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Telerobotic systems have attracted growing attention because of their superiority in the

dangerous or unknown interaction tasks. It is very challengeable to exploit such systems to
implement complex tasks in an autonomous way. In this paper, we propose a task learning

framework to represent the manipulation skill demonstrated by a remotely controlled robot.

Gaussian mixture model is utilized to encode and parametrize the smooth task trajectory

according to the observations from the demonstrations. After encoding the demonstrated

*Corresponding author.

This is an Open Access article published by World Scienti¯c Publishing Company. It is distributed under

the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution of this work is

permitted, provided the original work is properly cited.

International Journal of Humanoid Robotics

Vol. 16, No. 2 (2019) 1950009 (19 pages)

°c The Author(s)

DOI: 10.1142/S0219843619500099

1950009-1

In
t. 

J.
 H

um
an

. R
ob

ot
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 9

0.
20

3.
16

9.
10

4 
on

 0
5/

14
/1

9.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.

http://dx.doi.org/10.1142/S0219843619500099


trajectory, a new task trajectory is generated based on the variability information of the learned

model. Experimental results have demonstrated the feasibility of the proposed method.

Keywords: Telerobotic systems; Gaussian mixture model; Gaussian mixture regression; task

model; human–robot interaction.

1. Introduction

With the development of sciences and technologies, robots have been widely used

in the industry, life, education, entertainment, and military domains.1–7 Restricted

by many factors, e.g., sensor technologies, control technologies, mechanism design,

etc., robots cannot achieve full autonomy. In structural environments, such as au-

tomobile production line, robots can do amazing job because the whole manipulation

process has been preprogrammed. These technologies, however, cannot directly

transfer to the robots which are working in the unstructured and uncertainty envi-

ronment. On this point, the telerobot is a practical choice which can be remotely

controlled by an operator. A telerobotic system consists of ¯ve parts: a human

operator, a master device, a remote slave device, a communication channel, and an

interaction environment. A human operator remotely controls a robot to perform a

task in dangerous or unknown environments. The telerobotic system integrates the

humans' intelligence and robots' superiorities for increasingly complex task scenarios

and interaction environments. Combining the advantages of the robot and operator,

the telerobots are widely used in telesurgery, deep-sea/space exploration, nuclear

processing, etc. domains.

However, because of time delays, model uncertainties and lack of transparencies

for the teleoperated system, it is challengeable for the operator to control the remote

robot in an easy way. Many works have concentrated on the control algorithms to

cope with the problems of model uncertainties and time delays. Yang et al. proposed

neural networks (NNs) and automatic collision method to deal with the uncertainties

of kinematics and dynamics for a Baxter robot.8 A radial basis function NNs

(RBFNNs) and wave variable method were presented to compensate the in°uences

of time delay and dynamics uncertainties.9 The authors developed an adaptive fuzzy

control method to deal with the system's uncertainties and time delay for a dual-

master–single-slave teleoperated system.10,11 Sun et al. presented a wave-based time-

domain passivity method to enhance the transparency of a four-channel teleoperated

system.12 Besides, other control algorithms, for examples, hybrid position/force

control, impedance control, and fuzzy control method and so on, have widely applied

in teleoperation to deal with the issues.13–17 These advanced control algorithms

e®ectively improve the performance of the telerobotic system. Yang et al. developed

a variable controller with tremor attenuation ¯lter which involves muscle activation

for the purpose of personalized control in a dynamic environment.18 A human-in-the-

loop framework was proposed to adapt the change of human behavior and ensure a

optimal teleimpedance in the process of teleoperation.19 Generally, human or human

upper limb is a main component of the teleoperated system. The authors analyzed
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the cost energy of the upper limb via evaluation of hand grasp pressure and passivity

interaction for teleoperation.20 Shahbazi et al. presented a passivity method with

respect to human upper limb for the purpose of the natural and safe HRI.21 Potential

answers were developed to deal with the in°uence factors which involve human in

terms of frame rates, image issue, and so on.22 By introducing the human-centered

interaction methods, the performance of the teleoperated system can be strengthened

in the process of control.

