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Gradient based particle filter algorithm for an ARX
model with nonlinear communication output

Jing Chen, Yanjun Liu, Feng Ding, Quanmin Zhu

Abstract—A stochastic gradient based particle filter algorithm
is developed for an ARX model with nonlinear communication
output in this paper. This non-standard ARX model consists
of two submodels, one is a linear ARX model and the other
is a nonlinear output model. The process outputs (outputs of
the linear submodel) transmitted over a communication channel
are unmeasureable, while the communication outputs (outputs
of the nonlinear submodel) are available, and both of the two-
type outputs are contaminated by white noises. Based on the
rich input data and the available communication output data,
a stochastic gradient based particle filter algorithm is proposed
to estimate the unknown process outputs and parameters of the
ARX model. Furthermore, a direct weight optimization method
and the Epanechnikov kernel method are extended to modify the
particle filter when the measurement noise is a Gaussian noise
with unknown variance and the measurement noise distribution is
unknown. The simulation results demonstrate that the stochastic
gradient based particle filter algorithm is effective.

Index Terms—Parameter estimation, stochastic gradient, par-
ticle filter, auxiliary model, ARX model.

I. INTRODUCTION

The non-standard ARX model which is a standard ARX model
mixed with a nonlinear communication output model, can be seen
as a networked control system [1], [2]. Its basic structure is shown
in Fig. 1, which consists of two submodels, one is an ARX model
given by

A(d)x(t) = B(d)u(t) + v(t),

and the other is a nonlinear communication output model written as

y(t) = f(x(t)) + e(t),

where u(t) is the input, x(t) is the output of the ARX model and
influenced by the process noise v(t), y(t) is the output of the com-
munication network and influenced by the measurement noise e(t),
u(t) and y(t) are measureable, while x(t) is unmeasureable, f(·) is a
known continuous nonlinear function, v(t) and e(t) are independent
and identically distributed Gaussian noises with variances ς2 and
σ2, respectively, and A(d) and B(d) are polynomials which can be
expressed as

A(d) := 1 + a1d
−1 + · · ·+ and

−n,

B(d) := b1d
−1 + b2d

−2 + · · ·+ bmd−m,

where d−1x(t) = x(t − 1). Different from the traditional non-
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Fig. 1. The ARX model with nonlinear communication output

linear models, such as the Hammerstein model, the Wiener model
or the Hammerstein-Wiener-Hammerstein model, the non-standard
ARX model has two submodels and has two kinds noises, thus the
identification for this model is more difficult. Recently, this type
of model is usually considered in process control and estimation
literature [3], [4]. Under such a scenario, the process outputs are
often sampled by some sensors and are typically sent to a laboratory
for analysis. Due to the complexities of communication network and
laboratory analysis process, these outputs as the laboratory analysis
outcomes can have nonlinear properties as well as their own errors
from the laboratory analysis. The focus of this paper is to develop
an on-line identification algorithm for the non-standard ARX model
whose measurement noise has different properties.

The ARX model identification has been extensively studied in
theory [5], [6]. Many identification methods, such as the recursive
least squares (RLS) algorithms [7], the hierarchical algorithms [8], the
stochastic gradient (SG) algorithms [9] and the iterative algorithms
[10], have been proposed for ARX models. The hierarchical algo-
rithms decompose the complex model into several submodels with
small dimensions and then coordinate the associate terms between
submodels [11]. The iterative algorithms are off-line algorithms
which have heavy computational efforts and cannot be used to
estimate the parameters recursively by new data, while the RLS and
SG algorithms can be used as on-line algorithms and can update the
parameters based on new data. Furthermore, these on-line algorithms
have less computational efforts, thus widely used in engineering
application.

The on-line algorithms often have the assumption that all the
system data are available. However, in engineering practice, some
data of the systems may be missing or unmeasureable. The auxiliary
model is an important tool which is usually applied for systems with
missing data [12]. Its basic idea is to replace the missing data with the
outputs of an auxiliary model. For example, Wang and Ding studied
an auxiliary model based RLS algorithm for multivariable systems
[13]. Jin et al investigated an auxiliary model based identification
algorithm for multivariable OE-like systems with missing outputs
[12]. Such methods only use an auxiliary model to predict the missing
outputs, while the measureable outputs are not applied to improve
the predicted outputs, which makes the auxiliary model have slow
convergence rates.

With the development of communication networks, control systems
often use network to transmit the sampled outputs via a communica-
tion channel [14]–[16]. However, the complex network and laboratory
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analysis process also bring some identification constraints, such as
the packet dropouts, the communication time-delays, the nonlinear
signals and the unmeasureable sampled outputs [17]–[19]. There
exist many identification methods for systems with such constraints.
For example, Guo et al proposed an identification algorithm for
FIR systems, in which the outputs are constrained by both the
binary-valued quantization and the communication unreliability [20].
Xiong et al investigated an EM algorithm for nonlinear systems
with unmeasureable outputs, in which those unmeasureable outputs
were estimated by an auxiliary model [21]. Xie et al developed
an EM algorithm for multi-rate systems with random time-delays,
where the output model is linear and the process model is not
influenced by process noise, by using an auxiliary model and an off-
line algorithm, the missing outputs and the parameters were estimated
simultaneously [22].

