal conductivity, g0 is the gravity acceleration and k

is the unit vector in the z∗-direction. The imposed horizontal components of solutal

and thermal gradients to be (βSx , βSy) and (βθx , βθy), respectively. K and φ are the

permeability and porosity of the medium, respectively. The subscripts f and m refer to

the fluid and porous medium, respectively. cp and c are the specific heats of the fluid

and solid components. Here (ρcp)f and (ρc)m are volumetric heat capacities for the fluid

and solid phases. Following the scaling of Weber [13] and Nield [14], we define

x =
x∗

d
, y =

y∗

d
, z =

z∗

d
, t =

αmt
∗

ad2
, q =

dq∗

αm
, P =

K (P ∗ + ρ0g0z
∗)

µαm
,

θ =
Rz (θ∗ − θ0)

4θ
, S =

Sz (S∗ − S0)

4S
, Q =

Q∗d2Rz4S
kmSz4θ

(6)

where

αm =
km

(ρcp)f
, a =

(ρc)m
(ρcp)f

, Sz =
ρ0g0γSKd4S

µDm

, Rz =
ρ0g0γθKd4θ

µαm
. (7)
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Here, Sz and Rz denote the vertical solutal and thermal Rayleigh numbers, respectively.

The horizontal solutal and thermal Rayleigh numbers are defined as follows

Sx =
ρ0g0γSKd

2βSx

µDm

, Sy =
ρ0g0γSKd

2βSy

µDm

,

Rx =
ρ0g0γθKd

2βθx
µαm

, Ry =
ρ0g0γθKd

2βθy
µαm

, (8)

with Le = αm

Dm
being Lewis number and the non-dimensional net flow along the horizontal

direction is defined as the Peclet number M = u0d
αm

. Under these dimensionless variables,

the governing Eqs. (1) - (4) take the following non-dimensional form

∇· q = 0 , (9)

q +∇P −
(

1

Le
S + θ

)
k = 0, (10)(

φ

a

)
∂S

∂t
+ q· ∇S =

1

Le
∇2S, (11)

∂θ

∂t
+ q· ∇θ = ∇2θ +QS, (12)

with boundary conditions

z = −1

2
: w = 0, S =

Sz
2
− Sxx− Syy, θ =

Rz

2
−Rxx−Ryy,

z =
1

2
: w = 0, S = −Sz

2
− Sxx− Syy, θ = −Rz

2
−Rxx−Ryy. (13)

From Eqs. (9) - (12) we observe that all of the solutal and thermal Rayleigh numbers

appear in the boundary conditions (13).

3 Steady-State Solution

Governing equations (9)-(12), subject to boundary conditions (13) admit a basic

state solution of the form

Ss = S̃ (z)− Sxx− Syy, θs = θ̃ (z)−Rxx−Ryy,

us = u (z) , vs = v (z) , ws = 0, Ps = P (x, y, z) , (14)
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where

u = −∂P
∂x

, v = −∂P
∂y

,

0 = −∂P
∂z

+
[

1

Le

(
S̃ (z)− Sxx− Syy

)
+ θ̃ (z)−Rxx−Ryy

]
,

1

Le
D2S̃ = −uSx − vSy, D2θ̃ +QS = −uRx − vRy. (15)

Here D = d
dz

and M =
∫ 1/2
−1/2 u(z) dz is the net flow in the horizontal direction and∫ 1/2

−1/2 v(z) dz = 0. Peclet number M gives the strength of flow along the horizontal

direction. We obtain the basic state solution in the form of flow velocity, concentration

and temperature in the medium such that

us =
(
Sx
Le

+Rx

)
z +M, vs =

(
Sy
Le

+Ry

)
z, ws = 0, (16)

S̃ = −Szz + A, θ̃ = −Rzz +B, (17)

where A, B, λ1 and λ2 are given by

A =
λ1

24

(
z − 4z3

)
+
MSxLe

8

(
1− 4z2

)
,

B =
(λ2 −QSz)

24

(
z − 4z3

)
− MRx

8

(
4z2 − 1

)
+
λ1Q

24

(
z5/5− z3/6 + 7z/240

)
− QMLeSx

8

(
z2/2− z4/3

)
+

5MSxLeQ

384
,

λ1 = Sx
2 + Sy

2 + Le (RxSx +RySy) , λ2 = Rx
2 +Ry

2 +
RxSx +RySy

Le
. (18)

The flow given by Eq. (16) is referred to as the Hadley-Prats flow.

