
ORIGINAL RESEARCH
published: 19 February 2018

doi: 10.3389/frobt.2018.00011

Edited by:
Vito Trianni,

Istituto di Scienze e Tecnologie della
Cognizione (ISTC) – CNR, Italy

Reviewed by:
Anders Lyhne Christensen,

University Institute of Lisbon, Portugal
Nicolas Bredeche,

Université Pierre et Marie Curie,
France

*Correspondence:
Simon Jones

simon.jones@brl.ac.uk

Specialty section:
This article was submitted to

Multi-Robot Systems,
a section of the journal Frontiers in

Robotics and AI

Received: 30 October 2018
Accepted: 25 January 2018

Published: 19 February 2018

Citation:
Jones S, Studley M, Hauert S and
Winfield AFT (2018) A Two Teraflop

Swarm.
Front. Robot. AI 5:11.

doi: 10.3389/frobt.2018.00011

A Two Teraflop Swarm
Simon Jones1,2,3*, Matthew Studley 2,3, Sabine Hauert1,3 and Alan Frank Thomas Winfield2,3

1University of Bristol, Bristol, United Kingdom, 2University of the West of England, Bristol, United Kingdom, 3Bristol Robotics
Laboratory, University of the West of England, Bristol, United Kingdom

We introduce the Xpuck swarm, a research platform with an aggregate raw processing
power in excess of two teraflops. The swarm uses 16 e-puck robots augmented with
custom hardware that uses the substantial CPU and GPU processing power available
from modern mobile system-on-chip devices. The augmented robots, called Xpucks,
have at least an order of magnitude greater performance than previous swarm robotics
platforms. The platform enables new experiments that require high individual robot
computation and multiple robots. Uses include online evolution or learning of swarm
controllers, simulation for answeringwhat-if questions about possible actions, distributed
super-computing for mobile platforms, and real-world applications of swarm robotics that
requires image processing, or SLAM. The teraflop swarm could also be used to explore
swarming in nature by providing platforms with similar computational power as simple
insects. We demonstrate the computational capability of the swarm by implementing
a fast physics-based robot simulator and using this within a distributed island model
evolutionary system, all hosted on the Xpucks.

Keywords: swarm robotics, robot hardware, simulation, evolutionary robotics, behavior trees, distributed evolu-
tionary algorithm, GPGPU, embodied reality modelling

1. INTRODUCTION

The Xpuck swarm is a new research platform with an aggregate raw processing power in excess of
two teraflops, which enables new experiments that require high-individual robot computation and
large numbers of robots. There are several research areas that particularly motivate the design.

Swarm robotics (Sahin, 2005) originally takes inspiration from collective phenomena in nature,
including social insects, flocks of birds, and schools of fish to create collective behaviors that emerge
from local interactions between robots and their environment. These swarms have the potential
to be inherently robust, decentralized, and scalable. A fundamental problem of the field is the
automatic design of controllers for robot swarms such that a desired collective behavior emerges
(Francesca and Birattari, 2016). One common and successful approach is the use of evolutionary
techniques to discover suitable controller solutions in simulated environments and the transfer of
these controllers to real robots. However, this often results in lower performance due to the reality
gap (Jakobi et al., 1995). Embodied evolutionary swarm robotics moves evolution into the swarm
and directly tests controllers, avoiding the reality gap and making the swarm scalable and adaptive
to the environment (Watson et al., 2002). Usually, the low-processing power of the individual robots
precludes using simulation within the robots as a means of accelerating the evolutionary process.
Moving computational power into the swarmwould allow us to combine these approaches, the speed
of evolution within simulated environments together with the adaptability of continuous reality
testing.

Giving a robot the ability to answer what-if questions could allow a robot to evaluate courses of
action or strategies in the safety of simulation, rather than in the real world where they may have

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 111

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2018.00011
https://creativecommons.org/licenses/by/4.0/
mailto:simon.jones@brl.ac.uk
https://doi.org/10.3389/frobt.2018.00011
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00011&domain=pdf&date_stamp=2018-02-19
http://www.frontiersin.org/Journal/10.3389/frobt.2018.00011/full
http://loop.frontiersin.org/people/435449
http://loop.frontiersin.org/people/141334
http://loop.frontiersin.org/people/154826
http://loop.frontiersin.org/people/143509
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Jones et al. A Two Teraflop Swarm

TABLE 1 | Current and potential swarm platforms.

Product SoC GFLOPS (fp32) RAM (bytes) Price ()

Robot platforms
Kilobot Atmel atmega328p 0.0008a 2K 15
e-puck dsPIC 0.0015a 8K 650
r-one TI Stellaris LM3S8962 0.005 64K 165
Linux Extension Board Atmel AT91SAM9260 0.02a 64M 80i

Swarmbots Intel Xscale 0.04a 64M Not known
GCTronic Gumstick TI AM3703 1.2 512M 600i

Khepera IV TI OMAP3730 1.2 512M 2,000
Pi-puck Broadcom BCM2835 1.4b 512M 110i

Pheeno Broadcom BCM2836 7.2c 1G 205
Xpuck Samsung Exynos 5 Octa (5422) 36+ 122d 2G 135
Compute modules
Hardkernel XU4 Samsung Exynos 5 Octa (5422) 36+ 122d 2G 70
Samsung Artik 1020 Exynos 5 Octae 36+ 122d 2G 98
Wandboard IMX6Q NXP i.MX6 Quad 25f 2G 120
Intrinsyc Open-Q820SOM Qualcomm Snapdragon 820 250g 3G 250
Nvidia Jetson TX1 Nvidia Tegra 210 512h 2G 290

a Integer only, assumes 10 integer instructions per floating point operation.
bVMLA× 0.7GHz. VideoCore IV GPU has no OpenCL support.
cVMLA×4× 0.9GHz. VideoCore IV GPU has no OpenCL support.
dCPUs A7 1.4GHz, A15 0.8GHz+ARM Mali-T628MP6 GPU, 4 vector multiplies, 4 vector adds, 1 scalar multiply, 1 scalar add, 1 dot product per cycle, 6 cores, each with 2 arithmetic
pipelines at 600MHz. OpenCL 1.2 full profile.
eAssumption. The product literature does not state the SoC but Samsung only used the Mali-T628MP6 in the Exynos 5 Octa family.
fVivante GC2000 GPU only, 4 vector multiplies, 4 vector adds, 4 cores at 794MHz, OpenCL 1.1 embedded profile.
gVery little open information, https://en.wikipedia.org/wiki/Adreno states 498.5 at 624MHz but assumed to be fp16 rather than fp32. OpenCL 2.0.
hAccording to AnandTech, Ho and Smith (2015).
i In addition to e-puck cost.

potentially catastrophic consequences. The utility of this ability
depends on the speed of simulation; clearly the higher the speed,
the more possibilities can be tested. One use of internal what-if
modeling is the “ethical” robot of Winfield et al. (2014), which
uses simulation to allow a robot to predict the consequences of
its actions or inactions on other agents and choose an ethical
course of action. Another use of internal reality modeling is to
detect faulty or corrupted members of a swarm by noticing devi-
ations from predicted behavior. For safety critical applications, or
where the potential consequences of actions are serious, using an
unreliable communications link to remote systems would not be
possible and the embodiment of the simulation within the robot
is essential.

A third intriguing area where increased computational ability
could be applied is in much more complex neural net controllers.
Although swarm robotics as a field is inspired by social insects
and other animals, the robot agents are far simpler than the
organisms which inspire their creation. As a crude example, the
number of neurons in an ANN controller for a swarm system
rarely exceeds a dozen. Neurons in animal brains are considerably
more complex and numerous; the nematode worm C. elegans has
302, the parasitic wasp Megaphragma mymaripenne has 7,400, an
ant has 2.5× 105, and a honey bee has amillion (White et al., 1986;
Menzel and Giurfa, 2001; Polilov, 2012). The system we describe
could simulate several thousand biologically plausible neurons per
Xpuck.

These three areas would benefit from greatly increased process-
ing powerwithin the robots of a swarm, enabling either simulation
of physical systems or execution of complex controllers. Many
other applications of robotics such as SLAM or image processing
also require high-processing power. Consumer electronics has

been improving in performance for many years. Moore’s Law
(Mack, 2011) observes that the number of transistors for a given
cost is doubling every 18months and their power consumption
is decreasing in proportion. Over 10 years, we should expect to
see a given processing performance become available with one
hundredth the power consumption.1 Thismakes it nowpossible to
build a high-computing performance swarm running on limited
battery power.

In this paper, we describe the design of new swarm robotics
platform that makes use of this recently available and cheap high-
performance computing capability to augment the widely used
e-puck robot, which many labs will already have available. We
have designed it to have higher computational capability than any
other swarm platforms, see Table 1, and to have a battery life at
least as good as other solutions, while minimizing costs to allow
the building of large swarms. We demonstrate the computational
capability of the platform in two ways. First, we evaluate a fiducial
tracking image processing application using the e-puck camera
that would not be computationally possible on the standard e-
puck. Second, and to lay the groundwork for future experiments,
we implement a fast parallel physics-based robot simulator run-
ning on the GPU of the Xpuck, and use this within a distributed
island-model evolutionary system to discover swarm controllers.

2. MATERIALS AND METHODS

In this section, we set out our system requirements. We
outline potential computing modules. We characterize the

12004 Nvidia 6800 Ultra 40GFLOPS 110W, 0.35GFLOPS/W. 2014 Samsung
Exynos 5422 120GFLOPS 5W, 24GFLOPS/W.

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 112

https://en.wikipedia.org/wiki/Adreno
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Jones et al. A Two Teraflop Swarm

power/performance tradeoffs of our chosen compute module
and then discuss the design and implementation of the Xpuck
hardware and associated system infrastructure to enable run-
ning experiments. We then detail the design and implementation
of a fast physics-based robot simulator specifically tailored to
the Xpuck to enable onboard evolutionary algorithms. We also
describe two demonstrations of the Xpuck computational capa-
bilities, a fiducial tracking application that could not be run on
a standard e-puck, and an island model evolutionary algorithm
running on multiple Xpucks.

To run experiments building on the literature, we decided that,
in addition to much higher processing power, the Xpuck must
meet or exceed the capabilities provided by the existing e-puck
robots with additional processing boards. The e-puck is a two-
wheel stepper motor-driven robot. Its sensors comprise a ring of
IR proximity sensors around its periphery, a three-axis accelerom-
eter, three microphones, and a VGA video camera. As with the
Linux Extension Board (LEB), introduced by Liu and Winfield
(2011), we require a battery life of at least 1.5 h and full access to
the e-puck’s IR proximity and accelerometer sensors, and control
of the stepper motors and LEDs. In addition, we require that the
VGA camera can stream full frame at >10 fps. The Xpuck must
run a full standard Linux, able to support ROS (Quigley et al.,
2009). It must have WiFi connectivity. GPGPU capabilities must
be made available through a standard API such as OpenCL or
CUDA (Nvidia, 2007; Khronos OpenCL Working Group, 2010).
We also want multicolor LED signaling capability for future visual
communication experiments (Floreano et al., 2007; Mitri et al.,
2009). Since many labs already have multiple e-puck robots, we
wished to minimize the additional cost of the Xpuck to facilitate
the construction of relatively large swarms of robots. With this in
mind, we chose a target budget per Xpuck of 150.

Given the requirements, Table 1 sets out some of the current
swarm platforms and potential modules that could be used to
enhance the e-puck. There are a number of interesting devices, but
unfortunately there are very few that are commercially available at
a budget suitable to satisfy the cost requirement of 150. Within
these cost constraints, of the two Samsung Exynos 5 Octa-based
devices, the Hardkernel XU4 and the Samsung Artik 1020, only
the XU4 was more widely available at the time of design. The
Artik module became generally available in early 2017 and would
be interesting for future work because of its small form-factor.
There are other small form-factor low-cost modules such as the
Raspberry Pi Zero, as used in the Pi-puck (Millard et al., 2017),
but none that provide standard API access to GPGPU capability.
For these reasons, we chose to base the Xpuck on the Hardkernel
Odroid XU4 single board computer.