The Kalman filter and the particle filter are two effective tools
which are often applied for state-space systems [23]–[25]. In [26],
a Kalman filter based off-line algorithm is derived for state-space
systems, and in order to enhance the computational efficiency, a
model decomposition based off-line algorithm is also provided. In
[3], an EM based particle filter algorithm is proposed for nonlinear
parameter varying state-space systems, where the proposed EM
algorithm is an off-line algorithm. Unlike the auxiliary model, the
Kalman filter and the particle filter apply the measureable data to
improve the priori estimates, which makes them be more accurate.
However, these two filters are often used for state-space systems.

This paper takes the above described literature into study and
develops an SG based particle filter algorithm for an ARX model
with nonlinear communication output. The considered system in this
paper is a non-state-space system with different kinds of measurement
noises, and the proposed algorithm is an on-line algorithm. A particle
filter is derived to estimate the process outputs by the communication
outputs. Then based on the estimated process output data and the
rich input data, the unknown parameters can be estimated by an SG
algorithm. The problem discussed in this paper is more complicated
and challenging than those in [3], [4], [22] and the main contributions
are listed below.

1) Study an on-line identification method for a non-standard ARX
model which consists of two submodels, one is the ARX
model to reflect process dynamics, and the other is an equation
reflecting nonlinear output.

2) Propose a particle filter instead of an auxiliary model for
nonlinear non-state-space systems, which can estimate the
unknown variables and can increase the estimation accuracy.

3) Apply the direct weight optimization method and the Epanech-
nikov kernel method to modify the particle filter for the
situations that the measurement noise with unknown variance
and unknown distribution.

Briefly, the rest of this paper is organized as follows. Section II
presents an SG based particle filter algorithm. Section III develops
two modified particle filters. In Section IV, three illustrative examples
are provided. Section V concludes this paper and gives future
directions.

II. THE SG BASED PARTICLE FILTER ALGORITHM

For the model depicted in Fig. 1, define the information vector
φ(t) and the parameter vector θ as

φ(t) := [−x(t− 1), · · · ,−x(t− n), u(t− 1), · · · ,
u(t−m)]T ∈ Rn+m,

θ := [a1, · · · , an, b1, · · · , bm]T ∈ Rn+m,

then the non-standard ARX model can be rewritten as follows,

x(t) =φT(t)θ + v(t), (1)
y(t) = f(x(t)) + e(t). (2)

In Equation (1), the information vector contains unknown process
outputs x(i), i = 1, 2, · · · , thus the classical SG algorithm cannot be

applied to (1) directly. The auxiliary model based algorithms are often
used to identify systems with unmeasureable variables [27], [28].
For example, the corresponding auxiliary model based SG (AM-SG)
algorithm for the system model in (1) and (2) is below,

θ̂(t) = θ̂(t− 1) +
φ̂(t)

ν(t)
ϵ(t), (3)

φ̂(t− i) = [−x̂(t− i− 1), · · · ,−x̂(t− i− n), u(t− i− 1), · · · ,
u(t− i−m)]T, (4)

x̂(t− i) = φ̂T(t− i)θ̂(t− i− 1), (5)

ϵ(t) = x(t)− φ̂T(t)θ̂(t− 1), (6)
ν(t) = ν(t− 1) + ∥φ̂(t)∥2, ν(0) = 1, (7)

in which θ̂(t−i−1) is the estimate of θ at t−i−1. However, here the
SG-AM algorithm cannot be applied to deal with this non-standard
model.
Remark 1: Unlike the models in [27], [28], all the process outputs
in this non-standard ARX model are unknown, and if we use x̂(t) =
φ̂T(t)θ̂(t−1) to replace x(t), then ϵ(t) in Equation (6) becomes zero,
thus the SG-AM algorithm proposed in Equations (3)-(7) is invalid
for this non-standard ARX model.

The key characteristic of our treatment is to develop a particle
filter based on-line algorithm for this non-standard ARX model.

A. The particle filter
The particle filter is a tool for nonlinear state-space systems with

unmeasureable states. In what follows we will extend this tool to
nonlinear non-state-space systems.