4 Perturbation Equations

Introducing a perturbation of the form q = qs + q
′
, S = Ss + S

′
, θ = θs + θ

′

and P = Ps +P
′
, and substituting these perturbations into the dimensionless governing

equations (9) - (12) yields

∇· q′ = 0 , (19)

q
′
= −∇P ′ +

(
S ′

Le
+ θ

′
)

k, (20)

6



(
φ

a

)
∂S

′

∂t
+ qs· ∇S

′
+ q

′ · ∇Ss + q
′ · ∇S ′ =

1

Le
∇2S

′
, (21)

∂θ
′

∂t
+ qs· ∇θ

′
+ q

′· ∇θs + q
′· ∇θ′ = ∇2θ

′
+QS

′
, (22)

where

∇Ss = −
(
Sx, Sy, Sz − Ã

)
, ∇θs = −

(
Rx, Ry, Rz − B̃

)
,

Ã =
λ1

24

[
1− 12z2

]
−MSxLez,

B̃ =
(λ2 −QSz)

24

(
1− 12z2

)
+
λ1Q

24

(
z4 − z2

2
+

7

240

)
− QMLeSx

24

(
3z − 4z3

)
−MRxz .

The boundary conditions are

w
′
= 0, S

′
= 0 θ

′
= 0, at z = ±1

2
, (23)

which state that there is zero perturbation in velocity, concentration and temperature

at the upper and lower plates.

5 Linear Stability Analysis

The linearized perturbation equations are derived by neglecting the products of

disturbances from Eqs. (19) - (22), yielding

∇· q′ = 0 , (24)

q
′
= −∇P ′ +

(
S
′

Le
+ θ

′
)

k, (25)

(
φ

a

)
∂S

′

∂t
+ us

∂S
′

∂x
+ vs

∂S
′

∂y
− Sxu

′ − Syv
′
+
(
DS̃

)
w
′
=

1

Le
∇2S

′
, (26)

∂θ
′

∂t
+ us

∂θ
′

∂x
+ vs

∂θ
′

∂y
−Rxu

′ −Ryv
′
+
(
Dθ̃

)
w
′
= ∇2θ

′
+QS

′
, (27)

where

DS̃ = −Sz +
λ1

24

[
1− 12z2

]
−MSxLez,

Dθ̃ = −Rz+
(λ2 −QSz)

24

(
1− 12z2

)
+
λ1Q

24

(
z4 − z2

2
+

7

240

)
−QMLeSx

24

(
3z − 4z3

)
−MRxz .

(28)
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Since the resulting system is linear and autonomous, we may seek solutions of the normal

modes form

[
q
′
, S
′
, θ
′
, P
′]

= [q (z) , S (z) , θ (z) , P (z)] exp {i (kx+ ly − σt)} (29)

and eliminate P from Eq. (25), to give

(
D2 − α2

)
w +

(
S

Le
+ θ

)
α2 = 0, (30)

(
1

Le

[
D2 − α2

]
+ i

φ

a
σ − ikus − ilvs

)
S + i

1

α2
(kSx + lSy)Dw −

(
DS̃

)
w = 0, (31)

(
D2 − α2 + iσ − ikus − ilvs

)
θ +

i

α2
(kRx + lRy)Dw −

(
Dθ̃

)
w +QS = 0, (32)

where i =
√
−1 and α =

√
k2 + l2 is the overall wave number. Equations (30) - (32)

are subject to w = S = θ = 0 at both the plates z = ±1
2

and constitute an eigenvalue

problem for vertical thermal Rayleigh number Rz with α, φ, Le, Sx, Sy, Sz, Rx, Ry, σ, k

and l as parameters. The critical value of Rz is located by minimising over α. The term

longitudinal disturbances are characterized by k = 0. Similarly, transverse disturbances

are characterized by l = 0. Critical thermal Rayleigh number for the linear theory is

given as Rz = minαRz. Numerical results for the linear theory are presented in section

7.

