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Abstract 

In language evolution research, the use of computational and experimental methods to            

investigate the emergence of structure in language is exploding. In this review, we look              

exclusively at work exploring the emergence of structure in speech, on both a categorical level               

(what drives the emergence of an inventory of individual speech sounds), and a combinatorial              

level (how these individual speech sounds emerge and are reused as part of larger structures).               

We show that computational and experimental methods for investigating population-level          

processes can be effectively used to explore and measure the effects of learning, communication              

and transmission on the emergence of structure in speech. We also look at work on child                

language acquisition as a tool for generating and validating hypotheses for the emergence of              

speech categories. Further, we review the effects of noise, iconicity and production effects. 
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 1.    Introduction 

Structure in speech can generally be understood on two levels, category structure (i.e. the              

structure of speech sound inventories), and combinatorial structure (i.e. how those sounds are             

combined into meaningful units). How these levels of structure, as we know them today,              

emerged in the language of our ancestors cannot be observed directly, because all spoken              

human languages already have fully established sound systems. Accordingly, we need to instead             

look to more indirect forms of evidence, which are reviewed in this article.  

Language evolved as part of a complex adaptive system whereby ontogeny (individual            

linguistic development), glossogeny (population level cultural evolution of language) and          

phylogeny (biological evolution of language) interact (Kirby, 2002). The majority of work on             

the evolution of speech has its focus on the biological evolution of the vocal tract (Fitch, 2000).                 

However, this article has its focus on ontogeny and glossogeny. We review recent empirical              

methods, primarily from language evolution research, outlining how they can specifically be            

used to look at speech, rather than language in a broader sense. The article is therefore aimed at                  

those interested in language evolution who wish to co-opt existing empirical methods to look at               

speech, or those interested in speech who wish to gain knowledge on how we might study its                 

evolution from a cultural rather than a biological perspective. Further, we offer a broad              

perspective of the work that has already done highlight some gaps of where more work needs to                 

be done. 

We will cover computational modelling, ranging from cognitively plausible models of           

language acquisition, to much more abstract models of how language behaves at a population              

level. We also cover some empirical findings of speech category learning in infants at the               

ontogenetic level, as this is relevant to how categories might have formed as a result of the                 

transmission of language. Further, we cover artificial language learning (ALL) experiments           

looking at how acquisition extrapolates to the population level using iterated learning            

paradigms, and experiments looking at how interaction might affect cultural evolution using            
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social coordination experiments. Studies investigating population level processes using ALL          

experiments were originally used in language evolution research to look at the emergence of              

compositional structure (e.g. Kirby, Cornish, & Smith, 2008). Compositional structure is the            

level of structure where meaningful units (e.g. morphemes and words) are combined to make              

bigger meaningful units, which is distinct from combinatorial structure where meaningless units            

(e.g. phonemes) combine to make meaningful units (de Boer, Sandler, & Kirby, 2012). When              

experimentally investigating compositional structure, studies tend to have a starting point of            

discretised units, most often artificial syllables constructed from existing written characters of            

the Roman alphabet (e.g. Kirby et al., 2008; Silvey, Kirby, & Smith, 2013). However, in order                

to investigate the emergence of categorical or combinatorial structure, studies need to use             

signals created using a continuous signal space. Experiments adopting continuous signal spaces            

have been adopted mostly in an attempt to validate the assumptions and claims of computational               

work.  

We will first review computational, experimental and developmental approaches that          

investigate different hypotheses related to the emergence of speech sound inventories. We will             

then move on to look at how combinatorial structure in speech emerged in experimental and               

computational studies, and how we might understand the structure we see emerging in these              

experiments. Throughout, we will be focussing on how learning and communication affect            

speech structure, as well as the effects of perception and production. 

 

 2.   Emergence of Categories in Speech 

This section reviews work that investigates how (phonetic) category structure emerges.           

We break down this work into two main sections. The first looks at how structure emerges at the                  

level of a population, both as a result of vertical transmission (learning) and horizontal              

transmission (communication). This work aims at explaining the emergence of speech           

categories through interaction with other individuals. We then go on to look at category              
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learning at the ontogenetic level by reviewing work on child language acquisition. This work              

focuses not as much on the methods used, but on language acquisition studies as a tool for                 

generating or validating hypotheses for why our phonetic systems look the way they do. It is not                 

our intention here to make the claim that ontogeny is recapitulating the emergence of categories,               

but it can give us a big incite into what’s important for speech categories at an individual level.                  

Further, language is primarily transmitted to new speakers by the infant speech acquisition             

process and learnability is an important factor biasing languages to develop into a more easily               

learnable form (see Oudeyer, 2005; Saffran, 2003).  

 

2.1 Category emergence at the population level 

Population dynamics may affect the phonemic inventory of a language as language must             

be used robustly within a population. Language should be robust towards communication in             

noisy environments, and should also be easily transmittable (learnable) to new language            

speakers. First, this section briefly discusses computational simulations that investigate several           

factors affecting formation of sound systems at the population level, followed by an overview of               

experimental studies that have investigated categorisation of continuous spaces through          

interaction, social coordination, and iterated learning across generations.  

