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Abstract  

 

Bridge maintenance activities are important to consider within sustainable development 

due to the cost and environmental impact associated with various maintenance activities. 

Comparisons have been made between different bridge structural form, based on 

materials, components and construction method, but less information is available on 

bridge maintenance activities to help decide a sustainable structural form. Typical 

maintenance aspects of the predominant forms of bridge structure (i.e. concrete, steel 

and masonry bridge) were considered in this study to reveal their sustainability in terms of 

material, energy, transportation, human health and ecosystem. Results indicate that 

concrete and steel bridge maintenance activities have an average impact of 42% and 

46% compared to 12% of masonry bridge maintenance activities. The paper concludes 

that the components parts of concrete and steel bridges should be revised as they play 

integral role in the selection of maintenance options.  
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Introduction 

Sustainable development has been a focus of the construction industry for the last two decades in 

order to address issues such as limited resources, environmental degradation and climate change. 

Transport infrastructure including bridges, roads and railways must be considered as central to 

sustainable development given the amount of material and energy resources they consume during 

their construction, maintenance and deconstruction life cycle phases (Pollalis et al., 2012).  This 

emerges from increasing emphasis on environmental matters of climate change and limited resources 

(DECC, 2016).  The UK local highway network includes over 50,000 bridges with a limited 

maintenance budget of £6 billion for 2015 to 2021 (DOT, 2013). Bridge maintenance is therefore 

subject to financial constraints during the bridge life cycle that may impact on their sustainability and it 

follows that the design of bridges should consider maintenance aspects in order to improve 

sustainability of the network. Therefore, it is worth investigating the environmental impact of the 

maintenance phase of different types of bridges to inform decisions about the most sustainable 

structural forms. It is envisaged that a structural form with lower environmental impact (i.e. consumes 

less resources, limited impact on climate change, consumes less energy and so on) from 

maintenance point of view could allow more sustainable bridges to be constructed.  

 

2. Literature review  

Sustainability of bridges has mostly been considered in terms of design, construction and material 

type (Du et al., 2014) but little attention has been given to sustainability of bridges from a maintenance 

perspective. Sustainability in bridge maintenance is only starting to be explored for new construction 

through the application of Life-cycle Assessment (LCA), a  method which is beginning to gain ground 

across the built environment in order to improve sustainability (Pang et al., 2015). LCA can provide 

indicators for environmental impact (e.g. climate change, resource use, metal depletion, water 

consumption) arising from construction, maintenance and demolition/replacement. Literature reveals 

that, LCA indicators are currently considered in bridge design regarding bridge form (Horvath and 

Hendrickson, 1998; Itoh and Kitagawa, 2003; Gervásio and Da Silva, 2008; Hammervold et al. 2013; 

Du et al., 2014), materials (Keoleian et al. 2005; Lounis and Daigle 2007; Bouhaya et al. 2009) or 

components (Steele et al., 2003; Martin, 2004; Keoleian et al., 2005; Collings, 2006; Du and Karoumi, 

2014), but are rarely considered for bridge maintenance decisions. 
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The majority of studies used simple aggregated estimations of  figures for bridge maintenance due to 

lack of data (Keolein et al., 2005). For example, Itoh and Kitagawa (2003) derived maintenance 

information from inspection manual, Du and Karoumi 2013; 2014) gathered information from the 

industry and literature, while other studies assumed no maintenance (Bouhaya et al. 2009). Few 

studies have considered maintenance options in detail. For example, Steele et al. (2003) compared 

concrete saddle construction with anchor bracing and found out that saddling had greater impact due 

to structure closure and traffic diversion. Pang et al. (2015) compared strengthening options for steel, 

carbon fibre-reinforced polymer (CFRP) and prestressing tendons. No literature is however available 

for comparing maintenance options for concrete, steel and masonry bridges. Therefore this study will 

compare outputs for maintenance operation of typical bridge forms with the help of LCA methodology.  

 

3. Methodology  

LCA is used to identify the environmental impact of commonly used concrete, steel and masonry 

bridge maintenance activities. LCA is rooted in ISO 14040 (2006) and ISO 14044 (2006) international 

standards and systematically follows these frameworks . A generic application of LCA involves an 

iterative process with four phases (as shown in Figure 1):  

1. goal and scope definition 

2. life-cycle inventory 

3. life-cycle impact assessment  

4. analysis.  

