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A B S T R A C T

Cold-formed steel (CFS) construction can lead to more efficient designs compared to hot-rolled steel members as
a consequence of its high strength, light weight, ease of fabrication, and flexibility in their cross-section profiles.
However, CFS members are vulnerable to local, distortional and overall buckling modes. This paper develops a
numerical model to investigate the flexural strength and failure modes of CFS back-to-back channel beams and
verifies the efficiency of an optimisation framework previously proposed. The model incorporates non-linear
stress-strain behaviour and enhanced corner properties obtained from coupon tests, as well as initial geometric
imperfections measured in physical specimens. To simulate the behaviour of a bolt bearing against a steel plate
in the back-to-back section, a connector model is used that takes into account both slippage and bearing de-
formations. The developed Finite Element (FE) models are verified against six four-point bending tests on CFS
back-to-back channel beams, where excellent agreement is found between the experimental results and the FE
predictions. The validated FE models are then used to assess the adequacy of the effective width method in EC3
and the Direct Strength Method (DSM) in estimating the design capacity of conventional and optimum design
CFS channel beam sections. The results indicate that both EC3 and DSM provide accurate predictions for the
bending capacity of lipped channel beam sections. A comparison between FE predictions and tested results show
that, the geometric imperfections can change the FE predictions of ultimate capacity by 7%, while the strain-
hardening of CFS material at the round corners has negligible effects. It is also shown that EC3 uses a reduced
cross-sectional property to calculate deflections, which can reasonably predict deflections with a slight over-
estimation (6%) at the serviceability load level.

1. Introduction

Cold-formed steel (CFS) members have traditionally been employed
as load-carrying members in a wide range of applications, such as roof
purlins and structural envelopes. In recent years, however, CFS mem-
bers have become increasingly popular in low- to mid-rise multi-storey
buildings [1] and CFS portal frames with short to intermediate spans
[2,3], as shown in Fig. 1(a) and (b). CFS sections are increasingly being
offered as an alternative to hot-rolled steel elements since they provide
greater flexibility in terms of cross-sectional profiles and sizes, which
can lead to more efficient design solutions with less redundant material.
CFS sections are also light-weight, easy to handle on site, and easier to
connect. However, CFS components are made of thin plates, which have
inherently low buckling resistance. This results in reduced strength for

CFS elements, which limits their performance in multi-storey applica-
tions. CFS components are usually susceptible to local, distortional and
global buckling (and their interactions) as shown in Fig. 2.

Although the accurate prediction of the behaviour of CFS elements
is difficult due to their complex failure modes, Finite Element Analysis
(FEA) is widely used to predict the flexural behaviour of CFS beams [4].
Previously, a series of physical experiments on hat and back-to-back
lipped beams have been conducted by Peköz et al. [5,6] to investigate
the capacity of edge stiffeners in CFS sections. Compared to physical
experiments, FEA is relatively inexpensive and time efficient, especially
when a parametric study of cross-section geometry is involved. In ad-
dition, FEA can be efficiently used for investigations considering geo-
metric imperfections and material nonlinearity of structural members,
which could be difficult to achieve through physical tests.
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Although FEA is a useful and powerful tool for the analysis of CFS
structures, it is important to obtain accurate and reliable finite element
models (FEM) prior to any analytical investigations. For example, Yu
and Schafer [7] used nonlinear finite element models of CFS beams to
develop the Direct Strength Method (DSM) design recommendations.
Haidarali and Nethercot [8] then developed a simplified numerical
model that could significantly increase the computational efficiency of
the non-linear analyses. In their study, the geometrical imperfection of
CFS profiles was determined by using the constrained finite strip soft-
ware CUFSM [9], while the imperfection amplitudes were based on the
statistic results presented by Schafer and Peköz [10].

In another study, Kankanamge and Mahen [11] investigated the
behaviour of CFS beams subjected to lateral-torsional buckling. A de-
tailed parametric study was conducted to simulate the lateral–torsional
buckling behaviour using four-node shell elements with five degrees of
freedom per node and reduced integration (S4R) in ABAQUS [12]. The
results of their study were used to verify the design guidelines for the
lateral-torsional buckling of CFS beams in AS/NZS 4600 [13], DSM [14]
and EC3 [15]. Poologanathan and Mahen [16] developed a numerical
model in ABAQUS using the S4R5 element. The numerical model was
used to investigate the shear buckling and post-buckling characteristics
of an innovative LiteSteel Beam. Ayhan and Schafer [17] used an ex-
perimentally verified numerical model in ABAQUS [12] to obtain a
simplified method for predicting the bending stiffness of CFS members.
Based on both experimental and numerical results, new local/distor-
tional slenderness-based design equations were proposed. Similarly,
Dubina et al. [18] developed an FE model to investigate the behaviour

of CFS beams with corrugated web and discrete web-to-flange fasteners.
They used four-node shell elements to model the CFS components,
while the connector element CONN3D2 with six degrees of freedom per
node was employed in ABAQUS [12] to simulate the behaviour of self-
tapping screws and bolts according to single-lap tests [19]. In a more
recent study, Wang and Young [20,21] proposed a numerical model to
investigate the flexural behaviour of CFS built-up sections with inter-
mediate stiffeners subjected to bending. The S4R shell element and
C3D8R solid elements in ABAQUS [12] were used to model the CFS
sections and screws, respectively. The surfaces of the solid screws were
tied to the drilled hole edges of the beam specimens, while surface
interactions between the overlapped elements of the built-up sections
were modelled using contact elements.