 

2.1.1Computational and corpus studies 

One of the first computational models proposing a mechanism for the dispersion of vowel              

categories was Liljencrants and Lindblom (1972). This model assumes that in order for a              

language to work effectively inside a population that speech sounds with different roles should              

be clearly distinguished from each other acoustically (i.e. the principle of maximal perceptual             

contrast). That is, if a language only has 3 vowels, then those vowels should be maximally                

distinct from one another in the 3 corners of the vowel triangle. Liljencrants and Lindblom               

(1972) present a mathematical model that predicts the locations of vowel categories in vowel              
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systems of different sizes. The locations were optimised in a two-dimensional acoustic domain             

based on acoustic distances between vowels. Their model generated vowel systems that have             

similarities to real-world vowel systems. 

Above, the maximal perceptual contrast aims to aid the listener rather than the speaker to               

distinguish between phonemes effectively. Lindblom, Macneilage and Studdert-Kennedy        

(1984) consider speaker-based minimal articulatory effort and articulatory sensory         

discriminability to predict the emergence of structure in syllabic constructions. The           

constructions produced by their model resemble natural syllable sets regarding places of            

articulation, vowel contrasts and phonemic coding (syllable starting and ending points can be             

shared between different syllables). Carré (1996) also model the emergence of vowel systems as              

the result of efficient use of an articulatory space. They apply the rule of maximum acoustic                

contrast to select vowel systems of different sizes. The resulting vowel systems correspond well              

to the most common human systems. 

Further to articulatory models that focus on constraints at an individual level, de Boer              

(2000) has considered the emergence of vowel systems in population-based simulations, where            

agents, equipped with articulatory and perceptual systems, interact and adapt their vowel            

inventories based on success in communication. The simulations show that after a large number              

of interactions, the shared vowel inventories self-organise into systems that show similarities            

with human vowel systems. Even though acoustically dispersed vowel systems are preferred,            

acoustically sub-optimal systems (i.e. in this context, the perceptual distances between the            

speech sounds are not maximised) can also remain functional and be maintained. Such systems              

are also found in human languages, for a drastic example Navajo (McDonough, Ladefoged, &              

George, 1992; Vaux & Samuels, 2015), whose vowel system consists of a non-optimally             

dispersed set of vowels /i/, /e/, /æ/ and /o/. 

Further to articulatory models, a corpus study of Dutch language by ten Bosch (1995)              

suggests that the amount of acoustic contrast between phonemes is affected by the “functional              
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load” imposed by the lexicon. That is, acoustic contrast between vowels with a small number of                

minimal pairs does not need to be as strong as it does between vowels with more minimal pairs.                  

Relatedly, a large corpus study by Wedel, Kaplan and Jackson (2013) revealed that sound pairs               

that distinguish many words in the lexicon are more likely to be maintained as 2 categories in                 

the sound system compared to those with a low functional load which are more likely to                

collapse into one category. Sound categories collapse once there is no longer any functional              

pressure to maintain them, eventually resulting in a shift in the sound system of that language. 

There is also a wealth of of work exploring historical change in sound systems caused by                

things like such as variability in articulation (e.g. Blevins, 2004; Kirby & Sonderegger, 2015).              

This work may shine further light on why sound categories get distributed in the way they do in                  

modern languages, but is outside of the scope of this review. 

Taken together, these studies suggest that articulatory and acoustic pressures, as well as             

functional pressures from higher level linguistic structures, strongly affect the way a sound             

system is organised. It is clear that not only articulation and perceptual dispersion of sound               

systems, but also their use in lexicon and their use on the population level can affect the sound                  

system of a language. The function of speech is to transmit information from the speaker to the                 

listener, meaning suboptimal systems may easily be maintained as long as they remain             

communicatively efficient and learnable. 

 

2.1.2. Experimental studies  

For the emergence of categorical structure in speech specifically, cultural learning           

experiments are very thin on the ground. However, there is work exploring the emergence of               

categorical structure in visual semantic spaces. We propose that the mechanisms that account             

for the emergence of categories in semantic spaces will be similar to those which account for                

the emergence of structure in speech. Both are subject to the same processes, such as pressures                

for expressivity (making categories distinct from one another) and learnability. Here, we briefly             
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review work on semantic categories, before discussing a study that did use more speech-like              

stimuli. We first outline some findings that show parallels with the computational work             

discussed above, before discussing how the findings from the work on the emergence of              

semantic categories can serve as a possible model for future studies on the emergence of               

(speech) sound categories at a population level.  

The experimental work here either takes the form of social coordination or            

communication games, where participants are asked to communicate a set of meanings by             

taking it in turns to produce and recognise signals (modelling horizontal transmission), or             

iterated learning experiments, where one participant’s reproductions are used as training or            

input for the next learner (modelling vertical transmission). Sometimes the paradigms are            

combined in order to compare the result from these approaches to understand the effect of               

horizontal and vertical transmission together. One important difference with the computational           

studies reviewed above is that the experimental studies here have both meaning spaces (visual              

objects) and signal spaces (usually a typed string consisting of random consonant-vowel            

syllables), while most computational models of speech category emergence have systems based            

only on a signal space. An important similarity is that the categorisation happens from a space                

that is continuous (as opposed to discretised). If the pressures that are present in the               

computational studies discussed above are purely functional and domain-general, we can expect            

similar patterns in the experimental studies that investigate emergence of visual categories.  