 

Five maintenance methods were selected for each bridge type (listed in Table 1) based on three 

criteria used by Ashurst (1993):  

 effectiveness: the activity is an essential maintenance activity for the overall safety and 

performance of the bridge 

 cost: the cost of the activity is greater than £10,000  

 time interval: activities are typically carried out after intervals greater than 10 years.   
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Table 1   Selection criteria selected maintenance methods 

Bridge 
Type   

Maintenance  
Methods 

Selection criteria 
Source Remarks 

Effectiveness Cost Intervals 
C

o
n

cr
e

te
  

b
ri

d
ge

  

Grouting 
- Used to fill crack holes 
and prevent collapse   

- Slightly expensive 
- Estimated cost of 
£15,000  

Every 30 years  
(TAMP, 2005) 

Less 
rigorous 

Overlaying 
- Returns existing road 
surface to good 
condition 

- More expensive 
- Estimated cost of 
£100,000  

Every 30 years 
(TAMP. 2005) 

Very 
rigorous 

Deck 
replacement 

-  Restores totally 
damaged and 
deteriorated bridge  

- Very expensive 
- Estimated cost of 
£622, 000  

In 120 years  
(TAMP. 2005) 

Extremely  
rigorous  

Bearing 
renewal 

- Ensures a serviceable 
limit state is 
maintained  

- More expensive  
- Estimated cost of 
£60, 000  

Every 30 years  
(TAMP. 2005) 

Less 
rigorous  

Expansion 
joint renewal 

- Ensures a serviceable 
limit state is 
maintained 

- Less expensive  
- Estimated cost of 
£15, 000  

Every 20 years  
(TAMP. 2005) 

Less 
rigorous  

St
e

e
l  

b
ri

d
ge

 

Structural 
metal 
painting 

- Ensures physical 
defects like rusted 
parts are back to 
normal  

- Less expensive  
- Estimated cost of 
£10,000  

Every 12 years  

(TAMP. 2005) 

Less 
rigorous  

Deck re-
waterproofing 

- Provides adequate 
draining system for the 
bridge  

- More expensive  
- Estimated cost of 
£30,000  

Every 20 years  
(TAMP. 2005) 

Less 
rigorous  

Pavement 
repair 

- Returns existing road 
surface to good 
condition 

- More expensive 
- Estimated cost of 
£90,000  

Every 30 years  
(TAMP. 2005) 

Slightly 
rigorous  

Bearing 
renewal 

- Ensures a serviceable 
limit state is 
maintained  

- More expensive  
- Estimated cost of 
£60, 000  

Every 30 years  
(TAMP. 2005) 

Less 
rigorous  

Expansion 
joint renewal 

- Ensures a serviceable 
limit state is 
maintained 

- Less expensive  
- Estimated cost of 
£15, 000  

Every 20 years  
(TAMP. 2005) 

Less 
rigorous  

M
as

o
n

ry
 a

rc
h

 b
ri

d
ge

  

Saddling 

- Able to solve multiple 
deterioration problems 
at once  

- High cost 
amounting from 
material and labour 
intensity. 
 - Estimated cost of 
£23400  

Masonry bridge that 
have undergone this 
type of repair  
 may not require such 
rehabilitation in 200 
years  

(Swoden, 
1990; CIRIA, 
2006; Parke 

and Hewson, 
2008) 

Rigorous 
work 
involved  

Radial pinning 

- Able to strengthen the 
arch barrel  

-  less expensive 
- Estimated cost of 
£10, 000) 

Masonry bridge that 
have undergone this 
type of repair  
 may not require such 
rehabilitation work in 
120 years 

(Swoden, 
1990; CIRIA, 
2006; Parke 

and Hewson, 
2008) 

Less 
rigorous  

Water-
proofing 

- Provides a drainage 
system for the bridge. 

- Slightly expensive. 
-  Estimated cost of 
£10,000  

May not be required till 
another 100 years  (Page, 1996) 

Less 
rigorous  

Near surface 
reinforcement 

- Strengthens the arch 
barrel by providing 
resistance across 
underneath cracked 
areas  

- Slightly expensive. 
- Estimated cost of 
£11,000 

May not be required till 
another 100 years 

(Page, 1996) 

Less 
rigorous  

Sprayed 
concrete 

- Able to solve arch ring 
deterioration problems 
- Affects the final 
appearance of the 
bridge  

- Slightly expensive 
- Estimated cost of 
£10,800  

May not be required till 
another 100 years 

(Swoden, 
1990; CIRIA, 
2006; Parke 

and Hewson, 
2008) 

Less 
rigorous  



 
 

Preventative maintenance actions are considered in the current study, in line with related LCA 

studies, e.g. repainting (Horvath and Hendrickson, 1998), re-asphalting and replacing steel in 

parapets (Hammervold et al. 2013), resurfacing, and re-waterproofing (Collings, 2006).  

