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Inaccurate cost estimates have significant impacts on the final cost of power 

transmission projects and erode profits. Methods for cost estimation have been 

investigated thoroughly, but they are not used widely in practice. The purpose of 

this study is to leverage a Big Data architecture, to manage the large and diverse 

data required for predictive analytics. This paper presents a Predictive Analytics 

and Modelling System (PAMS) that facilitates the use of different data-driven cost 

prediction methods. A 2.75 million-point dataset of power transmission projects has 

been used as a case study. The proposed Big Data architecture is fit for purpose. It 

can handle the diverse datasets used in the construction sector. The three most 

prevalent cost estimation models were implemented (linear regression, support 

vector regression, and artificial neural networks). All models performed better than 

the estimated human-level performance. The primary contribution of this study to 

the Body of Knowledge is an empirical indication that data-driven methods 

analysed in this study are on average 13.5% better than manual methods for cost 

estimation of power transmission projects. Additionally, the paper presents a Big 

Data architecture that can manage and process large varied datasets and seamless 

scalability. 

Keywords: Predictive Analytics; Data-Driven; Big Data; Cost Estimation.  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UWE Bristol Research Repository

https://core.ac.uk/display/323891689?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:manuel.daviladelgado@uwe.ac.uk
mailto:l.oyedele@uwe.ac.uk
mailto:muhammad.bilal@uwe.ac.uk
mailto:anuoluwapo.ajayi@uwe.ac.uk
mailto:lukman.akanbi@uwe.ac.uk
mailto:olugbenga.akinade@uwe.ac.uk


 2 

Introduction 

Reliable cost estimation is a critical factor for the successful delivery of construction projects. 

Poor cost estimates have been identified as significant factors contributing to cost overruns and 

profit erosion (Ahiaga-Dagbui and Smith, 2014; Sridarran et al., 2017). Accurate and 

systematic cost estimates are of utmost importance for the construction sector where low-profit 

margins are typical. The average profit margin of the top 100 UK construction companies was 

1.5% in 2016 and 2.5% in 2017 (TCI, 2018). Cost estimation for construction projects has been 

a topic of intense study for many years. Estimating costs in construction is a challenging task 

due to many factors including the limited information at early phases of the project, the many 

different clients, the dissimilarity among projects, the diverse contexts and sites, and the large 

labour force required (Wilson, 2005). Cost estimation of power transmission projects has 

specific challenges such as large and complex construction sites and difficult accessibility (e.g. 

highways and river crossings), varying contexts (urban, rural, and protected natural areas), and 

unknown soil conditions. However, compared with traditional construction projects, power 

transmission projects also represent advantages for implementing data-driven cost estimation 

methods including a smaller number of potential clients, a considerable similarity among 

projects, and limited types of materials and plant equipment used; which facilitates data 

collection and management. 

Many data-driven cost estimation methods have been developed and tested (e.g. Hwang, 2009; 

Lowe et al., 2006; Sonmez, 2008); and most of the research efforts have been placed on 

developing more accurate methods and to compare their performance among them, i.e. to find 

the best possible method (e.g. G.-H. Kim et al., 2004). However, there is no consensus on the 

best method to address cost estimation yet. More importantly, most construction companies 

have not adopted advanced cost estimation predictive models; and, in practice, cost estimation 

still relies heavily on human expertise rather than on systematic data-driven methods (Carr, 

1989; Meredith et al., 2014).  
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A major indication that current cost estimation practices in construction are still unreliable is 

the number of projects experiencing cost overruns. The construction industry is well known 

for cost overruns. For example, a study found that large infrastructure projects across the world 

are on average 80% overbudget (Agarwal et al., 2016). Many factors contribute to cost 

overruns, but poor cost estimation practices are a major influencing factor (e.g. Adam et al., 

2017; Larsen et al., 2016). Aljohani et al. (2017) point out that estimation methods used in 

practice are still affected by the estimator’s bias and varying degrees of experience. Aljohani 

et al. (2017) also note that in practice data-driven methods are not fully used due to unavailable 

and unreliable data sources. The many different clients, project types, sites, materials and 

subcontractors complicate data collection. If data is available, it is usually not accessible 

through a single interface, and it is stored in different locations and formats, which limits its 

use. 

Despite the fact that data unavailability and poor data management practices are major factors 

limiting the use of data-driven cost estimation methods (Aljohani et al., 2017), methods 

reported in literature usually do not present data management frameworks and approaches 

required to enable data-driven methods. This is becoming more relevant as the amount of data 

collected by construction companies is increasing substantially and traditional methods for data 

management cannot cope with the increasing amounts of generated data. For example, none of 

the traditional methods provide a way to integrate different types of data (Davila Delgado et 

al., 2015; Gerrish et al., 2015), support dynamic visualisations (Davila Delgado et al., 2018; 

Mousa et al., 2016), or provide real-time links with Big Data repositories (Bilal et al., 2016). 

