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Abstract: Bringing up of a small-scale mission assurance and engineering
workflow is described. The experiences learned in the ZACUBE-1 mission
prompted the development of an automated systems engineering platform leading
to conformity in system design, test, and verification. The platform implements
the methodology of systems engineering by coordinating diverse elements of
the lifecycle and by incorporating the tools involved. The phase B/C activities
of system modelling, simulations, prototyping, and design may be unified to a
compounding effect and raising the level of the system view. The Verification and
Validation (V&V) is achieved by integrating a test and measurement facility to
the platform. With the platform, we accomplish rapid electrical and functional
test and verification of the CubeSat subsystems and thermal validation in −20 ◦C
to +50 ◦C cycle. The platform is automated by an application software which
executes functional and thermal environment tests and provides support for
requirements flow, system definition, embedded development, and simulations
by integrating real-time target hardware. The platform is exploited in validating
an S-band communications subsystem while economizing time and obtaining
valuable insight into transmission performance under thermal loading.
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1 Introduction

CubeSat development commonly is characterised by decisions that are often revised late
in the engineering cycle. The decisions generally relate to the mission objectives, system
requirements, payload/bus configurations, and launcher selection. To a great degree, the
belated determinations and consequently casual and high-risk driven systems engineering
is the very essence of the CubeSat missions. That is, the project stakeholders enjoy
unprecedented liberty that is nonexistent in the high budgeted, larger missions.

The open-ended engineering, however, may result in re-definition of the subsystems or
the system. A significant change may result in the different performance of the synthesised
sub/systems. Proportionally, a flexible design methodology should accompany flexible
Verification and Validation (V&V) methodology. With this notion in view, the French
South African Institute of Technology (F’SATI) has developed a test and V&V platform.
Although the platform concentrates on test and verification, it has been conceived through
the systems engineering approach in order to accelerate the lifecycle processes and to readily
adjust to the project dynamics. The platform enables, at the acceptance-level test, rapid
V&V of the assembled and integrated hardware and software units. The vision behind
the platform is about cutting the engineering cycle by overlapping the iterative phases of
design, development, test, and V&V, as soon as the subsystem prototypes are available. The
platform aids to the broader scope mission assurance goal.

A successful systems engineering methodology, connecting the highest conceptual
level and the low-level details of performance, must support a high degree of automation
and interfacing of the tools involved in the activities. The platform enables the systems
engineering activities to advance and retrace when necessary. In effect, the platform is a
structured engineering environment for design and test in which modelling, simulation,
development tools, software and hardware modules as well the test and measurement
equipment are integrated. The integration occurs based on the principles of software and
network engineering and formal interfaces. The platform acts as a cohering, central gear to
the model-based and automated systems engineering activities. Once fully integrated, the
platform provides a virtual prototype of the system under consideration by collaborating
with the elements of the system at different complexity and maturity levels in the lifecycle.
Constituents of the resulting heterogeneous system are abstract or refined executable
models, behaviours through simulations and flight-like software and hardware units that are
functionally and electrically verified for performance. The tool based environment assists
in repetitively, quickly and correctly analysing the system behaviour by experimenting with
diverse modelling and simulation scenarios under orbital conditions. The underlying idea
of the platform methodology is to unravel the mysteries on system behaviour and resolve
clashes even though the intended, feasible system has yet to be fully realised.

An important aspect of the platform during design and testing is the manifestation of
physical effects which are abstracted through the environmental enclosures, the Automated
Test Equipment (ATE) or computer simulations. The physical environments producible
are thermal cycles due to eclipse and sunlit conditions, geomagnetism and radiated
emissions of the on-board radio frequency equipment. The software simulations are used
for incorporating the in-orbit effects such as solar heat, radiation, geomagnetic field, and
atmospheric drag.

The platform is developed in a phased way. This approach is adopted to avoid a hefty
and immediate one-time investment. From the success and the lessons learned through
the ZACUBE-1 mission, the expertise and legacy equipment are used to piece together
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a test automation setup. Initially, the setup achieved functional verification and electrical
performance evaluation of a basic S-band transmitter. The capability was then extended to
a line of communications subsystems operating at VHF, UHF and S-band frequencies, and
having different characteristics of the digital radio. A feature for Device Under Test (DUT)
configuration was added to characterise all possible attributes of the subsystem DUT. Then
followed the automated test capability for electrical performance. Finally, a test loop for
thermal cycling was added which nested the DUT configuration and functional test loops.
The expansion of the platform to encompass more activities anticipated in the systems
engineering is an on-going process.

This paper presents the systematic thinking and the rationale in architecting the platform,
its interfaces and exploiting the platform in a manner that complements development and
testing. The usability, expandability and the reconfigurability of the platform are its quality
metrics. The main elements of the platform are a test and measurement testbed for rapid
V&V discussed in Section 3, an instrumentation bus hosting a variety of physical layer
interfaces and communication protocols detailed in Section 4, and an automation testware
called Missurance discussed in Section 5. An important dimension noted in that section
is the software lifecycle and the accommodation of change, which is supported in the
testware through modularity and adaptability. The environmental validation aspect of the
platform is presented in Section 6. A summary of the test results on the platform usage on
a communications subsystems is presented in Section 7. These sections comprise the main
body of the paper. We begin, however, in Section 2, with analysis on the state of modern
systems engineering approach in the CubeSat systems engineering standardization forum
and the need for greater functional verification coverage. In Section, 8 we remark major
observations from this authorship.

2 Motivation and Relationship to the State-of-the-Art

In the large spacecraft industry, modelling (Rainey, 2004; Pintér, 2013), simulation
(Eickhoff, 2009; Fortescue, 2011) and the framework (Adamsen, 2000; Larson et al., 2000)
based systems engineering are established practices. Rather than the theory of efficient
and feasible systems design, the reasons for a disciplined approach to systems engineering
usually are traced back to experience and observation (Endres, 2003) such as painful lessons
learned in the previous spaceflight (Leveson, 2004). Other reasons include the lack of
coordination in the engineering activities as well as the insufficient flow of information
in design processes (Adamsen, 2000) and most notably, according to Harland (2006),
compromising design in wake of pressing schedules, short test times and the cost running
exuberantly. According to Shiotani (2017), a survey of 28 developers from academia,
government, industry, and private enterprise, showed a strong response to hardware and
software V&V. Still, it does not come as a surprise in the small satellite landscape that
the high failure rates are compelling (Betancourt, 2014; Bouwmeester and Guo, 2010;
Dubos, 2010; Swartwout, 2013; Tafazoli, 2009), and portray a grim picture of uncoordinated
systems engineering.