2.1. High-Performance Computing
The Hardkernel Odroid XU4 is a small single board computer
based around the Samsung Exynos 5422 SoC. It has 2GB of RAM,
mass storage on microSD card, ethernet and USB interfaces, and
connectors exposing many GPIO pins with multiple functions.

The SoC contains eight ARM CPU cores in a big.LITTLE2

formation, i.e., two clusters, one of four small low power A7 cores,
and one of four high-performance A15 cores. The system concept

2https://developer.arm.com/technologies/big-little.

TABLE 2 | Hardkernel Odroid XU4 specifications.

Spec Details

SoC Samsung Exynos 5 Octa (5422)
CPU organization big.LITTLE 4+4
CPU big 4× ARM Cortex A15 2GHz 4×32K L1I,

4×32K L1D, shared 2M L2 25.6GFLOPSa

CPU little 4× ARM Cortex A7 1.4GHz 4×32K L1I,
4×32K L1D, shared 512K L2 11.2GFLOPSb

GPU ARM Mali T628MP6 600MHz 122GFLOPSc

Memory 2GB LPDDR3 933MHz PoP
Memory bandwidth 14.9GB/s
Idle power 2W
Maximum power 21W

a4-wide SP NEONv2 FMA× 4×800MHz.
bVMLA×4× 1.4GHz.
c4 vector multiply, 4 vector add, 1 scalar multiply, 1 scalar add, 1 dot product per cycle× 2
pipelines×6 cores×600MHz.

envisages the small A7 cores being used for regular but unde-
manding housekeeping tasks, and the higher performing A15
cores being used when the computational requirements exceed
that of the A7 cores, at the expense of greater power consumption.
It also contains an ARM Mali T628-MP6 GPU, which supports
OpenCL 1.2 Main Profile, allowing the relatively easy use of the
GPU for GPGPU computation. Some important specifications are
detailed in Table 2.

The Linux kernel supplied by Hardkernel supports full Hetero-
geneous MultiProcessor (HMP) scheduling across all eight cores,
with the frequencies of the two clusters being varied according
to the current process mix and load, the specified minimum and
maximum frequencies for each cluster, and the kernel governor
policy.3 It was evident from manually changing the CPU fre-
quencies during initial investigation that there was little subjective
performance boost from using the highest frequencies, but a large
increase in power consumption.

2.1.1. Operating Point Tuning
Computational efficiency is an importantmetric, directly affecting
the battery life. Initial tests showed that setting the maximum
frequencies to the highest allowed by the hardware (A15—2GHz,
A7—1.4GHz) and running a computationally heavy load caused
the power consumption to exceed 15W. To characterize the sys-
tem and find an efficient operating point, we chose to perform
benchmarking with a large single precision matrix multiplication
using the standard BLAS API function SGEMM. This computes
C=αAB+βC, which performs 2N2(N+ 1) operations for an
N ×N matrix. Good performance requires both high real floating
point performance and goodmemory bandwidth. TheOpenBLAS
libraries (Xianyi et al., 2012) provide optimized routines capable
of running on multiprocessor systems and can utilize all avail-
able processor cores. ARM provides useful application notes on
implementing an efficient single precision GEMM on the GPU
(Gronqvist and Lokhmotov, 2014).

Power consumption was measured for the XU4 board as a
whole, using an INA231 with a 20-mΩ shunt resistor in series
with the 5-V supply. A cooling fan attached to the SoC was run
continuously from a separate power supply to prevent the fan

3Essentially, how fast clock frequency will be varied to meet changing CPU load.

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 113

https://developer.arm.com/technologies/big-little
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Jones et al. A Two Teraflop Swarm

control thermal regulation from affecting the power readings.
Clock frequency for the A7 and A15 clusters of the Exynos 5422
were varied in 200MHz steps from 200MHz to 1.4GHz for the
A7, and from 200MHz to 2GHz for the A15 clusters, respectively.
At each step, a 1,024 by 1,024 SGEMM was performed contin-
uously and timed for at least 5 s while the power values were
measured to give Floating Point Operations per second (FLOPS)
and FLOPS/W. All points in the array were successfully measured
except for the highest frequency in both clusters; 1.4 GHz for A7
and 2GHz for A15, which caused the SoC temperature to exceed
95°C during the 5-s window, even with the cooling fan running,
resulting in the automatic clock throttling of the system to prevent
physical damage.

The results confirm that increasingCPU clock frequencies, par-
ticularly of the A15 cluster, produced little performance gain but
much higher power consumption. Figure 1 shows that the most
efficient operating point of 1.95 GFLOPS/W and 9.1 GFLOPS
occurs at the maximum A7 cluster frequency of 1.4GHz, and
the relatively low A15 cluster frequency of 800MHz. Increasing
the A15 frequency to the maximum achievable of 1.8GHz results
in a 6% increase in performance to 9.7 GFLOPS but at the cost
of 40% drop in efficiency to 1.21 GFLOPS/W. Because of this
dramatic drop in efficiency, we fix the maximum A15 frequency
to 800MHz.

As with the CPU measurement, GPU power consumption was
measured for the system as a whole, in the same way. The clock
frequency of the GPU was set to each of the allowed frequencies
of 177, 266, 350, 420, 480, 543, and 600MHz and an OpenCL
kernel implementing a cache efficient SGEMM was repeatedly
run on both the OpenCL devices. Figure 1 shows that efficiency
only declines slightly from the peak at around 480MHz to 2.24
GFLOPS/W and 17.7 GFLOPS at the maximum 600MHz. For
this reason, we left the maximum allowed frequency of the GPU
unchanged.

Note that theGFLOPS figures in these tests aremuch lower than
the theoretical peak values in Table 2 because the SGEMM task is
mostly memory bound.

2.2. Interface Board
An interface boardwas created to provide power to the XU4 single
board computer, interface between the XU4 and the e-puck, and
provide new multicolor LED signaling. The overall structure is
shown in Figure 2.

There are three interfaces to the e-puck, all exposed through the
expansion connectors; a slow I2C bus that is used for controlling
the VGA camera, a fast SPI bus that is used for exchanging data
packets between the XU4 and the e-puck, over which sense and
control information flow, and a parallel digital interface to the
VGA camera. In each case, the interfaces have 3.3v logic levels.

The XU4 board has a 30 pin expansion connector that exposes
a reasonable number of the GPIO pins of the Exynos 5422 SoC,
some of which can be configured to be I2C and SPI interfaces.
The XU4 interface logic levels are 1.8V. A camera interface was
not available, and initial investigation showed that it would not be
possible to use pure GPIO pins as a parallel data input from the
camera due to the high required data rate. We decided to use a
USB interface to acquire camera data.

We intend to use visual signaling as a means of communication
within swarms. For this purpose, we included a ring of fifteen
Neopixels around the edge of the interface board. Neopixels are
relatively recently available digital multicolor RGB LEDs which
are controlled with a serial bitstream. They can be daisy chained
in very large numbers and each primary color is controllable to
256 levels.

2.2.1. Power Supply
TheXU4 requires a 5-V power supply. To design the power supply,
the following constraints are assumed:

• TheXU4 and supporting electronics will be powered from their
own battery, separate from the e-puck battery.

• The average power consumption will be 5W.
• The peak power consumption will be 10W.

It is immediately clear that the e-puck battery, a single-cell Li-
ion type with a capacity of about 1,600mAh, would not be able
to power the XU4 as well. At a cell voltage of 3.7 V, converter
efficiency of 85% and a nominal power consumption of 5W,
battery life would be at best 3.7×1.6×0.85

5 = 1 hour, not counting
the requirements of the e-puck itself. These estimates are based
on battery characteristics in ideal conditions and real world values
will be lower. Hence, they need for a second battery. To get a 1.5-
h endurance, we assume a conservative 50% margin to account
for real-world behavior, giving the requirement of 1.5×1.5×5

3.7×0.85 =
3.6Ah.

Mobile devices are generally designed to work within a power
envelope of around 5W or the case becomes too hot to hold
comfortably, see, for example, Gurrum et al. (2012). We assume
that with attention to power usage, it will be possible to keep the
average power at this level.

The third constraint was motivated by a survey of the readily
available switch-mode power supply solutions for stepping up
from 3.7V single-cell lithium to the required 5V. Devices tended
to fall into two types—boost converters that were capable of high
currents (>2A) butwith low efficiencies and large-sized inductors
due to low-operating frequencies, or devices designed for mobile
devices which include battery protection and have small sized
inductors due to their high efficiency and operating frequency.
Of the latter class, the highest output current was 2A, with future
higher current devices planned but not yet available. Measure-
ments of the XU4 showed an idle current of 400mA but very high
current spikes, exceeding 3A during booting. To meet the third
constraint and enable the use of a high efficiency converter, the
kernel wasmodified to boot using a low clock frequency, reducing
boot current to below 1.5A.

The power supply regulator chosen was the Texas Instruments
TPS61232. It is designed for single-cell Li-ion batteries, has a very
high efficiency of over 90%, a high switching frequency of 2MHz
resulting in a physically small inductor, and has battery protection
with undervoltage lockout.

One aspect of the power supply design that is not immediately
obvious is that the battery current is quite high, reaching 4A
as the cutoff discharge limit of 2.5 V is reached. This seriously
constrains switching the input power. In fact, physically small

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 114

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Jones et al. A Two Teraflop Swarm

FIGURE 1 | Performance, power consumption, and efficiency of the CPUs and GPU while continuously running a 1,024×1,024 single precision matrix
multiplication. Highest efficiency for the CPU clusters is with the maximum A7 frequency of 1.4GHz but a relatively low A15 frequency of 800MHz. The GPU
efficiency stays relatively flat above 480MHz.

switches capable of handling this amount of current are not read-
ily available. For this reason, and to integrate with the e-puck,
two Diodes Incorporated AP2401 high side switches were used
in parallel to give electronic switching, allowing the use of the
e-puck power signal to turn on the XU4 supply. The high current
also necessitates careful attention to the resistance budget and
undervoltage lockout settings.

To monitor battery state and energy, we use two Texas Instru-
ments INA231 power monitoring chips, sensing across 20-mΩ
resistors on the battery and XU4 side of the switching regulator.
These devices perform automatic current and voltage sensing,
averaging and power calculation, and are accessible over an I2C
bus. The Hardkernel modified Linux kernel also targets the older
Odroid XU3 board, which included the same power monitor
chips, so the driver infrastructure is already present to access
them.

We used branded Panasonic NCR18650B batteries, rated at
3,400mAh, and achieved a battery life of close to 3 h while run-
ning a ROS graph with nodes retrieving camera data at 640× 480
pixels 15Hz, performing simple blob detection, exchanging con-
trol packets at 200Hz with the e-puck dsPIC and conditioning
the returned sensor data, and running a simple swarm robot con-
troller. All the LEDs were lit at 50% brightness and varying color,
and telemetry was streamed over WiFi at an average bandwidth of
10 kB/s. Figure 3 shows the discharge curve. Power is relatively
constant throughout at about 3.3W except at the end, where it

drops slightly. This is due to the Neopixel LEDs being supplied
directly from the battery. As the voltage drops below about 3.1 V,
the blue LEDs stop working, reducing the power consumption.

2.2.2. Camera Interface
The e-puck VGA camera is a Pixelplus PO3030K or PO6030K,
depending on the e-puck serial number. Both types have the same
electrical interface, although the register interface is slightly differ-
ent. It is a 640× 480, 30 fps CMOS sensor, controlled by I2C, and
supplies video on an eight bit parallel bus with some additional
lines for H and V sync. By default, the camera provides 640× 480
data within an 800× 500 window in CrYCbY format. Each pixel
is 16 bits and takes two clocks. The maximum clock frequency of
27MHz gives 30 fps, with a peak bandwidth of 27MB/s, sustained
18.4MB/s. At ourminimum desired frame rate of 10Hz, the clock
would be 9MHz.