Matthews (2009) conducted an iterated learning experiment where participants learnt          

labels for meanings that were quadrilateral shapes that differed in a continuous fashion. The              

first participants learned labels for a randomly structured space whose output was taught to a               

new participant, and so on for 10 generations. As chains progressed, the language became more               

structured and easier to learn, as shape categories emerged from the continuous meaning space.              

Although the different iteration chains revealed some chain-specific variation, the categories in            

each chain were formed based on the similarity between the shapes. Silvey et al. (2013)               
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compared participants labelling a two-dimensional continuous visual space alone with          

participants labelling the space as part of a communication task with a partner. Alone,              

participants produced optimal categories (learnable and expressive); the space was divided into            

categories of equal size, and covered contiguous regions in the visual space. In the              

communication conditions, however, non-optimal category structures emerged. Silvey et al.          

(2016) have since conducted an iterated learning experiment with the same stimuli as the              

communication games and found that, over 5 generations of communication games, the            

pressure for learnability pushed there to be fewer categories that were more contiguous. 

The semantic studies described here cannot provide clear evidence for (or against) a clear              

preference for pushing the categories to the periphery of the continuous space, similar to what               

we saw in the computational studies reviewed in Section 2.1. However, we do see that the                

categories are affected by the functional pressures of learnability and expressivity. Future work             

could lie in a direct comparison between a task with visual stimuli and acoustic stimuli, in order                 

to investigate the domain-generality of the mechanisms involved in these tasks. 

There has been one experiment that investigated the mechanisms used in categorising an              

auditory space. Van der Ham & de Boer (2015) investigated the way that an acoustic space can                 

be categorised by individuals, and whether this is influenced by a weak cognitive bias for more                

extreme categories. To do this, they conducted a distributional learning experiment that had no              

influence from functional pressures. They used a one-dimensional signal space that consisted of             

an /a:/ sound that varied in pitch in a continuous way. Participants learnt 12 sounds from a                 

distribution of the sounds that had only one skewed peak; either biased towards more high or                

low pitched sounds. They were then asked to reproduce the 12 sounds they heard from memory.                

The expectation with functional pressures would be that the reproductions would migrate            

towards the periphery of the signal space (in the direction of the skew). When there is no                 

functional reason to have extreme categories, if such a system emerged, then a this can be said                 

to be the result of cognitive biases. However, participants’ reproductions did not exaggerate the              



9 

skewness of the input data, indicating that learning such sound categories is not driven by a bias                 

to shift towards more extreme values of a given range. Instead, participants moved the peak               

more towards the center of the distribution.There was also no tendency to create categories with               

a uniform distribution.  

 

2.1.3. Summary 

In this section, we have discussed the emergence of category structure at the population level,               

and how cultural processes interact with the biases of individuals in the population. This work is                

severely underdeveloped, especially regarding the use of experimental work. This is perhaps            

due to the difficulties of experimentally investigating that emergence of categories in the             

perception and production of sound categories with adults that have pre-existing linguistic            

systems. Perhaps, then, the best source of evidence we have in this area is looking at humans                 

who do not yet have sound categories, i.e. infants.  

 

2.2 Category learning in individuals 

As we saw earlier, population behaviour is affected by the biases of individuals in that               

population. In turn, individual biases are shaped by cognitive and physical traits that are the               

result of biological evolution. Here, we explore the ontogenetic level of language evolution.             

Language is primarily transmitted to children, and speech sound categories may be shaped by              

the details of the learning process. Below we will review experimental and computational work              

on the emergence of categories at the individual level: infant speech acquisition. Section 2.2.1              

focuses on computational and experimental studies investigating statistical learning, a central           

learning mechanism in language acquisition, while Section 2.2.2 outlines psycholinguistic and           

computational studies that focus on the role of infant-parent interaction in phonetic acquisition.             

We conclude that learner-based general associative and motor control learning mechanisms may            

be responsible for the biases found in the population level category emergence simulations. The              
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success of associative learning mechanisms in solving an increasing amount of speech            

acquisition tasks suggests that speech-specific cognitive category learning adaptations may not           

be necessary for speech learning. 

 

2.2.1 Statistical learning of speech sound categories 

Learnability is one constraint for the characteristics of speech sound categories, i.e.            

categories that are easier to learn and reproduce and will tend to be maintained, meaning general                

learning mechanisms shape language patterns (see e.g. Saffran, 2003; Oudeyer, 2005).           

However, speech learning is shaped by many more sources of information than heard acoustic              

speech. Computational models have shown that automatic discovery of the intuitive speech            

sound categories from speech only is very difficult, but using additional sources of information              

helps in discovering linguistically motivated speech sound categories, meaning multiple          

modalities have played a role in the discovery of the building blocks of speech in development.  

