
Diversifying search in Bee algorithms for
numerical optimisation

Muharrem Düg̃enci1 and Mehmet Emin Aydin2

1 Karabuk University, Department of Industrial Engineering, Karabuk, Turkey,
mdugenci@karabuk.edu.tr,

2 University of the West of England, Department of Computer Science and Creative
Technologies, Bristol, UK
mehmet.aydin@uwe.ac.uk

Abstract. Swarm intelligence offers useful instruments for developing
collective behaviours to solve complex, ill-structured and large-scale prob-
lems. Efficiency in collective behaviours depends on how to harmonise
the individual contributions so that a complementary collective effort
can be achieved to offer a useful solution. The harmonisation helps blend
diversification and intensification suitably towards efficient collective be-
haviours. In this study, two renown honeybees-inspired algorithms were
analysed with respect to the balance of diversification and intensifica-
tion and a hybrid algorithm is proposed to improve the efficiency accord-
ingly. The proposed hybrid algorithm was tested with solving well-known
highly dimensional numerical optimisation (benchmark) problems. Con-
sequently, the proposed hybrid algorithm has demonstrated outperform-
ing the two original bee algorithms in solving hard numerical optimisa-
tion benchmarks.

Keywords: swarm intelligence, numerical optimisation, Bee-inspired al-
gorithms, diversification and intensification

1 Introduction

Swarm intelligence is known to be a family of approaches used for collective in-
telligence in problem solving. Swarm intelligence frameworks such as ant colony,
particle swarm, artificial bee colonies algorithms impose use of population of so-
lutions, here-forth called swarm of individuals. The main benefit of population-
based metaheuristic approaches, particularly swarm intelligence algorithms, is
that the algorithms nicely harmonise local search activities around various neigh-
bourhoods without guaranteeing to cover the whole search space. Therein, the
local search is devised, to a certain extend, for intensifying the search and en-
hancement activities are facilitated to diversify the search for managing change
among neighbourhoods.

Diversification plays a crucial role to arrange visiting unseen regions of the
search space as efficiently as possible so that the search effort for optimum so-
lution would not be trapped in locality and be able to keep enough energy for
further search. On the other hand, intensification is required to make the search

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UWE Bristol Research Repository

https://core.ac.uk/display/323892487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Düg̃enci and Aydin

algorithm as focus as possible so that any particular local region would remain
under-examined. A balanced/well-featured search algorithm should harmonise
the actions for both diversification and intensification, which is required for ef-
fective and efficient search. In fact, individual solution-driven search algorithms
conduct more intensified search while population-driven algorithms are more
diversifying by their nature. Hence, swarm intelligence algorithms do require in-
tensification of the search in local regions as they deliver very diverse search by
default. This feature applies to the algorithms developed inspiring of honeybees,
where a number of ”bee algorithm (BA)” [24] and ”artificial bee colony (ABC)”
[13] variants have been proposed to manage/handle such a harmony among var-
ious search actions. In fact, various hybrid algorithms are devised mainly for
this purposes, where a verity of difficult problems can be solved with a more
generalised search that well-featured with diverse and focus search activities,
adequately [21], [3] [30]. However it is observed that the existing mechanics of
BA and ABC algorithms do not sufficiently support intensification, which drives
us to further investigations.

The main aim of this study is investigate how to improve search in original
bee-inspired algorithms through diversification and intensification. The prop-
erties in both BA and ABC algorithms are analysed first, and then efficiency
through diversification and intensification is sought, next. Further details are
provided in the following sections.

2 Relevant Works

Although the main aim of this study is not to solve the benchmark functions
more precisely, it is worthwhile to mention that a variety of studies have con-
sidered the same benchmark functions considered in this study for testing the
performance of their versions of BA and ABC algorithms. The work reported in
[21] is inspiring, which imposes an orthogonal initialisation for their hybrid algo-
rithm, where it uses 60 dimensional problems at most, and underperformed by
large in comparison to our results. The results produced by [10] for the same set
of benchmarks are not tabulated so as to be compared with our results, where the
level of dimensions is clearly lower than ours. The authors of [19] have borrowed
and embedded a crossover operator from genetic algorithms to solve the numer-
ical benchmark functions, where they considered 50 dimensions at most and the
results seem to be very fluctuating as standard deviations are higher then mean
statistics in some cases. The inventors of ABC [15] have first published their
results with ABC algorithm for the same set of benchmark numerical functions
solving them in relatively lower dimensions. However, [14] by the same research
team presents the success of the same algorithm providing extensive details of
their comparative study, where they solved around 50 benchmarks including our
benchmarking problems. The algorithms seems implemented very successfully
for dimensions up to 30 noting that many other ABC implementations could
not hit that level of success. The authors of [20] present a directed/adaptive
ABC algorithm solving the benchmarks with 10, 30 and 50 dimensions, where
our results are competitive with them at this level while we solve the problems
for much higher dimensions.