Equally important is the lack of comparisons between the performances of predictive data-

driven methods and methods usually used in practice. In most studies in literature, only an 

indication of how accurate the proposed methods are, is presented. But no comparison is 

presented with the actual methods used in practice. There is no clear indication of how much 
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better the predictive data-driven methods are compared with the ones used in practice, and if 

the increase in performance will justify the investment required to implement predictive data-

driven methods.  

This study seeks to address: the lack of comparisons between data-driven cost estimation 

methods and manual methods, and the lack of demonstrations of data management approaches 

to cope with large amounts of diverse data. The objectives of this study are:  

(1) To get a quantitative indication of the difference in the performance between the most 

common predictive data-driven cost estimation methods and traditional manual 

methods used in practice. 

(2) To demonstrate the implementation of a Big Data architecture that can manage large 

amounts of data from diverse sources and in different formats. 

This paper presents the Predictive Analytics and Modelling System (PAMS), which integrates 

uses historical financial and project data to predict costs. PAMS enables the extraction of 

valuable insights by integrating large and varied datasets and performing predictive analytics 

Context and related works 

Big Data in Architecture, Engineering and Construction (AEC) 

Big Data is the term coined to define sets of data that are too large, complex, and heterogeneous 

so that traditional software applications cannot process them. The main defining attributes of 

Big Data are (i) volume, i.e. the amount of data; (ii) variety, different file formats and structures; 

and (iii) velocity, i.e. the speed at which the data is queried and processed (Erl et al., 2016). 

Irrespective of the term “Big Data”, the size of the datasets is only one challenging aspect of 

many, and it is, in most cases, not the most significant one (Boyd and Crawford, 2011). 

Additional attributes have been identified such as value, vision, validation; but for the AEC 

industry veracity (i.e. the consistency, completeness, and reliability of data) and variety (i.e. 
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different file formats, e.g. 2D drawings, 3D models, pictures, animations, spreadsheets) are the 

key Big Data attributes that constitute a significant challenge for Big Data adoption (Bilal et 

al., 2016). 

Compared with other more modern and less established industries, the amount of data being 

generated in the AEC industry is smaller by some orders of magnitude. Nevertheless, it also 

must deal with increasing amounts of data that is generated during the entire life cycle of built 

assets. The increasing amounts data are driven by the push towards the adoption of the Smart 

Cities (Batty et al., 2012; Zanella et al., 2014) and Smart Infrastructure (Al-Hader and Rodzi, 

2009; Hoult et al., 2009) paradigms. Both of which rely on the use of sensing and monitoring 

systems and on 3D digital representations of built assets that include performance and 

condition data (Khan and Hornbæk, 2011). Built assets have been instrumented with various 

types of sensors and embedded devices, which generate large and dynamic sets of data. For 

example, sensors are used in buildings to monitor temperature variations (Chen et al., 2014), 

indoor air quality (Kumar et al., 2016), and occupancy (Akkaya et al., 2015). They are also 

used to monitor power consumption (Suryadevara et al., 2015), structural condition (Davila 

Delgado et al., 2017; 2016), and surrounding environmental conditions (Martín-Garín et al., 

2018). However, current data management frameworks used in the AEC industry cannot handle 

the ever increasing and diverse data sets. Big Data management frameworks and programming 

models must be adopted to handle and process the data effectively. Otherwise, relevant insights 

and value could not be extracted from the generated data. 

Big Data analytics is the broad term that refers to the various methods used to extract insights 

from data. Big Data analytics draws techniques from various existing fields such as statistics, 

data mining, business analytics, and applies them to large and diverse datasets. The types of 

analyses carried out in Big Data analytics can be classified into the following categories (Figure 

1 presents the categories and lists examples of methods used in each category): (i) Descriptive 
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analytics, which uses statistical methods to describe and quantify basic features of the dataset. 

(ii) Predictive analytics, which uses diverse techniques to analyse current data and make 

predictions about future events. Lastly (iii) prescriptive analytics, which uses the insights 

gained by descriptive and predictive analytics to devise actions that lead to a defined goal, e.g. 

cost reduction. All these types of analyses are beneficial to support the AEC industry in general 

and have the potential to unleash a new period of productivity improvement, which is a crucial 

interest for the sector as a whole (Abdel-Wahab and Vogl, 2011; Liberda et al., 2003). 