The above-mentioned methods strictly demonstrated and coped with the

problems of time delays, model uncertainties, etc. However, it is hard to obtain an

accurate model in the presence of environment uncertainty and load uncertainty.

Alternatively, the algorithm based on machine learning is a worth choice to solve the

problem of estimations of robot model in dynamics and kinematics. Robot learning is

an alternative solution to estimate the relationship among operator, the robot, and

the executed task. Human operators face a huge manipulation pressure and workload

in traditional teleoperation. In some extreme cases, operators even need to control

every joints of the robot in order to guide it to ¯nely interact with environment.

One solution for easing operator's workload is that the robot learns the manipulation

skill o®line and implements the manipulation task online according to its perception

capability. Along this direction, one very important direction is how robot can learn

a skill by human demonstration. The authors developed a dynamical movement

primitive (DMP) algorithm with sEMG signal to construct the learned skill and

sti®ness by using the task trajectories and sti®ness information.23,24 A human motion

intention recognition approach was proposed to identify the object and grasp con-

¯guration by employing hidden Markov model (HMM) in the teleoperated system.25

Tanwani et al. proposed a hidden semi-Markov model (HSMM) algorithm to gen-

erate a task model for the purpose of assistance of the human operator.26 An im-

pedance control with haptic method was proposed for an assembly in order to learn

the task through collection of motion and sti®ness messages.27 An HMM and

dynamic time warping (DTW) method were used to learn a complex task by using

the task trajectories.28 The researchers employed HMM and Gaussian mixture model

(GMM) to learn a pouring task and a container-emptying task for a bilateral tele-

operated system.29,30 A small variance asymptotic method which involved online

robot learning was developed to learn a task model and achieve human intention

recognition.31 Zeestraten et al. proposed a programming by demonstration (PbD)

based on shared control which was used to learn a task with state sharing and also

used to improve the task performance.32

In order to improve the working e±ciency of task and achieve automated task

generation, this paper develops a robot task trajectory learning based on machine

learning. First, a DTWmethod is implemented to deal with the problems of temporal

mismatch for demonstrated observations. The demonstrated observations can be

normalized in the same time domain by using DTW method. Second, a GMM

method is used to encode the task trajectory for the purposes of description of

relationship among the robot, teleoperator, and the task. Finally, a GMR method is
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employed to generate continuous, smooth, and state-based task trajectory according

to the variability of the demonstrations. In this work, the proposed method brings

the following bene¯ts: (1) E±ciency: Compared with the traditional direct tele-

operation, the proposed method enables the telerobot to perform a task automati-

cally through several demonstrations. This would be great because it does not require

human operator for repetitive task. (2) Security: The teleoperated system does not

need human operators all the time. Instead, human operator can concentrate on the

decision-making works in teleoperation.

The rest of this paper is organized as follows. Proposed methods composed of

DTW, GMM, and GMR are shown in Sec. 2. Section 3 presents the results. Finally,

we draw conclusion and future work in Sec. 4.

2. Methodology

2.1. The description of task learning

In this paper, the system includes 3 modules as shown in Fig. 1: Human demo-

nstrations, robot learning and preproduction, and robot execution.

. Human demonstration module: The function of this module is that an operator

remotely controls a slave robot to perform tasks via master haptic device.

The trajectories including position, velocity of the robot's end-e®ector are recor-

ded. In this teleoperated system, a operator controls the master via the position of

master device. Because of the di®erent kinematics structure between the master

device and the slave robot, we are using the following coordinate transformation:

x
y
z

2
4

3
5 ¼ Osm � ¤

xm

ym

zm

2
4

3
5þ b

8<
:

9=
;; ð1Þ

where x, y, z and xm, ym, zm are the position vectors of the slave and the master in

task space, respectively. Osm is the rotation transformation matrix, ¤ is the scale

factor to adjust the workspace between the master and the slave. b is the position

correction term in X/Y/Z directions.