Within the CubeSat developers community, two activities related to the lifecycle are
noteworthy. The first is an initiative by the Space Systems Working Group (SSWG) of the
International Council on Systems Engineering (INCOSE). The SSWG aims to develop a
CubeSat reference model (Becker, 2007) covering the lifecycle (Engel, 2010, NASA, 2009).
The fundamental idea of the reference model is to manage system complexity from the get-
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go by providing a framework in which the information flow is consistent between the project
phases. The developer communities may derive the mission specific CubeSat model from
the reference model (Kaslow et al., 2015). Once mature, the reference model will be capable
of defining the relationships between the top-level concept, mission scenarios, functions
and the interfaces between system entities. The operation scenarios could be concisely
represented by abstract modelling and simulation. Most CubeSats are highly integrated,
constraint-driven, often use standard, procured subsystems built with commercial-grade
components, and only differ in the mission applications. The CubeSat projects are usually
nebulous to a high degree beyond formal preliminary design review. The reference model,
thus, can be adapted to pliable missions. The SSWG aims to achieve its objectives by
presenting the model entities graphically in the domain-specific SysML language. Overall,
this work is part of the Model-Based Systems Engineering (MBSE) paradigm, contrasted by
the conventional paper-based activity. In the MBSE approach the technical requirements can
be represented as executable specification or a simulation model which drives development,
therefore, parametric traceability can be ensured across the project phases. Furthermore, due
to modelling being meta (Becker, 2007), high simulation speeds are possible easing trade
studies or what-if scenarios. So far, the SSWG has demonstrated a first-pass of a modelling
framework that formally generates a basic specification of a generic CubeSat (Spangelo
et al., 2012). Then, the framework was applied to a real mission (Spangelo et al., 2013).
When the high level of abstraction was inadequate to describe complex mission scenarios or
system algorithms, the SSWG integrated application-specific, numerical simulators in the
framework (Anderson et al., 2014). Most recently, a top-level functional architecture was
obtained (Kaslow et al., 2017). Clearly, the SSWG has proceeded on to capture the concept
lifecycle activities of Phase-A/B and until early Phase-C design (Kaslow et al., 2015). The
approach is top-down and has yet to mature to consider the use of physical design and test
aspects.

Secondly, some groups emphasise environmental qualification. For example, the effort
outlined by Cho et al., (2012) is the first account of comprehensive tests conceived for the
nanosatellite mission success. Kang et al., (2015) has reported combined load testing on
a nanosatellite, while Maldonado et al., (2014) outlined a test facility for different orbital
conditions. These approaches are at the bottom in the lifecycle and suited for assembly,
integration and test activities that assume that the functional testing of physical design has
been conformal. The emphasis being on qualification, these works do not address functional
verification. The dominant and urgent need of the CubeSat developers is the functional
verification due to high failure rates and mission losses owing to design errors that result in
incorrect functionality (Betancourt, 2014; Swartwout, 2013).

2.1 MBSE Candidate Methodologies

For the systems engineering lifecycle, at least five MBSE methodologies have been
identified by INCOSE MBSE Focus Group in a survey by Estefan (2008). However,
these methodologies largely apply to “desktop engineering” in the early project phases of
requirements analysis, concept development, trade studies, system definition or architecture
development through simulation models. The survey acknowledges that any methodology
would rely on the underlying MBSE toolset. Obviously, as the concept, analysis and design
mature and the project moves to candidate system implementation, test and verification of
the physically realised system, different methods would be required (Maier, 2000) and the
toolset needed in those phases will be entirely different. In this paper, we alleviate the MBSE
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methodology by addressing the missing link between the virtual design and the physical
test and V&V through a platform that spans over, to a high degree, the in-between activities.

2.2 Our Contribution

In absence of a platform, the activities of design and test are decoupled as physical
design is engineering centric with the expectation of design iteration, while V&V is test-
centric expecting limited or no iteration. In a properly funded and staffed organisation, the
placement of sufficient processes ensures handoff from one phase to another. In the CubeSat
developers community, the boundaries of project phases are usually not very clear. With the
present work, we bridge the activity gap after design and before qualification phases. This is
done by integrating automated testing and V&V in the development lifecycle. Our approach
is meet-in-the-middle and platform-centric. The platform provides linkage for Phase-A to D
activities. The platform connects to the modelling tools, computer simulations, prototypes
or flight hardware as well as to the environmental chambers. The aim is to integrate the
various elements of spacecraft to determine the anomalies, their impact on the system and
to reduce the developmental cost and time.

Figure 1 Vee model applied to the top-down and bottom-up activities in the lifecycle.
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The methodology is based on the Vee model (Forsberg et al., 2005) of the project,
widely used in the aerospace (ECSS, 2009) and software (Pressman, 2010) industries and
elsewhere (INCOSE, 2015). The model is iterative as described in Figure 1, but later stage
iterations ensue penalties on schedule and costs depending on the required project phase to
be drawn back.

Central to the platform is the capability of interconnectivity of the project activities
by integrating a multitude of tools utilised in those activities. Therefore, requirements
conformance, model abstractions, and refinement, scenario experimentation through
simulations, verifying functional performance based on measurement data and subjecting
the realised systems to limited environmental conditions may be visualised—all in one
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go. The gain is a heterogeneous platform that may be used as a satellite virtual prototype
or a satellite simulator. Clearly, for the methodology to be successful, a high degree of
automation and Application Programming Interface (APIs) are necessary for the platform.

Figure 2 Design and test methodology are encapsulated in the platform to ease management of the
explosion of system complexity. The Missurance application provides necessary
interfaces and automated test control. The dataflow principle is used to channel
information from various computer-based systems engineering activities in the platform.
Vee style evolution of the system is accomplished through collaborating tools when
system elements are integrated or the inputs are modified, making possible speedy
re-assessment of total behaviour, impact analysis of systems parameters, and the trade-off
studies.
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3 Architecture of the V&V Platform

The platform-oriented approach ensures the flow of information from system definition
and design to the point when the physically realised design is verified. The topology to
the approach is illustrated in Figure 2. The information typically consists of requirements,
outputs of the executable models, the technical analysis carried out in spreadsheets
(Schumann et al., 2010) and data off the live simulations. The information collectively
defines the system or the subsystem at the preliminary level. Once processed, the information
precipitates to system specification against which the physical realisation of the target
system will be made. All activities above Phase-C and the necessary connectivity to the
tools that participate in Phase-A/B activity are shown at the top of the platform. The flow
of information from these activities is input to the platform.

The physical system is shown to be connected below the platform. The platform drives
the instrumentation. At the core of the platform is the Missurance software that controls
the test and V&V equipment and receives empirical data thereof when the functional and
environmental tests are carried out. Therefore, the platform can flag if the functional tests
and environmental validation data meets the design and performance requirements and the
test specification and whether new modelling and simulation scenarios need to be tried out.