Diversifying Bee Algorithms 3

On the other hand, [24] introduces their BAs algorithm with solving the same
set of benchmarking numerical function with rather very lower dimensions, e.g.
up to D=10. Likewise, [31] have also attempted to solve a number of benchmark
functions including those considered in this study with up to 10 dimensions at
most. The study by [12] has improved BAs algorithm with a pre-processing of
particular initialisation algorithm and gained better results than both of [24]
and [31] in solving the same set of benchmarks with up to 60 dimensions, where
our results apparently outperform for all functions except Schwefel.

A number of other metaheuristic and/or swarm intelligence algorithms have
also attempted to solve the benchmarks we considered, recently. Based on the
relevance that the same functions have been attempted, it is decided to include
these studies in the review to help grasp the difficulty of the problems attended.
The authors of [8], [22], [29] and [32] have published their results for the bench-
mark problems up to 30 dimensions using different variants of particle swarm
optimisation, differential evolution and a particular algorithm so called monkey
algorithm. Their results are apparently either not better than, or remain compet-
itive with ours. Likewise, [11], [26] and [1] have introduced their approaches for
30 and 50 dimensions, where our approach usually outperforms them or remain
competitive. None of the following references have attempted dimensions larger
than 50, but, the majority of them have only considered up to 30, while our
approach outperform them in major ([2, 6, 9, 17, 25]). These studies have mostly
compared their result with those produced by [28] in which a comprehensive
study is extensively reported on solving a number of numerical optimisation
benchmarks. Most recently, [4] and [5] have implemented bee-inspired algorithms
for a number of functions including the above mentioned ones, but, considering
dimensions under 100 while we consider dimensions of 150.

3 Honeybee-inspired Algorithms

3.1 Bees Algorithm (BA)

Bees algorithm is another mainstream swarm intelligence algorithm inspired
of natural honeybee colonies introduced by Pham and his associates [24],[31].
It looks like a typical population based optimisation algorithm in which solu-
tions are considered as individual bees and are evaluated based on the fitness-
function-like evaluation rules. The algorithm imposes a search procedure inspired
of food/nectar exploration process by honeybees within the nature. An elitist ap-
proach is followed to search through the most fruitful regions of the search space
so that the optimum or a useful near optimum can be found as fast as possible
without causing further complications. This algorithm has not only been used for
solving numerical optimisation problems, e.g. benchmark functions, neural net-
work training etc., but also been considered for solving a variety of combinatorial
optimisation problems [18],[30].

Let X be a population of solutions, which is considered as a bee colony
and let xi = {xi,j |i = 1, .., N ; j = 1, .., D} represent solution i within this
population, which is also called an individual bee as a member of colony/swarm,
where N denotes the size of the colony, N = |X | and D is the size of input

4 Düg̃enci and Aydin

set. Suppose that F (xi) is a function defined (fi : xi → R) to measure the
quality/fitness of solution xi. The initial population/swarm of bees is generated
using xi,j = xi,min +ρ(xi,max−xi,min) where xi,j is a data point for jth input of
solution xi initialised to be a random value within the range of [xi,min, xi,max]
normalised with the random number of ρ.

After generating the initial swarm, each individual bee is evaluated using the
fitness function created based on the main objective of the problem tackled. The
bees are, then, classified based on their performance/fitness; a set of elite bees, E
where xe ∈ E and xe = {xe,j |e = 1, .., |E|; j ∈ D} a set of moderate search bees,
M where xm ∈M and xm = {xm,j |m = 1, .., |M|; j ∈ D} and a set of employee
bees, J where xk ∈ J and xk = {xk,j |k = 1, .., N −|E −M|; j ∈ D} . Therefore,
X = E ∪M∪J , where Ne = |E|, Nm = |M| and |J = N − (|E|− |M|). In order
for moving to the next generation, E ∈ X and M ∈ X are preserved ahead and
the rest of the population, which are employee bees, are scraped.