6 Non-Linear Stability Analysis

To obtain global non-linear stability bounds we multiply equations (20), (21) and

(22) by q
′
, β
′

and θ
′
, respectively, and integrate over the periodicity cell, denoted by Ω,

which yields

||q′ ||2 = 〈θ′w′〉+ 〈β ′w′〉, (33)

Leφ

2a

d||β ′ ||2

dt
= −〈

(
q
′· ∇Ss

)
β
′〉 − ||∇β ′||2, (34)

1

2

d||θ′||2

dt
= −〈

(
q
′· ∇θs

)
θ
′〉 − ||∇θ′||2 +QLe〈β ′θ′〉, (35)
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where β
′
= S

′

Le
, and 〈· 〉 denotes the integration over Ω and || · || represents L2(Ω) norm.

We obtain the following energy functional from Straughan [12]

E (t) =
ξ

2
‖ θ′ ‖2 +

ηLeφ

2a
‖ β ′ ‖2 (36)

where ξ > 0 and η > 0 are coupling parameters. Eqs. (33) - (35) and Eq. (36) can be

put in the form

dE

dt
= I − D, (37)

where

I = −ξ〈
(
q
′· ∇θs

)
θ
′〉 − η〈

(
q
′· ∇Ss

)
β
′〉+ 〈θ′w′〉+ 〈β ′w′〉+ ξLeQ〈β ′θ′〉, (38)

D = η||∇β ′ ||2 + ξ||∇θ′ ||2 + ||q′||2. (39)

Defining

RE = max
H

( I
D

)
(40)

where H is the space of all admissible solutions to equations (19) - (22), we have

dE

dt
≤ −D (1−RE) . (41)

The classical Poincaré inequality ||q′ − q
′
Ω||Lp(Ω) ≤ C||∇q′||Lp(Ω), where Ω is a open

connected locally compact Hausdorff space and use of q
′
Ω = 1

|Ω|
∫

Ω q
′
(y) dy yields

dE

dt
≤ −2π2 (1−RE) min{1, a

Leφ
}E. (42)

The inequality (42) guarantees that E (t) → 0 at least exponentially as t → ∞ for

RE < 1. Since E(t) does not contain the kinetic energy term for the velocity ||q′ ||2, we

apply the arithmetic-geometric mean inequality to Eq. (33) to yield

||q′||2 ≤ 2
(
(||β ′ ||2 + ||θ′ ||2

)
. (43)

From Eqs. (43) and (36) observed that the decay of ||q′|| is implied by the decay of E (t)

and hence the system is stable for RE < 1. The corresponding Euler-Lagrange system
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for RE is

ξθ
′∇θs + ηβ

′∇Ss −
(
θ
′
+ β

′)
k + 2REq

′
= ∇π′ , (44)

w
′ − ηq′ · ∇Ss + LeQξθ

′
+ 2REη∇2β

′
= 0, (45)

w′ − ξq′ · ∇θs +Qξβ
′
z + 2REξ∇2θ

′
= 0. (46)

Here π
′

is Lagrange multiplier introduced because q
′

is divergence free. While deriving

the Eqs. (44) - (46), we let χ = (q
′
, β
′
, θ
′
) and L = I − RED. Then the corresponding

Euler-Lagrange system can be written as

∇χi
L− ∂

∂xj
∇χi

◦L = 0 for i = 1, 2, 3; j = 1, 2, 3

where ′◦′ denotes the differentiation with respect to z. We consider Rz as the eigenvalue

and estimate the maximum variation of Rz with optimal choice of η and ξ. From Eqs.