In the remaining section, we discuss the overview of the platform, the principles for
selecting the particular technology and how the collection of test frameworks, software
development services and tool integration facilitate the construction of the platform.
The possible interaction of the platform with the standard MBSE methodologies and
strengthening of the development process will also be addressed. An important aspect in
realising the frameworks is the identification of hardware and software interfaces to enable
the flow of information in the MBSE methodology; the interfaces will be highlighted.

3.1 The Development Environment

As the methodology stresses test and verification, a test and measurement driven
development environment is chosen. LabWindows™/CVI™ by National Instruments (NI)
is the ideal candidate for this purpose. CVI (‘C’ for Virtual Instrumentation) provides
instrumentation, measurement, automation, and control solutions through a huge cache of
instrument drivers, and interactive C-language based development. The instrument drivers
are generally supplied free of cost by NI or the instrument manufacturer. The drivers
can be easily developed in the LabWindows CVI or the companion LabVIEW package.
The CVI package utilises the power of ANSI C, the standard C library, easy design of
the user interface and the necessary services needed to develop software such as editing,
monitoring, debugging, source code protection and project management. Other important
features of the package are library support for data acquisition from assorted hardware
and software interfaces of the test equipment, post-processing, and visualisation of the
measured signals, controlling the test flow and the test instruments. Data acquisition and
the instrument control tasks can be interactively created. Prior to the integration, if the
code has been verified through interactive execution, the developed application is robust.
Moreover, through interaction, the hardware interfaces and instrument responses check out,
the measurements tend to be deterministic and consistent, and the test logic substantiates the
control flow before a full test suite is deployed. The desired aspect across a complex toolchain
is the support for debugging, which the CVI environment provides through viewing the
execution profile while monitoring the memory use, tracking resources, task allocation and
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viewing the spawned processes, thread tree, variables, call stack and also by setting a watch.
Thus, the stock of facilities in the development environment is comprehensive and provides
rich infrastructure to design high-quality applications.

3.2 Interface to Requirements, Modelling and Analysis

Capturing of the mission objects by deriving mission and systems requirements and
the engineering parameters may be accomplished in NI Requirements Gateway. The
framework provides requirement management capabilities—linking, visual traceability,
relationships/dependencies, coverage analysis, categorising, impact propagation and
reporting. Moreover, the solution has an interface that is compatible with the aerospace
industry favourite DOORS requirements management tool. DOORS is supported in
Harmony-SE which has been identified as an MBSE methodology by Estefan (2008) of the
INCOSE MBSE Initiative team.

Requirements may be represented in UML/SysML models which when executed
generate systems parameters. NI GOOP development framework draws a diagram and
generates code or may generate a diagram from the code. Similar diagrams may be generated
in LabVIEW State Diagram toolkit to describe discrete events, states, and state changes.
This framework is similar to the JPL State Analysis, another MBSE methodology shown
by Estefan (2008). A more practical tool is the NI Statechart module for physical design.
If used with the NI’s Real Time, FPGA or C Generator modules, the Statechart description
may be converted to embedded code for the target hardware. This capability is ideal in
designing the spacecraft subsystems in which intelligent hardware/software items are used
such as the on-board mission software, bi-level ON/OFF command handling unit, control
algorithms, switchable devices to deploy mechanisms or microcontrollers to manage the
power profile and regulate the power bus.

A common practice in the space systems engineering is to model and analyse system
technical budgets in the spreadsheets e.g., mass, power, RF link and reliability budgets,
and the costs. The budget data may be directly utilised in the analysis and verification of
the requirements, in system modelling or during testing. Similarly, the measurement data
may be written to the spreadsheet. NI LabVIEW Report Generation framework graphically
creates reports in Microsoft Office products. The platform frameworks may exchange the
spreadsheet objects using the ActiveX Automation in a client/server topology. ActiveX
provides methods that execute functions on the spreadsheet objects, and have properties
that are returned as variables. The spreadsheet determines the scope of its objects to be
accessible to each method or property.

3.3 Programming Interoperability

The language of choice for the processor or microcontroller-based designs is C. The run-
time overhead of C is lower than C++ and other programming languages especially when
run-time libraries are used. The C compiler produces smaller object code for the same tasks
written in than other languages (Plamauer, 2017), therefore C is fast. Also, C is native to
interact with embedded hardware services.

C is also easily portable, both cross-compiler and cross-processor. For precision
timing needs, the NI Real-Time module enables deployment of run-time applications
from Windows/PC host to the dedicated hardware. The application routines used in the
platform may be utilised in the DSP or microprocessors of the on-board computer, attitude
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determination and control, and imaging payload subsystems. Such support in a CubeSat
mission to the embedded engineering is expedient. For instance, the platform may be
augmented with real-time operating systems e.g., Phar Lap and VxWorks. Similarly,
the ARM, x86 or PowerPC development toolchains such as Visual Studio, Eclipse,
Linux/GNU—all having C nativity, may be connected. Ivanov (2017) has presented a
behavioural modelling framework for flight software design and V&V in which top-level
software architecture may be broken down to detailed design and automatic C++ code may
be generated for the target processor. The output from such low-level development may be
coupled to the platform.

The C based development opens avenues to integrate other C/C++ add-ons that can
enhance modelling, designing and testing capabilities. For instance, MATLAB Coder
and Embedded Coder generate C/C++ code portable to target processors or executions
to hardware/software in the loop systems. Modelling and analysis capabilities may be
augmented by C/C++ based signal processing and mathematical libraries in the public
domain such as Signal Processing Using C++ (SPUC), GNU Scientific Library (GSL),
Blitz++ and IT++.

The advantages of C based APIs are also tremendous. Many operating system kernels
are written in C. Data may be exchanged over distributed computers or same platform
computation engines using Inter-Process Communication (IPC) sockets calls or systems
calls of the operating system. This is advantageous when a high-end computer is needed
for a particular simulation or numerically intense computation and data is to be imported.
The C types are useful in data exchanges between APIs and for encapsulating control and
measurement data as abstract types. Also, C data types are recognised in C++ and Python.
The shared library interface in MATLAB provides all C scalar types and passing them by
reference.