Research efforts reported in literature have been focused mainly on identifying challenges and 

potential architectures. For example, the Big Data challenges for storing and visualising 

massive BIM models have been studied (Chen et al., 2016; Gao et al., 2017). Challenges for 

handling geospatial data (Yang et al., 2017), Earth observation data (Xia et al., 2018), 

challenges regarding building energy efficiency (Koseleva and Ropaite, 2017), and for 

managing big visual data and BIM (Han and Golparvar-Fard, 2017) have been reported as well. 

Nonetheless, there is a significant interest in leveraging Big Data technologies to improve a 

wide variety of tasks in the AEC industry. These tasks range from support at the conceptual 

design stage, construction and planning, to tasks related to operations and facility management. 

However, work has focused on operations and facility management due to easier access to data. 

For example, Big Data analytics have been used to predict air passenger demands in airports 

(Kim and Shin, 2016), to model commuting patterns (Wan et al., 2018), and to infer transport 

mode using data from mobile devices (Semanjski et al., 2017). Also, Jeong et al. (2017; 2019) 

presented a cloud-based Big Data management and analytics framework that handles the 

massive and diverse datasets used for bridge monitoring. Wang et al. (2018) presented a Big 

Data approach to identify potential quality issues in construction components. 

However, Big Data has not been widely employed to support tasks in the preconstruction stage 

such as bidding, tendering, costing, scheduling. This stage represents a massive opportunity 
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for cost reduction as flawed decision-making and planning leads to mounting cost and time 

delays during construction (Chan et al., 2004; Olawale and Sun, 2010). Poor cost estimation 

often defines whether a project is profitable or not. This is the focus of the study presented in 

this paper as is illustrated in Figure 1. 

 

Figure 1. Categories of Big Data Analytics and their use on the construction projects’ life-cycle. 

Preconstruction is the focus of study in this project. 

Predictive analytics  

Numerous efforts have been carried out to apply intelligent systems to address the increasingly 

complex problems of the AEC area (Irani and Kamal, 2014). A significant application is 

predictive analytics, which is a process that uses data and statistical algorithms to predict future 

outcomes. It is mostly used in the financial, healthcare and marketing sectors. The most widely-

used predictive technique is linear regression, which is a simple approach to model the 

relationship between two variables. The relationship is modelled using linear predictor 

functions whose unknown model parameters are estimated from available data. Other more 

sophisticated techniques exist as well such as Decision Trees, Support Vector Machines 

(SVM), and Artificial Neural Networks (ANNs). Predictive analytics has not been used widely 

in the AEC industry, where simulation approaches are preferred. For example, creating 

buildings in virtual environments and simulating its potential energy use is another approach 

to predict energy consumption (Elbeltagi et al., 2017).  
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However, the idea to generate solutions to given problems based on data has been broadly 

investigated. For example, ANNs, a resurgent and prominent method for predictive analytics, 

has been used to aid in the design of water harvesting structures (Chandwani et al., 2016), 

predicting and controlling cooling loads in buildings (Venkatesan and Ramachandraiah, 2018), 

predicting risks for building maintenance (de Silva et al., 2013), and predicting the escalation 

of highway construction cost over time (Wilmot and Mei, 2005). Generative and Genetic 

Algorithms (GAs) have been used to predict structural designs solutions given limited spatial 

data (Davila Delgado et al. 2013; Hofmeyer et al., 2013; 2015). GAs have been used to analyse 

the static security of electric power systems (Canto dos Santos et al., 2015) and to generate 

optimal construction schedules (Faghihi et al., 2014). GAs have been combined with ANNs to 

optimise environmentally friendly buildings (Sun et al., 2015). SVM has been used to predict 

failures of construction companies (Horta and Camanho, 2013). Linear interpolation methods 

have been used to predict the annual electricity consumption of elevators (Tukia et al., 2016) 

and cooling loads (Geekiyanage and Ramachandra, 2018). Intelligent decision support systems 

have been developed to facilitate the management of construction processes (Hajdasz, 2014) 

and rule-based support systems have been used to check regulatory compliance (Beach et al., 

2015). Simulation approaches have been combined with ANN models for managing Heating, 

Ventilation and Air Conditioning (HVAC) systems (Faizollahzadeh Ardabili et al., 2016). 

Cost Estimation 

Cost estimation for construction has been thoroughly investigated. Until now, there is no 

consensus regarding the supremacy of one single method, even though their performance has 

been compared and evaluated (e.g. Shane et al., 2009; Trost & Oberlender, 2003). This 

subsection presents a quick snapshot of the construction cost estimation landscape.  