The basic idea of the particle filter is to use a series of particles
with associated weights to approximate the posterior density function.
Based on the particle filter method in [3], [29], the posterior density
function p(x(t− i)|y(t− i), · · · , y(1), x(t− i− 1), · · · , x(1), u(t−
i− 1), · · · , u(1)) can be approximately as

p(x(t− i)|y(t− i), · · · , y(1), x(t− i− 1), · · · , x(1),
u(t− i− 1), · · · , u(1), θ̂(t− i− 1))

≈
N∑

j=1

ωjδ(x(t− i)− x̂j(t− i)), (8)

where ωj is the normalized weight associated with the jth particle
and δ(·) denotes the Dirac delta function. Once the particles and their
weights have been obtained, we can compute any desired statistical
measure of the posterior density function. For example, the mean of
the posterior density function can be computed as

x̂(t− i) =

N∑
j=1

ω̄j x̂j(t− i), (9)

in which ω̄j =
ωj

N∑
j=1

ωj

is the weight associated with the jth particle

and
N∑

j=1

ω̄j = 1, x̂j(t − i) is the jth particle drawn from the

posterior density function p(x(t − i)|y(t − i), · · · , y(1), x(t − i −
1), · · · , x(1), u(t − i − 1), · · · , u(1),θ). However, it is difficult to
draw particles from this posterior density function directly. In order
to get the new particles, an importance density q(·) is given by,

q(x(t− i)|y(t− i), · · · , y(1), x(t− i− 1), · · · , x(1),
u(t− i− 1), · · · , u(1), θ̂(t− i− 1))

= p(x(t− i)|x(t− i− 1), · · · , x(1),
u(t− i− 1), · · · , u(1), θ̂(t− i− 1)). (10)

From Equations (1) and (10), one gets

q(x(t− i)|y(t− i), · · · , y(1), x(t− i− 1), · · · , x(1),
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u(t− i− 1), · · · , u(1), θ̂(t− i− 1))

=
1√
2πς

exp

[
− (x(t− i)−φT(t− i)θ̂(t− i− 1))2

2ς2

]
. (11)

Remark 2: If the variance ς is unknown, then the density function
in Equation (11) would not be computed, and the particles could not
be updated. In this scenario, the auxiliary model can be applied to
draw the particles, e.g.,

x̂j(t− i) = φ̂T
j(t− i)θ̂(t− i− 1),

φ̂j(t− i) = [−x̂j(t− i− 1), · · · ,−x̂j(t− i− n),

u(t− i− 1), · · · , u(t− i−m)]T,

where θ̂(t− i− 1) is the estimate of θ at time t− i− 1.
From Equation (11), we can get the new particles. The next is

to update the weight of each new particle. Based on [3], the weight
ωj(t) can be updated as follow,

ωj(t) = p(y(t)|x̂j(t))ωj(t− 1). (12)

According to Equation (2), the density function p(y(t)|x̂j(t)) can
be computed by

p(y(t)|x̂j(t)) =
1√
2πσ

exp

[
− (y(t)− f(x̂j(t)))

2

2σ2

]
. (17)

Substituting (17) into (16) gets

ωj(t) =
1√
2πσ

exp

[
− (y(t)− f(x̂j(t)))

2

2σ2

]
ωj(t− 1). (18)

Normalizing ωj(t) yields

ω̄j(t) =
ωj(t)

N∑
j=1

ωj(t)

. (19)

Then we have

x̂(t− i) =
N∑

j=1

ω̄j(t− i)x̂j(t− i). (20)

When apply the particle filter to estimate the unknown variables,
the degeneracy phenomenon is an inevitable problem [30]. After a
few iterations, the weights of some particles become small, which
means that heavy computational efforts are utilized to update those
particles whose contributions are negligible. In order to avoid this
phenomenon, a sample size Neff is defined as,

Neff :=

[
N∑

j=1

ω̄j(t)
2

]−1

. (21)

Given a threshold Nhold in prior, Neff < Nhold means severe
degeneracy. Thus we should use resampling, and then the weight
of each particle is assigned as ω̄j = 1

N
.

The particle filter proceeds by performing the following steps.
1) Initialization: At time t, collect the input-output da-

ta {u(1), y(1), · · · , u(t), y(t)}. Draw N initial particles
{x̂j(0)}Nj=1 from p(x(0)|θ̂(t− 1)) and set {ωj(0)}Nj=1 = 1

N
,

θ̂(t− 1) is the estimate of θ at time t− 1.
2) Let the process noise variance be ς2 and the measurement noise

variance be σ2, and assign a positive number Nhold.
3) Let i = t− 1.
4) Compute {x̂j(t− i)}Nj=1 from Equation (11).
5) Compute ωj(t− i) by Equation (18).
6) Normalize ω̄j(t− i) from Equation (19).
7) Compute the missing output x̂(t− i) by Equation (20).
8) Compute Neff by Equation (21) and compare Neff with

Nhold, if Neff < Nhold, reset the weight of each particle
with ω̄j(t− i) = 1

N
and go to next step; otherwise, go to next

step.
9) Let i = i − 1, if i > 0 go to step 4; otherwise terminate the

procedure.

B. The identification algorithm
In order to estimate x(t), two methods are discussed here. One is

to keep the estimates of the unknown process outputs at time t−i−2
unchanged, while we only use θ̂(t− i− 1) to estimate x(t− i).