3.4 Simulator Coupling—Continuous Time and Discrete Event

The majority of the MBSE methodologies are SysML or state diagram based. The model
representation in a state diagram or SysML is the discrete event and usually abstract. SysML
activity diagrams, however, are supported by continuous time flow at the ports. The flow
rates represent infinitesimally sampled tokens or transactions which are effectively at 0s
δ delay in terms of discrete event simulation jargon. However, the computation itself for
the streaming flow is still discrete. The model scope and fidelity of such representation are
inadequate in orbital analysis, attitude control simulations or in mission scenarios. The use
of reference coordinate transformations and the space environment effects (gravitational
potential harmonics, geomagnetic field, atmospheric effects, solar cycles, and the radiation
hotspots) in modelling contributes complexity in the description. The formalism of time in
such type of model representations is the continuous time and the underlying mathematical
representation is differential algebraic or ordinary differential equations. These execution
semantics of the model complicate further the numerical simulation. Thus, application
specific tools built for the particular class of problems and having speciality modules,
toolboxes and numerical solvers are generally employed. On the other hand, the specialty
tools typically lack discrete event modelling capability, the levels of abstraction and
simulation speed rendered by discrete event modelling.

Studying several behaviours of the system concurrently warrants global, hybrid
simulations—mixed discrete and continuous-time (Kawahara et al., 2009). So arises the
problem of simulator coupling which entails the issues of interfacing, controlling the
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simulators and receiving the simulation data. During the preliminary design phase, the
System Tool Kit (STK) and MATLAB/SIMULINK simulators play a vital role in mission
analysis. Both tools host socket interfaces for cosimulation. IPC and socket communication
is mainstream in C when programming networks. Thus, when attitude dynamics and
control scenarios, orbit propagation coverage, analysis of in-orbit radiation, temperature
and magnetic flux power are analysed with STK, the simulation data may be imported to the
platform’s application software—Missurance. STK simulation data may be analysed using
advance, post-processing and visualisation capabilities of MATLAB/SIMULINK, a feature
that STK lacks, and imported to other tools in the platform through sockets. The mission
simulation may be further complemented by modelling the sensors, communication, control,
and signal processing routines in MATLAB/SIMULINK.

Similar to the mission and control design simulators, the Electronic Design Automation
(EDA) simulators may be coupled. The general need of C level access of EDA simulation
is in verification, cosimulation, co-interaction of models across heterogeneous systems and
portability of simulation data to virtually any API. An EDA simulator may be employed
when the system has been decomposed to finer digital implementation and the subsystem
level behaviour is to be brought about. Typical use cases arise in simulating Register Transfer
Level (RTL) models written in Hardware Descriptive Language (HDL) or the netlists or
IP cores provided by the third parties. Both the RTL and the netlist will eventually be
implemented as reconfigurable logic in the subsystem. If a physical FPGA device is not
ready for prototyping, then during testing of the larger system, golden RTL model may be
used instead. The data at the ports of the HDL model will be accessed as C types. The ports
may be read or written through the HDL simulator’s procedural interface. For example,
the RTL description of the software defined radio, Ethernet/PCI comms interfaces, USB
interface for the camera and image data storage as well as compression algorithm may be
coupled as a virtual prototype in the platform, much earlier than the physical synthesis and
integration of other glue logic to the chip.

The C level access of HDL simulation objects is facilitated through the simulator’s
programming language interface. The interface provides the capability to write or read the
HDL objects as C data types. Major EDA vendors host industry compliant VHDL (VHPI
IEEE 1076c-2007) and Verilog (VPI IEEE 1800-2009) procedural language interfaces in
their digital EDA tools. Using the procedural interface, during the simulation the user may
dynamically write to the hierarchical models, their instances, ports, signals, and variables.
The user may retrieve simulation object properties e.g., test vectors, current cycle and the
next δ delay, as well as the simulation data. The user could debug the HDL design and
add assertions in the code to check whether tasks are accomplished or specific code is
executed. Algorithm 1 illustrates the flow of typical tasks in designing an API for coupling
digital EDA simulators. Besides the EDA level, the newer Electronic System Level (ESL)
SystemC/SystemC AMS simulators (Rigo et al., 2011) and their variants may be coupled
for their backbone being C/C++.

The procedural interfaces allow reading and writing to the simulation objects from
external sources. In both cases, the initialising and static or dynamic modification of the
data is doable. In course of running a digital simulation, due to the sequentiality property
of the digital circuits, it is practically acceptable to drive logic values from external drivers
on the gate inputs or on the boolean variables. In analogue simulations, however, due to
the simultaneity property of analogue description, instantaneous modification to a variable
or simulation object such as voltages and currents, induces topological problems in the
description of the continuous time system. That means writing to simulation objects would
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add new voltage or current sources in the description, and essentially a new differential
algebraic equation system would manifest requiring new initial conditions during the
simulation. To date, the mathematical and numerical integration complexities (Vlach, 2004)
have forestalled the development of external interfaces for the write-access to the analogue
simulators. Similarly, the coupling of analogue EDA for read-access of the dynamics
of full signal envelope, such as slew rate and wave smoothing, is also troublesome due
to synchronization problem under adaptive integration step size and also due to global
convergence. However, localized events of interests or analogue events may be detected
and passed on e.g., zero crossing and threshold levels. Therefore, the current technology
prevents coupling circuit level analogue simulations in the platform. Nevertheless, instead of
the EDA, analogue behaviour may be abstracted in the synchronous dataflow-based discrete
time models of computation as those in MATLAB/SIMULINK and they are integrable.

3.5 Hardware in the Loop (HIL)—FPGA Module and C API Interface for FPGA

This module supports graphical FPGA development as a Virtual Instrument (VI)
on reconfigurable I/O targets. That is, the application using DSP algorithms and
communications protocols runs on Windows PC while the code is compiled and synthesised
for target FPGA hardware with cycle accurate timing. Additionally, the development
assumes no prior knowledge of the HDLs or the peripheral hardware around the FPGA on the
PCB. The FPGA VI component may contain logic needed for en/decoders, pulse shaping,
comb filters, bit serialiser, quadrature phase multiplier, decimators, communications
interfaces, conditioning and monitoring, timing and triggering routines as well as for the
hardware prototypes and the HIL simulator. As the requirements change or when new tests
and measurement scenarios are required, the graphical VI block may be reconfigured and
resynthesised on the fly.

The NI FPGA Interface C API is a development tool that may be used to write C/C++
applications. This interface is like VPI and VHPI, only the C access is to the real device
than the RTL. The applications so developed provide real-time I/O to the LabVIEW FPGA
bit streams. The application may be directly used in the CVI and low-level access to the
control and data of the logic in the LabVIEW developed FPGA hardware will be available.

The need for HIL based simulations arises in integrating mechanical actuators, using
hardware acceleration in the flight dynamics controllers, sampling a large number of I/Os
and verifying of physical operations (Corpino, 2014).