The next step of producing the new generation imposes to create and deploy
more supporting bees in the neighbourhood of each elite, xe and moderate, xm,
bees. Each individual elite bee, xe, is supported with a team of bees to further
explore within its neighbourhood. This extends the set of elite bees from Ne to
Ne × β, while the moderate search bees, xm, are also supported in the same
way, but with different predefined supporting team of bees. This also increases
the size of moderate bee set to Nm × γ, where β and γ are predetermined
fixed numbers, to identify how many bees to be recruited in the neighbourhood
of each elite and moderate bee, respectively. The supporting bees, which are
deployed in the search regions of elite and moderate ones, are created with the
rule of xi,j = xi,j + ρ δ, where ρ is a random number generated within the
range of (-1, 1) and δ is another predetermined fixed value to be the step-size
of change in any input of a solution/ a bee. Once support teams of bees are
deployed within corresponding search regions, the majority of the swarm of the
next generation becomes complete. The remaining small portion of the new
colony (around 20%) is randomly generated in the way of the initial random
population. This procedure is repeated until a predetermined stopping criterion
is met.

3.2 ABC algorithm

Artificial Bee Colony (ABC) is another very popular swarm intelligence algo-
rithm developed inspiring of the collective behaviours of honeybee colonies.
Karaboga [13] has first initiated this algorithm to solve numerical optimisa-
tion problems and extended with [15] and then applied to various combinatorial
optimisation problems [16] [23]. ABC imposes considering individual solutions
as sources of food (nectar) for honey bees and searching around each solution
is named to be collective activities of various types of bees. There are mainly
two bee types envisaged; Employed and Unemployed, where Unemployed bees
can be in two types; Onlooker and Scout bees. A set of search activities is or-
ganised around the nectar sources by recruiting various types of bees in various
configurations.

Diversifying Bee Algorithms 5

Let xi be a solution, defined as an input vector of N size considered as a
source of nectar. A population of different sources are initially generated using
xi,j = xi,min + ρ(xi,max − xi,min), where i = 1, ..,N ; j = 1, ..,D; xi,min and
xi,max are minimum and maximum values of ith input of xi source. Once the
whole population of the sources is generated completely, then, the nectar level
of each source is determined to identify the quality of each, which becomes
the fitness value of each solution. Following this step, the employed bees start
operating on each source to search for sources with better quality using vi,j =
xi,j + φ(xi,j − xi,k), where vi is the new source found following an interaction
between xi and kk, which is a randomly selected known source among many
within the colony of the generation. The difference calculated between the two
sources is normalised with a randomly generated φ ∈ (−α, α). After the new
source identified, a decision is made whether or not to adopt the new source
to replace the original one. The ultimate fitness of a typical source decision is
calculated using:

F (xi) =

{
1

1+f(xi)
f(xi) ≥ 0

1 + |f(xi)| otherwise
(1)

Onlooker bees start operations following complete by Employed bees. The
main role of onlooker bees is to monitor the employed bees and taking the
search further using a probabilistic process, where a probability of pi is calculated

using pi = F (xi)∑N
i=1 F (xi)

for each individual candidate source and a roulette-wheel

selection rule is used to make a choice of a solution for further explorations.
The neighbourhood of a chosen source is conducted with vi,j = xi,j + φ(xi,j −
xi,k) similar to employed bees. A small size memory is associated with each
further investigated source if any progress is achieved or not. A counter for each
investigated source is created and run up to a predefined threshold. If no progress
accomplished, then the source is removed from the colony.

Scout bees, then, follow onlookers to diversify the colony, randomly inserting
new sources using the initial rule of source generation:xi,j = xi,min + ρ(xi,max−
xi,min). This generational process is repeated until a certain level of satisfaction is
reached. As part of the above-mentioned process, each individual solution/source
can be included in the next generation via either of the following cases: (i) a
source would remain without any change, (ii) an employed bee would generate a
new solution, (iii) an onlooker bee may bring a new solution, (iv) a source would
be found by both employed or onlooker bees, or (v) an investigated source is
replaced with a new source as a result of non-improvement decision. It is a
fact that each solution is attempted for improvement at least once, would be
investigated with more attempts if the its fitness remains high.