We considered a number of possible solutions to the problem
of getting the VGA camera data into the XU4, initially focusing
on implementing a USB Video Class device, which would then
be simply available under the standard Linux webcam driver but
available devices were relatively expensive (e.g., XMOS XS1-U8A-
64 18, Cypress Semiconductor CYUSB3014 35, UVC app notes
available for both). In the end, we settled on a more flexible
approach, using the widely available and cheap FTDI FT2232USB
interface chip, together with a low power and small FPGA from
Lattice.

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 115

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Jones et al. A Two Teraflop Swarm

Steppers Sensors

CameradsPICBattery
3.7v
1600mAH

Battery
3.7v
3400mAH

SMPS
5v 2A

Odroid XU4

FTDI USB

FPGA

Levelshift

Sensing

5V power I2C SPI GPIO USB

LEDs

I2C SPI

Interface board

E-puck

FIGURE 2 | Block diagram showing the functionality of the interface board. The yellow box at the top is the XU4 single board computer, communicating over I2C,
SPI, and USB interfaces with the interface board in green. This performs voltage level shifting, provides a USB interface to the e-puck camera, and supplies 5v power
to the XU4. The e-puck in blue acts as a slave device to the XU4, running low-level proximity sensing and stepper motor control.

FIGURE 3 | Battery life of close to 3 h while running a ROS graph with nodes
retrieving camera data at 640×480 pixels 15Hz, performing simple blob
detection, exchanging control packets at 200Hz with the e-puck dsPIC, and
running a basic behavior tree interpreter. All the Neopixel LEDs were lit at 50%
brightness and varying color, and telemetry was streamed over WiFi at an
average bandwidth of 10 kB/s. The fall-off in power consumption at the 2.5-h
point is due to the battery voltage falling below the threshold voltage of the
blue LEDs within the Neopixels.

We wanted a low-cost solution; the FT2232H is around 5, and
provides a USB2.0 High Speed interface to various other protocols
such as synchronous parallel, high speed serial, JTAG, etc. It is not
programmable though, and cannot enumerate as a standard UVC
device. The FT2232H provides a bulk transfer mode endpoint.

This is not ideal for video, since it provides no latency guarantees,
unlike isosynchronous mode, but since we control the whole
system, we can ensure that there will be no other devices on the
USB bus that could use transfer slots.

Although the FT2232H provides a synchronous parallel inter-
face, it is not directly compatible with the camera. The FT2232H
has a small amount of buffering, and uses handshaking to provide
backpressure to the incoming data stream if it cannot accept new
data, whereas the camera has no storage and simply streams data at
the clock rate during the active 640 pixels of each line. To provide
buffering and handle interfacing, we chose to use the Lattice Semi-
conductor iCE40HX1K FPGA. This low-cost device, less than 4
in a TQ144 package, has 96 programmable IO pins in four banks
each of which that can run with 1.8, 2.5, or 3.3 V IO standards.
It has 64 kB of RAM, sufficient to buffer 6.4 lines of video, or
1.3ms at our minimum desired frame rate. We assume that the
Linux USB driver at the XU4 end can handle all incoming USB
data provided there is an available buffer for the data, meaning
that the combined maximum latency of the user application and
kernel driver must not exceed 1.3ms to avoid underruns. Given
reported sustained data rates of 25MB/s for the FT2232H, this
seems plausible, although should this not prove possible, we had
the fallback position of being able to lower the camera clock
frequency to a sustainable level.

The decision to use an FPGA with the large number of IOs
capable of different voltage standards gave greater design freedom.
There is no need for any other glue logic, and it is possible to
design defensively, with a number of alternative solutions to each
interface problem. It also makes possible the later addition of
other peripherals. For this reason, sixteen uncommitted FPGA

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 116

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Jones et al. A Two Teraflop Swarm

FIGURE 4 | Left: 16 assembled Xpucks. Right: major components, left to right, top to bottom. Outer 3D printed shell showing Vicon tracking reflectors in unique
pattern on top. Support chassis, which holds the XU4 single board computer and the LiION battery. Spacer ring, locating the chassis above the PCB and reflecting
the upward facing LEDs outwards. XU4 computer, with leads for power and data. Interface PCB. Base e-puck, with red 3D printed skirt.

pins were brought out to an auxiliary connector. Lattice semicon-
ductor provides an evaluation kit, the iCEstick, broadly similar to
the proposed subsystem, allowing early development before the
completion of the final PCBs.

The final system proved capable of reliably streaming camera
data at 15 fps, or 9.2MB/s, with a camera clock of 12MHz.

2.2.3. I2C and SPI Communications, Neopixel LEDs
All the e-puck sense and control data, except for the camera, flow
over the SPI interface. It is used to control the e-puck motors and
LEDs, the Neopixel LEDs on the interface board, and to read from
the accelerometers and IR proximity sensors on the e-puck. The
I2C bus is only used to set the parameters of the VGA camera.

As with the LEB, the XU4 board acts as the SPI master, provid-
ing the clock and enable signals, and the dsPIC of the e-puck the
slave. SPI communication is formed of 16-bit packets. Both the
master and slave have a 16-bit shift register and communication
is full duplex. The master loads data into its register and signals
the start of communications, followed by 16 clocks, each shifting
one bit of the shift register out from the master and into the slave.
Simultaneously, the slave data are shifted into themaster. Between
each 16 bit packet, communication pauses for long enough for the
master and slave to process the received packet and prepare the
next outgoing packet. This is handled in hardware with DMA at
the XU4 end, but the dsPIC has no DMA and uses an interrupt
routine to perform this. We used a value of 6.4 μs to ensure
sufficient processing time.

The SPI signals were routed to the FPGA and the board design
allows for them to be routed through it. This enables two things:
first, the FPGA can watch the data from the XU4 and use fields
within that to control its own peripherals, currently the Neopixel
LEDs, second, it allows the insertion of data into, or the modifica-
tion of the return messages from the e-puck.

The FPGA contains additional logic to interpret fields within
the SPI packet for controlling the Neopixel LEDs. These data are
stored in a buffer within the FPGA and used to generate the
appropriately formatted serial stream to the LEDs.

2.3. Physical Design
The interface board is 70mm in diameter, the same as an e-puck.
It sits on top of the base e-puck. Above this, the XU4 board is held

vertically within a 75-mm diameter cylindrical 3D printed shell,
which also holds the battery. Flying leads from the XU4 for the
GPIO parallel and the USB interfaces, and for the power supply,
connect to the interface board. Figure 4 shows 16 completed
Xpucks, and the major components of the assembly. Figure 5
shows details of a populated interface board.

2.4. Software and Infrastructure
The swarm operates within an infrastructure that provides track-
ing, virtual sensing, and message services. To facilitate this, the
Xpucks run a full featured distribution of Linux and ROS, the
Robot Operating System (Quigley et al., 2009). This gives access
to much existing work: standard libraries, toolchains, and already
existing robot software. Given the close dependence of ROS on
Ubuntuwe chose to useUbuntu 14.04.4 LTS, runningROS Indigo.

2.4.1. Real-time Kernel
The standard Linux kernel is not hard real-time, i.e., it does not
offer bounded guarantees of maximum latency in response to
events. One of the tasks that are running on the XU4 that requires
real-time performance is the low-level control loop comprising
the SPI data message exchange with the e-puck. The maximum
speed of the e-puck is about 130mm/s. A distance of 5-mm corre-
sponds to about 40ms. It would be desirable to have a control loop
with a period several times faster than that, one commonly used
in e-puck experiments is 100Hz, or tcontrol = 10ms. Theminimum
time for the control loop to respond to a proximity sensor is two
SPI message lengths, so to achieve a 10-ms control period, we
need an SPI message period tperiod < 5ms. Assuming a 5-MHz
SPI clock with a message comprising 32 16-bit packets and a 6.4-
μs interpacket gap, the total time per message is tmessage = 307 μs.
This gives a budget of tperiod − tmessage = 4.7ms for processing and
latency. Measurements using cyclictest4 over 500,000 loops of
1ms, or about 8min, with the Server preemption policy kernel
while running SPI message exchange at 200Hz showed figures
of 13.9ms, and even when running the Low-Latency Desktop
preemption policy this was above 3.5ms. This leaves little margin
for processing.

We used the PREEMPT-RT patch (Rostedt and Hart, 2007),
which modifies the kernel to turn it into a real-time operating

4https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest.

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 117

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Jones et al. A Two Teraflop Swarm

system (RTOS), able to provide bounded maximum latencies to
high priority real-time user tasks. With the RTOS kernel, the
measured latencies while running SPI message exchange never
exceeded 457 μs over several hours running at 200Hz.

2.4.2. Resilient Filesystem
One of the important issues when making reliable Linux embed-
ded systems is how to deal with unexpected power removal. Linux
filesystems, in general, are likely to be corrupted if the power
is removed while they are performing a write. Even journaling
filesystems like ext4 are prone to this. This iswhyLinuxneeds to be
properly shut down before power is removed, but this is simply not
practical for an experimental battery-powered system. Disorderly
shutdowns will happen, so this needs to be planned for.

We implement a fully redundant filesystemwith error checking
using BTRFS (Rodeh et al., 2013) as described in a StackExchange
answer.5 BTRFS is modern journaling filesystem that supports
on-the-fly compression and RAID and is capable of self-healing,
provided there are redundant copies of the data. The idea is
that we create two partitions on the same SD card and mount
them as a completely redundant RAID1 array. Any filesystem
corruption will be seen as a mismatch between checksum and file,
and the redundant copy on the other partition used to replace the
corrupt version. This has proven to be very reliable so far, with no
corrupted SD cards.

2.4.3. Arena Integration
The Xpucks work within an arena which provides the infras-
tructure for experiment control, implementing virtual senses if
needed, and for logging, see Figure 6. It is area 2m by 1.5m
equipped with a Vicon tracking system and an overhead network
webcam. Each Xpuck has a USB WiFi dongle, and the arena has
a dedicated WiFi access point. For robustness, each Xpuck has a
fixed IP address, and the standard scripts are replacedwith a script
that continually checks for connectivity to the access point and
attempts reconnection if necessary.

Software called the switchboard runs on the Hub server and
is responsible for the distribution of experiments to the Xpucks,
their initiation, and the logging of all experiment data. EachXpuck
automatically starts a ROS node at boot which connects to the
Hub over ZeroMQ sockets (Hintjens, 2013) supplying a stream
of telemetry about the physical state of the Xpuck, including bat-
tery levels and power consumption, temperature, sensor values,
and actuator settings. The switchboard sends timestamps, virtual
sense data, and can command the ROS node to download and
execute arbitrary experiment scripts, which would typically set
up a more complex ROS graph for the robot controller, which in
turn will run the experiment upon a trigger from the switchboard.
Controllers are always run locally on the Xpucks. This is all
controlled either from the command line on the Hub or with a
GUI giving visibility to important telemetry from the swarm.

EachXpuck ismarkedwith a unique pattern of reflectors recog-
nized by the Vicon system. There are four reflectors arranged on a
4× 4 grid with spacing of 10mm. We used a brute force search to

5Corruption-proof SD card filesystem for embedded Linux? http://unix.
stackexchange.com/questions/136269/corruption-proof-sd-card-filesystem-for-
embedded-linux.

FPGA

Power
supply

USB

NeoPixel

FIGURE 5 | Interface board PCB, showing the boost converter PSU for the
XU4 5v supply, the FPGA and USB interface, the VGA camera and SPI level
shifting, and the 15 Neopixels.

find unique patterns for each of the 16 Xpucks. Because of the size
of the marker pattern and of the Xpucks themselves, there should
be no ambiguous conditions when Xpucks are close to each other.
This has proved effective with unambiguous detection even when
all 16 Xpucks were placed packed together in the arena.