Draw N particles from the following importance density function,

q(x(t− i)|y(t− i), · · · , y(1), x̂(t− i− 1), · · · , x̂(1),
u(t− i− 1), · · · , u(1), θ̂(t− i− 1)), (22)

in which

x̂(t− i− 1) = [x(t− i− 1)]|ˆθ(t−i−2)
,

...
x̂(1) = [x(1)]|ˆθ(0)

,

where [x(t− i− j)]ˆθ(t−i−j−1)
, j = 1, · · · , i−1 means the estimate

of x(t− i− j) by using θ̂(t− i− j − 1). Based on Equation (20),
we can get the estimate x̂(t − i). Then with the estimates {x̂(t −
i), x̂(t−i−1), · · · , x̂(1)} and θ̂(t−i−1), one can get the parameter
estimate θ̂(t− i).

From (22), we can see that only one process output data x(t− i)
is required to be estimated at each sampling time t− i− 1.

Unlike the first method, in order to get the parameter estimates
at t − i, the second method is to estimate all the unknown process
outputs up to and including time t−i by using the parameter estimate
θ̂(t− i− 1).

Draw N particles from

q(x(t− i)|y(t− i), · · · , y(1), x̂(t− i− 1), · · · , x̂(1),
u(t− i− 1), · · · , u(1), θ̂(t− i− 1)), (23)

in which

x̂(t− i− 1) = [x(t− i− 1)]|ˆθ(t−i−1)
,

...
x̂(1) = [x(1)]|ˆθ(t−i−1)

.

From Equation (20), we can obtain the estimates x̂(t − i). Then
according to the estimates {x̂(t − i), x̂(t − i − 1), · · · , x̂(1)} and
θ̂(t− i− 1), we can get the updated parameter vector θ̂(t− i).

The density function in (23) declares that one should estimate t−i
process outputs at each sampling time t− i− 1.
Remark 3: The estimates of the process output data by using the
second method are more accurate than those by using the first method.
However, compared with the first method, the second method has
heavier computational efforts.

In order to estimate the unmeasureable data more accurately, we
use the second method in this paper. Then the SG based particle filter
(SG-PF) algorithm is given by,

θ̂(t) = θ̂(t− 1) +
φ̂(t)

r(t)
[x̂(t)− φ̂T(t)θ̂(t− 1)], (24)

φ̂(t) = [−x̂(t− 1), · · · ,−x̂(t− n), u(t− 1), · · · ,
u(t−m)]T, (25)

x̂(t− i) =

N∑
j=1

ω̄j(t− i)x̂j(t− i), (26)

r(t) = r(t− 1) + ∥φ̂(t)∥2, r(0) = 1. (27)

The SG-PF algorithm proceeds by performing the following steps.
1) Let u(t) = 0, x̂(t) = 0, y(t) = 0, t 6 0, and give a small

positive number ε.
2) Let t = 1, θ̂(0) = [1/p0, · · · , 1/p0]T ∈ Rn+m, where p0 =

106.
3) Collect the input-output data {u(t), y(t)}.
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ωj(t) =
p(X̂j(t), Y (t), θ̂(t− 1))

q(X̂j(t)|Y (t), θ̂(t− 1))

=
p(x̂j(t), y(t), X̂j(t− 1), Y (t− 1), θ̂(t− 1))

q(x̂j(t)|X̂j(t− 1), Y (t), θ̂(t− 1))q(X̂j(t− 1)|Y (t), θ̂(t− 1))

=
p(y(t)|x̂j(t), X̂j(t− 1), Y (t− 1), θ̂(t− 1))p(x̂j(t)|X̂j(t− 1), Y (t− 1), θ̂(t− 1))p(X̂j(t− 1), Y (t− 1), θ̂(t− 1))

q(x̂j(t)|X̂j(t− 1), Y (t), θ̂(t− 1))q(X̂j(t− 1)|Y (t− 1), θ̂(t− 1))

=
p(y(t)|x̂j(t), θ̂(t− 1))p(xj(t)|x̂j(t− 1), · · · , x̂j(1), u(t− 1), · · · , u(1), θ̂(t− 1))

q(xj(t)|y(t), · · · , y(1), x̂j(t− 1), · · · , x̂j(1), u(1), u(2), · · · , u(t− 1), θ̂(t− 1))
ωj(t− 1)

= p(y(t)|x̂j(t))ωj(t− 1). (16)

4) Update ω̄j(t − i) and x̂j(t − i), j = 1, · · · , N by using the
particle filter.

5) Compute x̂(t− i), i = t− 1, t− 2, · · · , 0 by Equation (26).
6) Form φ̂(t) by Equation (25).
7) Compute r(t) by Equation (27).
8) Estimate θ̂(t) by Equation (24).
9) Let τ = ∥θ̂(t)− θ̂(t− 1)∥/∥θ̂(t)∥, if τ 6 ε, then obtain the

estimated parameter vector θ̂(t); otherwise, let t = t+ 1 and
go back to step 3.