This paper aims to develop an advanced numerical model to predict
the flexural behaviour and bending strength of CFS beam sections CFS
back-to-back channel beams and to verify an optimisation framework
previously proposed. An experimental investigation, including six
physical tests on CFS back-to-back channel beams, which failed by
local/distortional buckling about the major axis, is used to verify the FE
models in ABAQUS [12]. The advantage of the developed models over
the previous studies is that it incorporates non-linear stress-strain be-
haviour and enhanced material properties based on coupon tests,
measured initial imperfections and an effective connector element to
model the bolt behaviour. The models are then used to assess the
adequacy of both the EC3 design guides [15,22,23] and the Direct
Strength Method (DSM) to design a range of conventional and optimum
designed CFS beams considering local/distortional buckling modes. The
deflection of CFS beams incorporating the effects of the material non-
linearity, effective cross-sections and the change of Young’s modulus
along the distribution of bending moment in the beams, is also in-
vestigated.

2. Eurocode 3 design formulation

Prior to the description of the numerical study, a brief introduction
is presented to show how the Eurocode 3 design guidelines consider
local and distortional buckling modes and their interaction on CFS
beam sections.

2.1. Local buckling

In Eurocode 3, the effect of local buckling is considered through the
effective width concept. It is based on the observation that local
buckling causes a loss of compressive stiffness in the centre of a plate
supported along two longitudinal edges (‘internal’ plate element), or
along the free edge of a plate supported along one longitudinal edge
(‘outstand’ plate element) as a result of non-linear effects. The corner

Fig. 1. CFS (a) apex and (b) eaves connections with back-to-back beam sections
used in typical portal frames.

Fig. 2. Buckling of a lipped channel beam: (a) local, (b) distortional, (c) lateral-torsional and (d) local-global interactive modes.
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zones of the cross-section consequently become the main load-bearing
areas and are idealized in the effective width concept to carry the total
load. The effective area of a sample cross-section is indicated in solid
black line in Fig. 3. It is thereby noted that local buckling causes the
centroid of the effective cross-section to shift over a distance eN relative
to the original centroid of the gross cross-section. According to EC3,
Part 1.5 [22], the effective widths of internal and outstand compression
elements are given by (see Fig. 3):

= =
+( )

( )
b
b

1 for internal compression element

1 for outstanding compression element
e

1 0.055(3 )

1 0.188

l l

l l

(1)

= fwith /l y cr (2)

In Eq. (1) ρ is the reduction factor on the plate width and b and be
are the total and the effective width of the plate, respectively. The
slenderness ratio l relates the material yield stress fy to the elastic local
buckling stress of the plate cr and is the ratio of the end stresses in the
plate. Eurocode 3 calculates the effective cross-section Aeff using the
yield stress fy in Eq. (2). The calculation of the effective cross-section in
bending is an iterative process, since the neutral axis of the effective
cross-section shifts by an amount dependent on the reduction of the
effective section (in the flange and upper portion of the web), which in
turn affects the stress distribution. Although not required by EC3
guidelines, full iterations to convergence were carried out in this study.

2.2. Distortional buckling

Distortional buckling of CFS members is defined by the distortion of

the shape of the cross-section excluding the deformations related to
local buckling (Fig. 2(b)). The EC3, Part 1.3 [23] design method for
distortional buckling is based on the assumption that the effective parts
of the edge stiffener behave as a strut element continuously supported
by elastic springs of stiffness K along its centroid axis, as shown in
Fig. 4(b). The buckling behaviour of the section can then be studied by
considering an equivalent strut on an elastic foundation with the cri-
tical buckling stress calculated as:

=
KEI
A

2
cr s

S

S
, (3)

where K is the spring stiffness per unit length; and AS and IS are the
area and effective second moment of area of the stiffener, respectively.
The flexural buckling resistance of a stiffener is then obtained by
multiplying A ·S cr s, by a reduction factor d, which is defined in
Fig. 4(c).

It is worth noting that EC3, Part 1.3 [23] considers the interaction of
local/distortional buckling by reducing the thickness of the effective
parts of the stiffener to tred. Also, the local buckling plate slenderness p
for flange and lip is updated by considering the distortional buckling
slenderness by:

=p red p d, (4)

For each step, the plate effective width is refined until d n d n, 1 ,
but d n d n, , 1. The iteration is optional in EC3.

3. Direct Strength Method (DSM)

The Direct Strength Method (DSM) is a finite strip-based method
that integrates stability analysis into the design process. First the elastic
local (Mcrl), distortional (Mcrd) and global (Mcre) critical buckling mo-
ments of CFS members are calculated using software such as CUFSM
[9]. The equations for calculating the nominal flexural strength for
global buckling (Mne) are a function of the flexural yield moment

=M W f·y y y and the critical elastic lateral-torsional buckling Mcre:
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The nominal flexural strength of a CFS beam designed for local
buckling (Mnl) and considering local–global interaction is related to the
local–global slenderness = M M/l ne crl :

eN
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1¡̄1¡̄
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be=b1+b2

compression
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web

compression

lip

be
b

(a) (b) (c)

Fig. 3. Effective width of (a) lipped channel; (b) internal compression element;
and (c) outstand compression element (the lip).

