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Abstract

Dynamics of suspensions of solid rodlike pigment particles in a non-polar solvent were studied
in a concentration range from the isotropic up to orientationally ordered nematic-like phase. Us-
ing dynamic light scattering and gradient recovery measurements, we studied the rotational and
translational diffusion coefficients. We demonstrate that the translational diffusion coefficient in
this system is increasing with increasing concentration of the pigment particles in the vicinity of
the transition into an ordered phase. This unexpected behaviour can be attributed to the collective
interactions between the particles and the alignment effects.
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1. Introduction

Colloidal suspensions have been an active area of scientific research for almost a century
now. Such suspensions mimic the behaviour of molecular materials where the colloidal parti-
cles play a role of ”molecules”. The interactions between colloidal particles can be fine-tuned
by variation of the dispersant composition and/or modification of the particle surfaces [1, 2].
As a result, such dispersions exhibit a variety of self-assembly phenomena including gas-liquid
and liquid-solid or glass transitions. Another type of self-assembly observed in the molecular
systems is based on the spontaneous breaking of rotational symmetry and development of an ori-
entationally ordered fluid state of matter - liquid crystals [3]. To achieve this kind of symmetry
breaking instability in colloidal dispersions, their constituting particles require an anisometric
(shape-anisotropic) form. A variety of systems consisting of rigid and semi-flexible particles
have been found to show liquid crystalline order and phase behaviour typical for lyotropic liquid
crystals. These include tobacco mosaic virus (TMV) [4, 5, 6], fd-virus [7, 8, 9, 10], clay particles,
gibbsite and magnetic particles such as goethite and hematite spindles [11, 12]. The complexity
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of the mesophase behaviour of colloidal liquid crystals is comparable with that of molecular sys-
tems where nematic, smectic and hexatic phases occur. These systems are responsive to external
electric and magnetic fields. Electro- and magneto-responsive suspensions have found broad ap-
plications in the design of engine clutches and coatings for data storage device [13, 14]. Anther
important colloidal system often used in everyday life is ink or paint. Inks consist of solid pig-
ment particles, often with anisometric shapes, dispersed in various dispersants. An important
feature of anisometric pigment particles is dichroism [15]: optical absorption of a particle de-
pends on the light polarisation. Such pigment particles can be easily aligned in an electric field,
resulting in a birefringent, dichroic state [16, 17]. This makes such pigments good candidates for
the development of dichroic displays. Colloidal suspensions of form-anisometric particles ex-
hibit remarkable dynamic behaviour. Orientational fluctuations of the particles become strongly
correlated, and the translational diffusion becomes anisotropic. In case of particles in a smec-
tic matrix, self-diffusion occurs as a hopping-type process across the layers [18]. Long charged
fd-viruses exhibit even a structural arrest resulting in a glass transition at a low ionic strength
[19, 20, 21].

In our previous study [17], we showed that suspensions of the pigment particles used here
form an orientationally ordered (nematic) phase at volume fractions as low as 17 vol% and above.
At moderate volume fractions, 12-17 vol%, the suspensions exhibit a globally isotropic state
with enhanced orientational fluctuations. This is manifested in a strong optical response (bire-
fringence) to an externally applied electric field. Recently, we demonstrated that non-polar sus-
pensions of rod-shaped pigment particles exhibit, in addition to mesomorphic behaviour, a strong
electro-optical response and a rich morphology of spontaneously formed patterns in AC fields
[17, 22, 23]. These suspensions were proposed as possible candidates for display applications,
particularly with such particles dispersed in a thermotropic liquid crystalline host [16].

One of the consequences of the non-spherical particle shapes is the unconventional dynam-
ics on the micro-scale, which is reflected in macroscopic phenomena like spontaneous self-
organisation and pattern formation, unusual flow characteristics and anisotropic physical prop-
erties. Collective dynamics and alignment effects compete with effects of particle densities in a
complex way. This paper describes the dynamics of pigment particles, and their characterisation
using the optical imaging techniques and dynamic light scattering. In the investigated system, a
complex concentration dependence of diffusion coefficients evidences the dramatic consequences
of the above mentioned competition.

2. System and Experimental Methods

The fluorescent dye used here is C.I. Pigment Red 176, a blue shade benzimidazolone pig-
ment. Rod-like particles labeled with this dye are commercially available under the name Novop-
erm Carmine HF3C (Clariant, Frankfurt am Main, Germany), they are used as received. The rods
have a mean length L of 230 nm ± 70 nm and a mean diameter D of 46 nm ± 20 nm (see Fig.
1b) [24].