Remark 4: From the SG-PF algorithm in (24)-(27), we can see that
the unknown process output is estimated by Equation (26), obviously,
x̂(t)− φ̂T(t)θ̂(t−1) ̸= 0. Thus the SG-PF algorithm can be utilized
to estimate the unknown parameters.

III. TWO MODIFIED PARTICLE FILTERS

In the above section, we assume that the measurement noise is
a Gaussian noise with known variance. However, in engineering
practice, the variance of the Gaussian noise is often unknown. More-
over, the distribution of the measurement noise may be unknown. In
this section, we consider the cases that the measurement noise is a
Gaussian noise with unknown variance and the measurement noise
distribution is unknown, and develop two modified particle filters to
estimate the process outputs. .

A. The Gaussian measurement noise with unknown variance
Since the variance of the measurement noise is unknown, the

weight wj(t) in Equation (18) cannot be computed directly. In
order to circumvent this difficulty, we introduce a direct weight
optimization method to update the weight of each particle.

Draw N particles x̂j(t), j = 1, · · · , N from (23) and define

p(y(t)|x̂j(t)) := λj(t).

The next is to find the weights λj(t), j = 1, · · · , N so that the
nonlinear function f(x(t)) can be approximated by

f(x(t)) ≈
N∑

j=1

λj(t)(f(x̂j(t)),

in which
N∑

j=1

λj(t) = 1, λj(t) > 0. Based on the direct weight

optimization method in [31], the weights λj(t), j = 1, · · · , N can
be obtained by minimizing the following function[

N∑
j=1

λj(t)(f(x̂j(t)) + e(t))− y(t)

]2

=

(
N∑

j=1

λj(t)f(x̂j(t)) +
N∑

j=1

λj(t)e(t)−
N∑

j=1

λj(t)y(t)

)2

.(28)

Define
|y(t)− f(x̂j(t))| := γj(t).

Taking the conditional expectation on (28) yields

E

[
N∑

j=1

λj(t)(f(x̂j(t)) + e(t))− y(t)

]2

=

(
N∑

j=1

λj(t)γj(t)

)2

+ σ2
N∑

j=1

λ2
j (t). (29)

Let

z(t) =

N∑
j=1

λj(t)γj(t) +

N∑
j=1

|λj(t)e(t)|.

According to the direct weight optimization method proposed in
[31], we can find the weights to make sure that Prob(z > γ(t))
is minimized. In this paper, we choose γ(t) as

γ(t) = max{γj(t), j = 1, · · · , N}+ 1.

The choice of γ(t) can keep the number of particles unchanged and
can prevent sample impoverishment. Since the measurement noise
e(t) is a Gaussian noise, the density function of z can be expressed
as

p(z) =

{
2√

(2π)ζ2
exp

(
− (z−z0)

2

2ζ2

)
, z > z0,

0,
(30)

where

z0 =

N∑
j=1

λj(t)γj(t), ζ = σ

√√√√ N∑
j=1

λ2
j (t).

Minimizing Prob(z > γ(t)) is equivalent to

Max N∑
j=1

λj(t)=1,λj(t)

γ(t)−
N∑

j=1

λj(t)γj(t)

N∑
j=1

λ2
j (t)

.

Then the weight can be computed by

λj(t) =
γ(t)− γj(t)

Nγ(t)−
N∑

j=1

γj(t)

. (31)
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Substituting Equation (31) into Equation (16) gets

ωj(t) = λj(t)ωj(t− 1),

and the normalized weight can be expressed as

ω̄j(t) =
ωj(t)

N∑
k=1

ωk(t)

. (32)

Remark 5: Equations (31) and (32) imply that the weight of each
particle can be obtained without the knowledge of the variance of the
measurement noise.

B. The measurement noise with unknown distribution
When the distribution of the measurement noise is unknown, both

the density function in Equations (17) and (30) cannot be obtained.
In order to solve this problem, we use the Kernel density estimation
method to update the weight of each particle.

Rewrite

|y(t)− f(x̂j(t))| = γj(t),

γ(t) = max{γj(t), j = 1, · · · , N}+ 1.

Since f(·) is a continuous function, we can conclude that the smaller
the γj(t) is, the more important role of the jth particle at time t in
estimating the true output x(t) plays. The Epanechnikov function is
a significant type of kernel function and is optimal in a mean square
error sense. Here, the Epanechnikov function is introduced to estimate
p(y(t)|x̂j(t)) [32].

Since
γj(t)

γ(t)
< 1, j = 1, · · · , N,

then the density function is given by

p(y(t)|x̂j(t)) =
3

4

[
1− (

γj(t)

γ(t)
)2
]
.

By normalizing the density function, one has

p(y(t)|x̂j(t)) =
γ2(t)− γ2

j (t)

Nγ2(t)−
N∑

j=1

γ2
j (t)

. (33)

Substituting Equation (33) into Equation (16) gets

ωj(t) =
γ2(t)− γ2

j (t)

Nγ2(t)−
N∑

j=1

γ2
j (t)

ωj(t− 1).