Fig. 4. Distortional buckling model (a) flange with edge stiffener; (b) flexural buckling of edge stiffener as a strut on elastic foundation; and (c) flexural buckling
curve for edge stiffener.
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The nominal flexural strength for distortional buckling (Mnd) is then
calculated as a function of slenderness :

=

= >( ) ( )
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y
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Finally the flexural strength of the CFS beam is determined based on
the minimum value calculated from Eqs.(6)–(8):

=M M M Mmin{ , , }n ne nl nd (8)

4. Selection of specimens

An optimisation framework proposed by the authors [24,25] is
adopted for the selection of CFS back-to-back channel section for test
and numerical study. The objective function is to obtain a design so-
lution with maximum bending capacity but within the deflection cri-
teria:

=M W fmax · ·c Rd LT eff y, (9)

subject to EC3 width-to-thickness ratio limits [23], manufacturing
constraints and deflection criteria:

b t c t h t/ 60, / 50, / 50 (10)

c b0.2 / 0.6 (11)

b c50, 25 (12)

< lim (13)

where h is the cross-sectional height, and b and c are the flange and lip
width, respectively. Weff is the effective modulus of the cross-section
considering the local/distortional buckling. LT is the reduction factor
taken into account the lateral-torsional buckling. fy is the yield stress of
the material used.

Eq.(13) imposes a constraint on the upper limit of deflection
Δlim = L/200 (L = 1200 mm is the beam span) of the CFS beams [26]. A
load factor of 1/1.35 = 0.74 is used when calculating the deflections
using effective cross-section according to EC3, Part 1.5 and Part 1.3
[22,23], which means the deflection is obtained by using a moment
ratio of =M M0.74s c Rd, . This is due to the fact that in the ultimate limit
state design of CFS beams, the partial factor of 1.35 is used for the dead
load while 1.5 is used for the live load. However, these partial factors
are 1.0 for serviceability limit state design. A load factor of 1/
1.35 = 0.74 means a slightly larger deflection will be calculated which

can be in the safe side. When calculating the deflection, a uniform
bending moment is applied at both ends of a simply-supported beam.

Fig. 5 shows the nominal dimensions of the three different cross-
sections used in this study. All the dimensions in this figure are in mm
and are defined between the outer to outer surfaces. The cross-section
A230 is a standard commercially available cross-section, while section
B270 is the optimum solution with the highest flexural strength subject
to the constraints in Eqs.(10)–(13). Cross-section C180 (with a flange
width larger than the flange widths of sections A230 and B270) is used
for comparison purposes. All cross-sections have the same nominal
thickness =t 1.5 mm and coil width of steel sheet =l 415 mm to use
the same amount of material. The values for the radius of the round
corner, the elastic modulus and the Poisson’s ratio used were taken as
3 mm, 210 GPa and 0.3, respectively. The yield stress of the CFS ma-
terial was considered to be =f 450 MPay in the optimisation process.

5. Numerical modelling

The above three sections were manufactured using the press
breaking process and were tested about their major axis using a four-
point bending set-up as shown in Fig. 6 to obtain their flexural strength.
For each cross-section, two similar specimens with the same cross-
section were tested to ensure the consistency of the results. The non-
linear stress-strain behaviour and enhanced corner properties of the
material were obtained based on the results of six tensile coupons.
Tensile coupons were extracted from both the flat and the corner re-
gions of the cross-sections to determine the material properties. The
geometric imperfections of the back-to-back specimens were recorded
using a specially designed measurement rig. More information about
the conducted experimental tests can be found in [27].

5.1. Material model

The inelastic properties of CFS material were found to have sig-
nificant effects on the ultimate capacity and post-buckling behaviour of
CFS beams [28]. In this study, the results of the six tensile coupon tests
from the flat plates and round corner regions of the cross-sections were
used to investigate the effects of the forming process on the material
properties. For example, a comparison between the engineering and
true stress-strain curves of a flat and a corner coupon is given in Fig. 7
for the standard A230 section. The results indicate that the 0.2% proof
stress of the corner coupon is around 24% higher than that of the flat
coupon in the same section. Moreover, a comparison between the dy-
namic and static stress–strain curves of the coupon specimens shows
that the stress reduced by around 5–8% at both yield and ultimate
strengths during the static drop in the curves, which is also called
“stress relaxation” [29]. The static stress–strain curves are calculated
from the dynamic stress–strain curves by removing the dynamic effects
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Fig. 5. Symbol definitions and nominal cross-sectional dimensions for the specimens (a) A230, (b) B270, and (c) C180.
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of the tensile test. The material model was then included in the FEM by
using the true stress vs true strain curve, which was calculated from the
following equations:

= +(1 )true (14)

= +ln(1 )true (15)

where and are the measured engineering stress and strain, respec-
tively, based on the original cross-section area of the coupon specimens.

The resulting stress-strain curves for both the flat plates and round
corner areas were also incorporated into ABAQUS [12].

Residual stresses were not included in the numerical model. It has
previously been demonstrated that the effects of membrane residual
stresses can safely be neglected in open sections [10,28], while the
(longitudinal) bending residual stresses have been implicitly considered
in the coupon test results, provided that the coupons are cut from the
fabricated cross-section rather than from the virgin plate. Indeed, cut-
ting a coupon releases the bending residual stresses, causing the coupon
to curl [30]. However, these stresses are re-introduced when the coupon
is straightened under tensile loading in the initial stages of the coupon
test.