4 Algorithms Revised

The above-mentioned honeybees-inspired algorithms have been examined with
respect to the balance between diversification and intensification of the search,
and few ideas have been put together for the purpose of improving the per-
formances in solving numerical optimisation problems. Following structural and

6 Düg̃enci and Aydin

experimental analysis, both of the algorithms introduced above have been found
with strengths and weaknesses with respect to diversification and intensification
of search process. Both ABC and BA algorithms include freshly generated ran-
dom solutions into the new generations to a certain level, where diversification
of the search is achieved in this way. In addition, BA algorithm intensifies the
search on fruitful sources, where further search attempts are organised around
highly fitted sources/solutions, which intensifies the search further, while ABC
uses memory-like mechanism to let scout bees intensify their search around cer-
tain sources for a number of attempts until it is understood that the source is
dried out. Afterwards, that source is deleted from the population.

On the other hand, both algorithms conduct search with few shortcomings,
which have been considered, in this study, as the grounds of improvement to
enhance the capabilities of above-mentioned bee-inspired algorithms. In this re-
gard, BA algorithm uses a parameter to normalise the step-size, so-called envi-
ronmental/neighbourhood factor and denoted with δ, in the previous sections. It
is set to a fixed value at the initialisation stage and kept at the same value to the
end of the search. This makes granularity of the step size coarse-grained in ap-
proximating the optimum value, which drifts intensification away, and prevents
the search to reach the optimum in most of the time. Another weakness of BA
algorithm is the diminishing probability of having random solutions within the
population, especially during the late stages of the search. This can escalate to
disabling diversification at later stages. In the case of ABC, the weaknesses arise
in two points; (i) the sources taken out of population are evaluated not based on
the fitness, but, improvability, which can lead to disregard the useful solutions,
(ii) in addition, some useful and very well-improved solutions can be decommis-
sioned from the population since their improvability is reduced to 0 according
the criteria adopted. Both of these weaknesses can drive the algorithm towards
very unfertile region of search space. In the following subsections both of the
algorithms have been revised to re-arrange the diversification and intensification
of the search.

4.1 Bees Algorithm Revised (rBA)

The main revision envisaged for BA based on the shortcomings discussed above
is to make step-sizes more adjustable and fine-tuned. This is identified to deal
with the fixed-valued (constant) δ within the update rule, xi,j = xi,j +ρ δ, where
xi,j is a single dimension of a complete solution and ρ is a random number within
the range of [-1, 1]. The fixed-valued parameter, δ, makes the approach coarse-
grained and causes the step-size of a move not being easily adjustable for finer
precisions. That would take much longer time to approximate. In order to avoid
this shortcoming the update rule is revised as follows: xi,j = xi,j + ρ δ xi,j ,
where δ is made to be a rate within the range of [0,1], and can be adaptive,
too. Therefore, the new step-size calculated with δ xi,j will be more adjustable
and proportional to the range of (xmin, xmax) with which the algorithm can
approximate much faster than before, and more preciously. The update rule is
applied to all types of bees recruited as part of the algorithm, while the rest of
the algorithm remains as original.

Diversifying Bee Algorithms 7

4.2 ABC Algorithm Revised (rABC)

Following the shortcomings discussed above, two revisions have been envisaged
to improve standard ABC’s performance; one is to collect all results from all
employed and onlooker bees and then apply roulette-wheel selection instead of
original practice, and the other revision is to adopt a rank-based selection rule
for the next generation, where 25% of top ranked solution from entire existing
solution set, N + E , where N denotes original bee colony and E is the number
of generated solutions.

4.3 Hybrid Bees Algorithm (Hybrid)

This hybridisation is managed based on the framework of BA algorithm with im-
plementing not only bee operations from BA algorithm but also all other above-
mentioned updating rules. This hybrid algorithm systematically harmonises/reuses
the updating rules given with equations (2) - (6) for generating new solutions/bees
as well as neighbours for the existing elite and fit bees, where equation (2) is
used for generating the initial swarm and independently exploring for better
nectar sources while equations (3) - (6) are used to send supporting bees around
each elite bee. It is expected to help diversify search with use of more optional
neighbourhood functions, systematically supplied into the algorithm. It helps
intensify search within local region using finer-grained update rules.

xi = xmin + ρ(xmax − xmin) for ∀i ∈ N (2)

xi = xi + ρ δ for ∀i ∈ N and δ ∈ R (3)

vi = xi + φ(xi − xk) for ∀i, k ∈ N (4)

xi = xi + ρ δ xi for ∀i ∈ Nand δ ∈ [0, 1] (5)

vi = xi + φ(xi − xk) for ∀i ∈ N and k ∈ Q1 ⊂ N (6)

Equation (3), (4), (5), and (6) are the neighbourhood rules used, respectively,
by the ordinary BA algorithm, the revised BA algorithm, ABC and revised ABC
algorithms to explore around a local nectar source, which means a local region
of the search space in optimisation context. The hybrid algorithm randomly
selects one of these rules to generate a neighbouring solution of a particular elite
solution, each time, to complete up supporting bees for each elite so that bees can
be placed in the new generation. The moderate search bees use only equations
(3) and (4) for generating their neighbouring solutions to complete number of
supporting bees so as to place solutions in the next swarm while the independent
bees explore with equation (2) for further generations of randomly searched
nectars. The rest of algorithmic mechanics of this hybrid algorithm works in the
same way as the ordinary Bee algorithm does until a certain satisfactory level is
achieved.