If speech sound categories are searched from speech utterances alone, i.e. in an             

unsupervised manner where no information from other modalities is used to indicate phoneme             

identities or boundaries, computational algorithms fail to reach human-like performance in           

phonetic segmentation or annotation. Unsupervised segmentation of speech into phonemes          

based on statistical properties of speech spectra reaches about 70-85% accuracy (see Räsänen,             

2012; Scharenborg, Wan, & Ernestus, 2010 for reviews). Labelling of correct phoneme            

categories is distorted by a lot of variation in phones depending on, for example, the               

surrounding phones and speaker identity. Many computational models of speech sound category            

acquisition (such as those of de Boer and Kuhl, 2003; Vallabha, McClelland, Pons, Werker and               

Amano, 2007) use heavily simplified learning data when compared to the natural continuous             

speech that language learning infants are exposed to. The functioning of these models cannot              

then be reliably compared to human performance. 
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Unsupervised methods for learning acoustic sub-word units from continuous speech          

(Varadarajan, Khundapur, and Dupoux, 2008; Lee and Glass,2012) successfully discover some           

speech patterns. However, the discovered patterns do not directly match with linguistically            

motivated phonemes, but are context sensitive language units such as allophones. As soon as              

correct category information is induced into the models (i.e. supervised learning), such as when              

phones are accompanied with their linguistically motivated labels while training, the learning            

accuracy comes close to the supervision criteria (e.g. Keshet, Shalev-Shwartz, Singer, &            

Chazan, 2005). It seems clear then, that acoustic regularities can be computationally discovered             

from speech signals, but the patterns found only classify nicely to linguistic categories (such as               

phonemes) if the categories are defined manually. Further, if information about the lexicon is              

included, then computational models start showing acquisition of phonological categories (e.g.           

Feldman, Myers, White, Griffiths, & Morgan, 2013; Thiessen, 2011; Swingley, 2009; ter            

Schure, Junge, & Boersma, 2016). 

Using simplified vowel learning tasks and a Bayesian model, Feldman, Griffiths and            

Morgan (2009) showed that joint learning from lexical and distributional information of speech             

sounds leads to discovery of correct phonetic categories, whereas using distributional           

information alone tends to cluster overlapping phonetic categories together more easily. Having            

access to the referential meanings of words in continuous utterances may also facilitate the              

learning of word segmentation (Räsänen & Rasilo, 2015, see also François, Cunillera, Garcia,             

Laine, & Rodriguez-Fornells, 2016). Further, Martin, Peperkamp and Dupoux (2013) propose,           

using a computational simulation, that because of the large amount of allophonic variation in              

real speech, distributional information in the speech data alone makes phoneme discovery            

extremely difficult, and using word form knowledge facilitates solving the problem. 

In addition to computational evidence, behavioral studies have shown that lexical           

(Thiessen, 200; White, Griffiths and Morgan, 2013), visual cues (Yeung & Werker, 2009;             

Teinonen, Aslin, Alku Csibra, 2008) and speech articulation (Majorano, Vihman & DePaolis,            
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2014) affect phonetic discrimination in human learners. Phonemes have also been argued to not              

be the basic units of perception, but rather context sensitive allophonic units (Mitterer,             

Scharenborg & McQueen, 2013; Reinisch, Wozny, Mitterer & Holt, 2014). Phonological           

awareness is also affected by acquiring literacy (see Anthony & Francis, 2005, for a review). It                

therefore seems that we are able to categorise speech sounds only because we have learnt the                

(context sensitive) category boundaries in speech, using several other sources of information            

that cue these otherwise seemingly arbitrary boundaries. When studying the emergence of            

speech sound categories in evolution, we should therefore not limit ourselves by focusing on              

intuitive speech representations, or studying characteristics of speech signals in isolation.           

Rather, we should look at the speech phenomena as a complete multimodal process. 

 

2.2.2. Effects of speech production of category acquisition 

 

 

In Section 2.2.1 we saw that learning to perceive speech categories probably depends on              

information from other modalities than speech itself. Since there would be no speech             

acquisition without acquiring the speech production skill as well, the learning of speech             

articulation must also impose biases to the structure of a language. Behavioural studies have              

shown that infants’ babbles are shaped by non-vocalic and vocalic feedback by their caregivers,              

and caregivers are likely to reinforce more adult-like babbles (Goldstein, King, & West, 2003;              

Goldstein & Schwade, 2008). Also, infants’ ability to imitate speech does not seem to be innate,                

but slowly develops during the first and second year, and importantly, seems to be tied to the                 

parents imitating their children rather than the other way around (Gros-Louis et al., 2006;              

Kokkinaki & Kugiumutzakis, 2000; Jones, 2009; Kokkinaki & Vitalaki, 2013; Pawlby, 1977;            

Masur & Rodemaker, 1999). It therefore seems evident that infants do not learn a fully               
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functional language, including the speech production aspect, without interacting with other           

people (see also Sachs, Bard, & Johnson, 1981 for a case study). 