3.6 Automated Test Equipment (ATE)

Frequent and extensive testing is facilitated by using the ATE in the platform. In the lifecycle,
the ATE is used in three distinct phases. First during benchtop testing the developmental
models. Secondly, in the functional verification of models that fit flight form factor, whether
at the unit, subsystem or spacecraft level. Lastly, when the functionality is validated
under the environmental conditions. The ATE consists of various electrical testsets such as
power supplies, DMM, power meter, oscilloscope, signal generators, spectrum and network
analysers and satellite modem. Initially, the bulk of the testing is performed on checking
the nominal operation of the subsystems and modules through ON/OFF switching and
voltage and current measurements. These sanity checks verify the correct telecommand
sequence and telemetry collection. Once passed, functional verification is conducted through
performance tests.
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4 The Instrumentation Bus for Communications, Control and Data
Acquisition

A number of communication interfaces and protocols enable acquisition of measurements,
and the command and control of the ATE, test jigs and DUT connected to the instrumentation
bus. The de facto interface in the test and measurement industry is the General Purpose
Interface Bus (GPIB). Converter devices of many other physical interfaces from or to
GPIB are commercially available. The degree of equipment connectivity and the richness in
driver software around GPIB have been the fundamental enablers to expand the automation
campaign to a more comprehensive electrical-functional test and verification coverage.

In the platform, IEEE 488.2 GPIB, LAN, USB, RS-232, UART, I2C and wireless
interfaces are supported. The software layer to the interfaces is supported through C libraries
for Virtual Instrument Software Architecture (VISA), TCP, UDP, DDE services, ActiveX
exchange, GPIB, and serial communication types. There is library support for data streaming
between applications and for functions to receive files and commands from the remote
servers on the internet. Certain equipment requires custom interfaces, these are programmed
in the platform e.g., datalogger of the thermal chamber uses propriety frame formats on
Modbus tunnelled through TCP/IP and humidity is measured on a wireless interface to the
sensor. The pool of interfaces aids the access of the hosting test computer to the devices on
the entire testbed.

4.1 Abstractions in Instrument Access

Three levels of access to the instruments are possible depending on the sophistication and
complexity of the instrument. The first level is the Virtual Instrument Software Architecture
(VISA) specification, an I/O API of the test and measurement industry. VISA is maintained
by the IVI Foundation. The second level is the manufacturers or third-party high-level driver,
typically a C driver. The most primitive and lowest level and perhaps the most useful one
is the legacy Standard Commands for Programmable Instruments (SCPI), also maintained
by the IVI Foundation.

4.1.1 VISA Interface

VISA is a powerful I/O interface for accessing ATE for configuration, troubleshooting
and most importantly programming the instrument. The software interface communicates
over the ATE physical layer interface whether GPIB, LAN, serial or USB. The NI’s
implementation of the VISA architecture allows accessing VISA standard features through
libraries. To troubleshoot the ATE, I/O traces may be set up with parametric probing and
assertion of fail/success return calls in the test and measurement code. The interactive control
of the instrument through graphical interface renders access to the attributes, message
passing, register operations and capturing events based on interrupts on the interface. The
information returned (process and thread IDs, buffer content, time stamps) helps locate the
problem in the test and measurement code and isolating the faulty response of the ATE.

4.1.2 Interchangeable Virtual Instruments (IVI)

The VISA architecture simplifies the instrument control, however, the I/O and commands
are still needed for finer control. To solve this problem, C class drivers are written to
wrap up (Lopes, 2012) the low-level communication detail (Cheij, 2004). Interchangeable
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Virtual Instruments (IVI) is an industry standard software interface for instrument drivers.
Its primary aim is interchangeability and compatibility (O’Donnell, 2002) by formalising
test equipment specification for programming based on the common features. The interface
works with the VISA layer and helps maintain the instrument drivers.

4.1.3 Standard Commands for Programmable Instruments (SCPI)

The SCPI language (Gutterman, 2004) is a pure commanding syntax that is independent of
the underlying instrument’s hardware or protocol layers and thus wrapping it in any higher
level language poses no difficulty. If communications with the instrument using other modes
fail, the inelegant SCPI usually works. It is based on pure ASCII syntax. It is common and
often necessary to mix abstraction levels in the test and measurement applications as shown
in Listing 1.

Listing 1 VISA, IVI and SCPI abstractions for calls to the instruments and data logging
/* VISA call for the right address of ATE and connexion */
char VISABufferN9010A100;
GetCtrlVal(N9010ATabHandle, N9010A_N9010APortLbl, VISABufferN9010A);
/* Connect to the ATE */
ViSession sess;
res = viOpen(rm, (ViString)VISABufferN9010A, VI_NULL, 50000, &sess);

...
/* IVI C driver level call for measurements using the signal analyser */
if(AutoStateCPScreenShot == 1){// RF Channel Power

N9010ASwitchScreenCPExt();
snprintf(TempBufferChar, 5, "%f", actualTemperature);
N9010AAutoScreenshotExt("24dBm", TempBufferChar, AutoStateCPScreenShotDir);
}

if(AutoStateOBWScreenShot == 1){// Occupied Bandwidth
N9010ASwitchScreenBWExt();
snprintf(TempBufferChar, 5, "%f", actualTemperature);
N9010AAutoScreenshotExt("24dBm", TempBufferChar, AutoStateOBWScreenShotDir);
}

if(AutoStateACPScreenShot == 1){// Adjacent Channel Power
N9010ASwitchScreenACPExt();
snprintf(TempBufferChar, 5, "%f", actualTemperature);
N9010AAutoScreenshotExt("24dBm", TempBufferChar, AutoStateACPScreenShotDir);
}
...

/* Calls of mixed IVI C driver and SCPI call for measuring 12dB SINAD on UHF channel */
if (sinad > (target + 5)){

ampl = ampl - 2;
sprintf(Buffer, "%s%0.1f%s%0.5f%s", "RFG:AMPL " , ampl, " DBM;FREQ ", freq,
" MHZ;AMPL:STAT ON");
write8920(Buffer);
sinad = read8920_f("MEAS:AFR:SINAD?");
}
...

ExcelRpt_SetCellValue (worksheetHandle, buf, ExRConst_dataDouble, sinad);

4.2 Interface to Environmental Validation

Environmental validation, when it can be performed in conjunction with functional
verification, requires interfaces to the environmental chambers. Three types of
environmental simulations are considered. These are temperature cycling, electromagnetic
radiated immunity, and geomagnetism. A thermal chamber, a reverberation chamber, and a
Helmholtz coil cage have been integrated into the platform. The interface to the reverberation
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chamber is through an Arduino device. Two stepper motors rotate the mechanical stirrers
to change the electromagnetic field inside the chamber. The Helmholtz cage is used to
simulate the earth’s magnetic field in 3-axis by changing the input DC currents to the coils.
The digital magnetometer has RS-232 output. Alongside the chambers, the necessary ATE
is on the GPIB bus. More details on environmental validation follow in Section 6.