5 Experimental Results

The following section introduces a major experimental study to demonstrate
the performance of above-mentioned well-known bee algorithms and the revi-
sions envisaged to enhance the capabilities via performances. First of all, the

8 Düg̃enci and Aydin

performance tests and analysis have been made using 6 numerical optimisation
benchmarks, which are commonly used for the same purposes and given below.
Obviously, all of these functions are multi-dimensional functions, which can also
be considered as many-dimensional functions, where the tests have been con-
ducted over their 5, 30, 60, 100 and 150 dimensions. The reason to opt with
these dimensions is that the literature [21], [1, 2],[15],[31] reports solving these
problems with similar dimensions, where 100 and 150 dimensions are exercised
first time by this study. Two of the functions are know as uni-model, which
means that they have only single optimum points while the other four are multi-
model functions meaning that they can have multiple optimum points. These are
all well-known and challenging benchmark functions used to test optimisation
algorithms across the literature of this field. An extensive study on a number of
numerical optimisation benchmarks including those considered below is reported
in [28].

1. Sphere function f1(x) =
∑D
i=1 x

2
i

2. Rosenbrock function f2(x) =
∑D
i=1 100(xi+1 − x2i)2 + (xi − 1)2

3. Ackley function f3(x) = −20e(
−0.2
√

1
D

∑D
i=1 x

2
i) − e(

1
D

∑D
i=1 cos(2πxi)) + 20− e

4. Griewank function f4(x) = 1
4000

∑D
i=1 x

2
i −

∏D
i=1 cos(xi√

i
) + 1

5. Rastrigin function f5(x) =
∑D
i=1[x2i − 10cos(2πxi) + 10]

6. Schwefel function f6(x) =
∑D
i=1(xi − sin(

√
|xi|)

Parametric design details configured as follows:- the swarm size for all algo-
rithms is 100, number of elite, moderate, supporting and independent bees are set
to 5, 20, 40 and 30, for BA and Hybrid algorithms respectively. Non-improvability
threshold is fixed at 200 operations for ABC while the neighbourhood factor is
0.1 for BA and 0.1x for Hybrid. It can be observed that the revised versions of
both BA and ABC algorithms have the same parametric values since the changes
suggested is rather procedural than parametric. As a matter of fact, the neigh-
bourhood structures of the algorithms, which is also a procedural difference, are
indicated as follows: all algorithms use fixed-sized local neighbourhood, while
BA has a rank-based random selection, ABC uses roulette-wheel selection and
Hybrid adopts both in a systematic use. In addition, Hybrid algorithm selects
mate-bees from top quartile when operating with revised ABC.

The experimentation has been started with rather lower dimensions and grad-
ually increased up in due course. The starting dimensions were 5 and 30 following
the literature. All algorithms were run for 200, 1000 and 5000 iterations. Corre-
sponding results are provided in [7]. Table 1 and 2 present the tabulated results
for higher dimensions of the functions.

Table 1 presents the performances of all 5 algorithms for 60 dimensional
benchmarks over 5000 iterations, where it is clear that both ordinary BA and
ABC algorithms remain very underperforming in comparison to the revised ver-
sions and the hybrid algorithm. Meanwhile, rBA, rABC and Hybrid algorithms

Diversifying Bee Algorithms 9

(a) D=5 (b) D=30 (c) D=60

Fig. 1: Differences between optimum and results found by the algorithms

approximate to the optimum in four functions, but struggle in solving Rosenbrok
and Schwefel functions, despite that their performance improves in Rosenbrok
function. These results indicate that Schwefel function clearly requires far more
attention to better approximate.