Speech production is also complicated to learn because of infants’ limited control of their              

articulatory systems. Children’s articulation shows more variability compared to adults (Smith           

& Zelaznik, 2004; Walsh, Smith, & Weber-Fox, 2006), and reaches adult like motor control              

only at the age of 14 years (Smith & Zelaznik, 2004). Several computational models have               

modelled infant speech acquisition in interaction with caregivers in order to investigate the             

learning mechanisms behind this complex process. These methods mainly rely on associative            

learning where the infant associates its babbles into vocal responses by its caregiver (Miura,              

Katsushi, Yuichiro, & Minoru, 2008; Miura, Yoshikawa, & Asada, 2007; Howard & Messum,             

2011; see the introduction of Rasilo and Räsänen, 2017, for a review of related studies). In the                 

latest study by Rasilo & Räsänen (2017), a virtual infant learns to imitate the eight Finnish                

vowel sounds by learning to associating its (inaccurate) babbles (with an infant-sized vocal             

tract) with responses from adult human participants. 

The details of the modeling processes show several interesting connections to the            

principles of speech sound category characteristics discussed in section 2.1. above. Due to the              

developing motor control and variation in infant articulation, learnability may increase when            

articulatory categories are further apart, so the category boundary is less likely to be              

accidentally crossed (c.f. sensory discriminability above), and when acoustic categories are           

maximally separated (c.f. maximal perceptual contrast above). Easy articulatory configurations          

may also be discovered faster in the vocal exploration (babbling) process (c.f. minimal             

articulatory effort above).  

3.   The Emergence of Combinatorial Structure 

Above, we have discussed the emergence of speech categories, primarily in contexts            

where categories are treated as being in competition with each other in a signal space. However,                
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phonemes are very rarely used in isolation. In this section, we discuss the emergence of speech                

sounds as part of larger structures. Work on how structure emerged at the combinatorial level               

(meaningless building blocks combining) can inform us about how units of sound can be              

discretised from one another and reused in larger meaningful signals.  

The emergence of structure on the combinatorial level has been subject to many             

hypotheses. Work on pressures for signals to be more learnable is reviewed in section 3.1. Work                

on pressures created by production constraints is summarised in section 3.2. Combinatorial            

structure as a solution to the problem of noise is discussed in section 3.3. Iconicity is discussed                 

in section 3.4, and we the have a brief section on measuring combinatoriality in signals in                

section 3.5, before summarising in section 3.6.  

Most the of the experiments discussed in this section are again artificial language learning              

or creation experiments which use continuous signal spaces from which discrete building blocks             

can emerge. These experiments use signal spaces that are distinct from actual speech apparatus,              

or indeed any other linguistic modality, in order to prevent interference from participants’             

existing linguistic knowledge.  

3.1. Effects of Learnability in Transmission 

As discussed in section 2.1, pressures for language to be learnable may greatly influence              

its structure. In this section, we will review studies which explore how learnability has              

influenced the emergence of combinatorial structure.  

Del Giudice (2012) explored how the learnability of signals influences the structure that             

emerges in those signals. The experiment used a paradigm developed by Galantucci (2005); a              

continuous signal space designed to prevent the use of established symbols. The paradigm             

consists of a magnetic stylus on a graphics tablet, which participants use to create signals. The                

signal space moves vertically in a constant drift so that participants can only manipulate signals               

on the horizontal dimension. Del Giudice (2012) used the stylus in an iterated learning              
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experiment with transmission chains of between 6 and 9 generations. In this experiment there              

was no communication, but only learning and recall. Participants learnt a set of signal-meaning              

pairs and were then asked to recall the signals from memory. The study found that signals were                 

much simpler and more learnable in later generations as a result of the transmission process. Del                

Giudice (2012) hypothesise that combinatorial structure is at the root of signals becoming more              

learnable, but struggled to make a solid claim because of the subjective nature of their analysis,                

using qualitative measures for structure rather than a more robust quantitative measure. 

Verhoef (2012) also used an iterated learning experiment to explore the emergence of             

combinatorial structure. Participants used a slide whistle (or swanny whistle). A slide whistle             

has a piston so that the pitch of signals can be manipulated in a continuous fashion. Participants                 

learnt a set of signals that had no meanings attached, and were then asked to recall the signals.                  

Their output was then the next participant’s input and so on for 10 generations. In this                

experiment, the first generation received a minimally structured repertoire to reproduce. Similar            

to the study of Del Giudice (2012), Verhoef (2012) found that signals became more structured,               

and that these more structured signal repertoires were more learnable than the initial repertoires.              

Signals tended to converge to using combinations of a small number of building blocks as the                

transmission chain progresses. These building blocks were separated by pauses in the signals             

and were things such a little peeps or larger whistle trajectories (e.g. from high to low pitch).                 

More information about how this structure was measured is in section 3.5. Learnability was also               

found to be improve by showing a significant cumulative decrease in the recall error, defined as                

the distance between a learned signal and its reproduction.  

3.2. Effects of Physical Constraints 

While we found in the previous section that combinatorial can emerge with pressures for              

learning alone, it is still possible that other pressures may contribute to the speed or nature of its                  

emergence. In section 2.2.2 we discussed how constraints of speech production might affect the              
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learning of speech categories. Here, we discuss how production constraints can affect the             

emergence of combinatorial structure in different ways.  

