Cloud Infrastructure Provenance Collection and Management to Reproduce
Scientific Workflows Execution

Khawar Hasham®*, Kamran Munir®**, Richard McClatchey?®

4 Department of Computer Science and Creative Technologies (CSCT), University of the West of England (UWE), Frenchay Campus, Coldharbour
Lane, Bristol, BS16 1QY, United Kingdom

Abstract

The emergence of Cloud computing provides a new computing paradigm for scientific workflow execution. It pro-
vides dynamic, on-demand and scalable resources that enable the processing of complex workflow-based experiments.
With the ever growing size of the experimental data and increasingly complex processing workflows, the need for re-
producibility has also become essential. Provenance has been thought of a mechanism to verify a workflow and to
provide workflow reproducibility. One of the obstacles in reproducing an experiment execution is the lack of informa-
tion about the execution infrastructure in the collected provenance. This information becomes critical in the context
of Cloud in which resources are provisioned on-demand and by specifying resource configurations. Therefore, a
mechanism is required that enables capturing of infrastructure information along with the provenance of workflows
executing on the Cloud to facilitate the re-creation of execution environment on the Cloud. This paper presents a
framework to Reproduce Scientific Workflow Execution using Cloud-Aware Provenance (ReCAP), along with the pro-
posed mapping approaches that aid in capturing the Cloud-aware provenance information and help in re-provisioning
the execution resource on the Cloud with similar configurations. Experimental evaluation has shown the impact of dif-
ferent resource configurations on the workflow execution performance, therefore justifies the need for collecting such
provenance information in the context of Cloud. The evaluation has also demonstrated that the proposed mapping
approaches can capture Cloud information in various Cloud usage scenarios without causing performance overhead
and can also enable the re-provisioning of resources on Cloud. Experiments were conducted using workflows from
different scientific domains such as astronomy and neuroscience to demonstrate the applicability of this research for
different workflows.

Keywords: Scientific Workflows, Cloud Computing, Cloud Infrastructure, Provenance, Reproducibility

1. Introduction

The scientific community is experiencing a data deluge due to the generation of large amounts of data in modern
scientific experiments that include projects such as the Laser Interferometer Gravitational Wave Observatory (LIGO)
[1], the Large Hadron Collider (LHC)!, and projects such as neuGRID [30, 29]. In particular the neuGRID community
is utilising scientific workflows to orchestrate the complex processing of its data analysis. A large pool of compute
and data resources are required to process this data, which has been available through the Grid [12] and is now also
being offered by the Cloud-based infrastructures.

Cloud computing [27] has emerged as a new computing and storage paradigm, which is dynamically scalable
and usually works on a pay-as-you-go cost model. It aims to share resources to store data and to host services
transparently among users at a massive scale [26]. Its ability to provide an on-demand computing infrastructure with
scalability enables distributed processing of complex scientific workflows for the scientific community [11]. [19] has
experimented with Cloud infrastructures to assess the feasibility of executing workflows on the Cloud.

Animportant consideration during this data processing is to gather data that can provide detailed information about
both the input and the processed output data, and the processes involved to verify and repeat a workflow execution.
Such a data is termed as Provenance in the scientific literature. Provenance is defined as the derivation history of an
object [41]. This information can be used to debug and verify the execution of a workflow, to aid in error tracking and
reproducibility. This is of vital importance for scientists in order to make their experiments verifiable and repeatable.
This enables them to iterate on the scientific method, to evaluate the process and results of other experiments and to
share their own experiments with other scientists [2]. The execution of scientific workflows in Clouds brings to the
fore the need to collect provenance information, which is necessary to ensure the reproducibility of these experiments.

*Corresponding author
**Principle corresponding author
Email addresses: mian.ahmadQuwe.ac.uk (Khawar Hasham), kamran2.munir@uwe. ac.uk (Kamran Munir)
1 http://lhc.cern.ch

2. Motivation

A research study [4] conducted to evaluate the reproducibility of scientific workflows has shown that around 80%
of the workflows cannot be reproduced, and 12% of them are due to the lack of information about the execution
environment [38]. This information affects a workflow execution in multiple ways. A workflow execution can not
be reproduced if the underlying execution environment does not provide the libraries (i.e. software dependencies)
that are required for workflow execution. Besides the software dependencies, hardware dependencies related to an
execution environment can also affect a workflow execution. It can affect a workflows overall execution performance
and also job failure rate. This effect on the experiment performance has also been highlighted by [21]. For instance, a
data-intensive job can perform better with 2GB of RAM because it can accommodate more data in RAM, which is a
faster medium than hard disk. However, the job’s performance will degrade if a resource of 1GB RAM is allocated to
this job as less data can be placed in RAM. Moreover, it is also possible that jobs will remain in waiting queues or fail
during execution if their required hardware dependencies are not met. Therefore, it is important to collect the Cloud
infrastructure or virtualization layer information along with the workflow provenance to recreate similar execution
environment to ensure workflow reproducibility. However, capturing such an augmented provenance becomes more a
challenging issue in the context of Cloud in which resources can be created or destroyed at runtime.

The Cloud computing presents a dynamic environment in which resources are provisioned on-demand. For this, a
user submits resource configuration information as resource provision request to the Cloud infrastructure. A resource
is allocated to the user if the Cloud infrastructure can meet the submitted resource configuration requirements. More-
over, the pay-as-you-go model in the Cloud puts constraints on the lifetime of a Cloud resource. For instance, one can
acquire a resource for a lifetime but he has to pay for that much time. This means that a resource is released once a
task is finished or payment has ceased. In order to acquire the same resource, one needs to know the configuration of
that old resource. This is exactly the situation with repeating a workflow experiment on the Cloud. In order to repeat
a workflow execution, a researcher should know the resource configurations used earlier in the Cloud. This enables
him to re-provision similar resources and repeat workflow execution.

The dynamic and geographically distributed nature of Cloud computing makes the capturing and processing of
provenance information a major research challenge [51, 47]. Contrary to Grid computing, the resources in the Cloud
computing are virtualised and provisioned on-demand, and released when a task is complete [14]. Generally, an
execution in Cloud based environments occurs transparently to the scientist, i.e. the Cloud infrastructure behaves
like a black box. Therefore, it is critical for scientists to know the parameters that have been used and what data
products were generated in each execution of a given workflow [42, 40]. Due to the dynamic nature of the Cloud the
exact resource configuration should be known in order to reproduce the execution environment. Due to these reasons,
there is a need to capture information about the Cloud infrastructure along with workflow provenance, to aid in the
repeatability of experiments.

3. Related Work

Significant research [13, 39] has been carried out in workflow provenance for Grid-based workflow management
systems. Chimera [13] is designed to manage the data-intensive analysis for high-energy physics (GriPhyN)? and
astronomy (SDSS)(http://www.sdss.org) communities. It captures process information, which includes the runtime
parameters, input data and the produced data. It stores this provenance information in its schema, which is based on
a relational database. Although the schema allows storing the physical location of a machine, it does not support the
hardware configuration and software environment in which a job was executed. VisTrails [39] provides support for
scientific data exploration and visualization. It not only captures the execution log of a workflow but also the changes
a user makes to refine his workflow. However, it does not support the Cloud virtualization layer information. Similar
is the case with Pegasus/Wings [22] that supports evolution of a workflow. However, this paper is focusing on the
workflow execution provenance on the Cloud, rather than the provenance of a workflow itself (e.g. design changes).
A summary of provenance characteristics of the grid-based workflow management systems is given in (see Figure 1).

There have been a few research studies (e.g. [10, 23]) performed to capture provenance in the Cloud. However,
they lack the support for workflow reproducibility. Some of the work in Cloud towards provenance is directed to the
file system [49, 44] or hypervisor level [25]. However, such work is not relatable to our approach because this paper
focuses on virtualized layer information of the Cloud for workflow execution. Moreover, the collected provenance data
provides information about the file access but it does not provide information about the resource configuration. The
PRECIP [2] project provides an API to provision and execute workflows. However, it does not provide provenance
information of a workflow.