Data required for the LCA analysis were sought from the literature which was consistent with 

previous LCA studies (Du and Karoumi, 2013; 2014; Pang et al., 2015). Literature sources 

where data had been derived are presented in Table 2.  

Table 2 Sources of extracted data  

Year       Authors  Focused on Criteria for selection 

1993 Arshurst Masonry bridge Repair and maintenance techniques data 

1996 Page Masonry bridge Repair and maintenance techniques data 

1996 
Horvath and 

Hendrickson 

Concrete and steel Environmental impact of construction 

materials 

2003 
Steele et al. Masonry Bridge repair and maintenance 

techniques data 

2003 Collins Concrete bridge Environmental impact of Construction  

2004 
Sustainable bridges Concrete, steel and masonry Construction, maintenance, repair and 

rehabilitation techniques 

2005 Steele et al. Masonry bridges Maintenance data  

2005 TAMP Concrete, steel and masonry bridge Maintenance type  

2006 
Collins  Concrete, steel and concrete-steel 

composite 

Environmental impact of Construction 

materials  

2006 Guettala and Abibsi Concrete bridge Types  deterioration and repair 

techniques  

2008 Hammond and Jones Construction materials Embodied energy for construction 

materials 

2010 Pacheco et al. Steel bridge Energy, transportation, manufacturing 

data  

2011 Zhang et al. Steel bridge Construction and maintenance data  

2012 Giutozzi et al. Road pavement maintenance Maintenance and transportation data 

2012 Du Railway bridges Maintenance data  

2013 Hammervold et al. Steel, wooden and concrete Construction and maintenance materials  

2014 Du and Karoumi Railway bridges Construction and materials  

2015 Pang et al. Structural bridge maintenance Maintenance material  

2016 Sarhosis et al. Masonry bridge Maintenance material  
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Data derived from the literature were verified by 57 industry expert, comprising of (37) bridge 

engineer, (10) bridge manager and (10) design managers to ascertain their reliability. The 

verification process involved an online survey which allowed these experts to agree, disagree or 

suggest alternative data. Average Percent of Majority Opinions (APMO) used in similar expert 

related research (Cottam et al., 2004), was used to a nominal scale (yes or no response) to 

determine a cut-off percentage. Consensus was reached on a statement or value when the 

percentage of “agreed” or “disagreed” value was higher than the APMO cut-off percentage 

(Kapoor, 1987). Cut-off-rate is determined by equation 1: 

𝐀𝐏𝐌𝐎 =  
Majority Agreements + Majority Disagreements

S of Opinions expressed 
                                                      (1) 

 

S is the sum of opinions expressed, either in agreement or disagreement with the literature 

data. Majority agreement, is the total number of opinions in agreement with the literature data, 

whiles majority disagreement, is the total number of opinions in disagreement with the literature 

data. Where APMO did not provide clear consensus, the mean value was adopted (Cottam et 

al., 2004; Henning and Jordan, 2016). Participants were asked to supply alternative estimates 

for data that they disagreed with. The mean value of the suggested data was taken as 

consensus for statements that were widely disagreed with or on which there was no consensus 

(Field and Hole, 2003), as used by English and Kernan 1976; Grobbelaar, 2006; Henning and 

Jordan, 2016. The mean value is only considered accurate if a dataset is normally distributed, 

otherwise the median or mode of the distribution should be applied (Field and Hole, 2003). 

Statistical Package for Social Science (SPSS) 13 was used to test the normality of the collected 

data.  Shapiro Wik significance value of 0.05 was used and the data was found to conform to 

the normal distribution. The mean however is still subject to error but the error can be minimized 

by calculating the standard deviations (Field and Hole, 2003). Standard deviation (SD) is used 

to assess the variation in a population for a normal distribution (Grobbelaar, 2006), and allows 

the boundaries of the mean to be calculated, known as confidence intervals. A 95% or 99% 

confidence interval is statistically acceptable (Fellow and Liu, 2008). SPSS was used to 

calculate the mean, SD and confidence interval of suggested data and all agreed data are 
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presented in Table 3, which were used as input data for the SimaPro LCA software to evaluate 

the environmental impact of selected maintenance activities. 