Previous studies also proposed that the effect of residential stress is
relatively minor on the ultimate capacity [10,28]. The residual stress in
the numerical modelling is therefore ignored in this paper. However,
considering the strain hardening without introducing the residual stress
may lead to slightly unconservative results.

5.2. Boundary conditions

The CFS back-to-back beams were tested in a four-point bending
configuration, as illustrated in Fig. 6(a). The specimens were supported
on rollers located 3100 mm apart. All specimens were bent about their
major axis. The load was applied through a spreader beam onto the test
specimens at two discrete locations 1200 mm apart. The spreader beam
was restrained against any out-of-plane movement by a specially de-
signed guidance system, as shown in Fig. 6(b). Nylon blocks were used
as bearing pads between the spreader beam and the uprights in order to
reduce vertical friction. A pin and a roller support were used to transfer
the load from the spreader beam to the specimen. These supports were
also designed to restrain the longitudinal displacement of the top flange
of the test specimen and the spreading beam. To simulate the boundary
conditions of the experimental program, a simply supported condition
was used at both ends of the FE models as shown in Fig. 8. Two re-
ference points were established at the positions of the roller and pin
supports at the middle of the gap between the top two flanges of the
CFS back-to-back beams to apply the external loads. The nodes under
the region of the supports were coupled to the related reference point
corresponding to the pin and roller supports as indicated in Fig. 8.

In order to avoid the localised bearing failure of the CFS sections
during the experimental tests, wooden blocks were packed into the

Fig. 7. Stress–strain curves resulted from (a) flat and (b) corner coupon tests.

Fig. 6. Typical experimental set-up of four-point bending tests of back-to-back beam sections.
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cross-section at the loading points and the end supports (see Fig. 6).
Therefore, in the FE models, the elastic modulus of 10E was used for the
steel plates in the areas with the wood blocks to simulate the rigid
behaviour. A rigid body constraint, with a reference point at the middle
of the gap between the two bottom flanges of the CFS back-to-back
beams, was used at both ends of the CFS beam to prevent localised
failure at the supports. To simulate the roller supports at the two ends of
the CFS beams, the translational and rotational degrees of freedoms at
the reference points were set to be U2 = UR3 = 0 (see Figs. 6 and 8).
Regarding the reference points at the loading positions, the translations
of U1 and U3 were fixed at the pin support while U1 = 0 was used at
the roller support. This was to prevent the lateral deformation and
longitudinal displacement of the CFS beams at these locations.

The CFS back-to-back beams were assembled by using two single
channels with bolts as shown in Fig. 5. A connector element was used to
model the bolt behaviour as will be explained in Section 5.4. Contact
pairs were also defined between the two webs of each CFS single
channel section using a surface-to-surface contact property. In the
normal direction of the contact pairs, a “hard” surface was used while
in the tangent direction between the two profiles a “frictionless”
property was defined.

5.3. Element type and mesh size

A four-node, quadrilateral shell element (S4R) with reduced in-
tegration and hourglass control was used for the modelling of the CFS
beams. This shell element can take into account transverse shear de-
formations and has been successfully used in the modelling of CFS beam
sections by other researchers [7,8,20].

The effects of mesh size in the FE model on the behaviour of the CFS
beams were firstly investigated. It was found that using a 10 × 10 mm
element dimension for the CFS channels provides a balance between
computational time and accuracy. Therefore, 10 × 10 mm elements
were used for all FE simulations in this study. However, for the mod-
elling of the corners of the CFS sections, it was found that two elements
were suitable for the modelling of each round corner.

5.4. Modelling of bolts

It was found from reference experimental tests [31–33] that the
position and behaviour of bolts can considerably influence the moment-
rotation behaviour of the back-to-back CFS beams. The failure mode of
the tested beams was also demonstrated to be significantly affected by
the bolt slippage and bearing deformation. Therefore, it is important to
develop an appropriate model in ABAQUS to simulate the local load-
deformation behaviour of a single bolt bearing against a single steel
sheet. Lim and Nethercot [2,3] used a simplified bolt model which
consisted of two perpendicular nonlinear springs to model the bearing
behaviour of a single bolt. In their study, good agreement was achieved
between experimental test results and the modelled behaviour of CFS
full-scale joints subjected to monotonic load. A more direct method to
model bolt behaviour using FE analysis is to use solid brick element and
surface-to-surface contact interactions in ABAQUS [34–36]. The dis-
advantage of this model is that using solid elements makes the model
more complex and, therefore, reduces the computational efficiency,
especially in models with a large number of bolts. In addition, due to
the presence of bolt rigid body movement and slippage, convergence
could also be an issue [36]. A practical technique is therefore presented
here to simulate the slippage and bearing behaviour of the bolts in CFS
back-to-back sections.

For CFS back-to-back channels assembling, a fastener tension (pre-
loading force) is applied to the head of the bolt by using a torque
wrench. The torque–preloading relationship is often simplified by using
a constant K , known as the torque coefficient, as shown in the following
equation [37,38]:

=T K P d· ·b (16)

where T (N·mm) is the input tightening torque applied to the fastener
head or nut, Pb (N) is the preloading force and d (mm) is the nominal
bolt diameter. An approximate value of 0.2 has been used for the torque
coefficient [37,38]. This results in an equivalent preloading force of

=P 6.25 kNb , which is close to the results presented by Croccolo et al.
[39]. The slippage behaviour of the bolts depends mainly on the dis-
tribution of initial friction forces, which in return relies on the bolt
pretension force Pb for a given applied torque and friction coefficient µ

Fig. 8. Boundary conditions of FE model against test.
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of the contact surfaces. The following formula is used to calculate the
bolt slip resistance Fslip [40]:

=F µ P n· ·slip b b (17)

where µ is the mean frictional coefficient taken as 0.19 for galvanised
steel surfaces [40], and nb is the number of slip planes.