Galantucci, Kroos and Rhodes (2010) used the stylus paradigm from Galantucci (2005) to             

investigate how rapidity of fading affects the structure of signals. Rapidity of fading is a signal’s                

lack of permanence as it is produced. Speech has fast rapidity of fading as the signal disappears                 

almost as soon as it is produced. In one condition in the experiment, signals disappeared as                

soon as the participant had finished drawing them (the fast fading condition). In the other               

condition, signals slowly disappeared off the screen for 2.5 seconds. In the fast fading condition,               

signals displayed more combinatorial reuse of signal elements. 

Little and de Boer (2014) used the same slide whistle paradigm as in Verhoef (2012) in                

an iterated learning experiment, but to investigate the role of the size of signal space on                

combinatorial structure. Hockett’s (1960) hypothesised that combinatorial structure emerged as          

the result of pressures for discrimination that occurs when an articulation space is saturated in               

the amount of distinctions it can make. Little and de Boer (2014) tested if a smaller signal space                  

would make combinatorial structure emerge more quickly. They had one condition that was a              

replication of Verhoef (2012), but their other condition had a constrained signal space. They put               

a stopper on the piston of the slide whistle that prevented the participants from using the whole                 

space, and found that with restricted signal space, there was a more consistent growth of               

combinatorial structure. Little, Eryılmaz, & de Boer (2016) have since looked at the effects of               

the dimensionality of a signal space, but this study is covered in section 3.5, as signal space                 

dimensionality is tied up in the mappability of a signal space.  

3.4. Effects of Noise 

The amount of noise in a system is very related issue to the physical constraints above.                

That is, the size and dimensionality of a signal space affects how quickly a signal space gets                 

crowded. Noise also affects how quickly a signal space gets crowded, which then has a knock                
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on effect on the emergence of combinatorial structure. Tria, Galantucci, & Loreto (2012)             

implemented a simulation to test the effect of noise on a set of agents trying to communicate a                  

structured meaning space. They showed that the emergence of combinatoriality was dependent            

on the level of transmission noise, where higher levels of noise favoured more combinatorial              

strategies. The signals used were sequences of abstract, discrete items from an open set, so the                

results are perhaps not relevant to discussing the emergence of structure from an unstructured              

continuous space. 

Zuidema and de Boer (2009), however, did use continuous signals to investigate the             

effect of noise. They focused on the relationship between the transmission bottlenecks caused             

by noisy communication, and combinatoriality. The limited transmission capability of the           

channel given the size of the system to be learned, whether it be caused by noise or some other                   

constraint on transmission, is called a transmission bottleneck. Zuidema and de Boer (2009)             

show that the specific type and level of noise impacts the pressure for combinatoriality in a                

system that starts out random and holistic. The study represented signals as continuous             

trajectories in an abstract acoustic space. The repertoires of signals were optimised using two              

separate techniques, which produced comparable results. In one, a random initial repertoire was             

optimised, using a hill-climbing heuristic, for within repertoire distinctiveness. In the other, a             

population of agents optimised their random initial repertoires for communicative success in an             

imitation game. While the model produces qualitative (superficial) combinatorial structure          

under the right constraints (most notably with the presence of noise), the authors stress that they                

do not employ a quantitative measure of combinatoriality, citing the ambiguity of the terms              

building block and meaningful variation as some of the issues with developing one for the               

fine-grained trajectories they employ. We will discuss a little about the challenges of measuring              

combinatorial structure in section 3.5. 

3.4 Effects of Iconicity and Conventionalisation 



18 

Another hypothesis for the emergence of combinatorial structure is that it exists to             

compensate for an inability to communicate information effectively in other ways, such as             

iconicity. Goldin-Meadow & McNeill (1999) argue that signs may need to lose their iconicity              

through conventionalisation before combinatorial structure can emerge through reanalysis of          

elements of a signal that are then perceived to be meaningless because of a lack of iconicity.  

Roberts and Galantucci (2012) explicitly tested whether conventionalisation will promote          

combinatorial structure and argue that their results show that combinatorial structure comes            

from a process of conventionalisation. They used the stylus paradigm in a communication game              

where participants took it in turns to send and receive signals which referred to a set of animal                  

shapes. They found that combinatorial structure negatively correlated with iconicity in the            

signals. Iconicity here was measured by having naive participants match signals to their             

intended meanings. 

Roberts et al. (2015) also used the stylus paradigm to test directly whether iconicity              

impedes the emergence of combinatorial structure. They created different levels of available            

mappings between meanings and signals. In one condition, participants had to communicate            

meanings which were squiggly lines, which could be directly represented by the paradigm, or              

they were asked to communicate green circles which were very difficult to represent iconically.              

Indeed, they found that combinatorial structure was more prevalent in signals where there was              

no obvious available mapping between signal and meaning space. 

Verhoef, Kirby, and de Boer (2015) tested a similar hypothesis using the slide whistle              

paradigm in an iterated learning experiment. Signals referred to a set of novel object meanings.               

In one condition, the output signal-meaning pairs were taught to the next participant with no               

manipulation. In the other condition, the output signals from the person before were used as the                

input, but the meanings they were paired with were randomly assigned. This second condition              

was designed to minimise the amount of iconicity in the signals, as the meaning the signal                

referred to changed after every generation. They found that the emergence of combinatorial             
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structure was delayed by having consistent signal-meaning pairs because of a reliance on iconic              

strategies. 