(1) Analytical and numerical approaches. These approaches define cost estimation as a 

regression problem and use different techniques of varying complexity to solve it (e.g. Hwang, 
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2009; Lowe et al., 2006; Sonmez, 2008). For example, ANNs have been used to predict cost 

of road tunnel construction based on geological attributes (Petroutsatou et al., 2012), to predict 

cost of retrofitting due to earthquakes (Jafarzadeh et al., 2014), and to predict costs of irrigation 

improvement projects (ElMousalami et al., 2018). Firouzi et al. (2016) present a method to 

predict total cost with dependent cost items, and Dursun & Stoy (2016) present a method that 

stacks predictive models to create a multistep estimation method. 

Approaches that use existing BIM models or design documents to come up cost estimates exist 

as well. For example, methods to automate the manual process of generating a cost estimate of 

structural elements (Jadid and Idrees, 2007) and of steel frames (Barg et al., 2018) have been 

reported in the literature. An approach to cost estimation based on the level of detail of the BIM 

model (Cheung et al., 2012); and a method that uses Industry Foundation Classes (IFC) data to 

estimate costs (Ma et al., 2013) have been reported as well. Lastly, Asmar et al. (2011) present 

an approach to systematise the cost estimation of highway projects at planning stages. The 

disadvantage of these methods is that they require an existing BIM model, which in most cases 

is not available at early tendering stages. 

(2) Knowledge-based approaches. These approaches use codified expert knowledge to support 

cost estimation. For example, Choi et al. (2014) present a method to estimate the cost of roads 

using case-based reasoning. Yildiz et al. (2014) present a knowledge-based tool that maps risks 

to support cost estimation.  Ahn et al. (2014) present a case-based reasoning approach to 

identify attributes that impact cost estimation and in (Ahn et al., 2017) presents a method to 

determine the effect of covariance in case-based reasoning approaches for cost estimation. The 

main disadvantage of these methods is that their performance is restricted by the quality of the 

encoded expert knowledge and cases; and their limited transferability.  

 (3) Improvement of cost estimation factors and processes. These approaches seek to improve 

the factors affecting the accuracy of cost estimation methods. For example, Yu et al. (2006) 
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present an approach to define cost indexes in real time; and Cheng et al. (2013) present a model 

that uses economic and financial data (e.g. Consumer Price Indexes, oil prices, stock market 

indexes) to predict variation in costs using a modified version of SVM. Hwang (2011) presents 

a method that uses time series indexes to consider the trends of costs in the market during 

construction. 

More research efforts are required to address cost overruns in the construction industry. While 

various factors are at play, accurate cost estimates are essential to reduce cost overruns. More 

importantly, in the existing cost estimation literature for construction, few studies address the 

use of Big Data architectures and approaches to deal with large amounts of diverse data for 

cost estimation. Also, there is an insufficient number of comparisons between existing methods 

used in practice and data-driven methods. The motivation of this study is to address these gaps 

and contribute to the reduction of cost overruns in the construction industry. 

Predictive Analytics and Modelling System (PAMS) 

The main component of the PAMS is the Big Data Analytics Environment shown in Figure 2. 

It is a server application deployed using the Oracle Big Data Lite, a collection of software that 

supports Big Data applications, in a virtual machine running Red Hat Enterprise Linux. The 

Oracle Big Data Lite enables Big Data warehousing, Big Data analytics and machine learning 

running in the cloud or on premises. The Big Data Analytics Environment can fit and load large 

volumes of structured and semi-structured data, support various analytic models, and process 

complex models on large datasets very quickly, all of which are the main features of Big Data 

architectures (Sagiroglu and Sinanc, 2013). It has three layers: the Unstructured Data Storage 

layer, the Structured Data Storage layer, and the Data Services Layer (Figure 2).  
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Figure 2. Diagram of the Big Data Analytics environment. 

The Big Data Analytics Environment has the three principal attributes of Big Data applications 

(Erl et al., 2016):  

Variety. The Unstructured Data Storage Layer contains a library of BIM models and a 

collection of historical data in diverse file formats and structures (i.e. project financial records, 

material quantities and cost estimates, work plans, labour and plant financial data). The 

different data in this layer has been cleaned, formatted, and stored in a graph database in the 

Structured Data Storage Layer. The graph database uses the Resource Description Framework 

(RDF) to store the data in graph triplets (Klyne and Carroll, 2006). RDF enables to merge and 

model data from different sources without a defined schema, which facilitates the quick loading 

of data from varied sources and with different structures. A number of domain ontologies were 

developed for the graph database. These ontologies standardised the data extracted from the 

diverse data sources.  
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Volume. The Cloudera Distribution including Apache Hadoop (CDH), which is a collection 

of software based on the Hadoop Distributed File System (HDS), was used for Big Data 

management because it provides reliable and high-performance access to large datasets in 

distributed file systems and it enables parallel processing. The graph database was 

implemented using Apache HBase, which is an open-source, non-relational, distributed 

database that runs in combination with HDS providing a robust way of storing and querying 

large quantities of sparse data.  