Fig. 1. Flowchart for task demonstration, learning and control.
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. Robot learning and reproduction module: The robot learning module includes

data preprocessing, task encoding, and task generating. The function of data

preprocessing is to normalize the demonstrated data into a uni¯ed time domain.

We employ a GMMmethod based on statistical learning method to encode human

skill and develop a GMR method to generate a learned skill model for the slave

device according to the new situation.

. Robot execution module: The main function of this module is to enable the robot

following the trajectory generated from robot learning module. To this end, the slave

robot executes the generalized task learned from the demonstrated robot trajectories.

In order to describe the proposed method more clearly, a procedure of the algorithm

and a schematic diagram of the proposed method are outlined in Algorithm 1 and

Fig. 2, respectively.

2.2. Data preprocessing with DTW

Given the successfully designed human demonstration module, position and velocity

of the robot end-e®ector are sampled from the multiple task demonstrations.

In multiple demonstration, the implementation time of the tasks is not the same.

We processed the sample data by employing DTW method to keep data in the same

time domain.33 DTW algorithm was widely used in speech recognition to deal with

the problem of similarity for two di®erent temporal sequences.34,35 By introducing

the boundary, monotonicity, and step size conditions, we compute the similarity

through an optimal wrap path distance as follows:

DoptfLðx1Þ;Lðx2Þg ¼ ðx1 � x2Þ2

þ

0 when Lðx1Þ ¼ Lðx2Þ ¼ 1;

DfLðx1Þ;Lðx2 � 1Þg when Lðx1Þ ¼ 1; Lðx2Þ > 1;

DfLðx1 � 1Þ;Lðx2Þg when Lðx1Þ > 1; Lðx2Þ ¼ 1;

minfDfLðx1Þ;Lðx2 � 1Þg;
DfLðx1 � 1Þ;Lðx2Þg;

DfLðx1Þ;Lðx2Þgg otherwise

8>>>>>>>>>><
>>>>>>>>>>:

ð2Þ
where x1 and x2 are the two di®erent length time trajectories (position and velocity).

Lðx1Þ and Lðx2Þ are the lengths of two trajectories. DfLðx1Þ;Lðx2Þg and DoptfLðx1Þ;
Lðx2Þg are the wrap path distance and optimal wrap path distance, respectively.

2.3. Task encoded by GMM

Reinforcement learning (RL) and HMM have been widely used for e®ectively

encoding the task trajectory.30,36 Nevertheless, due to the need of good timeliness for

encoding a task, the RL method is limited because of its search space being too large

for a relatively complex task. Besides, the process of task encoding is a continuous
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one, while the HMM method is needed to be interpolated based on the discrete sets.

Therefore, We propose the combined GMM and GMR method which can cope with

the above-mentioned shortcomings in robot learning because of its appropriate

search space and continuity.

After the preprocessing, we obtained N normalized, demonstrated sample sequence

which can be represented as

X ¼ fX igN
i¼1 ¼ fx i

t ; _x
i
tgT ;N

t¼0;i¼1; ð3Þ
where X 2 RM consists of positions and velocities of the slave end-e®ector. xt 2 RM1

and _xt 2 RM2 are the position and velocity of the slave. M ¼ 6 with M1 ¼ 3-dimen-

sional position and M2 ¼ 3-dimensional with respect to the observations.

Algorithm 1 Procedure of the proposed method
1. Human remotely control slave arm implement task, the
trajectories of end-effector are recorded

X = {X i}N
i=1.

X: demonstrated trajectories composed by position and velocity.

2. Normalize the demonstrated trajectories

X ← Dopt(x1, x2).
x1, x2: Two different lengths time trajectories.
Dopt(): DTW algorithm.

3. Encode the training trajectory

Θ ← EM algorithm

Θ: parameters of GMM are optimized by EM algorithm.

4. Generate the trajectory for a new test task based on GMM

Compute X̂o(j), σ̂o(j) for j = 1, . . . , K,

ˆ̇x =
K

j=1

hj{[Aj bj ][x 1]T },

x̂ = x|t−1 +
K

j=1

hj{[Aj bj ][x 1]T .