The pigment crystallites were suspended in the non-polar solvent dodecane (Sigma-Aldrich,
Hamburg, Germany, used as received) using the commercially available polymeric dispersant
Solsperse 11200 (Lubrizol, Brussels, Belgium, used as received). The stabiliser is a dispersant
comprising an amine carrying a poly(carbonylalkyleneoxy) chain (PCAO chain) in which the
alkylene groups contain up to 8 carbon atoms, or an acid-salt thereof, as disclosed in [25]. The
stabiliser partially adsorbs on the particle surface. A significant fraction of the stabiliser, how-
ever remains in the solution [26] . The concentration of the stabiliser was chosen to minimise
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500 nm

Figure 1: a) Chemical formula of a C.I. Pigment Red 176. b) Scanning electron microscopy (SEM) image of the pigment
particles.

the hydrodynamic radius of the particles. First, suspensions with pigment concentrations of 20
wt% and above were prepared by milling. Thereafter, 40 wt% of dispersant per weight of the
pigment were added and dissolved. After the addition of the pigment, the mixture was milled in
a planetary mill (Fritsch Pulverisette 7 premium line), using 0.3-mm Yttria-stabilised Zirconia
beads in Zirconia-lined pots for a total of 60 minutes at 500 rpm. Appropriate cooling cycles
were kept in order to prevent the temperature inside the pots to rise above 60 ◦C. Concentrations
below 20 wt% were then made by stepwise dilution of the base suspension. In order to test the
stability, the samples were centrifuged at 10 000 rpm for 60 minutes. None of the concentrations
showed a separation in particle-rich and particle-poor zones. Even after 12 months, samples left
untouched did not show any phase separation or aggregation.

Two methods are used to study the dynamics of the resulting dispersions: a depletion re-
covery (DR) measurement after a thermally induced concentration gradient and dynamic light
scattering (DLS). For the DR experiments, the suspension is confined in a flat glass cell with a
gap of 5 µm. A tightly focused infrared laser beam (2 W, λ = 1064 nm) is used to heat a small
volume, from which particles diffuse outwards due to thermodiffusion [27, 22]. The depletion
region has an approximate Gaussian concentration profile. The laser is then switched off, and the
dynamics of recovery of the concentration distribution c(~r, t) is probed by measuring the optical
transmission T = ln (I/I0) of the cell, where I = I(x, y) is the intensity transmitted and I0 is the
intensity value for the empty cell filled with dodecane.

The diameter of the illuminated volume is much larger than the gap width of the sample cell,
so that the concentration profiles are quasi-2D. The concentration depends only on the x- and
y-coordinates, perpendicular to the propagation direction of the beam. The initial concentration
profile can approximated by a Gaussian distribution,

c(r, t = 0) = c0

[
1 −

∆c
c0

exp
{
−

r2

2σ2

} ]
, (1)

where r =
√

x2 + y2 is the radial distance to the cylindrical symmetry axis of the illuminated
region, and σ is the width of the illuminated region. Furthermore, c0 is the uniform initial
concentration of particles, ∆c = c0 − cmid(t = 0), and cmid(t = 0) is the initial concentration at the
center of the illuminated volume. Assuming an isotropic diffusive dynamics of the particles with
the diffusion constant D, we seek the solution of the diffusion equation

∂ c(r, t)
∂ t

= D∇2c(r, t) , (2)
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in the form

c(r, t) =

∫
dx′

∫
dy′ G(r − r′, t) c(r′, t = 0) , (3)

where

G(r, t) =
1

4πDt
exp

(
−

r2

4Dt

)
, (4)

is the fundamental solution of the diffusion equation in two dimensions. Evaluating the Gaussian
integrals in Eq. (3) leads to

c(r, t) = c0

[
1 −

∆c
c0

2σ2

2σ2 + 4 D t
exp

{
−

r2

2σ2 + 4 D t

} ]
. (5)

The concentration cmid(t) at the center-line of the illuminated volume (r = 0) is thus equal to

cmid(t) = c0 − [c0 − cmid(t = 0)]
2σ2

2σ2 + 4 D t
. (6)

We introduce a specific area

s(t) ≡
σ2

2

[
∆c

c0 − cmid(t)
− 1

]
= D t , (7)

where ∆c = c0 − cmid(t = 0). Eq. (7) shows that s(t) is a linear function of time, with a slope
proportional to the diffusion constant D. Any deviations from the linear characteristics reflect a
time dependence of D.