The switchboard software connects to the Vicon system and
receives pose messages at the update rate of 50Hz. This is used to
log the absolute positions of the Xpucks during experiments and
also to synthesize virtual senses included in the outgoing streams
of data from the switchboard to the Xpucks. Range and bearing is
an important sense in swarm robotics experiments, which we can
construct directly using the e-pucks IR proximity sensors or with
additional hardware (Gutiérrez et al., 2009a,b). We can also syn-
thesize range and bearing information from the Vicon data with
behavior defined by a message distribution model, which allows
us to specify parameters such as range, noise, and directionality.
There is the capability for Xpucks to send broadcast messages
consisting of their ID, this is disseminated by the switchboard
according to the message distribution model. Messages received
have no content, but are an indication that the sender and the
receiver can communicate, actual data transfer can take place
point-to-point. In this, we take inspiration from O’Dowd et al.
(2014), who use IR communication between e-pucks to establish
if contact is possible, data transfer then taking place over WiFi.

2.5. GPGPU Robot Simulator
In this section, we describe the design and realization of a fast
parallel physics-based 2D multi robot simulator running on the
Xpuck SoC GPU.

To perform onboard evolution of controllers or to evaluate
multiple what-if scenarios, we need to be able to runmany simula-
tionsmuch faster than real-time. A typical evolutionary algorithm
might have a population of p potential solutions. Each of these
needs to be evaluated for fitness by running r simulations with
different starting conditions. Many generations g of evaluation,

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 118

http://unix.stackexchange.com/questions/136269/corruption-proof-sd-card-filesystem-for-embedded-linux
http://unix.stackexchange.com/questions/136269/corruption-proof-sd-card-filesystem-for-embedded-linux
http://unix.stackexchange.com/questions/136269/corruption-proof-sd-card-filesystem-for-embedded-linux
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Jones et al. A Two Teraflop Swarm

Vicon PC

Hub PC

Experiment
data

WiFi router

Vicon cameras

Xpucks 2m x 1.5m arena

FIGURE 6 | The Xpuck arena. Experiments take place within a 2m×1.5m area surrounded by walls slightly higher than the height of the Xpucks. Each Xpuck has a
unique pattern of spherical reflectors on their top surface to enable the Vicon motion tracking system to identify each individuals pose. The Vicon PC is dedicated to
managing the Vicon system and makes available a stream of pose data. The Hub PC is responsible for all experiment management, data logging, and virtual sense
synthesis.

selection, combination, and mutation take place to produce fitter
individuals. Typically, p, r, g might be (50, 10, 100). One scenario
we envisage is evolving a controller for the next fixed interval ∆t
of real time. During the current time interval, we need to complete
nsims = prg simulations of that time ∆t, or:

nsims · treal
tsim

< 1 (1)

where tsim is the simulated time and treal is the wall clock time for
that simulated time. It is generally the case (Vaughan, 2008; Jones
et al., 2015) that multi robot simulation time is proportional to the
number of agents being simulated. We define a simulator speed
using the robot acceleration factor:

racc =
nrobots · tsim

treal
(2)

where nrobots is the number of robots, tsim and treal as above. With
equation (1) we get a required racc of:

racc > nsims · nrobots. (3)

We can see that if we are using a single simulator, the required
racc increases with the number of robots being simulated. But if
we run a distributed evolutionary algorithm and have a simulator
embodied in each robot, the required racc simply becomes:

racc > nsims. (4)

For the example above, we therefore require a simulator with
racc > 50,000.

There is a basic trade-off between simulator fidelity and speed.
Typical values of racc when running on a PC are 25 for a full
3D physics simulation like Gazebo, 1,000–2,000 for 2D6 arbi-
trary shape simulators with relatively detailed sensory modeling
like Stage (Vaughan, 2008), and ARGoS (Pinciroli et al., 2011),
and 50,000–100,0007 for constrained geometry 2D physics game
engines like Box2D (Catto, 2009). There is also a cost to generality;
the critical path in stage is the ray-tracing operation for modeling
of distance sensors, necessary to handle arbitrary object shapes
in the simulated world. We show in Jones et al. (2016) that a
constrained geometry 2D physics engine simulator is capable of
being used to evolve swarm controllers which transfer effectively
to the real world, so this motivates our simulator design.

To get good performance on an application running on a GPU,
it is necessary that there is a large number of work items that
can be performed in parallel. The Mali Midgard GPU architec-
ture present in the Exynos 5422 SoC of the XU4 has six shader
cores, each of which can run 256 threads simultaneously. To
keep the cores busy, it is recommended that a kernel be executed
over hundreds or thousands of work items, depending on its
resource usage. We therefore need to design our simulator to
have parallelism at least in the hundreds to take advantage of the
GPU and be sufficiently constrained in scope that we avoid the
costs of generality; by using only straight lines and circles in our
simulation, collisions and sensor intersections can be calculated
cheaply by geometry, rather than expensive ray-tracing.

6or “two-and-a-half D” with sensors having some awareness of Z but kinematics
and dynamics modelled purely in 2D.
7We achieved 80,000 with our Box2D-based kilobot simulator (Jones et al., 2016).

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 119

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Jones et al. A Two Teraflop Swarm

2.5.1. Simulation Model
The simulation models up to 16 Xpuck robots within a
2m× 1.5m rectangular arena centered about the origin, with the
edges of the arena surrounded with immovable walls. As well as
the Xpuck robots, there can be other inert round objects that can
be pushed by the Xpucks. The reference model for the robots is
given in Table 3, this describes the sensors and actuators that are
exposed to the robot controller.

We can divide the simulation into three sections; physics, sens-
ing, and control. Physics handles the actual physical behavior of
the robots within the arena, modeling the dynamics of motion,
and collisions in a realistic way. Sensing constructs the input vari-
ables described in the robot reference model from the locations
and attributes of the objects within the simulated world. Control
runs a robot controller for each simulated robot, responding to
the reference model inputs, and producing new output variables,
resulting in the robot acting within the world.

There are three types of object within the world: the arena
walls, the Xpucks, and inert objects. Thewalls are immoveable and
are positioned horizontally and vertically symmetrically about the
origin. Xpucks, which are round and colored, can sense each other
with their camera, proximity sensors and range and bearing, and
can move with two-wheel kinematics. Inert objects, which are
round and colored, can be sensed by Xpuck cameras but not by
the proximity sensors because they are low in height. They move
only due to collisions.

2.5.1.1. Physics
The physics core of the simulation is based on work by Gaul
(2012). There are only circular bodies, which are rigid and have

TABLE 3 | Robot reference model.

Input variables Values Description

Pi∈{1,2,. . .,8} [0,1] Proximity sensor i,
0= nothing in range,

1= object adjacent to sensor
θ [−π, π) Compass, giving pose angle

in world frame
n ∈ N {0, . . ., 16} Number of neighboring Xpucks
(r, ∠b)i∈{1, . . ., n},n ̸=0 ([rmin, rmax], [−π, π)) Range and bearing of

neighbor m
Ri∈{ left,center,right } {0, 1} Red blob detection
Gi∈{ left,center,right} {0, 1} Green blob detection
Bi∈ { left,center,right } {0, 1} Blue blob detection

Output variables

v i∈{ left,center,right} [−vmax, vmax] Left and right wheel velocities

Constants

tupdate 100ms Controller update period
rmin 0.075m Minimum range and bearing

range (center to center)
rmax 0.5m Maximum range and bearing

range (center to center)
vmax 0.13ms−1 Maximum wheel velocity
∠qi∈{1,2,. . .,8} 0.297, 0.855,

1.571, 2.618, Angle of proximity sensor i
−2.618, −1.571,
−0.855, −0.297

pmax 0.04m Proximity sensor maximum range

finite mass, and the walls, which have infinite mass. Interactions
between bodies are governed by global attributes of coefficients of
static and dynamic friction, and restitution. Interactions between
the bodies and the arena floor are governed by individual
attributes of mass and coefficient of friction. The physical state
of each body i is described by the tuple Si(x, v, θ, ω) representing
position, velocity, angle, and angular velocity.

The equations of motion governing the system are v̇ =
1
mF, ω̇ = 1

I τ, ẋ = v, θ̇ = ω. They are integrated using the
symplectic Euler method (Niiranen, 1999) which has the same
computational cost as explicit Euler but better stability and energy
preserving properties.

Collisions between bodies are resolved using impulses. For each
pair of intersecting bodies, a contact normal and relative velocity
are calculated, producing an impulse vector which is used to
instantaneously change the linear and angular velocities of the two
bodies. This is iteratively applied multiple times to ensure that
momentum is transferred in a physically realistic way between
multiple contacting bodies.

Collision detection between pairs of bodies with a naive algo-
rithm isO(n2) somost physics simulators handling a large number
of bodies (100 s upwards) use a two stage process with a broad-
phase step that eliminates a high proportion of pairs that cannot
possibly be in collision, before the narrowphase step that detects
and handles those bodies that are actually colliding. But we have
only a maximum of 21 bodies (4 walls, 16 robots, 1 object) which
means that any broadphase step must be very cheap to actually
gain performance overall. We tried several approaches before
settling on a simple binning algorithm: each object is binned
according to its x coordinate, with bins just larger than the size
of the objects. A bin contains a bitmap of all the objects within it.
Objects can only be in collision if they are in the same or adjacent
bins so the or-combined bitmap of each two adjacent bins is then
used to form pairs for detailed collision detection.

The two-wheel kinematics of the robots aremodeled by consid-
ering the friction forces on eachwheel due to its relative velocity to
the arena surface caused by thewheel velocity and the object veloc-
ity. Friction force is calculated as Coulomb but with µ reduced
when the velocity is close to zero using the formulation inWilliams
et al. (2002): µ = µmax

2·arctan(k∗v)
π . With the same justification

as Williams et al. (2002), we chose k= 20 empirically to ensure
numerical stability. The forces on each body are resolved to a
single force vector F and torque τ . Non-robot objects simply have
zero wheel velocities.

The noise model is a simplified version of that described
by Thrun et al. (2005). Three coefficients, α1, α2, α3, control,
respectively, velocity-dependent position noise, angular velocity-
dependent angle noise, and velocity-dependent angle noise. So
position and angle are modified: x′ = x + v · s(α1), θ′ =
θ + ω · s(α2) + |v| · s(α3) where s(σ) is a sample from a Gaussian
distribution with SD σ andmean of zero. Because the noise model
is on the critical path of position update and the calculation of even
approximate Gaussian noise is expensive, we use a pre-calculated
table of random values with the correct distribution.

The physics integration timestep is set at 25ms for an update
rate of 40Hz. This value was chosen as a trade-off performance
and physical accuracy, giving 4 physics steps per controller update
cycle.

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 1110

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Jones et al. A Two Teraflop Swarm

2.5.1.2. Sensing
There are three types of sensors that need to be modeled. Each
Xpuck has eight IR proximity sensors arranged around the body
at a height of about 25mm. These can sense objects out to about
40mm from the body. The reference model specifies that the
reading varies from 0 when nothing is in range, to 1 when there is
an object adjacent to the sensor. Similar to the collision detection
above, the maximum sensor range is used to set the radius of a
circle about the robot which is tested for intersection with other
objects. For all cases where there is a possible intersection, a ray
is projected from the robot at each sensor angle and a geometrical
approximation used to determine the location of intersection with
the intersected body and hence the range. This process is actually
more computationally expensive than collision detection, but only
needs to take place at the controller update rate of 10Hz.

The second and third types of sensor are the camera blob
detection and the range and bearing sense. Blob detection splits
the camera field of view into three vertical segments and within
each segment, detects the presence of blobs of the primary colors.
Range and bearing sense counts the number of robots within
0.5m and produces a vector pointing to the nearest concentra-
tion. Together they are the most computationally expensive of
the senses to model. They necessarily traverse the same data
structures and so are calculated together.

To model the camera view, we need to describe the field of
view subtended by each object, what color it is, and whether it
is obscured by nearer objects. We implement this by dividing
the visual field into 15 segments and implementing a simple z-
buffer. Each object is checked and a left and right extent derived
by geometry. The segments that are covered by these extents have
the color of the object rendered into them, if the distance to the
object is less than that in the corresponding z-buffer entry. As each
object is checked, the distance is used to determine if the range and
bearing information needs to be updated.