There have been a few recent projects (e.g. [9, 18]) and research studies e.g. [36] on collecting provenance and
using it to reproduce an experiment. A semantic-based approach [36] has been proposed to improve reproducibility of
workflows in the Cloud. This approach uses ontologies to extract information about the computational environment

Zhttp://www.phys.utb.edu/griphyn/

from the annotations provided by a user. This information is then used to recreate (install or configure) that environ-
ment to reproduce a workflow execution. On the contrary, our approach is not relying on annotations rather it directly
interacts with the Cloud middleware at runtime to acquire resource configuration information and then establishes
mapping between workflow jobs and Cloud resources. The ReproZip software [9] uses system call traces to provide
provenance information for job reproducibility and portability. It can capture and organize files/libraries used by a job.
The collected information along with all the used system files are zipped together for portability and reproducibility
purposes. Similarly, a Linux- based tool, CARE [18], is designed to reproduce a job execution. It builds an archive
that contains selected executable/binaries and files accessed by a given job during an observation run. Both these
approach are useful at individual job level but are not applicable to an entire workflow, which is the focus of this
paper. Moreover, they do not maintain the hardware configuration of the underlined execution machine. Furthermore,
these approaches operate along with the job on the virtual machine. On the contrary, out proposed approach works
outside the virtual machine and therefore does not interfere with job execution.

D m
> 2 — +
ks z £ g
S|yl £ ¢
L 7] Q o~
el S| § S
2| 18] 4] =
g1 S8 & ¢
& E|2| =l 3
g S| 8 - g
g glg| 4%
I IRIE
System = - | =) Q
VisTrails P+R W | A T | (p)
Pegasus R| W| A T | (p)
Taverna P+R W | A T | (P)
Chemira R W | A T | (p)
CRISTAL P | T+F | A | Item X
Kepler P+R | W | A | Item | (P)

7% = No support, (P) = Limited, P = Adequate support

Figure 1: Summary of Grid-based Workflow Management Systems.

4. Workflow Reproducibility Requirements for Cloud

According to the current understanding of available literature, there is no standardreproducibility model proposed
thus far for scientific workflows, especially in a Cloud environment. However, there are some guidelines or policies,
which have been highlighted in the literature to reproduce experiments. There has been one important effort by [6]
in this regard, but this mainly talks about reproducible papers and it does not consider the execution environment of
workflows. The same concern has been shared by [37] that most of the approaches in the conservation of computa-
tional science, in particular for scientific workflow executions, have been focused on data, code, and the workflow
description. They do not focus on the underlying infrastructure, which is composed of a set of computational resources
(e.g. execution nodes, storage devices, networking) and software components. A recent study [3] emphasised on the
need of incorporating the infrastructure information in the collected provenance. In this section, a few basic points are
gathered from literature analysis and Cloud context to present a set of workflow reproducibility requirements in the
Cloud. These points also provide the basis for the proposed solution for workflow execution reproducibility on the
Cloud. These points are discussed as follows.

(i) Code and Data Sharing
The need for data and code sharing in computational science has been widely discussed [6]. Code must be
available to be distributed, and data must be accessible in a readable format [36]. In computational science,
particularly for scientific workflow executions, it is emphasized that the data, code, and the workflow description
should be available in order to reproduce an experiment. In the absence of such information or data, experiment
reproducibility cannot be achieved because different results would be produced if the input data changes. It is
also possible that the experiment cannot be successfully executed in the absence of the required code and its
dependencies.

(ii) Execution Infrastructure
A workflow is executed on an infrastructure provided by the Grid or the Cloud. The execution infrastructure
is composed of a set of computational resources (e.g. execution nodes, storage devices, networking). The
physical approach, where actual computational hardware are made available for long time periods to scientists,
often conserves the computational environment including supercomputers, clusters, or Grids [37]. As a result,

3

(iii)

(iv)

™)

scientists are able to reproduce their experiments in the same hardware environment. However, this luxury is
not available in the Cloud in which resources are virtual and dynamic. Therefore, it is important to collect
the Cloud resource information in such a manner that will assist in re-provisioning of similar resources on
the Cloud for workflow re-execution. This will enable a researcher to recreate a virtual machine with similar
resource configurations. [3] also emphasized on the need to incorporate infrastructure information as part of the
workflow provenance.

From a resource provisioning as well as a performance point of view, the following factors are important in
selecting appropriate resources especially on the Cloud. These factors include: RAM, vCPU, Hard Disk, CPU
Speed in MIPS. All these factors contribute to the job’s execution performance as well as to its failure rate. For
instance, consider a job that requires 2 GB of RAM during its processing. This job will fail if it is scheduled
to a resource with less available RAM. Moreover, it could also affect its performance if more and more data
is processed from hard disk. Similarly, vCPU (virtual CPUs, meaning CPU cores) along with the MIPS value
directly affect the job execution performance. In a study [46], it was found that the workflow task durations
differ for each major Cloud, despite the identical setup. It was suggested that lower/different CPU speed, and a
poor WAN performance could be one factor for different or slow workflow execution times.

Hard disk capacity also becomes an important factor in provisioning a new resource on the Cloud. It was argued
that building images for scientific applications requires adequate storage within a virtual machine. In addition
to the OS and the application software, this storage is used to hold job inputs and output that are consumed and
produced by a workflow job executing on the VM [46].

Out of these factors, current Cloud offerings only support the provision of resources based on RAM, vCPU and
Hard Disk. These factors are combined and named as instance type (e.g. in Amazon EC2%), or flavour (e.g.
in OpenStack*). The MIPS information is not provided as a parameter for acquiring a resource. Therefore,
the proposed architecture in this paper takes these three factors along with the software environment (discussed
below) into consideration for resource provisioning. Nonetheless, the efficacy of having MIPS information in
the collected provenance will be shown through our results (discussed in Section 8). This will aid in providing
a motivation and envisioning a future possibility in which the Cloud Providers will start this as a configurable
parameter of a resource.

Software Environment

Apart from knowing the hardware infrastructure, it is also essential to provide information about the software
environment. A software environment determines the operating system and the libraries used to execute a job.
Without the access to required library information, a job execution will fail. For example, a job, relying on
a MATLAB library, will fail in the case where the required library is missing. One possible approach [17] to
conserve software environments is thought to conserve the VM that is used to execute a job and then reuse the
same VM while re-executing the same job. One possible mechanism is to create snapshot of virtual machines for
each job, however the high storage demand of VM images poses a challenging problem [S0]. In the prototype
proposed in this research study, the VM is assumed to present all the software dependencies required for a job
execution in a workflow. Therefore, the proposed solution will also retrieve the image information in building a
virtual machine on which the workflow job was executed.

Workflow Versioning

Scientific workflows are commonly subject to a reduced ability to be executed or repeated, largely due to the
volatility of the external resources that are required for their executions [15]. Capturing only a provenance
trace is not sufficient to allow the computation to be repeated a situation known as workflow decay [33]. The
reason is that the provenance systems can store information on how the data was generated, however they do not
store copies of the key actors in the computation i.e. workflow, services, data. Workflow versioning along with
other provenance information has been suggested to achieve reproducibility [48]. Recently, [35] have suggested
archiving the exact versions of all programs and enabling version control on all scripts used in an experiment.
This is not supported in the presented prototype because the focus of this research study is on the execution
aspect of a workflow. Nonetheless, it can be incorporated in future by using CRISTAL since it can track the
evolution of its stored items [5]. Since the focus of this research work is on the workflow execution phase, this
aspect has consequently not been discussed in detail, however, the original workflow description along with its
associated files has been stored to support workflow reproducibility of the same workflow.