A single bolt can transfer shear forces to a CFS member through the
bearing behaviour in addition to slippage described above. Once the
slippage deformation overcomes the gap between the bolt shank and
the steel sheet, the bearing behaviour of the bolt against steel sheet will
be activated. Fisher [41] proposed the following equation to take into
account the bolt bearing force and the bearing deformation relation-
ship:

=R R e[1 ]B ult
µ ( /25.4)br (18)

=R d t F2.1· · ·ult u (19)

where br is the bearing deformation (mm), Rult is the ultimate bearing
strength, t is the web thickness, d is the bolt diameter and RB is the
bearing force against the bearing deformation. Fu is the tensile strength
of the web plate material, which can be obtained from coupon tests.

=e 2.178 is the nature exponential, while =µ 5 and = 0.55 are the
regression coefficients presented by Uang et al. [42].

In the reference experimental tests [27], the bolt shank diameter

was 12 mm. The bolt slippage behaviour is generally defined for a
limited range of slip movement within the bolt hole clearance (typically
± 1 mm for standard bolts by assuming that the bolt shanks are cen-
trally positioned). According to Eqs. (16)–(19), a slip-bearing re-
lationship can be defined as shown in Fig. 9. The slip-bearing re-
lationship has been successfully used to model the cyclic behaviour of
bolted moment connections by Ye [27].

In order to model a group of bolts, the connector element in
ABAQUS [12] was used, as shown in Fig. 10(a). For each single bolt in
Fig. 10(a), a two-layer fastener configuration was used at the position of
each individual bolt in the full-scale connection (see Fig. 10(b)). The
layer was connected by a node in one channel section and a point in its
counterpart section using a connector element to define the bolt
property. The connector type of “Cartesian” with 3 translational de-
grees of freedom at each node was employed. This connector was
characterised by a parallel combination of “Elasticity” and “Plasticity”
behaviours, as defined in ABAQUS [12]. In the “Elasticity” behaviour,
the rigid definition was used in the corresponding shear direction. For
the definition of “Plasticity” behaviour, the load-deformation relation-
ship shown in Fig. 9 was employed to represent the behaviour of a bolt
which is slipping and bearing against a steel plate. It should be noted
that the “Elasticity” and “Plasticity” behaviours are defined in local
coordinate systems corresponding to the shear deformation of the bolts.

The bolt slippage and bearing behaviour, which are defined in Eqs.
(16)–(19), are included in the connector element shown in Fig. 10(a).
Therefore, it is important to exclude the bearing deformation stemmed
from the bearing of each node at the bolt position. To achieve this,
constraints “Coupling” in ABAQUS [12] was employed, and its defini-
tion is shown in Fig. 10(b). Each node at the position of the bolts was
thereby connected to the nearby nodes in the CFS steel plates using the
constraint that couples the displacement and rotation. These nodes
should lie in a reasonably large region in the plates to reduce the
bearing deformation.

5.5. Imperfections

The stability of thin-walled CFS members may in some cases be
significantly affected by the presence of imperfections, especially when
interactive buckling of different modes is involved. In the reference
experimental programme, the magnitude and the shape of the geo-
metric imperfections of each specimen were therefore recorded before
testing. The imperfections were measured along the five longitudinal
lines indicated in Fig. 11(a), by means of reflected laser beams. As a
first step, the raw data were decomposed into its respective Fourier

Bolt slippage 

Bolt bearing 

Fig. 9. Load-deformation relationship of a bolt slipping and bearing against a
steel plate.

Fig. 10. Single bolt modelling in ABAQUS: (a) components defined in a connector; (b) reducing the bearing behaviour by coupling the node at the bolt position to a
number of nodes close-by.
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series and a finite number of terms were removed to cut off the high
frequency vibrations originating from the driving mechanisms of the
moving motors. Using this reduced Fourier series resulted in a more
continuum node coordinates adjustment when the measured im-
perfections were included.

It should be noted that in general, it is essential to use a sufficient
number of Fourier terms to represent the shape of the measured im-
perfections. In this study, by inspection, it was found that using 20
Fourier terms typically leads to accurate results. As an example, Fig. 12
compares the measured imperfection profile along line 3 of specimen
B270-1a, with the truncated Fourier representation shown as a solid
black line. Within a given cross-section, the magnitude of the im-
perfection at each node of the FE mesh was determined by interpolation
of the measurements. Quadratic interpolation was used for the web
imperfections, while linear interpolation was used at the flanges, as
show in Fig. 13. The coordinates of each node in the FE models were
then adjusted to account for the imperfections.