X̂o(j): mean of the output in jth step.
σ̂o: variance of the output in jth step.
Aj , bj and hj can be computed by (16)–(18).

5. Following the generated trajectory to implement new task

J. Luo et al.
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GMM is developed to encode the demonstrated task from the observation

sequences.37,38 The probability density function (PDF) pðX iÞ can be presented as

pðX iÞ ¼
XK
j¼1

pðjÞN ðX ij� j ; � jÞ; ð4Þ

where � j and � j are the mean values and variances for the observations. pðjÞ is the
prior information for the K Gaussian components in jth step and it satis¯esXK

j¼1

pðjÞ ¼
XK
j¼1

�ðjÞ ¼ 1: ð5Þ

NðX ij� j ; � jÞ is the Gaussian distribution of the observations given as

NðX ij� j ; � jÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þ3j� j j

p exp � ðX i � � jÞT� j �1ðX i � � jÞ
2

� �
: ð6Þ

Inspired by Ref. 39, (4) based on (5)–(6) for the demonstrated observations can be

rewritten as

Nðx i
t ; _x

i
t j�Þ ¼ pðX iÞ

¼
XK
j¼1

pðjÞN ðX ij� j ; � jÞ

¼
XK
j¼1

�ðjÞNðx i
t ; _x

i
t j� j ; � jÞ

¼
XK
j¼1

�ðjÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þ3j� j j

p
� exp � ðX i � � jÞT� j �1ðX i � � jÞ

2

� �
; ð7Þ

Fig. 2. Schematic diagram of the proposed method.
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where � ¼ f� jgK
j¼1 ¼ f�1; �1; �1; . . . ;� j ; � j ; � j ; . . . ; �K ; �K ; �Kg are the parameters

of Gaussian component. In this paper, the demonstrated observations are regarded

as independent Gaussian distribution. According to the demonstrated observations,

the parameters of GMM can be estimated by employed expectation–maximization

(EM) method. The values of EM method are initialized by using k-means clustering

algorithm.

2.4. Task generated by GMR

According to the demonstrated observation sequence, GMR method is employed to

generate a generalized task model after encoded by GMM.40–42 By employing the

joint probability distribution, the observation sequence, means matrix, and covari-

ance matrix can be described as

� j ¼ � j
i

� j
o

" #
¼ � j

x

� j
_x

" #
; ð8Þ

�j ¼
� j
i � j

io

� j
oi � j

o

" #
¼ � j

xx � j
x _x

� j
_xx � j

_x _x

" #
: ð9Þ

The estimation values of conditional distribution for output data X̂
j
o can be

computed according to the conditional output X j
o and given Xi as follows:

X̂
j
o ¼ � j

o þ � j
oið� j

iÞ�1ðXi � � j
iÞ

¼ � j
_x þ � j

_xxð� j
xxÞ�1ðXi � � j

xÞ; ð10Þ

�̂ j
o ¼ � j

o � � j
oið� j

iÞ�1� j
io

¼ � j
_x � � j

_xxð� j
xxÞ�1� j

x _x : ð11Þ
Motivated by the related works in Refs. 43 and 44, the conditional distribution of

output data X̂o for K Gaussian component as

X̂o ¼
XK
j¼1

� jX̂
j
o

¼
XK
j¼1

� jf� j
_x þ � j

_xxð� j
xxÞ�1ðXi � � j

xÞg; ð12Þ

� j ¼ pðXijjÞPK
j¼1 pðXijjÞ

¼ pðjÞpðXijjÞPK
j¼1 pðjÞpðXijjÞ

; ð13Þ

J. Luo et al.
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�̂o ¼
XK
j¼1

� j 2�̂ j
o

¼
XK
j¼1

� j 2f� j
_x � � j

_xxð� j
xxÞ�1� j

x _xg: ð14Þ

Thus, a generated task model is obtained based on GMR. The generated motion

from the learned model can perform smoothly without paying attention to the in-

verse kinematics problem of the slave. This would greatly improve the real-time

ability of the telerobotic systems for the automated task.