In the real robot arena, range and bearing is implemented as
virtual sensing using a Vicon system and communication over
WiFi. There is significant latency of around 100–200ms between
a physical position and an updated range and bearing count and
vector reaching the real robot controller. Also, the camera on each
Xpuck has processing latency of a similar order. For this reason
and due to the computational cost, this sensor information is
updated at half the controller rate, or 5Hz.

2.5.1.3. Controller
The controller architecture we use is behavior tree based (Cham-
pandard, 2007; Ogren, 2012; Colledanchise and Ogren, 2014;
Scheper et al., 2015; Jones et al., 2016). Originating in the games
industry for controlling non-player characters, behavior trees are
interesting for robotics because they are hierarchical, allowing
encapsulation and reuse of sub-behaviors, human readable, aid-
ing analysis of evolved controllers for insight, and amenable to
formal analysis. A behavior tree consists of a tree of nodes and
a blackboard of variables which comprise the interface between
the controller and the robot. At every controller update cycle,
the tree of each robot is evaluated, with sensory inputs resulting
in actuation outputs. Evaluation consists of a depth-first traver-
sal of the tree until certain conditions are met. Each agent has
its own blackboard and state memory, the tree is shared by all

agents running the same controller. In our case, we are running
homogeneous swarms, so within a particular simulation, only
one tree type is used, with each simulated robot running its own
instance.

2.5.1.4. Implementation of Simulator on GPU
To best exploit the available performance of the GPU, our imple-
mentation must have a high degree of parallelism. We achieve this
by running multiple parallel simulations almost entirely within
the GPU. The limit to parallelization of running multiple simula-
tions for an evolutionary algorithm is the number of simulations
per generation; it is necessary to completely evaluate the fitness
of the current generation to create the individuals that will make
up the next generation. With the numbers given above, this would
be 500 simulations, below what would normally be recommended
to keep the GPU busy, but long-lasting threads ensure the GPU is
fully utilized.

As we implemented the simulator, it actually turned out that
memory organization was the most critical element for perfor-
mance. Each of the four cores within the first core group of the
GPU8 has a 16-kB L1 data cache and a 256 L2 cache shared
between them. Ensuring that data structures for each agent were
minimized, and that they fitted within and were aligned to a cache
line boundary resulted in large performance improvements.Mem-
ory barriers between different stages of the simulation update
cycle ensured that data within the caches remained coherent and
reduced thrashing. As performance improved and the memory
footprint changed, the effect of workgroup size and number of
parallel simulations was regularly checked. We used the DS-5
Streamline9 tool fromARM to visualize the performance counters
of the GPU which showed clearly the memory-bound nature of
the execution. Profiling of OpenCL applications is difficult at
anything finer than the kernel level, so there was much experi-
mentation and whole application benchmarking.

2.6. Image Processing Demonstration
The high computational capability of the Xpuck makes it possible
to run camera image processing algorithms not possible on the
e-puck on its ownor enhancedwith the LinuxExtensionBoard. To
demonstrate this and to evaluate the performance of the camera,
we implement ArUco marker tracking (Garrido-Jurado et al.,
2014) and test it with the onboard camera. ArUco is a widely used
library that can recognize square black and white fiducial markers
in an image and generate camera pose estimations from them.
In this demonstration, we use the marker recognition part of the
library and test the tracking under different distances and Xpuck
rotational velocities.

A ROS node was written to apply the ArUco10 marker detec-
tion library function to the camera image stream and to output
the detected ID and pixel coordinates on a ROS topic. Default
detection options were used and no particular attention was paid
to optimization.

8The six cores are divided into two core groups, one with four cores and one with
two. These are presented as two separate OpenCL devices. For ease of coding, only
one core group was used.
9https://developer.arm.com/products/software-development-tools/
ds-5-development-studio/streamline.

10Version 1.2, standard install from Ubuntu 14.04.4 ROS Indigo repository.

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 1111

https://developer.arm.com/products/software-development-tools/ds-5-development-studio/streamline
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/streamline
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Jones et al. A Two Teraflop Swarm

TABLE 4 | Speed of simulator with various functionalities enabled.

256 simulations 512 simulations

Functionality trss ∆trss % trss ∆trss %

Physics 6.9 6.9 40 6.7 6.7 31
+Sensors 11 4.5 26 11 4.0 19
+Camera and R&B 15 3.1 18 14 3.3 16
+Controller (all functionality) 17 2.6 16 21 7.2 34

16 robots, 1 passive object, basic exploration and collision avoidance controller. Tested over five runs with 256 and 512 parallel simulations. trss is time (µs) per robot simulated second.
With 256 parallel simulations, the physics functionality dominates at 40% of the processing time, but with 512 parallel simulations, controller processing is the largest proportion.

Two experiments were conducted. In both cases, we used video
from the Xpuck camera at a resolution of 320× 240 and a frame
rate of 15Hz. First, we measured the time taken to process an
imagewith the detection function under conditions of nomarkers,
four 100mm markers in a 2× 2 grid, and 81 20mm markers in a
9× 9 grid. Frame times were captured for 60 s.

Second, we affixed four ArUco tags of size 100mm with differ-
ent IDs to locations along the arena walls. An Xpuck was placed
in three different locations within the arena and commanded to
rotate at various speeds up to 0.7 rad/s. Data were collected for
31,500 frames. Commanded rotational velocity, Vicon tracking
data, and marker tracking data were all captured for analysis.

The data were analyzed in the following way: each video frame
is an observation,whichmayhavemarkers presentwithin it. Using
a simple geometrical model, we predict from the Vicon data and
the known marker positions whether a marker should be visible
in a given frame and check this against the output of the detector
for that frame. From this, we derive detection probability curves
for different rotation speeds.

2.7. In-Swarm Evolution Demonstration
One of ourmotivations formoving computation into the swarm is
to tackle the scalability of swarm controller evolution. To demon-
strate both the computational capability of the Xpuck swarm and
scalability, we implement an island model evolutionary algorithm
and demonstrate performance improvement when running on
multiple Xpuck robots.

The island model of evolutionary algorithms divides the popu-
lation of individuals into multiple subpopulations, each of which
follows its own evolutionary trajectory, with the addition ofmigra-
tion, where some individuals of the subpopulations are shared or
exchanged with other subpopulations. Island model evolutionary
algorithms enable coarse-grained parallelism, with each island
corresponding to a different compute node, and sometimes out-
perform single population algorithms by maintaining diversity
(Whitley et al., 1999). Even without that factor, the ability to scale
the size of total population with the number of compute nodes
hosting subpopulations is desirable for a swarm of robots running
embodied evolution.

2.7.1. Implementation of Island Model
On each Xpuck, we run a genetic algorithm evolving a population
of behavior tree controllers similar to that described in Jones et al.
(2016) using methods from Genetic Programming (Koza, 1992).
The parameters are described in Table 5. Evolution proceeds as
follows: an initial subpopulation of nsub individuals is generated

using theKoza’s ramped_half_and_half procedure, detailed in Poli
et al. (2008), with a depth of ndepth. Each individual is evaluated for
fitness by running nsims simulations with different starting condi-
tions and averaging the individual fitnesses. The subpopulation is
sorted and the top nelite individuals are copied unchanged into the
new subpopulation. The remaining slots are filled by tournament
selection of two individuals with replacement followed by a tree
crossover operation, with random node selection biased to inter-
nal nodes 90% of the time (Koza, 1992), to create a new individual.
Then, every parameter within that individual is mutated with
probability pmparam, followed by mutating every node to another
of the same arity with probability pmpoint, followed by replacing
a subtree with a new random subtree with probability pmsubtree.
This new population is then used for the next round of fitness
measurement.

The genetic algorithm is extended to the island model in the
following way: after every nepoch generations, each Xpuck sends a
copy of the fittest individual in its subpopulation to its neighbors.
They replace the weakest individuals in their subpopulations.
Currently, this is mediated through a genepool server, running on
theHub PC, although direct exchange of genetic material between
individual Xpucks is also possible using local IR communication.
This server maintains the topology and policy for connecting the
islands. This may be physically based, drawing on the position
information from theVicon. It is important to note that server pro-
vides a way to abstract and virtualize the migration of individuals;
in the same way, we use the Vicon information to provide virtual
sensing. When the server receives an individual from a node, it
replies with a set of individuals, according to the policy. These are
used to replace the least fit individuals on the requesting node.
The process is asynchronous, not requiring that the nodes execute
generations in lockstep. The policy for this experiment is to make
a copy of each individual available to every other node, so with
nnodes nodes the migration rate is rmigration = nnodes−1

nsub·nepoch .

2.7.2. Task and Fitness Function
We evolve a behavior tree controller for a collective object move-
ment task. The task takes place in a 2m× 1.5m arena with the
origin at the center and surrounded by walls greater than the
height of the Xpucks. The walls and floor are white. A blue plastic
frisbee of 220mm diameter is placed at the origin. Nine Xpucks
with red skirts are placed in a grid with spacing 100mm centered
at (−0.8, 0) and facing rightwards. The goal is to push the frisbee
to the left. Fitness is based on how far to the left the frisbee is
after a fixed time. An individual Xpuck can push the frisbee, but
only at about half the full Xpuck speed, so collective solutions

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 1112

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Jones et al. A Two Teraflop Swarm

have the potential to be faster. The swarm is allowed to execute
its controller for 30 s. After this time, the fitness is given by
equation (5).

f =

{
rderate −x

1−lfrisbee_radius , for x < 0
0, otherwise

(5)

where x is the x-coordinate of the center of the frisbee, and rderate
is a means of bloat control, proportionately reducing the fitness
of behavior trees which use more than 50% of the resources
available. To show scalability with increasing numbers of Xpucks,
we compare two scenarios, first a single Xpuck running a stan-
dalone evolution and second six Xpucks running an island model
evolution. In both cases, the parameters are as inTable 5. With the
island model, every nepoch = 2 generations, a node sends to all its
neighbors a copy of its fittest individual and receives their fittest
individuals, using these to replace its five least fit individuals,
giving a migration rate rmigration = 0.078. Each scenario is run ten
times with different initial random seeds.

3. RESULTS

3.1. Xpucks
The total cost of 25Xpuckswas 3,325, or 133 each. This includes
all parts, PCBs, XU4 single board computers, and batteries. It
does not include assembly or the base e-pucks, which cost around
700. Although it should be possible for a university technician to

assemble the boards in small quantities, the approximate costs per
board for factory PCB assembly were 17 for 25 boards, dropping
rapidly to 6 for 100 boards.11 It is our intention to make the
design open source and freely available.12

Currently, we have 16 assembled and functional robots. Bat-
tery life when running a moderate computational load is close
to 3 h. When continuously running the extremely computation-
ally demanding evolutionary algorithm described, the battery life
dropped to around 1 h 20min.

3.2. Simulator
Table 4 shows the results of running parallel simulations for a
simulated time of 30 s. Each simulation consists of 16 robots
running a simple controller for exploration with basic collision
avoidance, and one additional object that can be pushed by the

11Online quote from https://www.pcbway.com/.
12https://bitbucket.org/siteks/xpuck_design.

TABLE 5 | Evolutionary algorithm parameters.

Parameter Value Description

ngens 100 Number of generations
nsub 32 Size of subpopulation
nsims 8 Number of simulations for evaluation of fitness
nelite 3 Size of elite
pmparam 0.05 Probability of mutating a parameter
pmnode 0.05 Probability of mutating a node
pmsubtree 0.05 Probability of replacing a subtree
ndepth 4 Maximum depth of tree generated
ntsize 3 Tournament size
nepoch 2 Migration epoch

robots. The effect of running different numbers of parallel scenes
andwith various different levels of functionality enabled is shown.
trss is the time to simulate one robot second. trss = 1

racc , so the
required acceleration factor of 50,000 corresponds to trss = 20µs.
It can be seen that the requirement is met when running 256
simulations in parallel, with trss = 17µs. It is interesting to note
that when running 512 simulations, the performance is better with
all functionalities except the controller enabled. We surmise that,
when running the controller, the total working set is such that
there is increased cache thrashing with 512 parallel simulations.