5.6. Numerical results

Table 1 compares the ultimate load carrying capacities resulting
from the FE models against those obtained from the reference experi-
ments on the CFS lipped channel beams with different cross-sections.
Mu1 is the predicted flexural strength that takes into account the strain
hardening effect of the material in the corner region but without in-
corporating the geometric imperfections. Mu2 indicates the predicted
moment capacity where only the effect of the measured initial geo-
metric imperfections was taken into account. The predicted capacity
Mu3, on the other hand, considers both the measured initial geometric

Fig. 11. Measured imperfection of B270-1a (a) profiles; (b) included in the FE model (magnified 50 times).

Fig. 12. Measured imperfection profile and its Fourier representation.

Fig. 13. Imperfection inclusion.
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imperfections and the strain hardening effect of the material in the
corner regions.

As shown in Table 1, excellent agreement was obtained between
experimental results and FE predictions. The average ratio of the FE
predicted bending capacity Mu2 to the experimentally measured flex-
ural strength Mu was 0.960, with a standard deviation of 0.019. In
comparison, the average ratio of the FE predicted bending capacity Mu3

to the experimentally measured load carrying capacity Mu was 1.010,
with a standard deviation of 0.006. This indicates that considering the
strength variation caused by the strain hardening effect of the round
corner material, this could change the accuracy of the bending capacity
predictions by 5%. However, by comparing the predicted flexural
strength Mu1 with Mu3, it is shown that the initial geometric im-
perfections can have up to a 7% effect on the load carrying capacity. It
should be noted that, on average, the variation of flexural strength is
3.1% and 0.6%, with and without taking into account the geometric
imperfections, respectively.

Fig. 14 illustrates the tested moment versus mid-span deflection
curves corresponding to the reference experimental tests and the pre-
dicted results from numerical study. It is shown that the proposed FE
model was able to capture the peak load and stiffness of CFS beam
sections with a very good accuracy.

Fig. 15 compares the failure shapes of the tested specimens with the
predicted deformation of the corresponding FE models. It is shown that
the proposed FE model could also predict well the failure modes of the
CFS beams. As presented in Fig. 15(a)–(c), in the numerical models, all
specimens failed within the constant moment span by interaction of
local and distortional buckling. In specimens C180-1 and C180-2, pure
local bucking firstly happened in the top flanges. This was due to the
high slenderness of the flanges, which had a width-to-thickness ratio of
67, and the fact that they were subjected to the highest compressive
stress in the cross-section. As the bending moment increased, super-
imposed distortional buckling was observed in the numerical models, as
shown in Fig. 15(a). Participation of the webs was also captured before
the ultimate capacity of the specimens was reached.

It is shown in the numerical models that beams A230-1 and A230-2
failed due to interaction between local and distortional buckling, as
shown in Fig. 15(b). However, due to the higher slenderness of the web,
the local buckling was first triggered in the web rather than the flange.
As the load increased, distortional buckling mode was observed as well.

The beams B270-1 and B270-2 had the maximum web height,
combined with relatively narrow flanges. Local buckling was again first
detected in the webs of the channels in the numerical models, with
distortional buckling participated at a higher load level (see Fig. 15(c)).

These results discussed above in general confirm the adequacy of
the developed FE models in simulating the actual behaviour of CFS
back-to-back beam channels up to their failure points.

6. Evaluation of current design methods

In this section, the experimental results are compared to the pre-
dictions of the DSM and EC3 design equations presented in Section 2
and 3. The specimen B270-1 was tested without the wood blocks and
was failed by a localised failure at the top flange rather than the ex-
pected bending failure. Therefore, the result of specimen B270-1 was
not considered here. As shown in Table 2, both DSM and EC3 predic-
tions on the bending capacity of CFS back-to-back beams were accurate
enough for practical design considerations. The ratio of the DSM pre-
dicted load capacity to the experimentally measured load carrying ca-
pacity was 0.96, with a standard deviation of 0.05. It is evident from
Table 2 that the “effective width” based method comprised in EC3
generally leads to accurate predictions (on average 99% with a stan-
dard deviation of 9%) of the beam strengths. However, the EC3 results
in some cases can be up to 10% overestimated.

By comparing the ultimate bending capacity of the standard and
optimised sections for the CFS beams obtained from the experimental
results (shown in Table 2), detailed FE models and EC3 design method.
Based on the experimental results, it can be seen that the optimised
shapes (B270) offer a much higher flexural strength (up to 19% higher)
compared to the standard lipped channel section with the same amount
of material. Similar results were obtained from FE models and EC3
design method, where the optimum design solutions showed around
20% higher flexural strength compared to the standard sections.

Fig. 14. Moment versus mid-span deflection relationship resulting from FE
against Test.

Table 1
Comparison of FE results with tested flexural strength.

Specimen Mu

(kN·m)
Mu1

(kN·m)
Mu2

(kN·m)
Mu3

(kN·m)
Mu1/Mu Mu2/Mu Mu3/Mu

A230-1 23.72 25.31 23.12 23.94 1.067 0.975 1.009
A230-2 23.79 25.58 22.39 23.92 1.075 0.941 1.005
B270-1 (25.83) 28.87 25.95 26.11 – –
B270-2 28.34 28.25 27.82 28.47 0.997 0.982 1.005
C180-1 17.43 18.22 16.41 17.68 1.045 0.941 1.014
C180-2 17.24 17.89 16.53 17.55 1.038 0.959 1.018