The second technique that we use is dynamic light scattering (DLS). Such experiments pro-
vide an accurate and well established approach to investigate the dynamics of complex fluids.
DLS has been extensively used to study dynamics of macromolecules, polymer solutions (see,
e.g. [28]) and rod-like colloids (e.g. [29, 30]). DLS measures the normalized auto-correlation
function ĝ2 of the scattered light intensity I(t): ĝ2(q, t) = 〈I(t = 0) I(t)〉/〈I(t = 0)〉2, where the
brackets indicate time averaging over many independent realizations of positions and orientations
of the colloidal particles. The parameter q is the scattering wave vector between the incident and
the scattered beam. For an ideal experimental setup, the normalized intensity auto-correlation
function decays from two at t = 0 to 1 for t → ∞. This correlation function is related to the
normalised correlation function ĝ1(t) of the scattered electric field strength E(t), which is defined
as ĝ1(q, t) = 〈E(t = 0) E(t)〉/〈I(t = 0)〉. This function is unity at t = 0. For a sufficiently large
number of scatterers within the scattering volume (such that the scattered electric field strength is
a Gaussian variable), these two correlation function are related by the so-called Siegert relation
[31]:

ĝ2(q, t) = 1 + ĝ2
1(q, t) . (8)

For optically anisotropic particles, two types of DLS experiments can be performed, where the
incident light is polarised perpendicular to the plane spanned by the directions of the incident and
scattered beam, but where the detected polarisation direction is either in the same plane, or within
the plane. These two experiments are referred as VV and VH experiments (with V for vertical
and H for horizontal), respectively. Translational diffusion coefficients can be obtained from
VV experiments, while the rotational diffusion coefficient can be probed with VH experiments.
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For monodisperse particles at low concentrations, where neither interactions of particles nor
multiple scattering play a role, the correlation functions obtained by DLS experiments are single
exponentials in time [31],

ĝ1(t) = A exp (−Γt) (9)

where Γ is the decay rate. The constant A accounts for mixing of different scattering vectors
probed due to the finite extent of the scattering volume. This renders the amplitude A typically of
the order of 0.95. In VV experiments, the decay rate is related to the mean diffusion coefficient
D as [31],

ΓVV = D q2 , (10)

provided that the degree of anisotropy is small (typically the relative differences in dielectric
constants of the particles should be of the order of, or less than, 0.1). For the particles in the
present study, this requirement is fulfilled. For VH experiments, there is a contribution to the
decay rate independent of the scattering wave vector, even for small optical anisotropies, which
is proportional to the rotational diffusion coefficient Dr [31],

ΓVH = D q2 + 6 Dr . (11)

Polydispersity gives rise to deviations from this dependence, which can be accounted for in
several ways. One solution is the so-called cumulant method [32], where the exponent in Eq. (9)
is expanded in a power series of the time t:

ĝ1(q, t) = A exp
(
−Γ̄t + Γ2t2 + ...

)
(12)

This expression is valid for short times, that is, it describes the initial decay of the correlation
function [33]. The first coefficient yields the mean diffusion coefficient, as given in Eqs. 10 and
11, while the second one describes the distribution of the relaxation rates. In most cases (for
relatively small polydispersity), it is sufficient to consider only terms up to second order. An
alternative method, which is also valid for long times and arbitrary polydispersity, is to approxi-
mate the correlation function by a sum of several relaxation rates,

ĝ1(q, t) =
∑

j

g j exp
(
−Γ j t

)
, (13)

where g j is the amplitude of the mode with the decay rate Γ j. Distributions of amplitudes can be
determined from experimental correlation functions through an inverse Laplace transform tech-
nique [34]. CONTIN is a standard program that implements this technique using a regularization
procedure.

Dynamic light scattering experiments have been performed here both in VV and VH geome-
tries. Two different setups were used for low concentrations (less than < 0.5 wt%), which only
differed in the correlator types and the wavelengths of the laser (647 and 632 nm, resp.). After
passing the analyzer, the scattered light was led through a photomultiplier coupled to a correlator.
Different scattering angles were achieved by mounting the analyser and the photomultiplier on
a goniometer. In both setups, the sample was placed in a toluene bath to avoid scattering from
imperfections of the glass cuvette. The scattering angle was varied between 30 °and 150 °. For
concentrations of 0.5 wt% and higher, another setup was used: the sample was confined between
a pair of flat planar glass plates (with gap widths of 10 µm to 50 µm) to minimise multiple scat-
tering. The scattering angle could be varied in that setup between 5 ° and 60 °. The relaxation
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rates Γ were extracted from the fits of the corresponding intensity correlation functions C(t) for
different scattering vectors q. The diffusion coefficients we obtained from the fits of Γ(q) using
equations (10) and (11), respectively.