Provenance Comparison

The provenance of workflows should be compared to determine workflow reproducibility. The comparison
should be made at different levels; workflow structure, execution infrastructure, and workflow input and output.
A brief description of this comparison is given below:

(a) Workflow structure should be compared to determine that both workflows are similar. Because it is possible
that two workflows may have a similar number of jobs but with a different job execution order.

3http://aws.amazon.com/cc:2
“http://openstack.org

(b) Execution infrastructure (i.e. the software environment and resource configuration) used for a workflow
execution should also be compared.
(c) Comparison of the inputs and outputs should be made to confirm workflow reproducibility. There could be

a scenario in which a user repeated a workflow but with different inputs, thus producing different outputs.
It is also possible that changes in job or software library results into a different workflow output.
In general, the provenance approach used by most Workflow Management Systems (WMS) such as Kepler
or VisTrail enforces this strict reproducibility requirement for relatively small amounts of consumed and
produced data, or just for primitive data. The most common strategy is to save all consumed and produced
data into a relational database, together with a link among data and the corresponding execution [24].
However, this approach is not feasible for large data files.
There are a few approaches (e.g. [28]) that perform a comparison on workflow provenance graphs to determine
differences in reproduced workflows. The proposed approach in this research study incorporates the workflow
structure and infrastructure along with output comparison to determine the reproducibility of a workflow. The
important difference from Missier’s approach is the comparison of Cloud infrastructure information in the prove-
nance graph. Since this paper is focusing on collecting Cloud resource information during workflow execution,
the execution infrastructure comparison has been used to evaluate the proposed approaches (see Section 8).

5. Workflow Execution Scenario on the Cloud

There have been projects e.g. [7] that uses the Cloud for the execution of workflows. Mainly, these approaches
create a virtual environment i.e. a virtual Grid on top of the Cloud resources using their legacy systems and execute
workflows. A system, AMOS [43], presents a layer on top of a workflow management system and dynamically creates
resources on the Cloud to instantiate a transient Grid ready for immediate use in the Cloud. A similar approach has
also been discussed and tested by [46, 20]. It uses Pegasus as a WMS along with the Condor [45] cluster on the Cloud
infrastructure to execute workflow jobs. In this section, a scenario (see Figure 2) is presented that can be used to
execute a workflow on the Cloud.

A scientist creates a workflow using a workflow authoring tool or uses an existing workflow from the Pegasus
Provenance Store e.g. database and submits it to the Cloud infrastructure through Pegasus. Pegasus interacts with a
cluster of compute resources in the form of Condor instances running on virtual machines (VM) in the Cloud. Each
VM has a Condor instance to execute the users job.

Submits

workfl fl
workflow Workflow

provenance

Stores/
selectsan ",

existing e
workflow e,
Workflow Provenance Store

Figure 2: Workflow Execution on Cloud.

Pegasus schedules the workflow jobs to these Condor instances and retrieves the workflow provenance information
supported by the Pegasus database. The collected provenance information, which is stored in the Pegasus database,
comprises job arguments (input and outputs), job logs (output and error) and host information. However, the collected
host information is not sufficient to re-provision resources on the Cloud because Pegasus was designed initially for
the Grid environment, and such systems lack this capability at the moment (as discussed in Section 3). This workflow
execution scenario on Cloud has inspired the architecture of the proposed system presented in [16]. The following
Section 6 discusses the proposed architecture of ReCAP in detail. It captures the Cloud resource information and links
it with the workflow provenance to generate Cloud-aware provenance (CAP).

6. ReCAP: Reproduce Workflow execution using Cloud-Aware Provenance

This section presents the detailed architecture of the proposed system, ReCAP, that has been designed on the
configuration and plugin-based mechanism. With this mechanism, support for new workflow management systems,
mapping algorithms etc. can be easily added without changing the core of the system. There are seven key components
in this design. They are the (i) WMS Wrapper Service, (ii) WS Client, (iii) WMS Layer, (iv) Cloud Layer, (v)
Aggregator, (vi) WF-Repeat, and (vii) Comparator. Each of these components can further have their sub-components
which are also discussed in this section. Figure 3 shows the detailed architecture of ReCAP and mutual interaction
among its components.

service user worklop, \wms Pegasus submission/monitoring
configs l \

=a -

()

A A
| s]|
\wovkllow provenane -

=
WS Client s WV'MS Layer : E :
o5 [Montor [lpaser | | 2 |
\ . t]

ReCAP | 5
configs l‘ 1 Ev]
1 1
User ¢ Cloud Layer | E |
. regator < Cloud Resource _ ' © !
repeat Aggregator Ve :
WF-Repeat Cloud Storage — - — — 4

Manager
l Comparators

PersistencyAP| «<—

i interaction between ReCAP components.
shared object

ReCAP interaction between ReCAP
Store and WMS/Cloud components

Figure 3: Detailed architecture of the ReCAP system.

6.1. ReCAP Configuration

ReCAP is designed using a plugin based approach and this requires a set of configuration parameters to drive
the overall system. Consequently, the key aspects of the ReCAP such as WMS components, mapping algorithms,
persistence API that interacts with the workflow provenance, the ReCAP databases and the Cloud middleware are
driven by the configuration parameters. These configurations (shown as ReCAP configs in Figure 3) are divided into
seven main sections as shown in Listing 6.1. These sections are discussed as follow:

o cloud settings: Provides a large number of parameters which are mainly used to access the Cloud middleware.
The implemented classes accessing the Cloud middleware to retrieve a Cloud resource, a Virtual machine,
information establish connection with the Cloud middleware using these configured parameters. Since the
ReCAP prototype is using Apache Libcloud® API, which can interact with various Cloud middlewares, these
parameters can be changed to accommodate a new Cloud middleware without any change in the code. Another
important parameter in this section is MAPPING _TYPE, which informs the ReCAP to load the appropriate
mapping algorithm.

o storage settings: Provides access parameters to access storage service on the Cloud. Using these parameters,
the API establishes connection with the Cloud storage service. Since the ReCAP prototype is using Apache
Libcloud API, which can interact with various Cloud middlewares, these parameters can be changed to accom-
modate a new Cloud middleware without any change in the code.

o wmsdb settings: Provides information about the parameters used to connect with the database of the workflow
management system. Since the prototype’s persistency layer is built on top of an SQLAlchemy framework,
which provides access to many databases such as Oracle, Sqlite, MSSQL etc., changing a database would not
require a change in the persistency layer. For this prototype, Pegasus database settings on MySQL database
have been used.

o recapdb_settings: Provides information about the parameters used to connect with the database used in the pro-
totype. This database contains the relational schema shown in Section 6.10 and holds the mapping information
between a job and a Cloud resource.

o WMS settings: Depending upon the used workflow management system, these parameters can be changed. For
instance, wms_monitor parameter loads the appropriate monitoring component that monitors the workflow state
in the database configured in above settings. This component is WMS specific and so is its implementation.

e WrapperService: To interact with the WrapperService, the Client component requires connection information
such as service URL and user credentials. This section provides these details.

o log settings: In order to log the inner activities of ReCAP, logging is provided and it is controlled by this
parameter.