According to the conditional probability of GMR and a current given position x,

we can obtain the desired velocity as

_̂x ¼
XK
j¼1

hjf½Aj bj �½x 1�Tg; ð15Þ

where

Aj ¼ � j
_xxð� j

xxÞ�1; ð16Þ

bj ¼ �̂ j
_x � � j

_xxð� j
xxÞ�1� j

x ; ð17Þ

hj ¼ Nðxj� j
x ; �

j
xxÞPK

j¼1 Nðxj� j
x ; �

j
xxÞ

; ð18Þ

where j ¼ 1; . . . ;K in (16)–(18).

According to Euler integration, the desired position in Cartesian space at time t is

updated based on the computed desired velocity _̂x as follows:

x̂ ¼ xjt�1 þ
XK
j¼1

hjf½Aj bj �½x 1�Tg: ð19Þ

3. Results and Discussion

3.1. Experimental setup

We demonstrate our proposed method using a telerobotic system shown in Fig. 3,

which is composed of Touch X (haptic device) and a Baxter robot. Touch X com-

municates with Baxter robot via a User Datagram Protocol (UDP) module. A

cleaning task is performed to validate the e®ectiveness of the proposed method with

di®erent initial conditions based on GMM and GMR methods. In the cleaning task, a

gray cardboard as a cleaning tool and a yellow cube as a rubbish is used. A human

operator via Touch X controls the right arm of Baxter robot to sweep the rubbish

into the red garbage bucket. There exist several demonstrations in this task. By

learning the cleaning task, the robot can be executed successfully in di®erent initial

positions.

A Task Learning Mechanism for the Telerobots
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3.2. Demonstrated observation preprocessing

The cleaning task is demonstrated 10 times from di®erent initial places through a

teleoperated mode. Figures 4 and 5 show the demonstrated trajectories and the

uni¯ed trajectories by using DTW method. Figures 4(a)–4(c) and Figs. 5(a)–5(c),

respectively, show the slave's end-e®ector trajectory before and after DTWmethod is

(a) Demonstrated observations in X-axis (b) Demonstrated observations in Y-axis

(c) Demonstrated observations in Z-axis

Fig. 4. Left: (a) shows the collection of demonstrated observations without DTW in X-axis from 10
demonstrations. Middle: (b) is the collection of demonstrated observations without DTW in Y -axis from

10 demonstrations. Right: (c) displays the collection of demonstrated observations without DTW in Z -axis

from 10 demonstrations.

Fig. 3. Experimental setup for a cleaning task.
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applied. Figures 4(a)–4(c) display the time spending in each demonstration before

using DTW method. It can be concluded that each demonstration takes di®erent

amounts of time to complete the cleaning task. The demonstrated trajectories are

performed in di®erent initial positions. As shown in Figs. 5(a)–5(c), the trajectories

are normalized properly in the same time domain. It can be seen that the trajectories

by using DTW method are successful normalizations. The results indicate that the

DTWmethod improves the smoothness of the demonstrated trajectories and ensures

the synchronicity of the motion in the same time domain.

3.3. Results

As shown in Fig. 6, the demonstrated trajectories are divided into 10 times to in-

dicate the similarity of each demonstrated cleaning task in the same time domain. It

can be seen that the curve of each demonstration has a similar shape in comparison

with other curves.

In this experiment, the GMM method is employed to encode the cleaning task.

From Figs. 7(a)–7(c), it shows that the related GMM model can be encoded by 5

states from 10 demonstrations.a The parameters of GMM model indicate the

cleaning task encoding information via 10 uni¯ed demonstration trajectories. The

information of the task can be known via GMM parameter f� jgK
j¼1. Additionally,

(a) Data preprocessing by using
DTW method in X-axis

(b) Data preprocessing by using
DTW method in Y-axis

(c) Data preprocessing by using DTW method in Z-axis

Fig. 5. Left: (a) shows the collection of demonstrated observations with DTW in X-axis. Middle: (b) is

the collection of demonstrated observations with DTW in Y -axis. Right: (c) displays the collection of
demonstrated observations with DTW in Z-axis.

aThe number of states are predetermined according to the task.
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(a) Demonstrations (N=10) in

X-axis for a cleaning task

(b) Demonstrations (N=10) in

Y -axis for a cleaning task

(c) Demonstrations (N=10) in
Z -axis for a cleaning task

Fig. 6. Left: (a) shows 10 times demonstrations for a cleaning task in X-axis. Middle: 10 times demon-

strations for a cleaning task in Y -axis are shown in (b). Right: 10 times demonstrations for a cleaning task
in Z -axis is shown in (c).