4.3 Interface to the Device Under Test

The V&V coverage is carried out on the complete feature set of the test article. This
requires on the fly reconfiguration of the DUT. The reconfiguration is an important step
before the execution of the test suite and therefore the necessary interfaces to the test
fixtures (dashboards) that enable setting up the DUT have been programmed. Generally,
a serial interface is required in the intelligent component of the DUT to put it in different
modes. In the comms payloads, reconfiguration is through the I2C interface by setting the
modulation schemes, RF power levels, carrier frequency, data rates, transmission modes,
and the software protocol interfaces (AX.25 or transparent mode to pass data directly to
the radio). The modes are set for synchronisation, data transmission or the data testing.
Different configuration combinations are set on an integrated UHF-transmitter and VHF-
receiver subsystem. The transceiver is implemented in 9600bpsGMSK and 1200bpsAFSK
modulations, simplex/duplex mode, selectable frequency within the 400MHz to 420MHz
band and adjustable in 25kHz steps, and configurable output radio power from 27dBm
to 33dBm. The valid combinations are autonomously loaded in the radio FPGA using an
Arduino device during execution of the test loops. The I2C optionally can receive voltage,
current and on-chip temperature telemetry of the DUT.

5 Architecture of the Testware—Missurance

Missurance is the application software and testware built upon CVI and utilises the facilities
of the V&V platform described in sections 3 and 4. It is developed as a graphical User
Interface (UI). The UI implementation helps keep the backend code relevant to graphical
controls at the front panels. Ease of use to the tester is another gain. The application
is architected to support test-driven development of the CubeSats. Therefore, the V&V
platform and the testware must be flexible to accommodate the scalability and model
philosophy (Jacklin, 2015) in a CubeSat project. The architecture has been conceived to
address agility in test and V&V methodology and for long-term system diversity needs in
the CubeSat programme. To this end, the simplicity of the software architecture has been the
main driver. Figure 3 shows the main views of Missurance and the bussed communications
topology.

Missurance allows reliability, precision, and determinism in the electrical measurements
since the test executive data structures are verified in interactive calls first. Missurance is
an evolving and futuristic test and V&V software. It is projected to integrate various facets
of engineering development to a common platform. It is an event-driven environment. The
current version executes three hierarchical loops: configures the DUT, performs functional
testing of the DUT using several ATE and the superlative loop that runs the functional test
suite and optionally under a programmed thermal cycle. This illustration is shown in Figure
2 in the yellow shaded boxes. The test control logic is implemented as callback functions
that execute test code in response to the user generated events, timed events or the events
generated by the operating system calls. The test control flow is explained in [Zaidi, 2017].
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Figure 3 Missurance user interface and tabular views.

The initial release of Missurance was sequential programming that has been changed
recently to multi-threaded style for context-switching and better resource allocation while
executing simultaneous and multiple tests on a variety of ATE. This style improves
parallelisation by continuing running other tasks while waiting on the ATE to finish their
measurements. On bus time-outs, the style prevents the application hang-up.

5.1 Productivity Metrics

Few quality assurance metrics of Missurance architecture and their need in the MBSE
development cycle to benefit the stakeholders are discussed.

5.1.1 Tabularity

The UI is a tabular interface. The tabular approach was adopted for an extensible and
modular architecture and for maintainability. Additionally, the tabular approach allows
minimal utilisation of the UI area as the number of options required to configure a specific
test and to set up the related ATE may overfill the display space and may possibly confuse
the user. The tabular approach allows navigation between different tabs if multiple ATE is
required.

The UI is designed to support three types of views: DUT centric, ATE centric and
functional test-centric view that includes optional thermal validation. Depending on the
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user concern, test applications may be executed for the test jig that configures the DUT, for
the tests belonging to a specific ATE or for full functional test suite on the article under
the thermal cycle. Tabularity also encapsulates abstractions. In the ATE centric view, the
information related to a specific test instrument is encapsulated. Figure 3 shows the ATE
centric view in which all relevant tests of a particular instrument are collated. A user may
have a need to run power measurements. The instrument-centric view enables setting up
the power test and modular design allows running it independently. The instrument-centric
view is useful for testing the unit level assemblies. In the test-centric view, multiple related
tests are grouped together. These are usually the tests related to the functional performance
e.g., evaluation of modulation impairments on a particular band of frequencies, channel
power, Occupied Channel Bandwidth (OCBW), Adjacent Channel Power (ACP) and the
Vector Signal Analyser (VSA) driven measurements such as Error Vector Magnitude (EVM)
are organised. The highest and most elaborative view is the test-centric view when the
thermal validation is enabled, upon which, all information is bundled together, whether the
DUT/ATE configurations, functional tests, visual displays or the required and measured
thermal profiles.

Besides separation of concerns, one reward of enforcing tabular design is that multiple
developers can severally code test suites that are integrated into the main architecture.

5.1.2 Usability and Reusability

High usability is essential for frequent use of Missurance. In particular, the UI hides the
underlying detail of test and verification. E.g., while setting up the ATE, its address and
configuration of the tests can be encapsulated in a single button. Exception handling and
error codes are translated to meaningful messages to precisely locate the problem and ease
the troubleshooting. Many test suites use the same ATE and similar test logic. Common
code, callback functions, and UI controls have been reused to quickly develop new test code.
For instance, the Compact teleMetry and Command (CMC) UHF/VHF radio operates in
full duplex whereas its variant UTRX in simplex. The entire test suite for the duplex radio
has been reused with the exception of two lines of code that sets the register bit in the DUT
configuration to toggle the RF switch to RX or TX and disables the duplex RF port on the
ATE. Similarly, in the X-band, S-band and C-band subsystem tests, the code may be shared
as the modulation schemes and the ATE are common.

5.1.3 Modularity

In hierarchical nesting, modularity is necessary to seek relationships of the functions and
their dependencies on each other and for the overall control of the application. Modularity
in code and the level of functional independence also ensures code sharing and reuse.

The test scenarios in Missurance are triggered by user-driven events, followed by several
procedural events. The user generates a series of events by clicking checkboxes, enabling
buttons, selecting from widgets or by loading test inputs from a file. These events, in turn,
execute callback functions or procedures that are data driven and are dynamically generated
by the actual test code. The order of the events creates a test logic or an execution schedule
of the functions and procedures in a particular test flow. The test logic facilitates modularity.
Several test suites share the ATE. Therefore, well-constraint cohesion and coupling (Dhama,
1995) of the test code through test logic provides better customisation of the test suite in
accessing only the requested test features.
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5.1.4 Scalability and Adaptability

Missurance is scalable. In many situations, a limited version of the testware may be suitable
to apply test scenarios to a particular DUT. For example, a lighter version, which only
checks OFF/ON status or responses to the telecommands in-situ launch vehicle, may be
compiled for the launch campaign. Similar needs may arise for a suitcase model for comms
testing with the electrical ground support equipment. Missurance may be re-built for limited
applicability such as last-minute sanity check of the battery capacity. i.e., by importing
graphical controls from the main test suite on a new basic UI and dropping relevant code
in the source files.