Shttps://libcloud.apache.org/

[cloud_settings]

swift_host=164.11.100.72

service_name=Compute Service
0S_USERNAME=XXXXXXXX

0S_PASSWORD=XXXXXXXX
OS_AUTH_URL=https://api.opensciencedatacloud.org:5000/sullivan/v2.0/tokens
0S_TENANT_NAME=XXXXXXXXX
0S_REGION_NAME=RegionOne

#mapping types could be static,eager,lazy
MAPPING_TYPE=static

[storage_settings]

swift_host=<SERVER_IP>

0S_USERNAME=XXXXXXXXX

0S_PASSWORD=XXXXXXXXX
0S_AUTH_URL=http://<SERVER_IP>:5000
0S_TENANT_NAME=admin

0S_REGION_NAME=UWE_Region
EC2_URL=http://<SERVER_IP>:8773/services/Cloud
EC2_ACCESS_KEY=<EC2_ACCESS_KEY>
EC2_SECRET_KEY=<EC2_SECRET_KEY>
[wmsdb_settings]

user=pegUser

Password=xxxXxxxx

host=<DBSERVER_IP>

port=3306
dburl=mysql+mysqlconnector://pegUser: xxxxxxxQ<DBSERVER_IP>/pegasusdb
database=pegasusdb

[recapdb_settings]

user=CAPuser

Password=xxxxXXXxx

host=<DBSERVER_IP>

port=3306
dburl=mysql+mysqlconnector://CAPuser:xxxxxxxQ<DBSERVER_IP>/recapdb
database=recapdb

[WMS_settings]

wms_monitor=PegasusMonitor
wms_parser=PegasusParser

[WrapperService]
endpoint=http://<SERVER_IP>:5000/service_wrapper/api/v1i.0
service_user=USER1

service_password=XXXXX

[log_settings]
log_conf=/opt/MultilayerProv/conf/logging.conf

Listing 1: ReCAP prototype configurations.

6.2. WMS Wrapper Service

This component of ReCAP is a RESTful web service that operates on top of a workflow management system, which
for this study is Pegasus. It exposes interfaces through which a user can interact with the underlining workflow
management system and can submit his workflows. As this service mainly interacts with a WMS, it resides on the
same machine on which that system is running. For instance, the machine on which Pegasus runs and uses to submit
workflows is called the Submit Host. In our case, Pegasus uses the Condor pool to execute workflow jobs. In this
environment, the S ubmitHost is configured as the Master node for the Condor pool and all the VMs with the Condor
instances acting as worker nodes. All these nodes create a Condor pool over the virtual machines which is termed a
VirtualCluster [19]. Figure 4 illustrates the interaction of the WMS with other components of the system. In the case
of Pegasus and Condor, as shown in Figure 4, this service interacts with Pegasus to submit the workflows received in
the user’s request. It also interacts if needed with the Condor pool through the S ubmitHost. This interaction is useful
for achieving Eager Resource-Job mapping (will be discussed later in 7.2).

A user accesses the Wrapper Services over HTTP and requests to submit his workflow. In this request, he will
provide the abstract representation of his workflow i.e. DAX and its associated configurations, which are specific
to the underlining workflow management system. In the case of Pegasus, user provides a DAX file representing the
workflow and a site file that provides information about storage, environment variables and workflow constraints.
Upon receiving the request, the Service Wrapper firstly authenticates the user with the provided credentials in the
service request. This enables the service to prevent unauthorized access to the underlying resources. At the moment,

7

directory location to find the requested files. This operation is used while processing the job logs in mapping
components.

e jobmon: This operation is Condor-specific as it attempts to retrieve the current status of the job running on
Condor. It helps in retrieving the host information from the Condor pool on which a job is running. This
operation is used in the Eager approach (discussed later in Section 7.2).

e cpool mips: This operation is used to to retrieve the MIPS of the machines in the Condor pool. MIPS or
KFLOPS are one way to specify the execution performance of a machine and it can affect a job execution
performance (shown and discussed later in Section 8).

6.3. WS Client

In order to interact with the Wrapper Service, the WS Client component of ReCAP is used. All interactions with
the Wrapper Service pass through the WS Client component. On receiving requests from a user or other components
such as the Monitor component of ReCAP, the Client component starts an HTTP session with the WrapperService. As
authentication has been implemented in the WrapperService to avoid malicious access, it also provides user credentials
along with the request. These settings are retrieved from the ReCAP configurations (see WrapperService in Listing
6.1) discussed earlier in Section 6.1.

In order to submit a workflow, the user interacts with the Client component and passes all required files. The Client
component interacts with the WrapperService and submits the files. It retrieves the response from the WrapperService
and uses the configured WMS Parser to parse it to extract the workflow ID and ReCAP ID assigned to it. It then starts
the Monitor component to start monitoring the provenance information of the submitted workflow. This interaction is
shown in Figure 6.

WS Client Wrapper _ Paser | Monitor
submit_workflow .
e — > submit
A~
3
User ».__§9Pmil

response

parse (response)

e T
start_monitor
- = —

Figure 6: Illustrating the interaction between ReCAP components for submitting a user workflow.

6.4. WMS Layer

As discussed earlier, the design philosophy of ReCAP is plugin-based in order to provide support for extensibility.
A literature review has shown that multiple workflow management systems such as Pegasus, Chimera, Taverna and
Kepler etc., provide either the hostname or the IP of the machine on which a job was executed. Therefore, it has been
considered to enable support for multiple workflow management systems by adopting a plugin-based design. This
section provides detail about the WMS Monitor and Parser components. During mapping process, this layer loads
appropriate plugin implementation based upon the configuration parameters (see WMS _settings section in Listing
6.1). In this prototype, Pegasus-based plugins have been developed and tested.

6.4.1. Monitor

This component has been designed to monitor a workflow execution and retrieving its provenance information. This
component presents a threaded implementation which enables continuous monitoring of a workflow execution. In
order to perform monitoring operations, it interacts with the WMS database and retrieves workflow and job states.
Once a workflow is finished, it starts the job to Cloud resource mapping operation using the configured mapper plugin.
It also interacts with the Parser plugin to parse job outputs. A monitor plugin for Pegasus has been written in this

prototype.

6.4.2. Parser

This component helps in parsing the files and job outputs produced during a workflow execution. Since each WMS
can produce its own files during workflow execution and the job output formats can also be WMS specific, this com-
ponent helps in providing an abstraction layer on top. For example, once a workflow is submitted through Pegasus, a
submit file is produced that contains information about the output directory and workflow identifiers. Moreover, job
output logs contains information about the location of the input and output files on the Cloud. These parsers can also
be extended to extract the CPU spec from the job outputs if they cannot be retrieved from the workflow provenance
database. All this information is important to feed the Monitor component and also to acquire provenance information
about the consumed or produced output files on the Cloud, which is later used in workflow output comparison algo-
rithm (discussed [16]). ReCAP loads the Parser plugin using the global configuration. For instance, to parse Pegasus
outputs, it loads the PegasusParser plugin.

6.5. Cloud Layer

To interact with the Cloud middleware, a component Cloud Layer named ’CloudLayerComponent’ has been devel-
oped. It provides two types of interactions with the Cloud i.e. (a) to retrieve information about the virtual machines and
also (b) to retrieve information about the workflow’s input and output files stored on the Cloud storage service. These
two types of interactions are handled by its two sub-components: the CRM and the CSM. These two components are
briefly discussed in following sections.

6.5.1. Cloud Resource Manager (CRM)

The CRM interacts with the Cloud Iaa$ service such as the nova service of OpenStack to manage virtual resources on
the Cloud. The management involves operations such as retrieving resource information of virtual machines and the
provisioning of new resources on the Cloud upon receiving new resource requests. The retrieved information about
the currently running virtual machines include their metadata, OS images used in those VMs, flavours configuration
used in VMs. This interaction is shown in Figure 7.

Cloud Resource
Manager

Resource Resource
Provisioning Monitoring

Cloud Infrastructure (e.g., OpenStack) API

D waw U

Storage Network Servers

Figure 7: Interaction of CRM with the underlying Cloud infrastructure through APIs.

6.5.2. Cloud Storage Manager (CSM)

This component interacts with the Cloud storage service such as Swift for the OpenStack Cloud middleware. As
discussed earlier, the execution environment uses the Cloud storage service to save workflow inputs and outputs.
Through this component, ReCAP is able to retrieve the files and their metadata from the Cloud. While storing the
Cloud-aware provenance in the database, the Aggregator component invokes this component to retrieve filenames
and their metadata such as MDS5 hash and creation time etc. from a given location on the Cloud storage service.
This component is also used to iterate over the produced files on the Cloud during the workflow output comparison
(discussed in Section [16]).