Normalizing ωj(t) yields

ω̄j(t) =
ωj(t)

N∑
j=1

ωj(t)

.

Remark 6: Assume γs(t) < γl(t), 1 6 s 6 N , 1 6 l 6 N and
s ̸= l. It follows that

γ2(t)− γ2
s (t)

Nγ2(t)−
N∑

j=1

γ2
j (t)

>
γ2(t)− γ2

l (t)

Nγ2(t)−
N∑

j=1

γ2
j (t)

.

It means that the sth particle plays a more important role in
estimating the estimate x̂(t) than the lth particle.

Theorem 1: Assume that p(y(t)|x̂j(t)) is expressed by Equation
(33) and the distribution of the measurement noise is unknown, then
the following inequality holds

N∑
j=1

p(y(t)|x̂j(t))(y(t)− f(x̂j(t)))
2 6

N∑
j=1

1

N
(y(t)− f(x̂j(t)))

2.

The detailed derivation is given in Appendix A.

Theorem 1 shows that the estimation accuracy can be improved
by using the updated weights.
Remark 7: When the measurement noise is a Gaussian noise with
unknown variance, the Kernel density estimation method also can be
applied to update the weight of each particle. On the other hand,
the direct weight optimization method cannot be utilized to update
the weight of each particle when the distribution of the measurement
noise is unknown.

Theorem 2: Let λd
j (t) be the weight updated by Equation (31),

λk
j (t) be the weight updated by Equation (33). Assume that the

measurement noise is a Gaussian noise with unknown variance, then
N∑

j=1

λd
j (t)(y(t)− f(x̂j(t)))

2 6
N∑

j=1

λk
j (t)(y(t)− f(x̂j(t)))

2.

The proof is given in Appendix B.

Theorem 2 means that the direct weight optimization method is
the optimal method when the measurement noise is a Gaussian noise
with unknown variance.

IV. EXAMPLES

Example 1: Consider an ARX model with unknown outputs,

A(d)x(t) =B(d)u(t) + v(t),

A(d) = 1 + a1d
−1 = 1 + 0.49d−1,

B(d) = b1d
−1 + b2d

−2 = −0.83d−1 + 0.17d−2,

and the output model is

y(t) = exp(x(t)) + e(t),

u ∼ N(0, 1), v ∼ N(0, ς2), e ∼ N(0, σ2),

in which x(t) is unmeasureable, y(t) is measureable, the variances
of {v(t)} and {e(t)} are both 0.102. In simulation, we choose 100
particles.

Apply the SG-PF algorithm to estimate the parameters of the
ARX model. The simulation data of the inputs, process outputs and
nonlinear communication outputs are shown in Fig. 2 (samples 1-
200). The parameter estimation errors τ := ∥θ̂ − θ∥/∥θ∥ versus t
are depicted in Fig. 3, and the parameter estimates and their errors are
presented in Table I. The estimated process outputs, the true process
outputs and their errors are shown in Fig. 4 (samples 800-900).

TABLE I
THE SG-PF ALGORITHM ESTIMATES AND ERRORS IN EXAMPLE 1

t a1 b1 b2 τ (%)

100 0.30121 -0.82158 0.03847 23.52512
200 0.37672 -0.82428 0.09128 14.10643
400 0.46706 -0.82416 0.12997 4.75154
600 0.48365 -0.82306 0.15922 1.46191
800 0.48532 -0.84526 0.17290 1.65736
1000 0.48776 -0.82236 0.16352 1.04817

True Values 0.49000 -0.83000 0.17000

Example 2: Consider the non-standard ARX model proposed in
Example 1.

A(d)x(t) =B(d)u(t) + v(t),

y(t) = exp(x(t)) + e(t),

u∼N(0, 1), v ∼ N(0, ς2).

The variance of {v(t)} is 0.102, while the distribution of {e(t)} is
unknown. In simulation, we also choose 100 particles.

Apply the Epanechnikov function to improve the weights of the
100 particles and the SG-PF algorithm to identify the ARX model.



6

0 20 40 60 80 100 120 140 160 180 200
−2

0

2

in
pu

t d
at

a

0 20 40 60 80 100 120 140 160 180 200
−2

0

2

m
is

si
ng

 d
at

a

0 20 40 60 80 100 120 140 160 180 200
0

5

ou
tp

ut
 d

at
a

Simulation data

Fig. 2. The simulation data in Example 1
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Fig. 3. The parameter estimation errors τ versus t in Example 1
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Fig. 4. Estimated model outputs, true outputs and estimation errors in
Example 1

The estimation errors τ versus t are depicted in Fig. 5, and the
parameter estimates and their errors are presented in Table II. The
estimated process outputs, the true process outputs and their errors
are shown in Fig. 6 (samples 800-900).