5.2 Automation

An exhaustive narrative of experiences in test automation, benefits, and pitfalls in a variety
of industries and application is in Graham (2012). According to this trailblazing work,
tools that poorly match the needs as well the lack of acknowledgement that the automation
software requires same levels of attention as other development works, are a major cause of
automation failures. The main advantage of automation in Missurance is the deterministic
and iterative evaluation of functionality and the relative ease of changing the test inputs.
Long and tedious thermal testing may be carried overnight or unattended. The automation
generates detailed test reports against the input test conditions, unit configuration, and time
logs. In addition to the measurement values, a very useful aspect of the advance ATE is to
capture the screenshots. This saves time in plotting and analysis. Efficiency in accuracy and
cost control are additional gains. The automation does not target finding hardware/software
bugs because, this should happen prior to the automation, although such a concealed and
late find will be an added advantage. The thermal testing, however, is exploratory and may
bring about circuit peculiarities and sensitivity to certain temperature, after all, that is the
objective.

6 Validation Environment for EMC and Geomagnetism

A low-cost mode-stirred reverberation chamber is integrated into the platform for radiated
immunity testing or examining the effectiveness of the RF shields. The main advantage
of the chamber is improvising for a high-performance anechoic chamber and saving the
cost of a high power RF amplifier, as well as saving time for testing all polarisations
through automated stirring modes. Missurance is used to control the stirrers through stepper
motors and a VNA (Hewlett Packard 8720ET) is used to analyse the s-parameters and
the electric field upon reflection of the field whenever new modes are set by the stirrers.
Figure 4 illustrates the setup. The chamber uses highly reflective walls. The idea is to
maximise the standing wave resonance upon reflections and obtain resonance modes by
stirring the geometry. When the field is homogeneous, the polarisation is random and
the DUT experiences different strengths of the field at different scanned frequencies. The
chamber operates in 0.8GHz to 4GHz range. Moreover, no electro-mechanics are needed
to manoeuvre the DUT for linear, circular and elliptical excitations in the isotropically
distributed field. The radiated EM field is measured with respect to the ground in vertical
and horizontal polarisations of the antennae. Field uniformity test is performed to calibrate
the chamber. A 3-D data table is constructed for all stirrer positions and the frequency
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Figure 4 Validation environment for radiated immunity and magnetic field testing.

sweep, and received power is derived from measured s21. The received power only depends
on |s21|2 for a perfectly matched antenna.

The lower part of Figure 4 demonstrates the simulation of 3-D geomagnetism. The
setup is used in characterising the magnetometer. The pointing knowledge of the spacecraft
depends on the accuracy of attitude determination sensors and hence to fix the attitude, the
accuracy of the control law is imperative. That is, with the magnetic field sensor calibrated,
the attitude determination and control hardware and software may be validated on-ground
for correct operation. The geomagnetic field is first obtained in simulations (STK or World
Magnetic Model by NOAA). A well-controlled field is then produced by inducing currents
in the interlaced wires on the cage structure (Figure 2). Three current supplies are automated
to dynamically change the magnetic field uniformity according to the in-orbit field strength
obtained in simulations.

7 Demonstration — Comms Payload Testing

The platform and the Missurance framework are employed to evaluate the radio performance
of a CubeSat S-band transmitter in acceptable-level test range −20 ◦C to +50 ◦C. A
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Figure 5 Channel measurements on the in-phase and quadrature signals at 28dBm power at
−20 ◦C.

IQ quadrature measurements

spreadsheet loads the thermal profile, spread over a duration that resembles the sunlit and
eclipse periods (≈100min) on low earth altitudes and during the sun-synchronous orbit
propagation. The profile has a dwell time of 10min and depending on the thermal cycle
transition, a positive or negative ramp of 10 ◦C. The three test loops are unified in a single
tab. The transmitter is configured for different features (carrier frequency of operation
selectable from 2.2GHz to 2.3GHz, QPSK or OQPSK modulation with Intelsat IESS-308
based encoding, output power adjustable in 2dB steps from 24dBm to 30dBm and data
transmission rates of up to 2Mbps supported with 1/8, 1/4 and 1/2 rate modes). Finally, the
communication channel performance is measured over the thermal cycle at the specified
temperature steps.

Missurance interacts with 89600B VSA software running on the Windows CPU of
Agilent N9010A signal analyser. Three types of user-selectable measurements may be
programmed: single, continuous and screenshots. The selection is made on instrument-
centric tab shown in Figure 3. Signal shapes are acquired and stored on the analyser during
each dwell step of the thermal cycle. Missurance triggers each measurement that has been
configured with the checkboxes on its UI.

7.1 Results and Discussion

The figures of merit of the RF transmission and modulation impairments are based on VSA
analysis on the I and Q vectors. Figure 5 shows the radio performance at 28dBm in several
ways. The bottom right quadrant of the figure is of the measurements that characterise the
linearity of the QPSK modulated transmission in the response of the channel spurs. The
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behaviour is evaluated in EVM (6.81% rms), errors in magnitude (4.35% rms), frequency
(−1.94kHz) and phase (3◦) on the carrier, IQ gain imbalance (0.081dB), IQ quadrature
error (0.5547◦) and IQ offset error (−31.2dB). The noise is measured as modulation error
rate (23.32dB); it is equivalent to SNR when the only noise source in the channel is AWGN.
The waveform quality factor for the IQ constellation power correlation is 99.46%. The top
left quadrant shows the eye diagram of the in-phase signal. The top right quadrant shows
the IQ constellation of the quad symbols. The fairly square shape confirms high linearity in
the QPSK modulator and low noise in the signal path. The bottom left plot shows the shape
of RF power and magnitude to be 27.8dBm over a channel span of 3.9MHz.

Figure 6 Spectrum spread of 28dBm output at −20 ◦C: Adjacent Channel Power (left) and
Occupied Bandwidth (right).

The non-linearity in the RF mixer and the Power Amplifier (PA) distort the phase of
the modulation and some content of spectrum spread out of the main channel. This is
undesirable as the outflow RF power may cause interference to the on-board electronics or
to the radio channels operating in the vicinity of the satellite earth station. Figure 6 on the
left reveals just how high in power the adjacent channels reach. Furthermore, the leakage
points the degree of non-linearity of the RF PA and its inability to convert DC to RF which
inherently results in dissipation of heat in the transmitter. The two channels on average are
−22.5dBc below the carrier. The symmetry of the channels confirms the absence of the
thermal memory effect in the PA.