3. Results

3.1. Thermo-Depletion Recovery Experiments

Figure 2 shows the specific area s(t), as defined in Eq. (7), for different concentrations c0
of the suspension. All curves are averaged over several measurements at the same experimental
conditions. For concentrations c < 25 wt%, the specific area is a linear function of time, as ex-
pected from Eq. (7). Only at c = 25 wt%, deviations from the linear dependence are observed.
Due to the concentration dependence of the diffusion coefficient D in this region, the diffusion
equation (2) can only be applied in the final stage of depletion recovery, when the local concen-
tration within the depletion region is close to the ambient concentration c0.
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Figure 2: a) Specific area s(t) as a function of time for different concentrations. b) Diffusion constants determined from
the time dependence of the specific area. The dotted line guides the eye.

The obtained diffusion constants are shown in Fig. 2b. In view of the above discussed reason
for the non-linear behaviour of s(t) for the highest concentration, the diffusion coefficient for that
concentration is obtained from the final slope of the parameter s(t) in Fig. 2a at large times. The
diffusion constant strongly increases with concentration, which is to be expected for particles
with a repulsive interaction potential.

3.2. DLS Experiments

Correlation functions for the concentration c = 0.1 wt% are exemplarily shown in Fig. 3. It
is obvious that the data cannot be described well by a single exponential decay (see Eq. (9)). The
deviations are particularly strong for small scattering angles in VH geometry.

The reason for this is most likely the large polydispersity and the interparticle interactions. To
account for polydispersity, both CONTIN and the cumulant methods were used. The relaxation
rate distribution function was determined by setting the regularisation parameter to α = 1, as
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Figure 3: Examples of DLS intensity correlation functions for a concentration c = 0.1 wt% a) VH and b) VV. The solid
red lines are best fits to a single exponent. Clearly, the correlation function do not follow a single exponential decay.

a good compromise between a satisfactory peak resolution of the distribution function and a
reasonable smoothness. Some examples of the distribution functions are shown in Figs. 4a and
4b, where the distribution functions were normalised to 1 at the most probable relaxation rate.

Because of the relatively large polydispersity, the cumulant method can only be used for the
initial decay of correlation functions. The cut-off time is chosen as the largest time where a
second-cumulant fit (see Eq. (12)) still describes the data accurately.

From the relaxation rates determined by the two methods at different angles, the dispersion
relations for Γ can be obtained (see Figs. 6 and 7). As expected, the relaxation rate depends
almost linearly on the square of the wave number q (see Eqs. (10) and (11)). The VH dispersion
curve has an offset related to the rotational diffusion constant. The relatively large scattering of
the relaxation rates is due to stability problems of the CONTIN routine, because the determined
distribution function is very sensitive to noise in the correlation function and also to the chosen
range of relaxation rates. The choice of the regularisation parameter also influences the result.
The dispersion relations from the cumulant analysis for low concentrations (c<0.1 wt%) look
similar to that of the CONTIN results. At high concentrations, however, the VV dispersion
relations have an offset of about 100 s−1. A possible explanation for this is multiple scattering,
which may influence the correlation function.

These dispersion relations, examples of which will be shown later, allow us to determine the
translational and rotational diffusion constants, Dt and Dr. The translational diffusion constant Dt

was determined from the slope of the VV dispersion relations, while the rotational diffusion con-
stant was determined from the offset of the VH dispersion relation. Figure 8 shows the diffusion
constants, where the values determined from the CONTIN analysis are given as black squares
and the values from the cumulant analysis red dots. The influence of the concentration on the
translational diffusion constant is relatively small, taking into account the relatively large experi-
mental error. Dt grows slightly with increasing concentration in the range of low concentrations
(< 0.5%), reaching a maximum at about 0.5 wt% and then, it decreases at higher concentrations.
The rotational diffusion constant shows a similar behaviour, but, in this case, an increase of the
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Figure 4: Examples of distribution functions from the CONTIN analysis for a concentration c = 0.1 wt%, a) VH and b)
VV
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concentration by a factor 100 leads to an increase of the rotational diffusion constant by a factor
of about 3 to 10, depending on the analysis method. The diffusion constants for both methods of
analysis show the same trend, but the error ranges do not intercept in most of the cases.
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Figure 8: Diffusion coefficients in dependence of suspension concentration measured by different techniques, a) transla-
tional diffusion and b) rotational diffusion