From Examples 1 and 2, we can get the following finds.
1) Figs. 3 and 5 show that the parameter estimation errors of

these two methods decay and finally vanish when t is increased.
2) Figs. 4 and 6 declare that the estimated outputs by the SG-PF

algorithm can track the true missing outputs.
3) Values in Tables I and II witness that the parameter estimation

errors through the SG-PF algorithm with known measurement
noise are smaller than those through the SG-PF algorithm with
unknown measurement noise.

Example 3: Consider an experiment setup of a water tank system
in Fig. 7, where u(t) is the valve opening, and x(t) is the liquid
level. There is a pressure sensor at the bottom of Tank 2 which can
transmit the liquid level of Tank 2 over a communication network.

TABLE II
THE SG-PF ALGORITHM ESTIMATES AND ERRORS IN EXAMPLE 2

t a1 b1 b2 τ (%)

100 0.23461 -0.82651 -0.01625 32.29839
200 0.29956 -0.82358 0.03349 23.94949
400 0.39711 -0.82158 0.09146 12.45844
600 0.44787 -0.82502 0.13561 5.57991
800 0.46981 -0.83960 0.15788 2.59833
1000 0.47811 -0.82710 0.15714 1.81366

True Values 0.49000 -0.83000 0.17000
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Fig. 5. The parameter estimation errors τ versus t in Example 2
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Fig. 6. Estimated model outputs, true outputs and estimation errors in
Example 2

?

u(t)

p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p
Tank 1

?

Sensor

p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p
Tank 2

x(t)

p p p p p p p p p Communication network -y(t)

Fig. 7. A water tank system

The measureable output is y(t). The system can be expressed by the
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following ARX model,

A(d)x(t) =B(d)u(t) + v(t),

A(d) = 1 + a1d
−1 + a2d

−2 = 1 + 0.47d−1 + 0.18d−2,

B(d) = b1d
−1 + b2d

−2 = −0.82d−1 + 0.31d−2,

and we manually amplify the output as

y(t) = x(t) + 0.2x2(t) + e(t).

This kind of nonlinear function can be seen in [21], [33]. In simu-
lation, the input {u(t)} is a filtered random binary signal sequence,
{v(t)} and {e(t)} are Gaussian white noise sequences and both of
their variances are 0.102. In simulation, we use 50 particles.

The simulation data of the inputs, process outputs and nonlinear
outputs are depicted in Fig. 8 (samples 1-200). The estimation errors
τ versus t are depicted in Fig. 9, and the parameter estimates and their
estimation errors are presented in Table III. The estimated process
outputs, the true process outputs and their errors are shown in Fig.
10 (samples 800-900).

TABLE III
THE SG-PF ALGORITHM ESTIMATES AND ERRORS IN EXAMPLE 3

t a1 a2 b1 b2 τ (%)

100 0.24267 0.20352 -0.83175 0.11461 29.76843
200 0.31686 0.22772 -0.80939 0.18038 20.42832
400 0.38488 0.18285 -0.82841 0.24033 10.91766
600 0.39947 0.17449 -0.80752 0.28280 7.59923
800 0.45080 0.18725 -0.82558 0.27935 3.69062
1000 0.46375 0.18250 -0.82056 0.29438 1.68361

True Values 0.47000 0.18000 -0.82000 0.31000
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Fig. 8. The simulation data in Example 3
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Fig. 9. The parameter estimation errors τ versus t in Example 3
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Fig. 10. Estimated model outputs, true outputs and estimation errors in
Example 3

From Fig. 9 and Table III, we can conclude that as t increases,
the parameter estimation errors approach zero. From Fig. 10, we find
that the estimated process outputs can track the true unmeasureable
outputs well.

V. CONCLUSIONS

An SG-PF algorithm is proposed for a non-standard ARX model
in this paper. This model consists of two submodels, one is an ARX
model and the other is a nonlinear communication output model.
Since the outputs of the ARX model are unmeasureable, a particle
filter is utilized to estimate these unknown outputs. Then based on
the measureable input data and the estimated process output data, the
unknown parameters of the ARX model can be estimated by the SG
algorithm. Furthermore, two modified particle filters are developed
for the non-standard ARX model with the assumptions that the
measurement noise is a Gaussian noise with unknown variance and
the measurement noise distribution is unknown.

The purpose of this paper is to develop an on-line identification
method for systems with nonlinear communication output. There are
still some interesting topics not discussed in this paper. For example,
if the structure of the nonlinear function is unknown, how to adjust
the weights of the particles? Another topic is how to prove the
convergence properties of the SG-PF algorithm. These topics will
remain as open issues in future.

APPENDIX A
PROOF OF THEOREM 1

Define

|y(t)− f(x̂j(t))| := γj(t), j = 1, 2, · · · , N,

γ(t) := max{γj(t), j = 1, · · · , N}+ 1.