(a) Encoded models by using GMM in X-axis (b) Encoded models by using GMM in Y-axis

(c) Encoded models by using GMM in Y-axis

Fig. 7. Left: (a) shows the task encoding by using GMM in X-axis. Middle: (b) is task encoding by using

GMM in Y -axis. Right: (c) displays the task encoding by using GMM in Z -axis.
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the cleaning motion varies mainly in the X and Y -axes, while it is relatively stable in

Z -axis. The encoding task indicates that the cleaning task has great variability in

X–Y space.

In the generating phase, the desired position can be obtained according to GMR

method. The results of generating task are plotted in Figs. 8(a)–8(c) based on

the learned model. There is a smooth generated trajectory in X/Y/Z -axes according

to (10)–(14). It is noted that the generated trajectories could be adjusted

(a) Regressed models by using GMR in X-axis (b) Regressed models by using GMR in Y-axis

(c) Regressed models by using GMR in Z-axis

Fig. 8. Left: (a) shows the generation task by using GMR in X-axis. Middle: (b) is generation task by
using GMR in Y -axis. Right: (c) displays the generation task by using GMR in Z -axis.

(a) Robot execution process from starting

place to phase I for a cleaning task

(b) Robot execution process from phase

I to phase II for a cleaning task

Fig. 9. The robot execution for a cleaning task from phase I to phase V.
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according to the feedback controller of the slave from di®erent initial position

(Figs. 8(a)–8(c)).

The robot execution process of the cleaning task is presented in Fig. 9. In

Fig. 9(a), the robot is performed from a given initial position which is di®erent from

the trainings. In order to describe the execution process of the slave, we arti¯cially

divide the process into ¯ve phases (phases I–V). In phase I, the motion process can be

updated according to (15)–(18) via a given initial position. This phase is corre-

sponded with the phase a in generating process. Accordingly, Figs. 9(b)–9(f) indicate

the rest of the cleaning task performed process (four phases) corresponding to the

another phases (b)–(f) which are generated by using GMR method, respectively.

In the robot execution process, the cleaning task is successfully implemented by

using GMM–GMR method.

4. Conclusion and Future Work

This paper proposes a task learning framework for the teleoperated robot to explore

the relationship among the robot, operator, and the task. In this paper, we adopt to

use a DTW method which is used to normalize the 10 demonstrated observations

(c) Robot execution process from phase II to

phase III for a cleaning task

(d) Robot execution process in phase III pausing

for a moment for a cleaning task

(e) Robot execution process from phase III

to phase IV for a cleaning task

(f) Robot execution process from phase IV

to phase V for a cleaning task

Fig. 9. (Continued)
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with di®erent time scale. We propose a new learning framework which employs

GMM method to encode the demonstrated trajectory of robot end-e®ector while a

operator remotely controls the robot implementing a cleaning task. In the frame-

work, we use GMR to generalize the training result to new situation (di®erent initial

position), in our case, in the evaluation experiment, the cleaning task starts from a

new position. Experimental results indicate that the proposed learning framework is

feasible. After 10 times demonstrations, the proposed method successfully generates

a trajectory which has di®erent initial positions with the training set. Combining

with the robot cartesian controller, the clean task in the new situation is imple-

mented correctly. In the future, impedance and force information of end-e®ector of

the robot involving human–robot interaction should be considered. The time-delay

issue of the teleoperation system should also be noted.45,46 Furthermore, more in-

dustrial task scenarios should be explored in practical applications.
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