Little, Eryılmaz, & de Boer (2015, 2016) have since explored the relationship between             

iconicity and combinatorial structure using the Leap Motion paradigm (Eryılmaz and Little,            

2016). This paradigm utilises a Leap Motion sensor, which is an infrared motion detector that               

maps hand movements in the space above it and transforms hand-positions into audio output.              

This audio output can be manipulated on any continuous feature (e.g. pitch, volume) by moving               

a hand on the vertical dimension or horizontal dimension. In most experiments only pitch is               

manipulated on the horizontal dimension, but some experiments (e.g. Little et al., 2015) used              

both pitch and volume attached to different spatial dimensions. 

Little, Eryılmaz and de Boer (2016) explored more nuanced grades of available mappings             

than previous studies, in the form of dimensionality mismatches. Signals only had one             

continuous dimension (pitch), but participants had to describe squares from continuous meaning            

spaces with increasing dimensionality. Initially, squares only differed in size, which can be             

mapped to pitch with relative ease (e.g. low sounds referring to bigger squares). The meaning               

space then expanded to squares that differed in size and shade of orange (controlled by the                

physical distance on the RGB ratio of green to red) and finally they differed in size, shade and                  

darkness. The idea was that as the meaning space increased in its dimensionality, this would               

make transparent mappings with the one dimensional signal space less and less feasible. The              

results showed that signals from repertoires used to label squares that differ along more              

dimensions had hallmarks of combinatorial structure (an increase in signal duration and the             

amount of movement in signals). This study was born from predictions made by a              

computational model (de Boer & Verhoef, 2012) which also found that combinatorial strategies             

were needed when the meaning space had more dimensions than the signal space. 

Little et al. (2015) further explored different ways in which iconicity could be disrupted.              

Again using the Leap Motion paradigm, in one condition, participants created continuous            
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signals for meanings which differed along continuous dimensions (e.g. size), and in the other              

condition participants created continuous signals for meanings which differed along discrete           

dimensions (e.g. texture). They found that there was significantly more movement in signals             

made for the meanings in the discrete condition than in the continuous condition, which              

displayed no signs of combinatorial structure.  

Importantly, this section focuses on a phenomenon that is hypothesised to inhibit, rather             

than facilitate, the emergence of combinatorial structure. There are some languages in the world              

which exist without a level of combinatorial structure, including Al-Sayyid Bedouin Sign            

Language (Sandler et al., 2011) and Central Taurus Sign Language (Caselli et al., 2014), which               

have no minimal pairs. Interestingly, these languages are emerging sign languages. Under the             

well-established assumption that sign languages have more iconicity available to them than            

spoken languages, then this availability for iconicity may explain the absence of iconicity in              

these languages, but perhaps not explain its presence in spoken languages.  

3.5. Measuring structure 

One consistent problem with all of the studies we have discussed here that use continuous               

signal spaces, is that of measuring the structure that comes out of these studies. Here, we discuss                 

some of the measures used to measure structure in signals produced by some of the paradigms                

mentioned in section 3. 

With the slide whistle paradigm, analysis relies on both qualitative and quantitative            

measures for combinatorial structure. One measure used by Verhoef, Kirby and de Boer (2014),              

which is highly similar to that used by Verhoef (2012), is to segment the whistle signals, and                 

have the segmented forms grouped by hierarchical clustering to detect variations of the same              

prototypical form. More specifically, they segmented the signals using pauses in the signals as              

delimiters. The similarity, or rather the dissimilarity, between signals was measured using            

Derivative Dynamic Time Warping algorithm on each pair of signals. After segmentation, they             
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used average linkage hierarchical agglomerative clustering to find segments that are so similar             

that they can be considered instances of the same prototype, until no two clusters remained that                

were more similar than a certain threshold. The number of occurrences for the prototype              

segments were then used to calculate the entropy of the repertoire (Shannon, 2001). Since              

entropy is a measure of compressibility, and since reusing components in a signal increases its               

compressibility, one can use entropy as an index of structure. Verhoef, Kirby and de Boer               

(2014) also calculate “associative chunk strength”, which is an index of how sensitive the              

building blocks are to ordering, calculated by first averaging the bigram and trigram frequencies              

over the input set. Then the associative chunk strength of an utterance can be calculated by                

summing the strengths of its constituent chunks. 

Another measure for combinatorial structure has been developed for several experiments           

using the stylus paradigm (Galantucci et al., 2010; Roberts & Galantucci, 2012; Roberts et al.,               

2015). Within these studies, as with the slide whistle signals, while the signals are continuous,               

the measure for combinatoriality depends on form boundaries. The signals were segmented into             

their parts using intentional gaps (left by lifting the stylus). The signals were represented by the                

mean stylus position within a signal, the number of crossings the stylus made of that mean point                 

in them, and the proportions of the portions between these crossings.  