According to Equation (33), one can get

N∑
j=1

p(y(t)|x̂j(t))(y(t)− f(x̂j(t)))
2 −

N∑
j=1

1

N
(y(t)− f(x̂j(t)))

2

=

N∑
j=1

 γ2(t)− γ2
j (t)

Nγ2(t)−
N∑

k=1

γ2
k(t)

− 1

N

 γ2
j (t)

=
N∑

j=1

−(N − 1)γ2
j (t) +

N∑
k=1,k ̸=j

γ2
k(t)

N(Nγ2(t)−
N∑

k=1

γ2
k(t))

γ2
j (t).
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Since the denominator of the last term of the above equation is greater
than zero, one only need to consider the following equation

N∑
j=1

−(N − 1)γ2
j (t) +

N∑
k=1,k ̸=j

γ2
k(t)

 γ2
j (t)

=

[
(1−N)γ4

1(t) + γ2
1(t)

N∑
k=2

γ2
k(t)

]
+ · · ·(1−N)γ4

j (t) + γ2
j (t)

N∑
k=1,k ̸=j

γ2
k(t)

+ · · ·

[
(1−N)γ4

N (t) + γ2
N (t)

N−1∑
k=1

γ2
k(t)

]

=−
N∑

k=2

(γ2
1(t)− γ2

k(t))
2 −

N∑
k=3

(γ2
2(t)− γ2

k(t))
2 − · · ·

−
N∑

k=j+1

(γ2
j (t)− γ2

k(t))
2 − · · · − (γ2

N−1(t)− γ2
N (t))2 6 0.

Clearly, the following inequality holds

N∑
j=1

p(y(t)|x̂j(t))(y(t)− f(x̂j(t)))
2 6

N∑
j=1

1

N
(y(t)− f(x̂j(t)))

2.

APPENDIX B
PROOF OF THEOREM 2

The weight which updated by the direct weight optimization
method is expressed as

λd
j (t) =

γ(t)− γj(t)

Nγ(t)−
N∑

j=1

γj(t)

, (34)

while the weight updated by the Kernel density estimation method is
written by

λk
j (t) =

γ2(t)− γ2
j (t)

Nγ2(t)−
N∑

j=1

γ2
j (t)

. (35)

Then one can get

N∑
j=1

λd
j (t)(y(t)− f(x̂j(t)))

2 −
N∑

j=1

λk
j (t)(y(t)− f(x̂j(t)))

2

=

N∑
j=1

λd
j (t)γ

2
j (t)−

N∑
j=1

λk
j (t)γ

2
j (t)

=

N∑
k=1

γ2
k(t)

[
N∑

j=1

γ2
j (t)(γj(t)− γ(t))

]
(
Nγ(t)−

N∑
j=1

γj(t)

)(
Nγ2(t)−

N∑
j=1

γ2
j (t)

) +

N∑
k=1

γk(t)

[
N∑

j=1

γ2
j (t)(γj(t) + γ(t))(γj(t)− γ(t))

]
(
Nγ(t)−

N∑
j=1

γj(t)

)(
Nγ2(t)−

N∑
j=1

γ2
j (t)

) +

Nγ(t)

[
N∑

j=1

γ3
j (t)(γj(t)− γ(t))

]
(
Nγ(t)−

N∑
j=1

γj(t)

)(
Nγ2(t)−

N∑
j=1

γ2
j (t)

) . (36)

Since the denominator of Equation (36) is greater than zero, one only
need to consider the numerator of Equation (36),

N∑
k=1

γ2
k(t)

[
N∑

j=1

γ2
j (t)(γj(t)− γ(t))

]
+

N∑
k=1

γk(t)

[
N∑

j=1

γ2
j (t)(γj(t) + γ(t))(γj(t)− γ(t))

]
+

Nγ(t)

[
N∑

j=1

γ3
j (t)(γj(t)− γ(t))

]
=−(γ1(t)− γ(t))(γ2(t)− γ(t))×

(γ1(t) + γ2(t))(γ1(t)− γ2(t))
2 − · · ·

−(γ1(t)− γ(t))(γN (t)− γ(t))×
(γ1(t) + γN (t))(γ1(t)− γN (t))2 − · · ·

−(γj(t)− γ(t))(γj+1(t)− γ(t))×
(γj(t) + γj+1(t))(γj(t)− γj+1(t))

2 − · · ·
−(γj(t)− γ(t))(γN (t)− γ(t))×

(γj(t) + γN (t))(γj(t)− γN (t))2 − · · ·
−(γN−1(t)− γ(t))(γN (t)− γ(t))×

(γN−1(t) + γN (t))(γN−1(t)− γN (t))2, (37)

in which

γj(t)− γ(t) 6 0, γj+1(t)− γ(t) 6 0, γj(t) + γj+1(t) > 0,

(γj(t)− γj+1(t))
2 > 0, j = 1, · · · , N − 1.

It follows that each term of Equation (37) is

−(γj(t)−γ(t))(γj+1(t)−γ(t))(γj(t)+γj+1(t))(γj(t)−γj+1(t))
2 6 0.

Thus we can get
N∑

j=1

λd
j (t)(y(t)− f(x̂j(t)))

2 6
N∑

j=1

λk
j (t)(y(t)− f(x̂j(t)))

2.
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