The performance of the simulator running on the Xpuck GPU
is comparable to the same code running on the CPU of a much
more powerful desktop system and at least ten times faster than
more general purpose robot simulators such as Stage and ARGoS
running on the desktop. Although future work will aim to demon-
strate the transferability of the evolved solutions, we note that the
fidelity of the simulator is similar to previous work (Jones et al.,
2016) which successfully transferred with only moderate reality
gap effects.

3.3. Image Processing
For the computationally demanding image processing task,
Table 6 shows the time taken for the Xpuck to process a 320× 240
pixel frame using the ArUco library to search for markers. With
four large markers, the 23ms processing time is fast enough to
sustain the full camera frame rate of 15Hz. In the 81 marker
case, detection speed slows to 94ms, such that a 15Hz rate is not
sustainable. In both cases, however, all the markers were correctly
detected in each frame.

The dsPIC of the e-puck would not be capable of running this
code—it is only capable of capturing camera video at 40× 40
pixels and 4Hz with no image processing (Mondada et al., 2009)
and has insufficient RAM to hold a complete image. The Linux
Extension Board processor could potentially run the detection
code, but we estimate the processing time would be at least 50
times longer13 giving a frame rate of less than 1Hz.

The arena detection experiment collected 31,500 frames, with
11,076 marker detections possible in ideal circumstances. Actual
detections numbered 8,947, a total detection rate of 81%. Figure 7
shows the probability of detecting a marker under different con-
ditions. With four markers around the arena, and the Xpuck
capturing data at three locations within the arena, there are twelve
distance/angle combinations. Distances vary from 0.5 to 1.5m,
and angles from 0° to 70°. The gray envelope and lines show
the individual distance/angle combinations against the angular

13ARM926EJS @200MHz= 220DMIPS, A15 @800MHz= 2800DMIPS, 4× penalty
for no floating point, single core only: 50×.

TABLE 6 | ArUco detector speed at a resolution of 320×240 pixels under different
conditions.

Condition Processing time (ms) σ

No markers 12.4 2.7
4mm×100mm markers 23.3 4.5
81mm×20mm markers 93.8 0.25

In each case, the input was for 60 s. The detector code is unable to process frames at
the full 15Hz in the 81 marker case.

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 1113

https://www.pcbway.com/
https://bitbucket.org/siteks/xpuck
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Jones et al. A Two Teraflop Swarm

FIGURE 7 | Probability of marker detection under different conditions. There are four markers around the arena, with data collected at three locations, giving twelve
distance/angle combinations. Observations at a resolution of 320×240 pixels were made for 31,500 frames, with 8,947 marker detections out of a possible 11,076,
a detection rate of 81%. The number of detections compared to the maximum possible for each geometry was binned by angular velocity to give probability curves.
Gray lines are individual distance/angle combinations, and the blue line is the average over all combinations. Generally, detection rate falls with increasing angular
velocity, with a 50% detection rate at 180 pixels/s.

velocity, with the blue line being the average over all observations.
Angular velocity is expressed in pixels/s for better intuition about
how fast a marker is traversing the field of view of the camera.
Generally, the detection rate falls as the angular velocity increases,
with a 50% detection rate at 180 pixels/s.

This shows that, even with unoptimized code, the Xpuck has
sufficient computational performance, and the camera subsystem
is of sufficient quality, that visual marker tracking is feasible.

3.4. Evolution
The results are summarized in Figure 8. It is clear that the six
node island model evolutionary system performs better than the
single node. Maximum fitness reached is higher at 0.7 vs 0.5, and
progress is faster. Of interest is the very low median fitness of the
single node populations (shown with red bar in boxes), compared
to the mean. This is because seven out of the ten runs never
reached a higher fitness than 0.1 suggesting the population size
or the number of generations is too small. Conversely, the median
and mean of the island model population’s maximum fitnesses are
quite similar, showing amore consistent performance across runs.
If we look at how fast the mean fitness rises, a single node takes
100 generations for the fitness to reach 0.15. The six node system
reaches this level of mean fitness after 25 generation, four times
faster.

Figure 9 shows a plot of the elapsed processing time per gener-
ation over ten runs. The variation is mostly due to the complexity
and depth of the behavior tree controllers within each generation,
together with the trajectory of the robots in simulation. Each of
the ten runs of both the island model and the single node systems
completed in less than 10min. For comparison, each evolutionary
run in our previous work (Jones et al., 2016) took several hours on
a powerful desktop machine.

This demonstrates the Xpucks are sufficiently capable to host
in-swarm evolutionary algorithms that scale in performance with
the size of the swarm.

4. DISCUSSION

4.1. Background and Related Work
In the introduction, we outline three areas which we feel could
benefit from the increased processing power of the Xpuck.

Swarm robotics (Sahin, 2005) takes inspiration from collective
phenomena in nature, where global behaviors emerge from the
local interactions of the agents of the swarm with each other,
and with the environment. The design of controllers such that a
desired collective behavior emerges is a central problem.Common
approaches use bioinspiration, evolution, reverse engineering,
and hand-design (Reynolds, 1987; Trianni et al., 2003; Hauert
et al., 2009b; Trianni and Nolfi, 2011; Francesca et al., 2014).
The controller architectures include neural networks, probabilistic
finite state machines, behavior trees, and hybrid combinations
(Baldassarre et al., 2003; Francesca et al., 2015; Duarte et al., 2016;
Jones et al., 2016). See Francesca and Birattari (2016) for a recent
review. When using evolution or other methods of automatic
design within an off-line simulated environment, the problem of
the transferability of the controller from simulation to real robots
arises, the so-called reality gap. There are various approaches to
alleviating this such as noise injection within a minimal simula-
tion (Jakobi et al., 1995; Jakobi, 1998), making transferability a
goal within the evolutionary algorithm (Koos et al., 2013; Mouret
and Chatzilygeroudis, 2017), and reducing the representational
power of the controller (Francesca et al., 2014, 2015). Embodied
evolution directly tests candidate controllers in reality. When
applied to swarms (Watson et al., 2002) the evolutionary algorithm

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 1114

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Jones et al. A Two Teraflop Swarm

A

B

FIGURE 8 | Comparison of 100 generations of evolution using a single node (A) and using an island model with six nodes (B). Each node has a population of 32
individuals, evaluated 8 times with different starting conditions for fitness. Each node in the six node system replaces is five least fit individuals with the fittest from the
other five nodes every two generations. Boxes summarize data for that generation and the previous four. Red bar in boxes indicates median. The six node system
clearly shows higher maximum fitness after 100 generations and reaches the same mean fitness as the single node system in a quarter of the time. The large
difference between mean and median in the single node system is due to seven of the ten runs not exceeding a fitness of 0.1.

is distributed over the robots (Takaya and Arita, 2003; Bredeche
et al., 2012; Doncieux et al., 2015). Other approaches use reality
sampling to alter the simulated environment to better match true
fitnesses (Zagal et al., 2004; O’Dowd et al., 2014). This requires
either off-board processingwith communication links to the robot
or sufficient processing power on the robot to run simulations.
Related is the concept of surrogate fitness functions (Jin, 2011)
with cheap but inaccurate fitness measures made in simulation
and expensive but accurate measures made in reality.

Using internal simulation, models can be means of detecting
malfunction and adapting (Bongard et al., 2006), or askingwhat-if

questions, so as to evaluate the consequences of possible actions
in simulation (Marques and Holland, 2009). This is applied to the
fields of both robot safety and machine ethics in Winfield et al.
(2014), Winfield (2015), Blum et al. (2018), and Vanderelst and
Winfield (2018). It is obvious that any robot relying on simulation
for its ethical or safe behavior must embody that simulation and
not use unreliable communications links. Swarms are usually
assumed to be robust to failure, but Bjerknes and Winfield (2013)
show that this is not always the case. By using internal models and
observing other agents within the swarm, agents not behaving as
predicted can be identified (Millard et al., 2013, 2014).

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 1115

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Jones et al. A Two Teraflop Swarm

FIGURE 9 | Time per generation of single node evolution, 10 runs of 100 generations each, with different starting conditions. The average length of a run is 5.7min.
The variation in processing time is due mostly to the size and complexity of the behavior trees within the population.

The social insects that are often the inspiration for swarm
robotics are actually far more complex than the commonly
used ANN controllers of swarm robot agents. They have many
more neurons, and the neurons are behaviorally complex. The
computational requirement of simulating biologically plausible
neurons can be estimated. The Izhikevich (2003) model is com-
monly used and reported performances vary between 7 and 50
MFLOPS/neuron (Ananthanarayanan et al., 2009; Fidjeland and
Shanahan, 2010; Scorcioni, 2010; Minkovich et al., 2014). The
system we describe could plausibly simulate several thousand
biologically plausible neurons per Xpuck.

A number of different platforms have been used for swarm
robotics research. The e-puck by Mondada et al. (2009) is widely
used for experiments with numbers in the tens. Rubenstein et al.
(2012) introduced the Kilobot, which enables swarm experiments
involving over 1,000 low-cost robots. Both platforms work on a
2D surface. Other platforms include Swarmbots (Dorigo et al.,
2004), R-one (McLurkin et al., 2013), and Pheeno (Wilson et al.,
2016). Swarm platforms working in 3D are also described, Hauert
et al. (2009a) demonstrate Reynolds flocking (Reynolds, 1987)
with small fixed-wing drones, see also Kushleyev et al. (2013) and
Vásárhelyi et al. (2014). Most described platforms are homoge-
neous, but heterogeneous examples exist such as the Swarmanoid
(Dorigo et al., 2013). Table 1 compares some of these platforms,
looking at cost and processing power. It is only with the very
recent platforms of the Pi-puck and Pheeno (unavailable at the
time of design of Xpuck) that the processing power exceeds 1.2
GFLOPS.

We designed the Xpuck explicitly with the e-puck in mind,
because, like many labs, we already have a reasonably large num-
ber of them. The e-puck is very successful, with in excess of
3,500 shipped units, perhaps due to its simple reliable design and

extendability. Expansion connectors allow additional boards that
add capabilities. Three such are relevant here because they extend
the processing power of the e-puck. The Linux Extension Board
(Liu and Winfield, 2011) adds a 200-MHz Atmel ARM processor
running embedded Linux, with WiFi communication. The e-puck
extension for Gumstix Overo COM is a board from GCTronic
that interfaces a small Linux single board computer, the Gumstic
Overo Earthstorm,14 to the e-puck. A recent addition is the Pi-
puck (Millard et al., 2017) which provides a means of using the
popular Raspberry Pi single board computers to control an e-
puck. The extension board connects the Pi to the various interfaces
of the e-puck and provides full access to all sensors and actuators
except the camera.

4.2. Conclusion
We have presented the Xpuck swarm, a new research platform
with an aggregate raw processing power in excess of two Teraflops.
The swarm of 16 e-puck robots augmented with custom hardware
uses the substantial CPU and GPU processing power available
from modern mobile System-on-Chip devices; each individual
Xpuck has at least an order of magnitude greater compute per-
formance than previous swarm robotics platforms. As well as the
robots themselves, we have described the system as a whole that
allows us to run new classes of experiments that require high-
individual robot computation and large numbers of robots. We
foresee many uses such as online evolution or learning of swarm
controllers, simulation of what-if questions about possible actions,
distributed super-computing formobile platforms, and real-world
applications of swarm robotics that requires image processing, or
distributed SLAM.

14https://store.gumstix.com/coms/overo-coms/overo-earthstorm-com.html.