Velocity. A vital requirement of the PAMS is the ability to analyse the stored historical data 

quickly. For Big Data processing, the Big Data programming model so-called Spark was used 

for processing the developed predictive models. Spark is at the core of the Berkeley Big Data 

Analytics Stack (BDAS) framework, which is regarded as the as a next-generation framework 

for large-scale data processing (Ryza et al., 2015). BDAS is an open source data analytics 

framework that provides speedy response times for complex computations on large datasets. 

Compared with other traditional analytics frameworks, BDAS achieves very fast processing 

times by enabling large-scale in-memory data processing. The analytical pipelines for 

processing the predictive models were implemented using the R language and environment 

through SparkR, an R package that provides frontend use to Apache Spark; and MLLib, a Spark 

machine learning library with an R interface. R was selected because is widely used in 

academia, is open source, and supports multicore task distribution. The popularity of R for Big 

Data analytics is growing, and it is becoming a de facto standard, which facilitates further 

developments. The results of the predictive models are mapped to objects in the Data Services 

Layer, which exposes them to the client application using a REST (Representational State 

Transfer) API (Application Programming Interface). This enables the client application to 

query data via the web robustly and quickly. The data requests and responses are elicited using 

the JSON (JavaScript Object Notation) format.  
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The Big Data Analytics Environment also deals with veracity, another attribute of Big Data. 

Methods to address missing and unreliable data that are common in the construction sector 

have been implemented and are presented in this paper. While these aspects are not the most 

commonly addressed in Big Data studies, they are –nevertheless– essential to the construction 

industry, which lags in the adoption of Big Data technologies. 

Big Data Analytics 

Data from overhead power transmission projects constructed in the United Kingdom in the last 

ten years has been compiled and used as a basis to develop the predictive models in the Big 

Data Analytics Environment. It includes financial data, i.e. the total actual cost 𝑪, the estimated 

cost 𝑪’, profit 𝑷, profit margin 𝑴, distance 𝒅, and region 𝑹 of each project. This section focuses 

on describing the analysis carried out to predict the total cost of projects using the financial 

data.  

Data Pre-processing 

The data was collected from various heterogeneous sources, i.e. Microsoft Excel files, CSV 

(comma separated value) files, and relational databases. Incorrect, incomplete, and inconsistent 

records were identified and removed. E.g. typos and values that were many degrees of 

magnitude larger than the mean of that variable were removed. Missing and removed profit 

(𝑷) values were resolved by employing the so-called mean imputation technique, i.e. 

substituting the missing values with the mean of that variable for all other cases (Roderick and 

Rubin, 2002; Scheffer, 2002). This method was selected because it was assumed that the 

missing data was not a structural characteristic of the dataset and there were no indications of 

a strong correlation between profit and the other available variables, e.g. cost, distance, region, 

etc., for example, see Figure 4. Note that mean imputation does not change the sample mean 

for the variable but may decrease correlations among variables that have values replaced. To 

avoid that and because the cost (𝑪) and distance (𝒅) values are strongly correlated, the missing 
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and removed distance (𝒅) values were resolved using: �̂� = 𝜚𝑛 ∙ RAND(a, b), where (�̂�) is the 

calculated value for distance; RAND(a, b) is a function that calculates a pseudo-random number 

between the constants (a) and (b); 𝜚𝑛 = �̂� ∙ 𝑑𝑛 𝐶𝑛⁄ , where (𝑑𝑛) and (𝐶𝑛) are corresponding 

distance and cost values of a project, and (�̂�) is the cost value that does not have a 

corresponding distance value. This approach maintains the correlation between cost (𝑪) and 

distance (𝒅) variables while providing variation to the generated data. The same approach was 

used for missing cost values. Once the data was cleansed, it was condensed and loaded into the 

graph database. 

Characteristics of the dataset 

The dataset used for this study is a compilation of financial data from overhead power 

transmission projects constructed in the United Kingdom in the last ten years, resulting in over 

2.75 million data points. This dataset is not particularly large when compared with other 

datasets used for Big Data analytics in other fields, such as marketing and customer analytics 

that use data from hundreds of millions of users. Nevertheless, this dataset is very large when 

compared with the typical datasets used for cost estimation in construction, which usually range 

from a few dozen to around hundred projects (e.g. ElMousalami et al., 2018; Petroutsatou et 

al., 2012). Moreover, the Big Data architecture proposed in this paper can handle significantly 

larger datasets and enables seamless scalability to constantly add more data as it becomes 

available. Figure 3 shows a sample of the frequency distribution of the cost of the projects. The 

projects’ cost ranges from £10k to £50m. The data has a positively skewed distribution and 

94% of all the projects have costs of less than £4.8m. Figure 4 and 5 present the relative 

distribution of the region and cost up to £100K and more than £100K, respectively. Based on 

the characteristics of the dataset, it was decided only to use a sample of projects that have a 

cost ranging from £50k to £4.8 million to develop the predictive models. 
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Figure 3. Frequency distribution of a sample of the cost of the projects. 94% of the projects have a 

cost of less than £4.8m. 