Table 3 Agreed and verified material quantities   
Structural 
type 

Maintenance 
activities 

 Materials Quantities of 
materials (tons/sq.m) 

Quantities of materials (Kg) 

C
o

n
cr

e
te

 b
ri

d
ge

 

Grouting  Cementitious grout .14 140 

Overlaying  Concrete .22 220 

Asphalt .27 270 

Bitumen .3 300 

Bearing renewal  Reinforcement .25 250 

Expansion joint renewal  Reinforcement .25 250 

Deck replacement  Concrete 2.5 2500 

Asphalt .27 270 

Reinforcement .12 120 

Bitumen .3 300 

St
e

e
l b

ri
d

ge
 

Structural painting  Epoxy paint  .00051 .051 

Polyurethane paint .000103 .103 

Zinc coating  .0004 .4 

Pavement repair Asphalt  .27 270 

Bitumen .3 300 

Deck re-waterproofing  Concrete  .1 100 

Reinforcement  .1 100 

Bearing renewal  Reinforcement  .25 250 

Expansion joint renewal Reinforcement  .25 250 

M
as

o
n

ry
 a

rc
h

 b
ri

d
ge

 

Saddling  Concrete 2.5 2500 

Asphalt .27 270 

Reinforcement .25 250 

Bitumen .3 300 

Fill 2 2000 

Radial pining Cementitious grout .12 120 

Dowel 
reinforcement 

.12 120 

Waterproofing  Concrete .1 100 

Asphalt .1 100 

Mastic seal .1 100 

Near-surface reinforcement Cementitious grout .152 152 

Reinforcement .203 203 

Sprayed concrete Concrete .4 400 

Reinforcement 
mesh 

.1 100 

 

  

3.1 Goal and scope definition 

The first stage of LCA analysis is the goal and scope definition. The goal of the LCA study is to 

reveal the environmental impact of selected maintenance actions of concrete, steel and 

masonry bridges in terms of life cycle emission and energy consumption. The scope of the LCA 

study includes materials consumption, transportation, energy and resources associated with 

each maintenance activity. Materials accounted for in the LCA analysis are concrete of various 

grades, asphalt concrete, steel, and sand. Whilst transportation of all materials from factories to 
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site was assumed, consumption of petrol, diesel, water, and electricity were modelled as a 

background system. Background and foreground systems are described by Clift et al. (1998) 

and are applicable to complex structures like bridges. While background system uses site-

specific data, background system supplies the foreground system with the necessary material 

and energy required through a homogenous market where individual plant processes and 

operations are unidentifiable (Clift et al., 1998). Both processes from a system approach are 

reliable (Finnveden et al., 2009). Data for the foreground systems were derived from relevant 

literature sources and were verified by experts. Background data (on energy, plants and 

electricity) were derived from SimaPro data-set, gathered by SimaPro from across Europe, 

United States, and China. The Europe background data-set was used for the current study. 

System boundaries (illustrating the background and foreground system) for all selected 

maintenance methods are shown in Figure 2. All LCA studies were conducted based on a 

functional unit which allows a fair comparison between the systems under study (Heijungs and 

Guinée, 1994; Rebitzer et al., 2004; Finnveden et al., 2009). Functional units are best specified 

under foreground and background system (Clift et al. 1998), as has been applied in this study. 

Two common functional units have been applied in LCA studies for bridges, 1m2 of bridge deck 

(Collings 2006; Hammervold et al. 2009) and 1m unit length of the bridge (Du and Karoumi, 

2012). Steele et al. (2003) however suggests that the functional unit is best defined in terms of 

service life. Functional unit was therefore defined as “one square meter bridge deck area over a 

120-year life span”  consistent with 120 years average design life of UK bridges (BS 5400, 

1999). 

 

3.2 Life-cycle inventory  

The second stage of LCA analysis is the life-cycle inventory. Sources of input data used in the 

study are presented in Table 2 and 4. Calculating inventories of material, energy consumption 

and emission during transportation for selected maintenance actions allows potential 

environmental impact associated with each action to be identified. The following assumptions 

were made: Transportation of materials to site taken was assumed to be 16km which falls within 

the range of average transportation of materials in the UK (Zhang et al., 2011); Average fuel 
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consumption was assumed to be 10 litre /100 km which has also been used by Pang et al. 

(2015). 