The total bandwidth occupied by the transmitter channel is given on the right plot in
Figure 6. The percentage of total power transmitted, usually, 99%, over the transmitted
frequencies is Occupied Channel Bandwidth (OCBW) by Carson’s rule. Accordingly, the
power is contained within 1.2682MHz. Beside the manifestation of non-linear effects, the
ACP and OCBW measurements indicate the efficiency of filters in the cut/roll off and while
matching impedance in the RF frontend. The ultimate bearing of power leakage is on the
intersymbol interference, BER and the per bit energy (Eb/N0)—the parameters that need
to be controlled in the link budget. DC-to-RF power conversion by the PA is determined
for four programmable RF power levels which show 20-25% of efficiency on average over
temperature.

In summary, the stability of transmission is confirmed and deviations of impairments
over temperature range are negligible. The integrity of the backend digital modulation
(FPGA) and the containment of the spectrum re-growth through the impedance matching
network in the RF frontend are validated. The test suite takes 130min.
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7.2 System Level Impact

From the measurement shown, the mission design and systems engineers can determine
the duty cycle of the S-band communication subsystem at the highest bit rate in which the
commercial grade PA can operate to transmit data to the ground segment before excessive
heating begins deteriorating the PA performance or before the thermal shutdown of the
PA. The amplifier is thermally stable enough in a swing of 10 ◦C range lasting around
10min to downlink reliably, provided such a long window for communications is available.
Furthermore, the link budget may be perfected using measurement data and the design
and sizing of the ground station may be revisited. The communications subsystems have a
bearing on the stability of the satellite as the directivity of antenna beamforming directly
depends on maintaining the flight attitude. The degree of instability may be traded off with
high transmit power on-board and a larger fixed or a smaller steerable ground antenna.
Other questions surfacing from the corresponding DC current measurements may require
refining the power budget and the thermal design margins. It may be necessary to operate
the transmitter in low power mode to safeguard the on-broad equipment from heat and RF
susceptibility, elongate the battery life or comply with the spectrum management agency
requirements.

The analysis provides an opportunity to explore multi-dimensional design space (Hall,
1969). Figure 7 shows the parametric tradespace obtained from this exercise. It is up to the
systems engineers and developers to perform trade analysis and optimise the parameters
according to the criteria, whether the concern is requirements, communications performance
or relieving other subsystems.

Figure 7 Tradespace for the design exploration and parameters of interest for system refinement.
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7.3 Future Directions

Currently, the platform is being utilised for various needs in the ZACUBE-2 mission, mostly
for the communications units (AIS/VHF, UHF, S-band and X-band). An immediate need is
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to port over the test suites of S-band transmitter to X-band and add modifications to DUT
configuration, power levels, and carrier frequencies as well as to the test suites that act on
such information.

The next release of the platform is planned to deliver orbital power load simulation to
simulate the behaviour of CubeSat electrical power supply for in-orbit load conditions. This
addition will help in finalising power management algorithm and calibration of photovoltaic
cells. Programmable power supplies will supply the currents to the load according to the
sunlit and eclipse conditions, i.e., the supply switch over, from the sun regulated bus to the
battery and vice versa, will be simulated. The algorithm to control the power source will be
programmed as the solar angle and orbit plane angle β change during the orbit propagation.
The test code for automation of the three power supplies in the geomagnetic field will be
adapted.

8 Conclusions

The workflow of an agile test and V&V platform that acts as a pivot to model-based systems
engineering activities has been presented. The use of platform aids in developing the system
correctly (verification) and ensures whether the developed system checks out (validation).
The platform is multifaceted, versatile and a tool for mission assurance to serve throughout
the project cycle. The platform bridges the gaps of system development processes. Several
software/hardware aspects for expanding the platform to a more comprehensive systems
engineering tool have been discussed. High connectivity of tools through C interfaces assists
in requirements verification, system redefinition, decomposition/refinements, repetitive
modelling, simulation, and real hardware/software integration as well as testing. The
platform consists of an instrumentation bus with extensive connectivity of the test apparatus,
both in software protocols and in hardware interfaces. These aspects have been discussed
extensively. The Missurance is the application to automate the platform and the MBSE
methodology. The application has been developed with focus on test and V&V. Modularity,
usability, scalability, and adaptability are strong elements of the Missurance architecture.
The platform was exploited for functional verification and thermal validation of a transmitter.
Also supported in the platform is the validation for EMC and geomagnetic environments.

The level of mission assurance needed in a low-cost space mission is not a simple matter.
The constraints presented by a low-cost mission, whether commercial-grade components
or unavailability of adequate qualification facilities have not precluded CubeSat missions
from flying. No matter what level of validation or qualification is applied, functional testing
and verification are always comparatively less expensive, safe and ensure correct operation
of the mission at the normal environmental conditions.

The domain of mission assurance is huge, even in missions of modest class such as the
CubeSats. We accept that qualification aspects e.g., vibration and solar radiation have not
been accommodated in the platform, yet it provides a high degree of confidence in the success
of the mission and especially through functional verification and limited environmental
validation of the CubeSat parts. The goal of the systematic yet simple and rigorous work
is to shorten the iterative mission engineering in top-down and bottom-up cycles, through
automation and, ultimately ensure substantial consistency and traceability in the design
flow.
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Appendix A

Algorithm 1: Typical tasks in C level read and write access of HDL simulation
Input: Set of model instances to be cosimulated, start and stop times, socket ID
Output: Values of the signals or ports of interest

1 while not stop time do
2 foreach Model i do
3 register begin simulation callback
4 register end simulation callback
5 register add ValueChange callback at start
6 register remove ValueChange callback at stop
7 register add ContinueSim callback at start
8 register add BreakSim callback at event or end
9 navigate Model i hierarchy to all SubModels

10 foreach SubModel j do
11 navigate design hierarchy
12 get port and signal objects
13 assign ASCII handle to each object
14 initialise objects
15 add desired object k to monitor list
16 add ValueChange callback on k
17 foreach k ∈ SubModel j ∈Model i do
18 if ValueChange event occurs then
19 read (value,time)
20 write value to socket ID
21 end if
22 end foreach
23 end foreach
24 end foreach
25 get_handle object handle by name
26 put_value force value on the object
27 get_value confirm by reading value on the object
28 return ContinueSim callback
29 put_value force second value on an object
30 get_value confirm by reading value on the object
31 return BreakSim callback
32 stop end simulation
33 end while
34 remove ValueChange callback