 

Figure 4. The relative distribution between cost and region for projects with costs smaller than £1 

million. 

 

Figure 5. The relative distribution between cost and region for projects with costs larger than £1 

million. 
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Predictive analytics 

Three predictive models –linear regression (LR), support vector regression (SVR), and 

artificial neural network (ANN)– have been implemented to predict the total cost of the project 

given its distance. These models were selected because they are the most prevalent models 

used for cost estimation (Deng and Yeh, 2011). Five per cent of the projects have been used to 

test the predictive models, and the rest were used for developing the models. The traditional 

80/20 per cent split between training and test data was not used due to the large size of the 

dataset, and to ensure a balanced variance between the parameter estimates and the 

performance statistic. The projects for testing were selected in a way that they were 

representative of the total cost distribution.  

An LR model (�̂� = w + b𝑥) has been implemented, in which �̂� is the predicted y value, given 

𝑥, 𝑤 = ∑𝑦∑𝑥2 − ∑𝑥 ∑𝑥𝑦/𝑛∑𝑥2  − (∑𝑥)2, and 𝑏 = 𝑛∑𝑥𝑦 − ∑𝑥∑𝑦/𝑛∑𝑥2  − (∑𝑥)2. Where 

𝑥 and 𝑦 are the investigated variables, in this case, the distance 𝒅 and the total cost 𝑪 of the 

project respectively. The SVR function used is: �̂� = (𝑾, (Φ𝑿)) + b. Variables 𝜁𝑖 and 𝜉𝑖
∗ are 

introduced to measure the deviation of samples, thus the SVR optimisation problem is 

expressed as min1

2
‖𝑾‖2 + 𝐶 ∑(𝜁𝑖 + 𝜉𝑖

∗) subject to: {𝑓(𝑥𝑖) − 𝑦𝑖 ≤ 𝜀 + 𝜁𝑖;  𝑦𝑖 − 𝑓(𝑥𝑖) ≤ 𝜀 +

𝜉𝑖
∗;  𝜁𝑖 , 𝜉𝑖

∗ ≥ 0}. In which, C is the parameter that regulates the trade-off between the margin 

and the prediction error denoted by the variables 𝜁𝑖 and 𝜉𝑖
∗. The final regression function is 

𝑓(𝑥) = ∑(𝑎𝑖 − 𝑎𝑖
∗)𝐾(𝑥, 𝑦) + 𝑏, where 𝑎𝑖 , 𝑎𝑖

∗ are the Lagrange multipliers and 𝐾(𝑥, 𝑦) is the 

kernel function. In this case, a linear kernel function was used (𝐾(𝑥, 𝑦) = 𝑥𝑇𝑦 + b), C = 1.0 , 

and 𝜀 = 0.1. For the ANN model, the following regression loss function was selected 𝐿(�̂�, 𝑦) =

1

2
(�̂� − 𝑦)2 and the so-called rectifier linear unit (ReLu) function 𝑔(𝑥) = max(0, 𝑥) was used 

as the activation function. The vectorised forward propagation implementation is as follows: 

𝒁𝑙 = 𝑾𝑙𝑿 + 𝑏𝑙, 𝑨𝑙 = 𝑔(𝑍𝑙), where X is the vector of input parameters, W is the vector of 

weights, A is the vector of activation functions, and l is the number of layers of the model. The 
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vectorised backward propagation is defined as follows: {𝛿𝒁𝑙 = 𝛿𝑨𝑙−1 ∗ 𝑔𝑙(𝒁𝑙);  𝛿𝑾𝑙 =

(1/2) 𝛿𝒁𝑙 ∙ 𝑨(𝑙−1)𝑇; 𝛿𝑏𝑙 = (1/2 ∑𝛿𝒁𝑙; 𝛿𝑨𝑙−1 = 𝑾(𝑙)𝑇 ∙ 𝛿𝒁𝑙}. Note that 𝛿𝒁𝑙 is computed 

using an element wise product. Note that time-dependent factors that affect project cost such 

as inflation are not accounted in the predictive models thus the resulting cost predictions should 

be adjusted for inflation at the time that the prediction is carried out. 