6.6. Aggregator

The Aggregator (or also named Provenance Aggregator) component performs the mapping between the workflow job
information collected from the Workflow Provenance component and the cloud resource information collected from
the Cloud Layer Provenance component. In order to establish a mapping, it loads an appropriate mapping algorithm
and this is driven by a configuration parameter MAPPING TYPE (as discussed above). The mapping information is
then stored in the database. Section 7 explains the mapping algorithms designed in this prototype.

6.7. WF-Repeat

This component is designed to re-execute a workflow on the Cloud. A user can select a previous workflow, identified
with a unique ID, and request this component to re-execute it. Upon receiving the request, this component retrieves
the required workflow source files from the ReCAP database and also Cloud-aware provenance information. Using
this Cloud-aware provenance information, it re-provisions the resources on the Cloud infrastructure and then submits
the workflow over them using the underlying workflow management system, which is Pegasus in this research.

6.8. Comparator

The comparator component performs various provenance comparison operations for evaluating the workflow repro-
ducibility. The comparisons include a workflow output comparison and a workflow graph structure comparison etc.
It also performs provenance completeness and correctness analysis on the given workflow provenance traces. It takes
two workflow identifiers to retrieve their provenance information from the database and then invokes the appropriate
comparator implementation such as workflow output comparison.

10

6.9. Persistency API

This acts as a thin layer to expose the provenance storage capabilities to other components. In order to interact
with the underlying databases, a persistency layer is designed to provide a common callable interface for multiple
backend engine such as MySQL’. This API uses SQLAlchemy® that provides access to multiple database engines.
An instance to the database connection can be obtained by specifying the connection parameters in the config file (see
wmsdb _settings and recapdb_settings in Listing 6.1).

6.10. ReCAP database schema

A relational database schema has been designed that assists in storing workflow descriptions and their configuration
files, workflow job-to-Cloud resource mappings, temporary mappings for the Lazy approach or the S NoHi approach,
and files metadata (consumed or produced data by the workflow jobs) stored on the Cloud. This information later
helps in retrieving CAP information and also helps in answering Cloud-aware provenance queries and comparing
workflow outputs. Following paragraphs describe the schema shown in Figure 8.

| WiCloudTempMapping ¥] WorkflowSource ¥] RepeatWorkflow v
WD INT WiiD INT origWHID INT
jobid INT wiSubmit TEXT Jé repeatWiiD INT
hostname VARCHAR(45) WiDAG TEXT repeatStatus BOOLEAN
hostip VARCHAR(45) wiSite TEXT] CloudFileCatalog v
middieware VARCHAR(45) wiTC TEXT > cloudFilelD INT
minRAM VARCHAR(45) — = = 4 | wiProps TEXT container_name VARCHAR(45)
minHD VARCHAR(45) wms_wfid INT Kkeyname VARCHAR(45)
vCPU VARCHAR(45) —J JobCloudFile v o metadata TEXT
flavorid VARCHAR(45) = » WiID INT i— hash VARCHAR(45)
flavorname VARCHAR(45) ¥ jobid INT | creation_date VARCHAR(45)
image_name VARCHAR(45) g ¢ cloudFilelD INT P modified_date VARCHAR(45)
image_id VARCHAR(45)
i | WiCloudMapping v ~ >
WD INT
» jobid INT ill
| hostid INT |
: nodename VARCHAR(45) :
A hostip VARCHAR(45) |
"] JobHostTempMap v middieware VARCHAR(45) |
WwiiD INT minRAM VARCHAR(45)] CPUSpecs v
jobid VARCHAR(255) minHD VARCHAR(45) # === WiiDINT
hostip VARCHAR(45) VCPU VARCHAR(45) jobid INT
hostname VARCHAR(45) flavorid VARCHAR(45) hostid INT
flavorname VARCHAR(45) count VARCHAR(45)
image_name VARCHAR(45) vendor VARCHAR(45)
image_id VARCHAR(45) spood VARCHAR(45)
oxtra TEXT processor VARCHAR(45)
mips DECIMAL

Figure 8: ReCAP Schema.

In order to preserve the original workflow and its associated configuration files, the WorkflowSource table is used. The
wfDAG column stores the workflow representation described in a DAG format. This is an abstract workflow which
will be submitted through Pegasus for execution. The wfSite column stores the information related to execution site
and its storage elements. This information specifies the storage locations and paths to be used for reading and writing
data during the workflow execution. The wfT'C column stores information about the executables which are to be used
for workflow jobs. A user can also provide configuration properties to Pegasus that affects the way Pegasus plans,
schedules and stores workflows. This set of properties is stored in the wfProps column. Each workflow is assigned a
unique ID by Pegasus and also in the ReCAP database, thus a mapping between these two IDs are required. The wfID
is the ID assigned to a workflow execution by ReCAP and the wms_wfid is the unique ID assigned to a workflow by
the workflow management system such as Pegasus. The wms_wfid is essential to record because it is used in retrieving
workflow provenance from the Pegasus. Since the prototype is designed using the Pegasus WMS, this table contains a
few Pegasus specific entries. However, the same concepts can also be applied when used with other similar workflow
management systems.

In order to establish the final job-to-Cloud resource mapping and to record Cloud-aware provenance information, the
WfCloudMapping table is used. This table stores the mapping between workflow jobs and the configurations of the
Cloud resources used for their execution. In order to specify the resource flavour, that provides the resource hardware
configurations, flavorname and flavorid are stored. However, this information can be customised or new entries
can be added by the Cloud Provider. For instance, Amazon EC2 provides an extensive list? of instance types with
customized values. On the other hand, Openstack middleware used in Open Science Data Cloud (OSDC)!° provides a

Thttps://www.mysql.com/
8http://www.sqlalchemy.org/
9http://aws.amazon.com/ecZ/insta.ncc-typcs/
10https://www.opensciencedatacloud.org/

11

limited set of instance types. Therefore, the individual parameters i.e. minRAM, minHD, minCPU specifying a Cloud
resource are also stored. As highlighted in Section 3 OR 4, the information about the software stack is also essential
to successfully conduct an execution. The image_name column provides the information about the operating system
running the virtual machine. In this prototype, it is assumed that the operating system or the image contains all the
required libraries on which a job executable is dependent. In order to store the billing information, which is also
identified in Section 4, the extra column is stored provided the Cloud APIs support this functionality. This column
basically stores data in a JSON format and thus enables us to store multiple key-value pairs in it. Due to this, it is
also possible to store metadata information of a Cloud resource i.e. creation date, hash, etc. provided by the Cloud
provider. This column has also been used to store the cost associated to the Cloud resource.

In order to tackle the dynamic resource scenario on the Cloud (discussed later in Section 7), the WfCloudTempMapping
table is used. This table stores temporary mapping information which is then moved to the WfCloudMapping table
once a workflow execution has finished. There is another table, JobHostTempMap, that stores temporary job and
its execution host mapping. This table is used in the SNoHi mapping approach (discussed later in Section 7.4). In
order to store more detailed information about the CPU, the CPUSpecs table is used. Although, the existing Cloud
providers and their offerings do not allow a user to request a resource with such resource parameters, the impact of
CPU performance still cannot be ignored especially for compute-intensive jobs. Moreover, this information is also
helpful when sharing experimental setup and results with the peers. This is why this information is captured and
stored as part of the Cloud-aware provenance.