D=60 5000 Iterations

Input Ranges Model Optimum BA rBA ABC rABC Hybrid

Sphere (-100, 100) Uni 0.00 9.029 0.00 1.27E+04 3.90E-03 2.80E-45

Rosenbrock (-2.048, 2.048) Uni 0.00 792.867 58.882 2357.957 111.236 54.965

Ackley (-32.768, 32.768) Multi 0.00 19.512 3.24E-14 15.093 2.27E+00 3.95E-14

Griewank (-600, 600) Multi 0.00 792.867 58.882 2357.957 111.236 0.00

Rastrigin (-5.12, 5.12) Multi 0.00 792.867 58.882 2357.957 111.236 0.00

Schwefel (-500, 500) Multi -25,138.974 -14,996.00 -12,579.00 -8,554.00 -19,540.00 -14,726.00

Table 1: Experimental results by all 5 bee algorithms with 5000 iterations for 60-D
benchmarks

Figure (1a), (1b), (1c) plot the differences between known optimum values
and the achieved results averaged over all benchmark problems against the num-
ber of iterations attempted, where the plots are categorised in dimensions. Figure
(1a) and (1b) include the results for 200 iterations, while Figure (1c) does not
include since 200 iterations remain too short for growing dimensions. All three
figures clearly suggest that Hybrid algorithm outperforms all others and its ap-
proximation goes closer to 0. On the other hand, revised algorithms perform
better then the original algorithms in the same overall point of view, where rBA
remains as the first runner after Hybrid. It is also observed that ABC performs
much better when dimensions are lower. However, rABC, the revised ABC, is
one of the competitors with Hybrid regardless of the growing dimensions.

The results in Table 2 include the performance of BA, ABC and the Hybrid
algorithms only, since beyond D=60, the revised algorithms (rBA, and rABC)
seem significantly outperforming their original versions. Hybrid remains com-
petitive and solves four functions to optimum out of the six benchmarks. The
presented results include the performance of Hybrid in comparison to original
BA and ABC for dimensions of D=100 and D=150 running the algorithms over
5000 iterations. We should note that the results of 5000 iterations are only in-
cluded in the tables due to the space constraints. Although not included in the
tables, Hybrid solves Sphere, Ackley, Grienwak and Rastrigin functions to opti-
mum after 1000 iterations for all dimensions including 60-D, 100-D and 150-D.
However, the algorithms, BA, ABC and the revised versions of these two, re-

10 Düg̃enci and Aydin

D=100 5000 Iterations

Input Ranges Model Optimum BA ABC Hybrid

Sphere (-100, 100) Uni 0.00 61.08 72,499.42 0.00

Rosenbrock (-2.048, 2.048) Uni 0.00 162.66 10,679.20 92.52

Ackley (-32.768, 32.768) Multi 0.00 19.49 19.05 3.99E-15

Griewank (-600, 600) Multi 0.00 0.90 768.32 0.00

Rastrigin (-5.12, 5.12) Multi 0.00 764.34 1,265.31 0.00

Schwefel (-500, 500) Multi -41,898.29 -26,057.94 -9,255.25 -26,537.00

D=150 5000 Iterations

Input Ranges Model Optimum BA ABC Hybrid

Sphere (-100, 100) Uni 0.00 0.02 221,512.73 1.10E-44

Rosenbrock (-2.048, 2.048) Uni 0.00 142.89 32,620.37 140.68

Ackley (-32.768, 32.768) Multi 0.00 19.18 20.47 1.47E-15

Griewank (-600, 600) Multi 0.00 2,212.12 1,995.48 0.00

Rastrigin (-5.12, 5.12) Multi 0.00 868.31 2,106.19 0.00

Schwefel (-500, 500) Multi -62,847.435 -35,174.20 -12,060.97 -38,568.57

Table 2: Experimental results by all 5 bee algorithms with 3 levels of iterations for
100-D and 150-D benchmark functions

main behind this level of achievement with growing dimensions. All algorithms
except Hybrid seem falling in a local optimum around 20.0 while solving Ack-
ley function for dimensions of 100 and 150. Rosenbrock function is the second
challenging benchmark among all, where the approximation of Hybrid remain
just below 100 for 100-D and below 150 for 150-D cases. Clearly, Schwefel func-
tion is the most challenging one since the approximation of all algorithms stays
far apart of the expected optimum. This hints that Schwefel function requires
particular attention. A slight improvement is observed from the performance of
both BA and ABC with growing iterations from 1000 to 5000, and 5000 to 10000,
but, the level of improvement remains rather weaker. This suggests that the ap-
proximation of both algorithms approach to the ultimate level of achievement,
and beyond this level of iterations a significant improvement is not expected.