Comparison of predictive models 

An indication of the coefficient of determination of the model is given by calculating the 

coefficient of determination 𝑟2, which is computed as follows: 𝑟2 = 1 − ∑(𝑦𝑖 − 𝑦�̂�)
2 /

∑(𝑦𝑖 − �̅�)2. Where ∑(𝑦𝑖 − 𝑦�̂�)
2 is the sum of squares of the difference between the actual 

values 𝑦𝑖 and the predicted values 𝑦�̂�; and ∑(𝑦𝑖 − �̅�)2is the sum of squares between the 

difference of the actual values 𝑦𝑖 and their mean �̅�. The mean absolute error (MAE) is 

calculated using: 1
𝑛
∑|𝑦𝑖 − 𝑦�̂�|, where n is the number of errors and |𝑦𝑖 − 𝑦�̂�| are the absolute 

errors. The root mean square error (RMSE) is computed as follows: √1 − 𝑟2
2

𝑆𝐷𝑦, where 𝑆𝐷𝑦 

is the standard deviation of Y.  

Figure 6 presents a comparison of the results of the three predictive models. Given the quasi-

linear correlation between cost and distance, LR can be used as a baseline to measure the 

performance of SVR and ANN. This very useful because for more complex problems, these 

results can be used to help to select appropriate predictive models. The coefficient of 

determination for the three models are 73%, 80.5%, and 74.6% respectively. The effectiveness 

of LR and ANN are comparable, while SVR performed ~7% better. This indicates that SVR is 

a better choice when for this type of regression problems. The higher performance of SVR can 

be explained because –conversely to ANN– it requires fewer training examples to perform 

reasonably well. SVR is not affected and generalises quite well by small changes in data. On 

the other hand, ANN performs better for more complex regression problems and requires 

considerably larger amounts of data. 
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Figure 6. Comparison of the predictive models: the linear regression (LR), support vector regression 

(SVR), and Artificial Neural Network (ANN). 

Additionally, the three models overestimate the cost as the distance increases. All the models 

perform better with projects costing less than £1.5million. A possible reason for this behaviour 

is that 78% of all the projects have costs of less than £2.5 million (Figure 3). This indicates that 

there is not enough data to develop accurate predictions because there are few data that 

delineates the model’s behaviour for projects costing more than £2.5 million.  

Table 1 presents the coefficient of determination r2, mean absolute error (MAE), and root mean 

square error (RMSE) for the three predictive models. Table 1 presents results using only the 

distance as the predictor (rows 1-3) and using the region in which the line is located as an 

additional variable to predict the cost (rows 4-6). SVR achieved the best r2 and the lowest MAE 

and RMSE for both sets of results, while LR and ANN achieved similar results. Adding the 

region, as an additional variable, to predict the cost did not improve the coefficient of 

determination of any of the models significantly. The MAE and RMSE only improved 

marginally. Therefore, in this case, the region is not a relevant variable to predict cost as the 

initial analysis suggested (Figure 4 and 5). Note that this study minimised the number of 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7 8 9

LR_O

SVR_O

ANN_O

test data
overestimates for

long distances

million £ 

LR_O: 𝑟2 = 0.  

ANN_O: 𝑟2 = 0.   

SVR_O: 𝑟2 = 0. 0 

km



 19 

variables included in the analysis as it has been found that using more variables do not 

necessarily increase accuracy (Gardner et al., 2016). 

Table 1. Coefficient of determination (r2), mean absolute error (MAE), and root mean square error 

(RMSE) for the three models: linear regression (LR), singular vector regression (SVR), and Artificial 

Neural Network (ANN). 
  r2 MAE RMSE 

     
1 LR_O 0.730 0.370 0.286 

2  SVR_O 0.805 0.311 0.206 

3 ANN_O 0.746 0.361 0.269 

     

4 LR_2V 0.732 0.363 0.283 

5 SVR_2V 0.805 0.312 0.206 

6 ANN_2V 0.694 0.399 0.324 

Discussion 

This paper presented an approach to developing a Big Data system to support cost estimation 

for power transmission projects. The proposed Big Data architecture proved to be fit for 

purpose and facilitated the integration of large and diverse data sources. The Big Data 

Analytics Environment enables the use of the most prevalent cost estimation models used in 

construction. The presented approach has the three principal attributes of Big Data (Erl et al., 

2016): (1) Variety; the approach uses various types of structured and semi-structured data, i.e., 

financial data and project data in diverse file formats. It employs a standard model for merging 

data with different underlying schemas. (2) Volume, the approach uses a large dataset (over 