As discussed earlier, the data files are stored on the Cloud, this is why it is important to keep track of file locations
and metadata on the Cloud. To achieve this, the JobCloudFile and CloudFileCatalog tables are conceived. The
JobCloudFile table stores the mapping between workflow jobs and its produced/consumed files on the Cloud. The
CloudFileCatalog provides detailed information about a file stored on the Cloud. This information includes the
location of the file, specified by the container name and keyname, MDS hash of the file contents, additional metadata
stored along with the file, creation_date and modified date. By using this information, it is not only able to provide
information about the file, but also can be helpful in comparing the file contents produced from workflow repeated
executions to verify a workflow result. This also helps in identifying if a file is changed over time, which, however, is
not the focus of this research study. For instance, a file created by a job will have the same creation and modification
time or even no modification time. However, if a file is modified or tampered with somehow, the modification date
will be updated. By comparing the latest dates with the already stored information, one can deduce if the file contents
are changed.

7. Job-to-Cloud Resource Mapping

In order to reproduce workflow execution on the Cloud infrastructure, it is important to first collect such information
as part of workflow execution provenance. This section discusses the job-to-Cloud resource mapping approaches and
Cloud resource information, which is later used for re-executing a workflow on similar Cloud resources. Before diving
into a detailed discussion of these approaches, first it is important to understand two different resource usage scenarios
on the Cloud. These scenarios and their understanding provide a better picture of the requirements and the motivation
behind devising different approaches to establish a job-to-Cloud resource mapping for each discussed scenario.

e Static Environment on Cloud

In this environment, the virtual resources, once provisioned, remain in a RUNNING state on the Cloud for a
longer time. This means that the resources will be accessible even after a workflow’s execution is finished. This
environment is similar to creating a virtual pool or Grid on top of Cloud’s resources. A Static mapping scheme
devised for such an environment will be discussed in Section 7.1

e Dynamic Environment on Cloud

In this environment, VMs are shut down after the job is done. Therefore, a virtual resource, which was used
to execute a job, will not be accessible once a job has finished. Moreover, in this environment, resources are
provisioned on demand and released when they are no more required. Two approaches (a) Eager and (b) Lazy
have been devised to handle this scenario and they will be discussed in Sections 7.2 and 7.3 respectively.

The mapping approaches discussed in the following sections achieve the job-to-Cloud resource mapping using the ex-
isting provenance information, which is available in many workflow management systems such as Pegasus or Chiron.
One such information is an indication of the execution host or its IP in the collected provenance information, which
is available across almost all existing workflow management systems. Many systems do maintain either name or IP
information. In the Cloud’s IaaS layer across one provider or for one user, no two machines can have same name or
same IP at any given time. This means any running virtual machines should have unique IP. Once this virtual machine
is destroyed, it is possible that the same IP is assigned later to a new virtual machine. All the rest of the properties
of a virtual machine are accessible through IaaS layer and can be used by multiple machines at a time. For instance,
multiple machines can be provisioned with flavour mI.small or with OS image Ububtu 14.04.

12

7.1. Static Approach

The CloudLayerProvenance component of ReCAP is designed in such a way that interacts with the Cloud infras-
tructure as an outside client to obtain the resource configuration information. As mentioned earlier in Section 7, this
information is later used for re-provisioning the resources to provide a similar execution infrastructure in order to
repeat a workflow execution. Once a workflow has been executed, Pegasus collects the provenance and stores it in
its own internal database. Pegasus also stores the IP address of the virtual machine (VM) where the job is executed.
However, it lacks other VM specifications such as RAM, CPUs, hard disk etc. The Provenance Aggregator compo-
nent retrieves all the jobs of a workflow and their associated VM IP addresses from the Pegasus database. It then
collects a list of virtual machines owned by a respective user from the Cloud middleware. Using the IP address, it
establishes a mapping between the job and the resource configuration of the virtual machine used to execute the job.
This information i.e. Cloud-aware provenance is then stored in the provenance store of ReCAP. The flowchart of this
mechanism is presented in Figure 9.

Start (wfid)

Workflow jobs

WMS
database

‘ Get Workflow Jobs (wflobs)

¥

Get VM list from Cloud (vmList) |

¥

Figure 9: Flowchart of creating job-to-Cloud resource mapping using the Static approach.

In this flowchart, the variable wfJobs representing a list of jobs of a given workflow is retrieved from the Pegasus
database. The variable vmList representing a list of virtual machines in the Cloud infrastructure is collected from
the Cloud. A mapping between jobs and VMs is established by matching the IP addresses (see in Figure 9). Resource
configuration parameters such as flavour and image are obtained once the mapping is established. The flavour defines
the resource configuration such as RAM, Hard disk and CPUs, and the image defines the operating system image used
in that particular resource. By combining these two parameters together, one can provision a resource on the Cloud
infrastructure. After retrieving these parameters and jobs, the mapping information is then stored in the ReCAP Store
(see in Figure 9). This mapping information provides two pieces of important data the: (a) hardware configuration
and (b) software configuration. (As discussed in ReproRequire Section) These two parameters are important in re-
provisioning a similar execution environment.

Algorithm 1 presents the pseudo-code of the Static mapping approach. As discussed previously, this approach cannot
work for a dynamic scenario in the Cloud as it establishes the mapping once a workflow has finished and assumes
that the machines on which the jobs are executed are still available and accessible. However, in the dynamic situation,
Cloud resources will not be available once a job finishes its execution and it will not be possible to retrieve their
resource configurations from the Cloud. To overcome this challenging scenario, the following mechanisms Eager and
Lazy are devised which are capable of establishing a job-to-Cloud resource mapping for the Dynamic scenario. These
approaches have been discussed in the following sections 7.2 and 7.3.

7.2. Eager Approach

The Eager approach has been devised to establish a job-to-Cloud resource mapping for the dynamic environment
on Cloud. In this scenario, a resource may no longer exist on the Cloud when a job has finished. In that case, the
information about its configuration cannot be retrieved from the Cloud middleware and the job-to-Cloud resource
cannot be established. In this approach, the job-to-Cloud resource mapping is achieved in two phases. In first phase,
temporary mapping between the job and Cloud resource is established. It is called temporary mapping because
the job is still in running phase and it is possible that it may be scheduled to a different machine in case of job
failure. Therefore, this initial mapping is temporary. In the second phase, the final job-to-Cloud resource mapping is
established by retrieving job information from the workflow provenance captured by the WMS, which is Pegasus in
this research work.

13

Algorithm 1 Job-to-Cloud resource mapping in Static Approach

Require: wfJobs: Set of jobs in the workflow.
vmList: Set of virtual machines in the Cloud infrastructure.

1: procedure JoBRESOURCEMAPPING(W fJobs, vimnList)
2 cloudResources « { }

3 for all job € wfJobs do

4 for all vin € vmList do

5: if vm.ip = job.ip then

6 cloudResources[job] « vm

7 end if

8 end for

9 end for
10: for all resource € cloudResources do
11: job « resource.job
12: resourceFlavor « resource.flavor

13: resourcelmage « resource.image

14: INSERTTORECAPSTORE(job, resourceF lavor, resourcelmage)
15: end for

16: end procedure

7.2.1. Temporary Job-to-Cloud Resource Mapping

In this phase, the Eager approach monitors the underlying WMS database i.e. Pegasus for the implemented prototype.
In Pegasus, along with the host name, its database also maintains the job ID assigned to each job by Condor. The
monitoring thread retrieves the condor id assigned to the workflow job and contacts the WMS Wrapper Service
(WMS-WS) for information about the job. As the WMS-WS works on top of the underlying workflow management
system, therefore it also has an access to the Condor cluster. Upon receiving the request, WMS-WS retrieves job
information from the Condor. This information contains the machine IP on which the job is running. Based on this
information, the CRM component retrieves the virtual machine information from the Cloud middleware based on the
machine IP (as discussed in the Static Approach) and stores this information in the database. This information is
treated as temporary because the job is not finished yet and there is a possibility that a job may be re-scheduled to
some other machine due to runtime failures. The flowchart of this mechanism is presented in Figure 10.