(44) - (46) we can derive

∂Rz

∂η
=

2 (1 + ξRz)
[
RE (1− ηSz) ||∇β

′ ||2 + LeQξSz〈θ
′
β
′〉+ 〈Ãβ ′w′〉 −ΨS

]
ξ2 (1 + ηSz)

(
2RE||∇θ′ ||2 + 〈B̃θ′w′〉 − LeQ〈θ′β ′〉 −ΨR

) , (47)

∂Rz

∂ξ
=
RE (1− ξRz) ||∇θ

′||2 + LeQξRz〈θ
′
β
′〉+ 〈B̃θ′w′〉 −ΨR

ξ2
(
2RE||∇θ′ ||2 + 〈B̃θ′w′〉 − LeQ〈θ′β ′z〉 −ΨR

) , (48)

where

ΨS = Sx〈β
′
u
′〉+ Sy〈β

′
v
′〉, ΨR = Rx〈θ

′
u
′〉+Ry〈θ

′
v
′〉.

We also note that if Sx = Sy = 0, Rx = Ry = 0 and Q = 0, then

∂Rz

∂η
=

(1 + ξRz) (1− ηSz) ||∇β
′ ||2

ξ2 (1 + ηSz) ||∇θ′ ||2
, (49)

∂Rz

∂ξ
=

(1− ξRz)

2ξ2
, (50)

which are also reported in Guo and Kaloni [9].

Equations (44) - (46) are solved for the cricial value RE = 1. To evaluate this

system numerically, we take the curl curl of Eq. (44) and further use the third component
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of the resulting equation, to find that

ξRx
∂2θ

′

∂x∂z
+ ξRy

∂2θ
′

∂y∂z
+ ξ∇2

1

[(
−Rz + B̃

)
θ
′]

+ ηSx
∂2β

′

∂x∂z
+ ηSy

∂2β
′

∂y∂z
+ 2∇2

1w
′

+ η∇2
1

[(
−Sz + Ã

)
β
′]−∇2

1

(
θ
′
+ β

′)− 2

(
∂2u

′

∂x∂z
+

∂2v
′

∂y∂z

)
= 0,

(51)

where ∇2
1=
(
∂2

∂x2
+ ∂2

∂y2

)
. Applying normal modes

[
q
′
, β
′
, θ
′
, π
′]

= [q (z) , β (z) , θ (z) , π (z)] exp (i (kx+ ly)) , (52)

with (Sx, Sy) · (k, l) = 0; (Rx, Ry) · (k, l) = 0, in Eqs. (44), (45), (46), (51) and eliminate

u, v and π to obtain the following eigenvalue problem

D2w = α2w + α2ηh1β + α2ξh2θ, (53)

D2β = −h1w + h3β − ξh4θ, (54)

D2θ = h2w − ηh4β + h5θ, (55)

where

h1 =
1

2

[
−Sz + Ã− η−1

]
, h2 =

1

2

[
−Rz + B̃ − ξ−1

]
, h3 = α2 − η

4

[
S2
x + S2

y

]
,

h4 =
1

4

[
RxSx +RySy + 2LeQη−1

]
, h5 = α2 − ξ

4

[
R2
x +R2

y

]
,

and the corresponding boundary conditions are

w = β = θ = 0 at z = ±1

2
. (56)

The critical vertical thermal Rayleigh number is obtained through

Rz = max
ξ

max
η

min
α
Rz (ξ, η, α,Q,M,Le,Rx, Ry, Sx, Sy, Sz) . (57)

Numerical comparison between the linear and non-linear theories are presented in the

next section.
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7 Results and Discussion

Our goal in this study is to bring out the effect of a concentration based heat

source on the double-diffusive Hadley-Prats flow in porous media. We apply the numeri-

cal scheme which is proposed by Barletta and Nield [21] to solve the eigenvalue problem