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 1116

https://store.gumstix.com/coms/overo-coms/overo-earthstorm-com.html
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Jones et al. A Two Teraflop Swarm

To demonstrate the capabilities of the system, we have shown
the feasibility of running a widely used fiducial marker recog-
nition image processing library, which could form the basis for
a distributed swarm localization system. We have implemented
a fast robot simulator tailored specifically to run on the GPU
of the Xpuck. The performance of this simulator on the Xpuck
GPU is comparable to the same code running on the CPU of
a much more powerful desktop system, and at least ten times
faster than general purpose simulators such as Stage and ARGoS
running on the desktop. By using this fast simulator within an
island model evolutionary algorithm, we have demonstrated the
ability to perform in-swarm evolution. The increasing perfor-
mance at reaching a given fitness with increasing Xpuck swarm
size demonstrates the scalability of this approach. Previouswork of
ours used evolutionary algorithms that took several hours on the
desktop to achieve what is now possible in less than 10min on the
swarm.

In conclusion, we present a new tool for investigating collective
behaviors. Our platform provides vastly increased computational

performance situated within the swarm itself, opening up the
possibility of novel approaches and algorithms.

AUTHOR CONTRIBUTIONS

SJ substantial contributions to the conception of the work, design
and implementation of robots, design and implementation of
software, design of experiments, acquisition and analysis of data,
drafting the work, final approval, and agreement to be account-
able. MS, SH, and AW substantial contributions to the conception
of the work, critical revision of the work, final approval, and
agreement to be accountable.

FUNDING

SJ is funded by the EPSRC Centre for Doctoral Training in Future
Autonomous and Robotic Systems (FARSCOPE) EP/L015293/1.
MS and AW are funded by the University of the West of England,
Bristol. SH is funded by the University of Bristol, Bristol.

REFERENCES
Ananthanarayanan, R., Esser, S. K., Simon, H. D., and Modha, D. S. (2009). “The

cat is out of the bag: cortical simulations with 109 neurons, 1013 synapses,” in
High Performance Computing Networking, Storage and Analysis, Proceedings of
the Conference on (New York, NY: IEEE), 1–12.

Baldassarre, G., Nolfi, S., and Parisi, D. (2003). Evolving mobile robots
able to display collective behaviors. Artif. Life 9, 255–267. doi:10.1162/
106454603322392460

Bjerknes, J. D., and Winfield, A. F. (2013). “On fault tolerance and scalability of
swarm robotic systems,” in Distributed Autonomous Robotic Systems (Berlin:
Springer), 431–444.

Blum, C., Winfield, A. F. T., and Hafner, V. V. (2018). Simulation-based internal
models for safer robots. Front. Robot. AI 4:74. doi:10.3389/frobt.2017.00074

Bongard, J., Zykov, V., and Lipson, H. (2006). Resilient machines through continu-
ous self-modeling. Science 314, 1118–1121. doi:10.1126/science.1133687

Bredeche, N., Montanier, J.-M., Liu, W., and Winfield, A. F. (2012). Environment-
driven distributed evolutionary adaptation in a population of autonomous
robotic agents. Math. Comput. Model. Dyn. Syst. 18, 101–129. doi:10.1080/
13873954.2011.601425

Catto, E. (2009). Box2D: A 2D Physics Engine for Games. Available from: http:
//box2d.org/about/

Champandard, A. (2007). “Behavior trees for next-gen game AI,” in Game Develop-
ers Conference, Audio Lecture, Lyon.

Colledanchise, M., and Ogren, P. (2014). “How behavior trees modularize robust-
ness and safety in hybrid systems,” in Intelligent Robots and Systems (IROS 2014),
2014 IEEE/RSJ International Conference on (Chicago, IL: IEEE), 1482–1488.

Doncieux, S., Bredeche, N., Mouret, J.-B., and Eiben, A. E. G. (2015). Evolutionary
robotics: what, why, and where to. Front. Robot. AI 2:4. doi:10.3389/frobt.2015.
00004

Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F., Nolfi, S., Baaboura,
T., et al. (2013). Swarmanoid: a novel concept for the study of heterogeneous
robotic swarms. IEEE Robot. Autom. Mag. 20, 60–71. doi:10.1109/MRA.2013.
2252996

Dorigo, M., Tuci, E., Groß, R., Trianni, V., Labella, T. H., Nouyan, S., et al. (2004).
“The swarm-bots project,” in InternationalWorkshop on SwarmRobotics (Berlin:
Springer), 31–44.

Duarte, M., Gomes, J., Costa, V., Oliveira, S. M., and Christensen, A. L. (2016).
Hybrid Control for a Real Swarm Robotics System in an Intruder Detection Task.
Berlin: Springer International Publishing, 213–230.

Fidjeland, A. K., and Shanahan, M. P. (2010). “Accelerated simulation of spiking
neural networks using GPUs,” in Neural Networks (IJCNN), The 2010 Interna-
tional Joint Conference on (Barcelona: IEEE), 1–8.

Floreano, D., Mitri, S., Magnenat, S., and Keller, L. (2007). Evolutionary condi-
tions for the emergence of communication in robots. Curr. Biol. 17, 514–519.
doi:10.1016/j.cub.2007.01.058

Francesca, G., and Birattari, M. (2016). Automatic design of robot swarms: achieve-
ments and challenges. Front. Robot. AI 3:29. doi:10.3389/frobt.2016.00029

Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn,
G., et al. (2015). AutoMoDe-chocolate: automatic design of control software for
robot swarms. Swarm Intell. 9, 125–152. doi:10.1007/s11721-015-0107-9

Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., and Birattari, M. (2014).
AutoMoDe: a novel approach to the automatic design of control software for
robot swarms. Swarm Intell. 8, 89–112. doi:10.1007/s11721-014-0092-4

Garrido-Jurado, S., Noz Salinas, R. M., Madrid-Cuevas, F., and Marín-Jiménez,
M. (2014). Automatic generation and detection of highly reliable fiducial
markers under occlusion. Pattern Recognit. 47, 2280–2292. doi:10.1016/j.patcog.
2014.01.005

Gaul, R. (2012). Impulse Engine 2D Physics Simulator. Available from: http://www.
randygaul.net/projects-open-sources/impulse-engine/

Gronqvist, J., and Lokhmotov, A. (2014). “OptimisingOpenCL kernels for the ARM
Mali-T600 GPUs,” in GPU Pro 5: Advanced Rendering Techniques (Boca Raton,
FL: CRC Press), 327–357.

Gurrum, S. P., Edwards, D. R., Marchand-Golder, T., Akiyama, J., Yokoya, S.,
Drouard, J.-F., et al. (2012). “Generic thermal analysis for phone and tablet
systems,” in Electronic Components and Technology Conference (ECTC), 2012
IEEE 62nd (New York, NY: IEEE), 1488–1492.

Gutiérrez, Á, Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., and Mag-
dalena, L. (2009a). “Open e-puck range & bearing miniaturized board for local
communication in swarm robotics,” in Robotics and Automation, 2009. ICRA’09.
IEEE International Conference on (Kobe: IEEE), 3111–3116.

Gutiérrez, Á, Tuci, E., and Campo, A. (2009b). Evolution of neuro-controllers for
robots’ alignment using local communication. Int. J. Adv. Robot. Syst. 6, 6.
doi:10.5772/6766

Hauert, S., Zufferey, J.-C., and Floreano, D. (2009a). Evolved swarming without
positioning information: an application in aerial communication relay. Auton.
Robots 26, 21–32. doi:10.1007/s10514-008-9104-9

Hauert, S., Zufferey, J.-C., and Floreano, D. (2009b). “Reverse-engineering of arti-
ficially evolved controllers for swarms of robots,” in Evolutionary Computation,
2009. CEC’09. IEEE Congress on (New York, NY: IEEE), 55–61.

Hintjens, P. (2013). ZeroMQ: Messaging for Many Applications. Sebastopol, CA:
O’Reilly Media, Inc.

Ho, J., and Smith, R. (2015). NVIDIA Tegra X1 Preview and Architecture Analysis.
Available at: http://www.anandtech.com/show/8811/nvidia-tegra-x1-preview

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural
Networks 14, 1569–1572. doi:10.1109/TNN.2003.820440

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 1117

https://doi.org/10.1162/106454603322392460
https://doi.org/10.1162/106454603322392460
https://doi.org/10.3389/frobt.2017.00074
https://doi.org/10.1126/science.1133687
https://doi.org/10.1080/13873954.2011.601425
https://doi.org/10.1080/13873954.2011.601425
http://box2d.org/about/
http://box2d.org/about/
https://doi.org/10.3389/frobt.2015.00004
https://doi.org/10.3389/frobt.2015.00004
https://doi.org/10.1109/MRA.2013.2252996
https://doi.org/10.1109/MRA.2013.2252996
https://doi.org/10.1016/j.cub.2007.01.058
https://doi.org/10.3389/frobt.2016.00029
https://doi.org/10.1007/s11721-015-0107-9
https://doi.org/10.1007/s11721-014-0092-4
https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/10.1016/j.patcog.2014.01.005
http://www.randygaul.net/projects-open-sources/impulse-engine/
http://www.randygaul.net/projects-open-sources/impulse-engine/
https://doi.org/10.5772/6766
https://doi.org/10.1007/s10514-008-9104-9
http://www.anandtech.com/show/8811/nvidia-tegra-x1-preview
https://doi.org/10.1109/TNN.2003.820440
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Jones et al. A Two Teraflop Swarm

Jakobi, N. (1998). “Running across the reality gap: Octopod locomotion evolved in
a minimal simulation,” in Evolutionary Robotics (Berlin: Springer), 39–58.

Jakobi, N., Husbands, P., and Harvey, I. (1995). “Noise and the reality gap: the use
of simulation in evolutionary robotics,” in Advances in Artificial Life (Berlin:
Springer), 704–720.

Jin, Y. (2011). Surrogate-assisted evolutionary computation: recent advances
and future challenges. Swarm Evol. Comput. 1, 61–70. doi:10.1016/j.swevo.2011.
05.001

Jones, S., Studley, M., Hauert, S., and Winfield, A. (2016). “Evolving behaviour trees
for swarm robotics,” in Springer Tracts in Advanced Robotics: 13th International
Symposium on Distributed Autonomous Robotic Systems (DARS 2016), London,
UK.

Jones, S., Studley, M., and Winfield, A. (2015). “Mobile GPGPU acceleration of
embodied robot simulation,” in Artificial Life and Intelligent Agents: First Inter-
national Symposium, ALIA 2014 (Cham: Bangor, UK). Revised Selected Papers,
Communications in Computer and Information Science. Springer International
Publishing.

Khronos OpenCL Working Group. (2010). The OpenCL Specification, Version 1.1.
Beaverton,OR:KhronosGroup.Available at: https://www.khronos.org/registry/
OpenCL/specs/opencl-1.1.pdf

Koos, S., Mouret, J.-B., and Doncieux, S. (2013). The transferability approach:
crossing the reality gap in evolutionary robotics. Evol. Comput. IEEE Trans. 17,
122–145. doi:10.1109/TEVC.2012.2185849

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by
Means of Natural Selection, Vol. 1. Cambridge, MA: MIT Press.

Kushleyev, A., Mellinger, D., Powers, C., and Kumar, V. (2013). Towards a swarm
of agile micro quadrotors. Auton. Robot. 35, 287–300. doi:10.1007/s10514-013-
9349-9

Liu, W., and Winfield, A. F. (2011). Open-hardware e-puck Linux extension board
for experimental swarm robotics research. Microprocess. Microsyst. 35, 60–67.
doi:10.1016/j.micpro.2010.08.002

Mack, C. A. (2011). Fifty years of Moore’s law. IEEE Trans. Semicond. Manuf. 24,
202–207. doi:10.1109/TSM.2010.2096437

Marques, H. G., and Holland, O. (2009). Architectures for functional imagination.
Neurocomputing 72, 743–759. doi:10.1016/j.neucom.2008.06.016

McLurkin, J., Lynch, A. J., Rixner, S., Barr, T. W., Chou, A., Foster, K., et al.
(2013). “A low-cost multi-robot system for research, teaching, and outreach,” in
Distributed Autonomous Robotic Systems (Berlin: Springer), 597–609.