4. Discussion

Microscopic free-diffusion constants of non-interacting rods suspended in an isotropic fluid
with the viscosity η can be estimated using the theory of diffusion of rod-shaped particles [35, 36]

D‖ =
kbT

2πηL
(

ln
L
D

+ γ‖
)

, D⊥ =
kbT

4πηL
(

ln
L
D

+ γ⊥
)

(14)

where γ‖ and γ⊥ are constants determined by the aspect ratios of the rods. On a long-time scale,
the motion of the particles in random directions can be described by the macroscopic (mean)
diffusion constant

D̄ =
kbT

3πηL
(

ln
L
D

+ γ
)

[35].
Substituting the values for the viscosity of dodecane and the parameters of the particles,

γ‖ = −0.0163, γ⊥ = 0.8853 and , γ = 0.4210 [35], theory predicts a coefficient for diffusion
along the particle axis D|| = (3.3 ± 1.5) µm2s−1 and perpendicular to the axis D⊥ = (2.6 ± 1.5)
µm2s−1 with a mean of D̄ = (2.8 ± 1.5) µm2s−1 at T = 293 K.

The experimental results show, that the collective diffusion coefficient grows with increasing
concentration in the concentration range 5 - 25 wt%, see Figure 2b. This is a surprising effect, be-
cause with increasing concentration the viscosity of the suspension increases, and a decrease of
the collective diffusion constant would be expected. There are two possible mechanisms which
could lead to an increased collective diffusion at high concentrations: interactions (hydrodynamic
and long-range) or alignment of the rod-shaped particles. The influence of interactions on the
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diffusion of colloids has been shown by Anderson et al. [37, 38]. They found an increase of the
diffusion coefficient with concentration of the colloid, depending on its ionic strength. A similar
effect has been reported by Zahn et al. [39], who found an increase of the 2D self-diffusion
coefficient with concentration due to hydrodynamic interactions. Another potential reason is the
alignment of the particles. In thermotropic nematic liquid crystals, the diffusion constant along
the local director usually is faster than perpendicular to the director [40].
The experimental results from the light scattering experiments show a more complex behaviour,
see Figure 8. The values for the translational diffusion coefficients satisfactory agree with mean
predicted values for free-particle diffusion. The rotational diffusion constants are lower then the
predicted values, between 245 s−1 and 270 s−1, in the experiment, suggesting a significant hin-
drance of particle rotation. The deviations of the rotational dynamics from the theory may also
be accounted by the polydispersity of the pigment particles [35]. In the experiments of Tirado
et al., the dynamics slow down at high concentrations. This can be explained by the increased
viscosity of the suspension surrounding a single particle and the steric hindrance. This is in
good agreement with the findings in other colloidal systems: in contrast to collective diffusion
with interparticle interactions, the self diffusion coefficient of colloidal rods has been found to
decrease with concentration [41]. Van Bruggen et al. also found a strong decrease (by a factor
of about 10) of D‖ and D⊥ at the transition to the nematic state. The explanation for this is the
enhanced density in the nematic phase due to a closer packing. So in the case of our DLS exper-
iments with pigment rods at concentrations above 1 wt%, the influence of the increased density
seems to be stronger than the influence of the interactions. In contrast to that, at concentrations
lower than 1 wt%, density differences do not seem to be important, while interactions still play
a role. Qualitatively, there is no difference between the short-time diffusion, determined by the
cumulant method, and the long-term diffusion, determined by the CONTIN analysis. In gen-
eral, the long-term dynamics are slower than the short-term dynamics. This is expected, because
the interactions hinder free diffusion. Especially at high concentrations, where interactions are
more frequent, slower dynamics in the long-term analysis are expected. The translational dif-
fusion constant shows exactly this, Figure 8a. The rotational dynamics is slowed down by the
interactions already at low concentrations (Figure 8b).

5. Summary

The collective dynamics of anisometric pigment particles was investigated. Both transla-
tional and rotational diffusion coefficients exhibit complex dependences on the concentration of
pigment particles. Dr slightly increases in the isotropic range of concentration and exhibits a
strong increase near the transition into the orientationally ordered state. The rotational diffu-
sion coefficient exhibits a maximum in the isotropic range and decreases in the anisotropic one.
It appears that the orientational correlations of the particles enhance the diffusion despite the
competing effect of the density increase.
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