(30) - (32) for linear and (53) - (55) for non-linear cases, with respect to the boundary

conditions (56), in which, we treat vertical thermal Rayleigh number (Rz) as the eigen-

value. Here, the critical Rz is defined as the minimum of all Rz values as α is varied in

both linear and non-linear cases. In our computations, we consider both cases Sz < 0

and Sz > 0, where Sz > 0 represents the concentration on upper boundary being higher

than that of lower boundary, with Sz < 0 being the reverse. In the present study, we

set φ/a = 1, Sy = Ry = 0 and Le = 10 as this is roughly representative of experiments

with sugar or salt systems. Barletta and Nield [21] concluded for the Hadley-Prats flow,

that the preferred mode of the disturbance is the non-oscillatory longitudinal mode.

Hence, the results presented here are for k = 0 and σ = 0. In Table 1, the computation

results of the critical values of Rz are illustrated for various values of Sz in the absence

of horizontal Rayleigh numbers. In this table, Rzl indicates critical Rz in linear case and

Rze indicates the non-linear critical Rz. And also, αl indicates the critical wave number

in linear case and αe indicates the critical wave number in non-linear case. From the

Table 1, it is observed that when Rx = Ry = Sx = Sy = 0, Q = 0 and M = 0 the

present results are in very good agreement with the existing results in the literature,

due to Guo and Kaloni [9]. For an increase in the value of Sz from negative to positive,

the critical value of Rz is reduced in the both linear and non-linear cases seen in Table

1. This indicates that the system becomes unstable as Sz increases.

In Figs. 2 to 7, we used fixed notation to represent linear and non-linear results.

In these figures solid lines represent the linear stability results and the dashed lines

represent the non-linear stability results.

The response of critical values of Rz as a function of horizontal mass flow M for
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both positive and negative values of Sz is shown in Figs. 2 and 3, respectively. In the

absence of a heat source (Q), the linear results shows that increasing the mass flow in

the medium destabilizes the convection. When Q is introduced, and for smaller values

of M , the flow is initially stabilized, but once the magnitude of M takes higher values,

this causes the destabilization of the flow seen in Figs. 2 and 3. Increasing the value of Q

reduces the critical values of Rz with increasing mass flow in the linear case for Sz > 0

and Sz < 0. However, in the case of non-linear analysis, in the absence of Q, critical

values of Rz are reduced with increasing the values of M, which is in contrast to the

stabilization phenomenon observed in the linear case. From Fig. 3, when Sz = −3 and M

increases, then the critical values of Rz decreases irrespective of heat source (Q) for both

linear and non-linear cases. It means that the flow is destabilises as mass flow increases

when Sz = −3. It is clearly observed that, when Q = 0 (i.e. there is no concentration

based internal heat source) the difference between the linear and non-linear critical values

increases with an increase in M , whereas, in the presence of a heat source (Q > 0), it

is observed that this difference is reduced in Figs. 2 and 3. This indicates that, as the

heat source increases, the sub-critical region is reduced. In all cases the critical value of

Rz decreases with an increasing mass flow (M). This demonstrates that increasing the

strength of M destabilises the system.

Figures 4 and 5 explore the variation of the critical values of Rz with horizontal

temperature gradient Rx for positive and negative values of Sz, respectively, with differ-

ent combinations of heat source (Q) and the horizontal mass flow (M). The linear theory

demonstrates that an increase in the horizontal thermal Rayleigh number stabilizes the

convection process, however introducing the mass flow in the critical values of Rz are

reduced irrespective of heat source, hence for a fixed Q, mass flow causes stabilization

in the linear case. Even for the non-linear case, in the absence or presence of the heat

source and mass flow, increasing the Rx makes the flow more stable in Fig. 4. When Sz

is negative from Fig. 5 it shows that the linear instability curves are similar to the linear
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observations made for positive Sz. However, this is contradicted in the non-linear results

associated with positive Sz in the presence of M and Q at higher values of Rx. In this

case, Rz decreases as a function of Rx with increasing mass flow in the medium, and

also the flow is stabilised at higher values of Rx irrespective of Q and M seen in Fig.