Figure 2a, 2b, 2c, and 2d, present the overall performance of BA, ABC
and Hybrid algorithms indicated for the dimensions of 100 and 150. Similar to
the previous cases depicted in Figure 1, the results of all the algorithms for all
functions have been further processed to calculate the differences between the
optima and the results produced, and then averaged accordingly. It is observed
that, as suggested by Figure 2a, and 2c, ABC significantly underperforms in
comparison to both BA and Hybrid, while Figure 2b, and 2d compare the per-
formance of BA with Hybrid, where Hybrid significantly outperforms BA. The
performance of BA improves with increasing number of iterations while Hybrid
looks approximated to a steady state as suggested by Figure 2b and 2d noting
that the averaged difference by Hybrid looks more substantial in 100-D cases
than 150-D ones.

6 Conclusions

In this study, a comprehensive investigation is conducted to review the capabili-
ties of Ba and ABC algorithms with respect to diversification and intensification
in their search conduct. Both frameworks have been comparatively tested in solv-

Diversifying Bee Algorithms 11

(a) (b)

(c) (d)

Fig. 2: Averaged overall achievements by BA, ABC and Hybrid; (a) comparative
results for 100-D cases (b) comparative results by all three for 150-D cases, (c)

comparative results by BA and Hybrid only, for 100-D cases, (d) comparative results
by BA and Hybrid only, for 150-D cases

ing very high-dimensional numerical optimisation benchmarks. Revisions have
been proposed for each algorithm for performance enhancement purposes. The
results clearly suggested that revised versions of both BA and ABC (rBA and
rABC) outperformed the original algorithms by large. Furthermore, a hybrid al-
gorithm based on the original and their revised versions has been developed and
tested, accordingly, resulting that the hybrid algorithm significantly improves
the performance in solving very high-dimensional numerical optimisation bench-
marks. This achievement is attained with better harmony induced in the hybrid
algorithm, where both of rBA and rABC provided better intensification and
randomly and systematically use of operators helped achieve improved diversifi-
cation. This hybrid version is going to be tested for combinatorial optimisation
problems as the next step of this research.

References
1. Alam, M. S., M. Md Islam, and K. Murase. Artificial bee colony algorithm with improved

explorations for numerical function optimization. Intelligent Data Engineering and Automated
Learning-IDEAL 2012. Natal, Brazil: Springer Berlin Heidelberg, 2012. 1-8.

2. Alam, M. S., Md. M. Islam, and X. Yao. Recurring two-stage evolutionary programming: A novel
approach for numerical optimizaiton. IEEE Transactions on System, Man, and Cybernetics Part
B: Cybernetics 41, no. 5 (2011): 1352-1365.

3. Aydin, M. E. Coordinating metaheuristic agents with swarm intelligence. Journal of Intelligent
Manufacturing (Springer) 23, no. 4 (2012): 991-999.

4. Aydog̃du, I., Akin, A., and Saka, M. P., ”Design optimization of real world steel space frames
using artificial bee colony algorithm with Levy flight distribution.” Advances in Engineering
Software 92 (2016): 1-14.

12 Düg̃enci and Aydin

5. Cui, L., Li, G., Zhu, Z., Lin, Q., Wen, Z., Lu, N., Wong, K.C. and Chen, J., ”A novel artificial
bee colony algorithm with an adaptive population size for numerical function optimization”,
Information Sciences, 414 (2017): 53-67.

6. Dogan, B., and T. Olmez. A new metaheuristics for numerical function optimization: Vortex
search algorithm, Information Science 293 (2015): 125-145.

7. Düg̃enci, M. ”Honeybees-inspired heuristic algorithms for numerical optimisation”, arXiv
preprint (2015), arXiv:1504.05766.

8. Gong, W., Z. Cai, L. Jia, and H. Li. A generalized hybrid generation scheme of differential
evolution for global numerical optimization. International Journal of Computational Intelligence
and Applications 10 (2011): 35-65.

9. Guo, L., G.-G. Wang, A. H. Gandomi, A. H. Alavi, and H. Duan. A new improved krill herd
algorithm for global numerical optimization. Neurocomputing 138 (2014): 392-402.

10. Hacbeyolu, M., B. Koer, and A. Arslan. Transfer Learning for Artificial Bee Colony Algorithm to
optimize numerical functions. International Conference on Computer Engineering and Network
Security (ICCENS’2012). Dubai, 2012.

11. Han, M., C. Liu, and J. Xing. An evolutionary membrane algorithm for global optimization
problems. Information Sciences 276 (2014): 219-241.