0) Start (wfid)
e BT e I
1) Get Workflow database

Jobs (wfid)

(a) If no| Host

4) Insert Temp. Job Resource
Mapping

CRM

3) Cloud
Infrastructure
information

(1 10puod)
uoneulou! gol 10 (7

3
WMS Wrapper Service
)/ 2(a) Get job detail from L

the Condor cluster

Figure 10: Flowchart to create temporary job-to-Cloud resource mapping using the Dynamic approach.

7.2.2. Final Job-to-Cloud Resource Mapping

This phase starts when the workflow execution is finished. The Provenance Aggregator component starts the job-
to-resource mapping process. In doing so, it retrieves the list of workflow jobs from the database and list of virtual
machines from the Cloud middleware. It starts the mapping between the jobs and the virtual machines based on the
IP information, stored in the database, associated with the jobs. In the case of not finding any host information in the
database, which is possible in the Dynamic usecase, the Provenance Aggregator retrieves the resource information for
that job from the temporary repository that was created in the first phase (as discussed in the above section). Upon
finding the Cloud resource information, the Provenance Aggregator component registers this Cloud-aware provenance

14

information in the ReCAP Store. Once the mapping for a job is established and stored in the database, its correspond-
ing temporary mapping is removed in order to reduce the disk storage overhead. The flowchart of this mechanism is
presented in Figure 11. The algorithm of Eager approach is shown in Algorithm 2.

-

1(a) Get Workflow
Jobs (wfid)

0) Start (wfid
) Start (wi]! Provenance WMS
Aggregator database
1(b) Get VM list 2) create|mapping
CRM | | Mapper |

Cloud -
Infrastructure ReCAP
informtion

database

Update Job Resource

Mapping 3) Insert mapping

Figure 11: Establish the final mapping between Job and VM on Cloud.

7.3. Lazy Approach

The Eager approach is designed to deal with the dynamic Cloud environment. However, it relies upon underlying
execution infrastructure such as Condor. To overcome these dependencies, another approach is devised to establish
the job-to-Cloud resource mapping for the dynamic Cloud environment. This approach is named Lazy. This approach
periodically accesses the Cloud and retrieves a list of virtual machines using a monitoring thread that monitors the
current status of the available VMs running on the Cloud infrastructure. Each VM along with its creation time is
iterated and stored in the ReCAP Store for later use i.e. in the job-to-Cloud resource mapping phase. This is named
Lazy because it establishes job-to-Cloud resource mapping at the end of a workflow execution. Before, it does not
maintain any temporary relation between a job and the virtual machine, unlike the Eager approach that maintains a
relation between a job and a resource during its phase 1. The algorithm of Lazy approach is presented in Algorithm 3.
This approach periodically monitors the available virtual machines on the Cloud infrastructure and retrieves their
metadata information along with their creation time. This information is registered against the VM in a temporary
table (see line 10). The database is updated only if new VM information is found on the Cloud (see line 7) against
an already existing virtual machine. A new VM is determined mainly by its creation time. Once a job is finished,
the mapping will be established using the Jobs host information collected from the Pegasus database and the Cloud
resources information from the ReCAP databases. The Cloud resource with the nearest start time from the jobs own
starts time and matching IP/hostname is selected as a resource for a given job. The advantageous and disadvantageous
of this approach are given below.

o Pros: This approach may not be efficient in terms of discovery time, but it will work for all scenarios including
the static environment because eventually it relies upon host information coming from Pegasus/WMS. It is also
essential because during periodic monitoring this approach could not know which job is running one which
machine.

e Cons: This approach will not be able to determine a mapping between a job and a virtual machine in case
where no host information (due to a VM shutdown, job failure or no update in the WMS database) is available
in Pegasus. As it does not maintain a temporary resource mapping, it cannot establish job-to-Cloud resource
mapping in the absence of host information about a job.

7.4. SNoHi Approach

The aforementioned job-to-Cloud resource mapping approaches rely on host information either from the workflow
management system’s provenance repository or using the underlying infrastructure such as Condor supported by the
WMS. However, the proposed mapping approaches will not work if none of these parameters are available. For
workflow management systems such as Chimera [13] which do not maintain IPs or machine names as part of the job
information in their provenance stores, another mapping approach has been devised. This approach has been named
Systems with No Host information (SNoHi) mapping approach. In this approach, modified job scripts are to be sent
that can capture and log machine IP/name information. These jobs can log this information in their output logs if their
schema does not permit storing this information in the database.

15

Algorithm 2 Job-to-Cloud resource mapping in Eager Approach

Require: wfJobs : Set of jobs in the workflow.

1: Phase 1: Temporary job-to-Cloud resource mapping
2: procedure JoBMoNITOR(w f Jobs)

3: vmList < GETVMSs

4 for all job € wfJobs do

5 condorid « job.condor » each job is assigned unique id
6: ip « WSCLENT.GETHOSTINFO(condorid)

7: vm « vmList[ip]

8 if vm != None & not vMMAPPINGEX1sTS(vm, job) then

9: resourceFlavor « vm.flavor
10: resourcelmage « vm.image
11: cREATE TEMPMAPPING(job, resourceF lavor, resourcelmage)
12: end if

13: end for
14: end procedure

15: Phase 2: Final job-to-Cloud resource mapping
16: procedure EsTABLISHMAPPING(W f Jobs)

17: vmList < GETVMs

18: for all job € wfJobs do

19: if job.ip in vmList then

20: vm < GETVM(job.ip)

21: else

22: v « GETTEMPJOBMAPPING(job)

23: end if

24: if vm then

25: resourcelmage « vm.image

26: resourceFlavor « vm.image

27: STOREJOBRESOURCEMAPPING(job, resourceF lavor, resourcelmage)
28: REMOVETEMPMAPPING(job, resourceFlavor, resourcelmage)
29: end if

30: end for
31: end procedure

16

Algorithm 3 Job-to-Cloud resource mapping in Lazy Approach
Require: NIL

1: procedure MoNrToRCLOUDVIRTUALLAYER(MONIT OR_FLAG)

2 while MONITOR _FLAG do

3 vmList < GETVMs > Get a list of VMs
4 for all vim € vmList do

5: vm_info < vm.details

6 vm_createtime «— vm.creation

7 if not FINDVM (vm_info, vm_creationtime) then > check for new VM
8 resourceFlavor « vm.flavor

9: resourcelmage « vm.image
10: INSERTTEMPMAPPING(vmn, resourceF lavor, resourcelmage)
11: end if
12: end for
13: end while

14: end procedure

15: procedure EsTaBLISHMAPPING(w f Jobs) It is called when a workflow execution is completed
16: for all job € wfJobs do

17: if job.ip! = None then

18: ip « job.ip

19: vm « GETCLoUDVM(ip, job.start time) > Get VM for given IP and creation time
20: if vim != None then

21: resourceFlavor « vm.flavor

22: resourcelmage « vm.image

23: INSERTTORECAPSTORE(job, resourceF lavor, resourcelmage)

24: end if

25: end if

26: end for
27: end procedure

1) Get Workflow

0) Start (wfid) Job logs
— Parser WMS
database

2) Job hostfinformation

v
Create Job Host N
Mapping g ?| ReCAP
3) Insert temp. mapping

(a) Parsing job logs to create temporary job host record.

1) Get Workflow
Jobs (wfid)

A

0) Start (wfid) Provenance

Aggregator

2) create|mapping

4) Get VM list

Cloud
Infrastructure
information

5) mapping

Update Job Resource

Mapping 6) Insert mapping

(b) Creating final job to Cloud resource mapping.

Figure 12: Creating Job to Cloud resource mapping using the SNoHi approach.