Menzel, R., and Giurfa, M. (2001). Cognitive architecture of a mini-brain: the
honeybee. Trends Cogn. Sci. 5, 62–71. doi:10.1016/S1364-6613(00)01601-6

Millard, A. G., Joyce, R. A., Hilder, J. A., Fleseriu, C., Newbrook, L., Li, W., et al.
(2017). “The Pi-puck extension board: a Raspberry Pi interface for the e-puck
robot platform,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (York, UK: York).

Millard, A. G., Timmis, J., and Winfield, A. F. (2013). “Towards exogenous fault
detection in swarm robotic systems,” inConference towards Autonomous Robotic
Systems (Berlin: Springer), 429–430.

Millard, A. G., Timmis, J., and Winfield, A. F. (2014). “Run-time detection of faults
in autonomous mobile robots based on the comparison of simulated and real
robot behaviour,” in Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ
International Conference on (Chicago, IL: IEEE), 3720–3725.

Minkovich, K., Thibeault, C. M., O’Brien, M. J., Nogin, A., Cho, Y., and Srinivasa,
N. (2014). HRLSim: a high performance spiking neural network simulator
for GPGPU clusters. IEEE Trans. Neural Networks Learn. Syst. 25, 316–331.
doi:10.1109/TNNLS.2013.2276056

Mitri, S., Floreano, D., and Keller, L. (2009). The evolution of information suppres-
sion in communicating robots with conflicting interests. Proc. Natl. Acad. Sci.
U.S.A. 106, 15786–15790. doi:10.1073/pnas.0903152106

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., et al. (2009).
“The e-puck, a robot designed for education in engineering,” inProceedings of the
9th Conference on Autonomous Robot Systems and Competitions, Castelo Branco,
Vol. 1, 59–65.

Mouret, J.-B., and Chatzilygeroudis, K. (2017). “20 years of reality gap: a few
thoughts about simulators in evolutionary robotics,” inWorkshop “Simulation in
Evolutionary Robotics”, Genetic and Evolutionary Computation Conference, New
York, NY.

Niiranen, J. (1999). “Fast and accurate symmetric Euler algorithm for electrome-
chanical simulations NOTE: the method became later known as “Symplectic
Euler”,” in Proceedings of the 6th International Conference ELECTRIMACS ’99:

Modelling and Simulation of Electric Machines, Converters and Systems, Vol. 1
(Lisbon: Lisboa, Portugal), 71–78.

Nvidia. (2007).NVIDIA CUDA, Compute Unified Device Architecture Programming
Guide. Santa Clara, CA: NVIDIA.

O’Dowd, P. J., Studley, M., and Winfield, A. F. (2014). The distributed co-evolution
of an on-board simulator and controller for swarm robot behaviours. Evol. Intell.
7, 95–106. doi:10.1007/s12065-014-0112-8

Ogren, P. (2012). “Increasing modularity of UAV control systems using computer
game behavior trees,” in AIAA Guidance, Navigation and Control Conference
(Minneapolis, MN).

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al.
(2011). “ARGoS: a modular, multi-engine simulator for heterogeneous swarm
robotics,” in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on (San Francisco, CA: IEEE), 5027–5034.

Poli, R., Langdon, W. B., McPhee, N. F., and Koza, J. R. (2008). A Field Guide to
Genetic Programming. Available at: http://www.gp-field-guide.org.uk

Polilov, A. A. (2012). The smallest insects evolve anucleate neurons. Arthropod
Struct. Dev. 41, 29–34. doi:10.1016/j.asd.2011.09.001

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al. (2009). “ROS:
an open-source robot operating system,” in ICRA Workshop on Open Source
Software, Vol. 3 (Kobe, Japan), 5.

Reynolds, C. W. (1987). “Flocks, herds and schools: a distributed behavioral
model,” in ACM SIGGRAPH Computer Graphics (New York, NY: ACM), 21,
25–34.

Rodeh, O., Bacik, J., and Mason, C. (2013). BTRFS: the Linux B-tree filesystem.
ACM Trans. Storage 9, 9. doi:10.1145/2501620.2501623

Rostedt, S., and Hart, D. V. (2007). “Internals of the RT patch,” in Proceedings of the
Linux Symposium, Ottawa, Vol. 2, 161–172.

Rubenstein, M., Ahler, C., and Nagpal, R. (2012). “Kilobot: a low cost
scalable robot system for collective behaviors,” in Robotics and Automa-
tion (ICRA), 2012 IEEE International Conference on (St Paul, MA: IEEE),
3293–3298.

Sahin, E. (2005). “Swarm robotics: from sources of inspiration to domains of
application,” in Swarm Robotics (Berlin: Springer), 10–20.

Scheper, K. Y., Tijmons, S., de Visser, C. C., and de Croon, G. C. (2016). Behavior
trees for evolutionary robotics. Artif. Life. 22, 23–48. doi:10.1162/ARTL_a_
00192

Scorcioni, R. (2010). “GPGPU implementation of a synaptically optimized, anatom-
ically accurate spiking network simulator,” in Biomedical Sciences and Engineer-
ing Conference (BSEC), 2010 (Oak Ridge, TN: IEEE), 1–3.

Takaya, Y. U., and Arita, T. (2003). “Situated and embodied evolution in collective
evolutionary robotics,” in Proc. of the 8th International Symposium on Artificial
Life and Robotics (Beppu: Citeseer).

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics. Intelligent
Robotics and Autonomous Agents. Cambridge, MA: MIT Press.

Trianni, V., Groß, R., Labella, T. H., Sahin, E., and Dorigo, M. (2003). “Evolving
aggregation behaviors in a swarmof robots,” inAdvances in Artificial Life (Berlin:
Springer), 865–874.

Trianni, V., and Nolfi, S. (2011). Engineering the evolution of self-organizing
behaviors in swarm robotics: a case study. Artif. Life 17, 183–202. doi:10.1162/
artl_a_00031

Vanderelst, D., and Winfield, A. (2018). An architecture for ethical robots inspired
by the simulation theory of cognition. Cogn. Syst. Res. 48, 56–66. doi:10.1016/j.
cogsys.2017.04.002

Vásárhelyi, G., Virágh, C., Somorjai, G., Tarcai, N., Szörényi, T., Nepusz, T., et al.
(2014). “Outdoor flocking and formation flight with autonomous aerial robots,”
in Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International
Conference on (Chicago, IL: IEEE), 3866–3873.

Vaughan, R. (2008). Massively multi-robot simulation in stage. Swarm Intell. 2,
189–208. doi:10.1007/s11721-008-0014-4

Watson, R. A., Ficici, S. G., and Pollack, J. B. (2002). Embodied evolution: distribut-
ing an evolutionary algorithm in a population of robots. Rob. Auton. Syst. 39,
1–18. doi:10.1016/S0921-8890(02)00170-7

White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. (1986). The
structure of the nervous system of the nematode Caenorhabditis elegans.
Philos. Trans. R. Soc. Lond. B Biol. Sci. 314, 1–340. doi:10.1098/rstb.1986.0056

Whitley, D., Rana, S., and Heckendorn, R. B. (1999). The island model genetic
algorithm: on separability, population size and convergence. CIT J. Comput.
Inform. Technol. 7, 33–47.

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 1118

https://doi.org/10.1016/j.swevo.2011.05.001
https://doi.org/10.1016/j.swevo.2011.05.001
https://www.khronos.org/registry/OpenCL/specs/opencl-1.1.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-1.1.pdf
https://doi.org/10.1109/TEVC.2012.2185849
https://doi.org/10.1007/s10514-013-9349-9
https://doi.org/10.1007/s10514-013-9349-9
https://doi.org/10.1016/j.micpro.2010.08.002
https://doi.org/10.1109/TSM.2010.2096437
https://doi.org/10.1016/j.neucom.2008.06.016
https://doi.org/10.1016/S1364-6613(00)01601-6
https://doi.org/10.1109/TNNLS.2013.2276056
https://doi.org/10.1073/pnas.0903152106
https://doi.org/10.1007/s12065-014-0112-8
http://www.gp-field-guide.org.uk
https://doi.org/10.1016/j.asd.2011.09.001
https://doi.org/10.1145/2501620.2501623
https://doi.org/10.1162/ARTL_a_00192
https://doi.org/10.1162/ARTL_a_00192
https://doi.org/10.1162/artl_a_00031
https://doi.org/10.1162/artl_a_00031
https://doi.org/10.1016/j.cogsys.2017.04.002
https://doi.org/10.1016/j.cogsys.2017.04.002
https://doi.org/10.1007/s11721-008-0014-4
https://doi.org/10.1016/S0921-8890(02)00170-7
https://doi.org/10.1098/rstb.1986.0056
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Jones et al. A Two Teraflop Swarm

Williams, R. L., Carter, B. E., Gallina, P., and Rosati, G. (2002). Dynamic model with
slip for wheeled omnidirectional robots. IEEE Trans. Robot. Autom. 18, 285–293.
doi:10.1109/TRA.2002.1019459

Wilson, S., Gameros, R., Sheely, M., Lin, M., Dover, K., Gevorkyan,
R., et al. (2016). Pheeno, a versatile swarm robotic research and
education platform. IEEE Robot. Autom. Lett. 1, 884–891. doi:10.1109/LRA.
2016.2524987

Winfield, A. F. (2015). “Robots with internal models: a route to self-aware and
hence safer robots,” in The Computer after Me: Awareness and Self-Awareness in
Autonomic Systems (London, UK: World Scientific), 237–252.

Winfield, A. F., Blum, C., and Liu, W. (2014). “Towards an ethical robot: internal
models, consequences and ethical action selection,” in TAROS 2014 – Towards
Autonomous Robotic Systems, volume 8717 of Lecture Notes in Computer Science,
eds M. Mistry, A. Leonardis, M. Witkowski, and C. Melhuish (Berlin: Springer
International Publishing), 85–96.

Xianyi, Z., Qian, W., and Yunquan, Z. (2012). “Model-driven level 3 BLAS per-
formance optimization on Loongson 3A processor,” in Parallel and Distributed

Systems (ICPADS), 2012 IEEE 18th International Conference on (Singapore:
IEEE), 684–691.

Zagal, J. C., Ruiz-del Solar, J., and Vallejos, P. (2004). “Back to reality: crossing the
reality gap in evolutionary robotics,” in IAV 2004 the 5th IFAC Symposium on
Intelligent Autonomous Vehicles (Lisbon, Portugal).

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2018 Jones, Studley, Hauert and Winfield. This is an open-access arti-
cle distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 1119

https://doi.org/10.1109/TRA.2002.1019459
https://doi.org/10.1109/LRA.2016.2524987
https://doi.org/10.1109/LRA.2016.2524987
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

	A Two Teraflop Swarm
	1. Introduction
	2. Materials and Methods
	2.1. High-Performance Computing
	2.1.1. Operating Point Tuning

	2.2. Interface Board
	2.2.1. Power Supply
	2.2.2. Camera Interface
	2.2.3. I2C and SPI Communications, Neopixel LEDs

	2.3. Physical Design
	2.4. Software and Infrastructure
	2.4.1. Real-time Kernel
	2.4.2. Resilient Filesystem
	2.4.3. Arena Integration

	2.5. GPGPU Robot Simulator
	2.5.1. Simulation Model
	2.5.1.1. Physics
	2.5.1.2. Sensing
	2.5.1.3. Controller
	2.5.1.4. Implementation of Simulator on GPU

	2.6. Image Processing Demonstration
	2.7. In-Swarm Evolution Demonstration
	2.7.1. Implementation of Island Model
	2.7.2. Task and Fitness Function

	3. Results
	3.1. Xpucks
	3.2. Simulator
	3.3. Image Processing
	3.4. Evolution

	4. Discussion
	4.1. Background and Related Work
	4.2. Conclusion

	Author Contributions
	Funding
	References