Table 4 Origin of inventory data   

Life cycle stage  Sub process  Data origin  

Maintenance 

Cementitious grout Literature  

C30 and C40 Concrete Literature 

Asphalt Literature 

Bitumen Literature 

Reinforcement Literature 

Epoxy paint  Literature 

Polyurethane paint Literature 

Zinc coating  Literature 

Reinforcement mesh Literature 

Mastic seal Literature 

Production of electricity, diesel, and gasoline SimaPro 

Combustion of electricity, diesel and gasoline SimaPro 

Production of water  SimaPro 

Energy resources  SimaPro 

 

3.3 Life cycle impact assessment 

Life-cycle impact assessment is the third phase of an LCA study that identifies emission 

associated with the life-cycle inventory to be converted into damage indicators (Jolliet et al., 2003; 

Pennington et al., 2004). It identifies the environmental impact from emitted substances (e.g. CO2, 

CO, NOx, etc.) and resources (e.g. water and land use) (Finnveden et al., 2009). Impact 

assessment is considered at two main points (midpoint and endpoint), at which classification and 

characterization are carried out. The output can also be normalised, grouped and weighted. For 

the current study the LCIA processes carried out are classification, characterization and 

normalization. Classification involves selecting relevant impact categories that are related to 

emitted substances and resource (otherwise known as environmental indicators). For the study 

CO2, NO2, SO2 and energy were considered as environmental indicators, as they are widely 

considered internationally (UN, 2015) and have also been used in other LCA studies on bridges 
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(Itoh and Kitagawa 2003; Keolein et al., 2005; Collings 2006; Gervásio and da Silva, 2008). 

Suitable impact categories are those that relate to resource depletion, human health, and 

ecosystem (Consoli et al., 1993). Selected impact categories for the study are Terrestrial 

acidification (TA), freshwater eutrophication (FE), climate change (CC), ozone depletion (OD), 

photochemical oxidation formation (POF), fossil fuel depletion (FE), metal depletion (MD) and 

particulate matter (PMF). Characterisation of substances was conducted with the Recipe 

methodology within the SimaPro 8.0.4 version. Subsequent normalization revealed the size of the 

impact category on human health, ecosystem quality, and resources on the European scale. Note 

that, normalised points are dimensionless and are applied for scoring purpose to enable 

comparison (Steele et al., 2003). 

 

4. LCA analysis 

Environmental assessment results for the combined maintenance methods for concrete, steel 

and masonry bridges are considered at midpoint, endpoint and in terms of models are 

presented in the following sub-sections. 

 

4.1 Midpoint analysis  

Eight environmental impact indicators have been selected for the midpoint analysis for the 

selected maintenance activities for concrete, steel and masonry bridges, as shown in Figure 3.  

Steel had a high relative impact on CC, OD, POF, PMF, TA, FE, MD and FD with a percentage 

of 46%, 42%, 45%, 49%, 48%, 49%, 48% and 42% respectively. While concrete had a 

percentage of 41%, 44%, 41%, 41%, 41%, 41%, 41% and 42% across the same category. 

Meanwhile masonry had 13%, 14%, 14%, 10%, 11%, 10%, 11% and 16% across the same 

category. The result therefore indicate that steel and concrete maintenance had more impact 

across all selected indicators.  

 

4.2 Endpoint analysis  

The end-point result on damage to human health, ecosystem and resource for concrete, steel 

and masonry bridge maintenance actions based on the European normalised scale  is 

presented in Figure 4. The European normalised scale is measured by (damage to resources, 
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DALY and PDF m2 year). Damage to resources during maintenance, measured in surplus 

energy is shown to be greater for concrete and steel bridge maintenance has they both attained 

a normalised point of 3, compared to masonry which attained a normalised point of 0.6. 

Similarly, concrete and steel bridge maintenance had higher impact on human health with a 

normalised point of 1 and 1.2 respectively, compared to masonry bridge maintenance which 

attained a normalised point of 0.3 based on disability-adjusted life years (DALYs) scale.  DALYs 

express the number of year life lost and the number of years lived disabled. Concrete and steel 

maintenance had less impact on ecosystem with a normalised point almost approaching 0.5, yet 

masonry had much less impact with a normalised point of 0.1 based on (PDF m2 year). PDF m2 

year expresses the loss of species over a certain area and time duration, using the unit 

potentially disappeared fraction of species. The overarching results therefore proofs that 

masonry bridge is better on all measures.  