5. The results indicate that both the linear and non-linear results undergo quantitative

changes subject to horizontal thermal and solutal gradients along with the presence and

absence of heat source and mass flow variations.

The response of critical values of Rz as a function of Le is visualized in Figs. 6

and 7 for positive and negative values of solutal Rayleigh number Sz, respectively, in the

absence and presence of M at Q = 0. In the absence of horizontal mass flow (i.e. when

M = 0) the critical value of Rz increases as Le increases and hence the flow become

more stable. However, in the presence of M , the critical value of Rz is reduced by an

increasing Le. The fall in the critical Rz in the non-linear theory is further enhanced

by increasing Le as compared to linear theory when M is present seen for Sz > 0 and

Sz < 0. The regions of potential sub-critical instability are small for M = 0 but increase

substantially (as Le increases) in the presence of mass flow. In both cases for Sz = 3

and −3, the stability characteristics for linear and non-linear results differ considerably.

8 Conclusion

In the present article, we have explored the effect of concentration based heat

source on the thermosolutal Hadley convection in porous media in the presence of mass

flow, utilising linear and non-linear stability analysis. A comparison between the lin-

ear stability thresholds and energy stability thresholds is made by treating the vertical

component of the thermal Rayleigh number as an eigenvalue. In both cases the vertical

thermal Rayleigh number is evaluated for different combinations of the flow governing

parameters. The results indicate the following conclusions:

• In the presence of a mass flow effect, the flow is destabilising in both the linear and

14



non-linear cases.

• In the presence of a heat source and mass flow, the flow is stabilising at higher

horizontal Rayleigh numbers in the linear case, whereas it is destabilizing in the non-

linear case at larger mass flows.

• As the concentration based heat source increases, the sub-critical region increases.
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Nomenclature

d height of porous layer

Dm solutal diffusivity

g0 acceleration due to gravity

K permeability

km thermal conductivity

Le Lewis number

M dimensionless mass flow

P dimensionless pressure

Rx, Ry horizontal thermal Rayleigh numbers

Rz vertical thermal Rayleigh number

Sx, Sy horizontal solutal Rayleigh numbers

Sz vertical solutal Rayleigh number

q dimensionless velocity

Q dimensionless heat source

S dimensionless concentration

t dimensionless time

u, v, w x, y, z component of dimensionless velocities

Greek symbols

α dimensionless overall wave number

αm thermal diffusivity

(βθx , βθy) horizontal thermal gradient vector

(βSx , βSy) horizontal solutal gradient vector

γθ, γS thermal and solutal expansion coefficients

θ dimensionless temperature
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ρ density

Φ porosity

ξ, η coupling parameters

Subscripts

f fluid region

m porous medium

s steady state

Superscripts

∗ dimensional variables

′ disturbance quantities
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Sz -30 -20 -10 10−5 10 20 30

Rzl 69.478415 59.478415 49.478413 39.478301 29.478413 19.478414 9.478414

αl 3.141600 3.141600 3.141600 3.141600 3.141600 3.141600 3.141600

Rze 39.478396 39.478396 39.478396 39.478308 29.478411 19.478411 9.478412

αe 3.141600 3.141600 3.141600 3.141600 3.141600 3.141600 3.141600

Table 1
Linear and non-linear case critical thermal Rayleigh number for Rx = Ry = Sx = Sy = 0,
Q = 0, M = 0 and Le = 10.
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Fig. 1. Schmatic diagram of the physical system.
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Fig. 2. Variation of Rz with M at Rx = Sx = 1 and Sz = 3.

Fig. 3. Variation of Rz with M at Rx = Sx = 1 and Sz = −3.
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Fig. 4. Variation of Rz with Rx at Le = 10 and Sz = 3.

Fig. 5. Variation of Rz with Rx at Le = 10 and Sz = −3.
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Fig. 6. Variation of Rz with Le at Q = 0, Rx = Sx = 1 and Sz = 3.

Fig. 7. Variation of Rz with Le at Q = 0, Rx = Sx = 1 and Sz = −3.
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