12. Hussein, W. A., S. Sahran, and S. N. H. S. Abdullah. Patch-Levy-based initialization algorithm
for Bees Algorithm. . Applied Soft Computing 23 (2014): 104-121.

13. Karaboga, D. An idea based on honey bee swarm for numerical optimisation. Technical Report,
Computer Engineering Department, Erciyes University, Kayseri, Turkey, 2005.

14. Karaboga, D., and B. Akay. A comparative study of artificial bee colony algorithm. Applied
Mathematics and Computation 214 (2009): 108-132.

15. Karaboga, D., and B. Basturk. A powerful and efficient algorithm for numerical function op-
timization: artificial bee colony (ABC) algorithm. Journal of Global Optimization 39, no. 3
(2007): 459-471.

16. Karaboga, D., B. Gorkemli, C. Ozturk, and N Karaboga. A comprehensive survey: artificial bee
colony (ABC) algorithm and applications. Artificial Intelligence Review 42, no. 1 (2014): 21-57.

17. Kashan, A. H. A new metaheuristic for optimization: Optics inspired optimization (OIO). Com-
puters and Operations Research 55 (2015): 99-125.

18. Keskin, T. E., M. Dugenci, and F. Kacaroglu. Prediction of water pollution using artificial
neural networks in the study areas of Sivas, Karabuk and Bartin (Turkey). Environmental
Earth Science, 2014.

19. Kiran, M. S., and M. Gunduz. A novel artificial bee colony-based algorithm for solving the
numerical optimization problems. International Journal of Innovative Computing, Information
and Control 8, no. 9 (September 2012): 6107-6121.

20. Kiran, M. S., and O. Findik. A directed artificial bee algorithm. Applied Soft Computing 26
(2015): 454-462.

21. Kong, X., S. Liu, Z. Ang, and L. Yong. Hybrid Artificial Bee Colony Algorith for Global Numer-
ical Optimization. Journal of Computational Information Systems 8, no. 6 (2012): 2367-2374.

22. Liu, Y., B. Niu, and Y. Luo. Hybrid learning particle swarm optimizer with genetic disturbance.
Neurocomuting 151 (2015): 1237-1247.

23. Pan, Q. K., M. F. Tasgetiren, P. N. Suganthan, and T J. Chua. A discrete artificial bee colony
algorithm for the lot-streaming flow shop scheduling problem. Information Sciences 181, no. 12
(2011): 2455-2468.

24. Pham, D. T., A. Ghanberzadeh, E. Koc, S. Otri, S. Rahim, and M. Zaidi. The bees algorithm
- Anovel tool for complex optimisation. Intelligent Production Machines and Systems, 2006.

25. Piotrowski, A. P. Regardin the rankings of optimization heuristics based on artificially con-
structed functions. Information Sciences 297 (2015): 191-201.

26. Rahmani, R., and R. Yusof. A new simple, fast and efficient algorithm for global optimization
over continuous search-space problems:Radial Movement Optimization. Applied Mathematics
and Computation 248 (2014): 287-300.

27. Senyigit, E., M. Dugenci, M. E. Aydin, and M. Zeydan. Heuristic-based neural networks for
stochastic dynamic lot sizing problem. Applied Soft Computing (Elsevier) 13, no. 3 (2013):
1331-1338.

28. Suganthan, P. N., et al. Problem definitions and evaluation criteria for CEC 2005 Special Session
on real-parameter optimization. Technical Report, Computer Science, Nanyang Technological
University, Singapore: KanGAL, IIT, Kanpur, 2005.

29. Xin, B., J. Chen, Z. H. Peng, and F Pan. An adaptive hybrid optimizer based on particle swarm
and differential evolution for global optimization. Information Science (Science China) 53, no.
5 (May 2010): 980-989.

30. Yuce, B., D. T. Pham, M. S. Packianather, and E. Mastrocinque. An enhancement to the Bees
Algorithm with slope angle computation and Hill Climbing Algorithm and its applications on
scheduling and continuous-type optimisation problem. Production & Manufacturing Research
3, no. 1 (2015): 3-19.

31. Yuce, B., M. S. Packianather, E. Mastrocinque, D. T. Pham, and A. Lambiase. Honey bees
inspired optimization method: the Bees Algorithm. Insects 4, no. 4 (2013): 646-662.

32. Zhao, R., and W. Tang. Monkey algorithm for global numerical optimization. Journal of Un-
certain Systems 2, no. 3 (2008): 165-176.