 

4.3 Uncertainty and limitations  

Input data for the current LCA study were obtained from the literature, expert advice and 

SimaPro (an up-to-date LCA software). Assumptions were however made for input data that 

could not be easily accessed, such as average distance for transportation materials was 

assumed to be 16km for all maintenance activities and average fuel consumption was assumed 

to be 10 L/100 km for all vehicles. The assumed data will ensure fair comparison between 

selected maintenance methods but would be different for specific case studies. Maintenance 

was assumed to take place at scheduled intervals, however timing of maintenance activities 

varies for structures due to additional accidental damage or environmental impact. Specific case 

studies will also use local data instead of the European database available by SimaPro. Monte 

Carlo simulation was performed to account for the variability of input parameters and the 

environmental impact, associated with distance for transportation, frequency of maintenance 

activities, differences in fuel consumption and other input parameters. The SimaPro software 

allowed the Monte Carlo simulation at a statistical confidence interval of 95% to be carried out.  

A lognormal distribution was assumed for selected variables to allow the Monte Carlo simulation 

to identify the parameter with variation in respect to the result obtained in Figure 3 (i.e. 

characterisation result for compared maintenance methods of concrete, steel and masonry 
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bridges). One thousand iterations were conducted based on previous studies (Parsons, 2016) 

and the output is shown for the Monte Carlo simulation comparing concrete and masonry bridge 

maintenance (Figure 5), masonry and steel bridge maintenance (Figure 6) and concrete and 

steel bridge maintenance (Figure 7) at characterisation level. No new result emerged from the 

simulation compared to results presented in Figure 3 and therefore it can be assumed that the 

uncertainty has limited impact on the test results. 

 

5. Discussion  

The LCA outcome provides a useful insight to the impact of certain typical maintenance aspects 

of the predominant forms of bridge structure. On the average, masonry bridge maintenance only 

accounted for 12% impact while concrete and steel bridge maintenance accounted for 42% and 

46% impact. Results therefore indicates that, maintenance actions for masonry bridges are 

more environmentally sustainable. In support of this, literature reports that 40% of Surrey 

County bridge stocks undertook major refurbishment at an average age of 190 years into the 

service life. However, only masonry bridges exceeded current design life without significant 

repairs (Steele et al., 2002). In order to assess the sustainability of bridges over their life span, 

cradle to grave assessment has to be carried out to include raw material extraction, material 

processing, manufacturing, transportation, construction, preventative maintenance, disposal, 

recycling, etc. The actual service life also needs to be taken into consideration in the analysis. 

Although new bridges are designed for 120 years, most masonry bridges are well over 100 

years and are expected to continue carrying traffic for the foreseeable future. In terms of new 

construction, masonry bridges are not considered as alternatives any longer and new bridges 

are generally limited to concrete, steel and composite structures (Collings, 2006). As the 

importance of sustainability is likely to increase in future, masonry bridges may attract more 

interest as a viable choice of bridge form. The results also suggest that specific components 

parts of concrete and steel bridges could to be revised as they attract more impactful 

maintenance options. For example, maintenance of expansion joint had the highest impact on 

CO2, NO2, and SO2 emission (see supplementary data).  

 

6. Conclusions 
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A comparison of environmental impact of concrete, steel and masonry bridge maintenance 

activities was carried out in this study. The study considered preventive and corrective 

maintenance on the bases of effectiveness, cost and intervals. A life cycle assessment 

methodology was used to evaluate the environmental impact of selected maintenance action 

which accounted for associated material, energy and transportation used. Material quantities 

were derived from the literature and confirmed by industry experts and combined with  SimaPro 

data. Selected maintenance actions were evaluated on the basis of eight impact categories and 

the significance of their impact was based on human health, ecosystem and resources based 

on European scale.  

Findings from the study were that concrete and steel bridge maintenance activities have an 

average impact of 42% and 46% compared to 12% impact of masonry bridge maintenance. As 

such, the automatic preference for concrete and steel bridges may need to be reviewed. 

Furthermore, designers should consider revising the components parts of concrete and steel 

bridges as they play a critical role in the selection of maintenance options which influence the 

degree of impact.   
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Figure 1 Life-cycle assessment Framework. source: Adapted from ISO 14040 (2006) 
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Figure 3 Characterization results for combined maintenance methods of concrete, steel 
and masonry bridge 

Figure 4 Normalised results of concrete, steel and masonry bridge maintenance methods 
on European scale 
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Figure 5 Uncertainty analysis for compared concrete and masonry bridge maintenance  
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Figure 6 Uncertainty analysis for compared steel and masonry bridge maintenance 

 
Figure 7 Uncertainty analysis for compared concrete and steel bridge maintenance 
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