Average 1.044 0.960 1.010
St. Dev. 0.031 0.019 0.006

Note: Mu is the tested flexural strength, Mu1 is the predicted flexural strength
considering the strain hardening effect of the material in the corner region, Mu2

indicates the predicted moment capacity where only the effect of the measured
initial geometric imperfections was considered, Mu3 is the predicted capacity
considering measured initial geometric imperfections and the strain hardening
effect of the material in the corner regions.
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7. Determine deflections of CFS back-to-back beams

Serviceability criteria should be also taken into account in CFS beam
design, especially for supporting beams in long span roof or floor sys-
tems. Eurocode 3 Part 1-3 stipulates that the effective cross-section for
the serviceability limit state should be used in all serviceability limit

state calculations for CFS members. In determination of the cross-sec-
tional properties of CFS sections, the effective parts of individual plates
in the cross-section will be different according to the stress levels ob-
tained from the distribution of bending moments. Meanwhile, the de-
flections are generally estimated by using the secant modulus of elas-
ticity, especially in alloys with pronounced strain hardening behaviour.

(a) Failure progression in beam C180-2 (b) Failure progression in beam A230-2 

(c)  Failure progression in beam B270-2 
Fig. 15. Failure progression and deformation of FE model vs actual specimen and for the tested beams (a) C180-2, (b) A230-2, (c) B270-2.
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To predict the deflections of the tested beams, six different cases
(including the method suggested by EC3) were considered by varying
the material nonlinearity (using the secant modulus of elasticity, see
Fig. 7) and moment gradient along the beam span. The results were
then compared with those obtained from the reference experimental
tests. This well help to assess the errors associated with any of these
simplifying assumptions and identify the best practical method to cal-
culate the deflection of CFS beams:

Method 1: Calculation of deflections using a constant modulus of
elasticity (Es0) at the initial stage of the nonlinear stress-strain curve,
and gross cross-section properties (I) along the length of the beam.

=d M x x
E I

dx( )·
·

L

s0 0

1

(20)

where d is the calculated deflection, M x( ) is the bending moment at
the position of x and L1 is the beam span to be considered.
Method 2: Assuming constant modulus of elasticity (Es0) at the in-
itial stage of the nonlinear stress-strain curve to calculate the de-
flections, but with the effective cross-sectional property Ieff,max de-
termined at the maximum stress level along the beam span:

=P M b I d M x x
E I

dx( )·
·max gr max eff eff max

L

s eff max
, ,

0 0 ,

1

(21)

Method 3: Calculation of deflections using the constant modulus of
elasticity (Es0) at the initial stage of the nonlinear stress-strain curve
but considering the variation of the effective cross-sectional prop-
erties Ieff(x) at various stress levels along the length of the beams.

= =P M M x x b x I x d M x x
E I x

dx( ) ( ) ( ) ( ) ( )·
· ( )eff eff

L

s eff0 0

1

(22)

Method 4: Calculation of deflections considering variation of
modulus of elasticity (Es(x)) along the length of the beam, but using
the constant gross cross-sectional property (I) of the beams.

= = =P M M x x M x
W

x E x d M x x
E x I

dx( ) ( ) ( ) ( ) ( ) ( )·
( )·s

L

s0

1

(23)

Method 5: Calculation of the deflections considering the variation
of modulus of elasticity (Es(x)) along the length of the beam, and a
change of effective cross-sectional property Ieff(x) at various stress
levels along the length of the beam:

Method 6: Calculation of the deflections using the Eurocode sug-
gested methodology. The variation of the effective second moment
of area Ific is taken into account by using an interpolation between
gross cross-sectional property Igr and effective cross-section property
I ( )eff max eff, determined at the maximum stress level eff max, using the
effective cross-section along the beam:

=I I I I( ( ) )fic gr
gr

eff max
gr eff max eff

,
,

(25)

The calculation process is shown below using the constant modulus
of elasticity (Es0) at the initial stage of the nonlinear stress-strain curve:

=

P M I b I

b I I d dx( ) ( )

gr gr eff eff eff max

eff eff max eff max eff fic

L
M x x
E I

,

, ,
0

( )·
·s fic

1

0 (26)

The resulting deflections obtained for the tested beams, according to
the methods presented in Eqs. (20)–(26) are analyzed. Fig. 16 presents
the resulting load-deflection curves at mid span compared to the load-
deflection relationships recorded in the experiments. The horizontal
line is the load level used for the design of the CFS beams at service-
ability limit state, as presented in Section 4.

A comparison between the calculated deflections using Methods 1
and 4, and similarly comparing Methods 3 and 5, shows that there is
no significant difference between the results when the variation of
secant modulus along the length of the beams is taken into account.
This means that for the tested CFS beams, using the secant elastic
modulus along the stress-strain curve have little effect on the de-
termination of deflections, which agrees well with the EC3, Part 1-3,
where no requirement is imposed on the secant modulus. The modulus
of elasticity would be used for the design of the beams to serviceability
limit state.

A comparison between the curves obtained from Methods 1 and 2
shows that the use of linear elastic properties for the cross-sections (i.e.
full section properties) leads to underestimated deflections compared to
the experimental results. The level of underestimation of deflection is
8% on average with a standard deviation of 2%, as shown in Table 3.
When using reduced cross-sectional properties (Ieff ) to calculate the
deflections, Method 2 overestimates the deflections at the serviceability
load. This is in line with the requirement of EC3, Part 1.3, where the
effective cross-sections should be used in determination of the deflec-
tions.