17

As discussed earlier about the Parser component, for each WMS there will be a dedicated parser plugin. The Parser
component will retrieve the job logs from the WMS database and parse the host information. The parsed host infor-
mation contains the IP and hostname of the resource on which the job was executed. This information is then stored in
a temporary table (JobHostTempMap shown in the schema) which maintains only the job-host mapping. At this stage,
the Cloud resource configuration information is not stored. Figure 12a illustrates this stage in the SNoHi mapping.
Once the job and its host information is available, the SNoHi mapping then can perform the job-to-Cloud resource
mapping (as shown in Figure 12b). The Provenance Aggregator component will retrieve the workflow jobs from the
WMS database and initiate the mapping. The Mapper will retrieve a list of VMs currently available on the Cloud
infrastructure. It will locate the host information from the JobHostTempMap table for workflow jobs and establish the
mapping between the job and the Cloud resource. This mapping information is then stored in the ReCAP database.
The SNoHi mapping algorithm is given in Algorithm 4.

Algorithm 4 SNoHi Mapping Algorithm for WMS that does not maintain the machine IP/Name

Require: wfJobs : jobs of a workflow.

1: procedure JoBRESOURCEMAPPING(W f jobs)

2 jobHostMap < cerJoBHostTTEMPMAP(W jobs)
3 vmList < GETVMs

4: cloudResource « {}

5: for all job € jobHostMap do

6: for all vim € vmList do

7 if vm.ip = job.hostip then

8 cloudResources| job] « vm

9

: end if
10: end for
11: end for
12: for all resource € cloudResources do
13: job « resource.job
14: resourceFlavor « resource.flavor
15: resourcelmage « resource.image
16: INSERTTORECAPSTORE(job, resourceF lavor, resourcelmage)
17: end for

18: end procedure

The algorithm first retrieves the job-host map from the JobHostTempMap table for the given workflow jobs (see line
2). It then retrieves the list of available virtual machines from the Cloud IaaS layer (see line 3). Since the host
information has IP of the host, this can be used to establish mapping between a job and a Cloud resource. Once the
job-to-Cloud resource mapping is established, the temporary records are deleted from the JobHostTempMap table.

8. Results and Analysis

In order to verify the proposed approach, ReCAP, it was important to verify that all its components and algorithms were
performing according to the theoretical understanding of the design. Since this proposed approach collected Cloud-
aware provenance, it was also important to verify that the captured Cloud resource configurations could indeed affect
a job performance and its failure rate, and thus were required in the Cloud environment. In order to evaluate the affect
of Cloud configuration on the workflow execution and also to evaluate the proposed mapping approaches in ReCAP,
three types of workflows from different scientific domains have been used. These workflows are named; 1) Montage'!
workflow from astronomy domain, 2) ReconAll'? workflow from neuroscience domain and 3) Wordcount, a sample
workflow. The Montage workflow uses the components of Montage, a widely mentioned astronomy application
to build mosaics of the sky by stitching together multiple input images [34]. The Montage workflow used in the
experiment contains 35 jobs and required eight input image files. This workflow produces 4 output files including
one mosaic image file in JPEG format. The ReconAll workflow, or also known as pipeline, is used in N4U project!?
to reconstruct the given MRI scan image of a subject. This workflow in N4U has only one job that executed recon-
all'* command on the given input neuro-image. The sample workflow i.e. Wordcount is designed for controlled
experiments and it exhibits the same characteristics i.e. split and merge jobs found in complex scientific workflows

Uhttp://montage.ipac.caltech.edu/
l7'ht’(ps://surfer.nmr.mgh.harvard.edu/fswiki/rt‘.con-al1
13https://m’,ugridtiyou.eu/
14https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all

18

such as Montage. It is composed of four jobs and takes one text file input. The first job (the Split job) took a text file
and split it into two files of almost equal length. Later, two jobs (the Analysis jobs) were applied; each of these takes
one file as input, and then calculates the number of words in the given file. The fourth job (the Merge job) took the
outputs of earlier analysis jobs and calculated the final result i.e. total number of words in both files. Since provenance
capturing can also cause performance and size overheads, this paper also presents the results dealt with the overheads
(both performance and size) caused by the proposed mapping approaches. The purpose of these experiments was to
verify the impact of the devised mapping approaches on the workflow execution. Following subsections provides a
detailed analysis of the experiments’ results.

8.1. Resource Configuration impact on Job and Workflow

Various experiments were performed to analyse the effect of RAM on a job’s failure, to analyse the effect of CPU
on the job’s performance and to analyse the effect of specific resource configurations on the workflow execution
performance. This section also discusses the effect of including the CPU MIPS information in the Cloud-aware
provenance. The following experiment was designed to evaluate the significance of capturing the virtual machine’s
RAM parameter in the Cloud-aware provenance. As argued previously in Section 2 this parameter can affect a job’s
performance as well its failure rate; Figure 13 confirms the effect of the RAM parameter on the job’s failure rate.
Figure 13 shows that all jobs were successful on all resource configurations until the job’s RAM requirement reaches
500 MB. As soon as the jobs memory requirement approaches S00 MB, the job starts failing on the Cloud resource
with the m1.tiny configuration because this resource configuration can only provide a maximum of 512 MB of RAM.
This memory space is shared among the operating system processes and the job process, consequently not enough
memory is left for the job. On the other hand, the jobs executed on two other resource configurations i.e. those of
ml.small and m1.medium, respectively offering 1024 MB and 2048 MB of RAM respectively, were all successful. In
this experiment, each job was executed five times with the given memory requirement on each resource configuration.
This specific experiment confirms that the RAM can play an important role in job’s success rate. This factor is
especially important for jobs processing large amounts of data and consequently require more RAM.

Impact of VM RAM configuration on job success
for 100 MB job

for 750 MB job

s o
T

successful jobs

successful jobs
O = m W s ot o

T T

for 250 MB job for 500 MB job

successful jobs

successful jobs
S W b
T T

for 1000 MB job

successful jobs
O N W B e O e m W Bt ;
T . T — T T T

El m1.medium
Bl mlsmall
Bl ml.tiny

Figure 13: A Cloud resource’s RAM configuration impact on job success.

In order to verify the CPU effect on the job performance, a compute intensive job calculating the Fibonacci number
was written and executed on different resource configurations (shown in Table 1). The result shown in Figure 14
indicates that a job executed on the m1.large resource configuration performs better than the job executed on the other
resource configurations. The m1.large resource configuration provides more CPU cores and more RAM to the job than
the other two resource configurations i.e. m1.small and m1.medium. As can be seen in the figure, the impact of CPU
is not evident for the lower ranges of Fibonacci number i.e. 20-30, 30-40. However, as the ranges increases, requiring
more computation to calculate the Fibonacci number, the job executed on the improved resource configurations i.e.
ml.medium and ml.large performed better. The job took less time on the ml.large resource for higher Fibonacci
ranges i.e. 40-50 and 50-55.

19

Table 1: Resource Flavours used to execute the compute intensive job

[Flavour [vCPU | RAM | Hard Disk |
ml.small 1 1024 MB 10GB
ml.medium 2 2048 MB 20 GB
ml.large 4 4096 MB 40 GB

Single Process job performance on different VM configurations

for range 40-50 for range 30-40
T T

1200

1180 ---

160f -

140 --oo-nn

1120 1

Time (microseconds/100000)
Time (microseconds/100000)
°
T

1100

a0

for range 50-55 for range 20-30
T

12400 | 4

EX Y

12200 -

lo0f

12000 |-
25h

11800 |- - -
2 201

11600 - 15l

11400 10}

Time {microseconds/100000)
H
Time {microseconds/100000)

11200 |- 05k

11000 0.0

ml.large
ml.medium
ml.small

Figure 14: Single process job running on different resource configurations.

Since Table 1 shows that a few resource configurations offer multiple CPU cores, another compute intensive job was
written to calculate the Fibonacci number using parallel programming. This job parallelizes the computing on the
available CPU cores on the virtual machine to cal