2.75 million data points) and employs a Big Data platform (Cloudera Distribution) that uses a 

distributed file system and non-relational databases for high-performance access to large 

datasets and parallel processing. (3) Velocity, the approach uses a Big Data framework and 

programming model (BDAS and Spark) that facilitates in-memory processing to process 

complex models very quickly 

There are many challenges for estimating costs of power transmission projects in a traditional 

manner such as the extensive construction sites. Estimators usually have to survey many 
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kilometres long routes in very far and inaccessible places. The construction sites are complex 

and located in different contexts (urban, rural, and protected natural areas). The power 

transmission lines usually cross through highways or rivers, which complicates construction 

and increases risks. Limited information and unknown soil conditions hinders reliable cost 

prediction. Many resources must be employed to achieve accurate cost prediction and thorough 

risk identification to support planning tasks effectively. In practice, this is prohibitively 

expensive, and usually, only rough estimates are carried out. However, power transmission 

projects have characteristics that facilitate the implementation of data-driven cost estimation 

methods such as a smaller number of potential clients, a considerable similarity among 

projects, and limited types of materials and plant equipment used. The main factor limiting the 

adoption of data-driven methods is the considerable efforts required to integrate diverse data. 

Power transmission projects have substantially less diverse data than traditional construction 

projects, which facilitates the implementation of data-driven methods. 

An indication of the human level performance for estimating costs of power transmission 

projects was obtained by calculating r2 using estimations –calculated by planners– and the 

actual cost at the end of the projects. The calculated human level performance is r2 = 63%. All 

three predictive models presented in this study perform better than the human level. SVR 

represents the highest increase in performance (17%). It is widely acknowledged that data-

driven methods could outperform traditional manual methods. However, there was no 

empirical evidence of how much the difference in performance would be. This study presents 

an empirical comparison between traditional manual methods and data-driven methods. It 

provides a quantitative indication of the difference in performance. The results of this study 

indicate that the average difference in performance between predictive models is  ̴ 7.5%, while 

the average difference in performance between the data-driven methods and the manual method 

is approximately 13.5%, almost twice as much. This insight represents a relevant implication 
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for practice, as for example, stakeholders can start adopting simpler predictive models that are 

easier to implement and obtain a significant increase in performance.  

This paper also presented a Big Data architecture to manage the vast and varied datasets 

required to process the predictive models that traditional methods cannot handle. Note that the 

main difference between Big Data Analytics and traditional data analytics is the manner in 

which the data is managed and processed. Algorithms used in Big Data Analytics are, in 

essence, the same algorithms used for traditional data analytics. The key difference is that the 

Big Data algorithms run on distributed file systems and non-relational databases using new 

computing frameworks. These new frameworks enable large-scale in-memory data processing. 

Traditional data analytics frameworks are very slow in handling queries because they have to 

sift through large amounts of data stored on disk and are not suitable for complex computations 

such as advanced predictive models. These limitations prevent extracting value or new insights 

from data. 

Conclusions 

A Predictive Analytics and Modelling System (PAMS) has been presented that generates cost 

estimates using data from previously constructed designs. The presented Big Data Analytics 

Environment manages large and diverse datasets for predictive analytics. The proposed Big 

Data architecture is fit for purpose. The distributed file systems and Big Data frameworks and 

programming models employed can handle the large and diverse datasets used in the 

construction sector.  

A 2.75 million-point dataset of power transmission projects has been used as a case study. The 

three most prevalent cost estimation models were implemented (linear regression, support 

vector regression, and artificial neural networks). The R2s were 73%, 80% and 74% 

respectively, in line with other results reported in literature. All the implemented models 

performed better than the estimated human level performance (63%). Data-driven methods for 
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cost estimation have been studied extensively. However, due to the complexities of 

construction projects, there is no consensus regarding the best method. Incremental 

improvements to performance are being achieved constantly; however, adoption in practice 

remains very low. The intention of this paper is to provide an indication of the potential benefits 

of adopting predictive data-driven cost estimation methods and present an approach that can 

be useful in practice to support planning of power transmission projects.  

The main contribution to the body of knowledge of this paper is an indication that data-driven 

cost estimation methods are on average 13.5% better than traditional manual methods for 

power transmission projects. This study has significant implications for practice because it 

enables to make data-driven decisions during preconstruction. In a highly competitive sector 

such as construction, making correct decisions could be the difference between the successful 

delivery of a project and the survivability of the company. For example, the presented approach 

will support stakeholders to make accurate cost estimates, to define accurate profit margins and 

to decide whether it is worthwhile to bid for a project or not. Future steps to improve the 

presented approach should focus on the following aspects: (i) to investigate whether the 

missing data in the dataset is a structural characteristic that reflects an underlying attribute of 

the dataset or are simply input and recording errors; (ii) to compile more granular data, for 

example to obtain the breakdown of the cost according to labour, materials and plant; and (iii) 

to develop an automatic adjustment of the predicted costs that takes into account the costs 

increases due to inflation at the time that the prediction is carried out.  

Data Availability Statement 

Data generated or analysed during the study are available from the corresponding author by 

request. 
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