In Little et al. (2015), instead of modeling individual trajectories, the authors opt for              

modeling the repertoire of trajectories. In order to try and model combinatorial structure, the              

repertoires are used as the training data for a range of Hidden Markov Models (HMMs) with                

different numbers of states. The number of states directly corresponds to the number of discrete               

building blocks, providing a data-driven way to discretise the data, including temporal            

dependencies. The model with the lowest Bayesian Information Criterion score is chosen as the              

one with an ideal number of states. In the study of Little et al. (in review), meaning spaces with                   

more dimensions were shown to require signals with more states to achieve the same level of                
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performance as signals for meaning spaces with fewer dimensions, showing a link between             

participant behaviour and this parameter, supporting the validity of the model. 

 

3.6. Summary 

The experimental and modeling work on the emergence of combinatorial structure           

reviewed here shows that there are multiple pressures for the emergence of combinatorial             

structure. These include the relative robustness of combinatorial structure against certain kinds            

of noise and signal space crowding, and the learnability of combinatorial communication            

systems. While we have not explicitly discussed the pressure for expressivity in this section, this               

is something that ties directly in with signal space crowding, in that crowding creates a pressure                

for signals to find ways to be distinct in the say way that expressivity does.  

5.   Summary and Conclusions 

In this review, we have focused on experimental and computational studies of emergence             

of speech structure, involving mechanisms underlying the emergence and discovery of           

meaningless “building blocks” of speech (such as phonemes or allophones) and mechanisms            

underlying their combination of those building blocks into larger speech structures (such as             

syllables or words). 

Summarising from the sections above, in population level simulations, articulatory effort,           

auditory and articulatory sensory discriminability, and lexical and language transmission          

constraints have been shown to play a part in emergence of human language-like phonetic              

systems. When it comes to discovery of speech sound categories from spoken speech utterances,              

thus far, computational studies of unsupervised acquisition of phone categories or unsupervised            

segmentation of continuous speech into phones have failed to provide accuracies comparable to             
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human performance in the tasks. When supervision is included, computational models start to             

approach human performance. Discriminatory information (such as lexical constraints) has been           

shown to aid phonetic acquisition in computational as well as experimental studies.            

Additionally, interaction with caregivers/peers has a major influence in phonetic acquisition,           

indicating that category structure in speech is not learned from linguistic input alone, but              

emerges in complex interaction with the learner’s environment. 

Experimental studies looking at population-level processes on the the categorical          

emergence of speech categories is somewhat thin on the ground, though work looking at how               

both learning and communication can affect the emergence of semantic categories is potentially             

relevant. It seems that individuals may be able to design optimal categories alone, but              

communication becomes a problem when people’s individual categorisation preferences do not           

match. It is then the learning and transmission of a category system, as well as the pressure for                  

expressivity, that makes a category system optimal within a population. Though this has been              

shown with semantic-spaces, we feel that the same principles will play out in the context of the                 

categorisation of speech sounds, as it is in line with some of the population level modelling                

work, e.g. Liljencrants & Lindblom (1972) showing the importance of an expressive system             

(maximally distinct vowel categories) and de Boer (2000) showing the importance of speech             

categories being learnable. 

Regarding the combinatorial nature of language, experimental and computational studies          

have shown that pressures for discriminability, production constraints, learnability, noise levels           

and lack of permanence (or rapidity of fading), have been shown to lead to more combinatorial                

structure, while iconicity has been found to inhibit combinatorial structure. Interestingly, several            

connections can be drawn from these findings to the infant speech learning literature. For              

instance, the size of a signal space repertoire may cause pressures during development. The              

initial amount of important concepts that should be discriminable for a small infant is rather               

limited, consisting of people or objects that are necessary in simple everyday situations (e.g.              
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daddy, mommy, baabaa and bye might be the first words spoken by children, see Tardif et al.,                 

2008). If infants are to discriminate reliably between acoustic realisations and articulatory            

productions of a small set of concepts, it would be beneficial that their sub-word units should be                 

far away from each other both acoustically (to minimise errors while hearing words) and in               

articulatory sense (to minimise errors while producing words). When the amount of important             

concepts gradually grows, requiring more discriminatory signals, it may be a more efficient             

learning strategy to start combining the robust set of building blocks already learned, rather than               

unlearn and reorganise the auditory and articulatory adaptations for a larger number of building              

blocks. Also, as young infants do not have accurate control over their articulatory systems              

(Smith & Zelaznik, 2004), the restricted and noisy signal (or articulatory) space may encourage              

combining these simple building blocks of speech during the learning process. 

As a concluding note, we see work done on the emergence of both categorical and               

combinatorial structure to be very much in its infancy and foresee this kind of work exploding                

as new experimental and computational methods are developed. In particular, there is a current              

gap in experimental work done on the categorical emergence of speech categories. Further,             

while we have identified many things which we can say “have an effect” on the emergence of                 

combinatorial structure, much work needs to be done in order to untangle what pressures are               

more influential than others. Experimental and computational models with different conditions           

are an excellent tool to help us answer questions like this. For example, the question of whether                 

learnability or expressivity is more influential has been addressed using these methods in recent              

work on the emergence of compositional structure (e.g. Carr er al., 2016; Kirby et al., 2015), but                 

a gap remains in the literature regarding combinatorial structure.  
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