A comparison between the results of Method 6 and the experimental
measurements at the serviceability load level shows that, in general, the
EC3, Part 1-3 overestimates the deflections to a reasonable level, which
can be acceptable in the practical design of CFS beams. It is also shown
in Table 3 that the deflections of both standard and optimised beams
were within the limit of L/200 = 15.5 mm, as recommended in [26].
Based on the average and also standard deviation of the errors, Method
6 (EC3 suggested method) provides the most accurate estimations of the
beam deflections under serviceability loads.

It should be mentioned that for the CFS beams (3100 mm span) used

= = = =P M M x x M x
W

b x x E x x
x

d M x x
E x I x

dx( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( )·
( )· ( )eff s

L

s eff0

1

(24)

Table 2
Evaluation of the DSM and EC3 design methods to predict the bending capacity.

Specimen Test
(kN·m)

EC 3
(kN·m)

DSM
(kN·m)

EC3/Test DSM/Test

A230-1 23.72 22.38 22.42 0.94 0.95
A230-2 23.79 22.59 22.61 0.95 0.95
B270-1 (25.83) 25.26 25.76 – –
B270-2 28.34 25.09 25.38 0.89 0.90
C180-1 17.43 18.77 17.42 1.08 0.99
C180-2 17.24 18.91 17.40 1.10 1.01

Average 0.99 0.96
St. Dev. 0.09 0.05
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Fig. 16. Load-deflection curves at mid span calculated using various methods and the physical test for the tested beams (a) C180-1, (b) C180-2, (c) A230-1, (d) A230-
2, (e) B270-2.

Table 3
Comparison of the experimental and calculated deflections using various methods at serviceability load.

Specimens Test
Δtest

(mm)

Method 1
Δ1

(mm)

Method 2
Δ2

(mm)

Method 3
Δ3

(mm)

Method 4
Δ4

(mm)

Method 5
Δ5

(mm)

Method 6
Δ6

(mm)
test
1

test
2

test
3

test
4

test
5

test
6

C180-1 10.4 9.7 11.5 11.5 9.4 11.1 11.2 0.93 1.11 1.11 0.90 1.07 1.08
C180-2 10.4 9.5 11.3 11.3 9.2 11.0 11.0 0.91 1.09 1.09 0.88 1.06 1.06
A230-1 9.9 9.2 10.5 10.5 9.1 10.4 10.3 0.93 1.06 1.06 0.92 1.05 1.04
A230-2 9.7 9.1 10.3 10.3 9.3 10.5 10.2 0.94 1.06 1.06 0.96 1.08 1.05
B270-2 9.9 8.9 9.7 9.7 9.0 9.9 9.7 0.90 0.98 0.98 0.91 1.00 0.98

Average 0.92 1.06 1.06 0.92 1.05 1.04
St. Dev. 0.02 0.05 0.05 0.03 0.03 0.04

J. Ye et al. Engineering Structures 177 (2018) 641–654

652



in this study, it was found that the serviceability constraints have been
automatically satisfied within the optimisation process, as shown in
Table 3. This has been confirmed by both the experimental and nu-
merical results. The deflection of the optimised cross-section (Cross-
section B) at the serviceability load level is around 5% less than that of
the standard cross-section (Cross-section A), according to Eurocode.
The reason is that the optimised beam cross-sections generally tend to
be with a larger profile height, which leads to a larger stiffness with
reduced deflections.

8. Conclusions

An advanced numerical model has been developed to study the
local/distortional buckling behaviour and deflections of CFS lipped
back-to-back channel beams and to verify the efficiency of a previously
proposed optimisation framework. The model takes into account the
non-linear stress–strain behaviour of CFS material, the strain hardening
effects at the round corners due to the cold-working process, and the
experimentally measured initial geometric imperfections. The numer-
ical model was validated against an experimental program on a total of
6 lipped channel back-to-back beams. The validated models were then
used to assess the accuracy of EC3 and DSM design methods for stan-
dard and optimum design solutions. Based on the results presented in
this paper, the following conclusions can be drawn:

(1) The ultimate capacity of the sections predicted by the FE models
was on average less than 2% in variation from the experimental
results. The proposed FE model was also successful in capturing the
failure shapes and predicting the bending strengths of CFS back-to-
back beams subject to local and distortional buckling modes. The
numerical results also showed that local and distortional buckling
was observed in all specimens while no lateral-torsional buckling
was observed which agrees well with tests.

(2) Both DSM and EC3 resulted in accurate predictions of the beam
flexural strengths. While DSM usually led to underestimated results,
EC3 predictions were up to 10% overestimated with a standard
deviation of 5% and 9%, respectively. Using EC3 reduced cross-
sectional property to calculate deflections slightly overestimates the
deflections at serviceability load. However, using linear elastic full
cross-sectional properties provides consistent underestimation of
the deflections (8% on average).

(3) The bending capacity of the optimised CFS beams obtained from
validated FE models and EC3 design methods were up to 20%
higher than standard lipped channel sections with the same amount
of material. The previously proposed optimisation framework leads
to cross-sections with higher web height, thus increased stiffness.
The results demonstrate the efficiency of the adopted optimisation
method to improve the bending capacity and stiffness of CFS sec-
tions.

(4) It was shown that, in general, taking the geometric imperfections
into account can change the FE predictions by 7%. The strain
hardening effects at the round corners due to the cold-working
process can be ignored when improving the capacity and stiffness of
CFS beams is the main objective.
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