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Abstract

Accurate 3D object recognition and 6-DOF pose estimation have been pervasively applied to a variety of applications, such as
unmanned warehouse, cooperative robots, and manufacturing industry. How to extract a robust and representative feature from the
point clouds is an inevitable and important issue. In this paper, an unsupervised feature learning network is introduced to extract 3D
keypoint features from point clouds directly, rather than transforming point clouds to voxel grids or projected RGB images, which
saves computational time while preserving the object geometric information as well. Specifically, the proposed network features in
a stacked point feature encoder, which can stack the local discriminative features within its neighborhoods to the original point-wise
feature counterparts. The main framework consists of both offline training phase and online testing phase. In the offline training
phase, the stacked point feature encoder is trained first and then generate feature database of all keypoints, which are sampled from
synthetic point clouds of multiple model views. In the online testing phase, each feature extracted from the unknown testing scene
is matched among the database by using the K-D tree voting strategy. Afterwards, the matching results are achieved by using the
hypothesis & verification strategy. The proposed method is extensively evaluated on four public datasets and the results show that
ours deliver comparable or even superior performances than the state-of-the-arts in terms of F1-score, Average of the 3D distance
(ADD) and Recognition rate.
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1. Introduction

3D object recognition and 6-DOF pose estimation are of
great significance to many practical applications, e.g., un-
manned warehouse, cooperative robots, and manufacturing in-
dustry [1, 2, 3, 4, 5, 6]. However, this is still a challenge due5

to the diverse attributes of objects, which results in the lim-
ited discrimination of handcrafted feature descriptors. In this
paper, we focus on 3D object recognition and 6-DOF pose es-
timation of objects with texture-less or surface-smooth. The
lack of interesting points make them intractable to extract ro-10

bust descriptors. Most classical 2D [7, 8, 9, 10, 11, 12] and 3D
[13, 14, 15, 16, 17, 18, 19, 20] local feature-based methods can-
not perform well on such objects for the sake of weak keypoint
descriptors. Template feature-based methods [21, 22, 23, 24]
can achieve better recognition results for texture-less objects15

by extracting global features, but their performances could be
deteriorated under heavy occlusion as well. While most ex-
isting patch feature-based methods [25, 26, 27] could extract
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various features from RGB-D images to solve such problem-
s, they inevitably involve mapping the 3D real world into 2D20

image space and induce the loss of 3D spatial information ac-
cordingly. In comparison, [28] tries to handle this problem by
converting the point clouds into regular voxel grids and extract-
ing 3D patch features accordingly. However, this introduces
unnecessary computational cost. Recently, a variety of CNN-25

based methods [29, 30, 31] have tried to learn features from
large amounts of identically distributed training data, which de-
pends heavily on large volume of data. The foregoing issues
motivate us to extract a more efficient 3D features represen-
tation from raw point clouds directly and estimate the 6-DOF30

pose of the 3D objects depending on the hypotheses generation
and verification strategy as shown in Fig. 1.

Generally, there are three main stages involved for 3D ob-
ject recognition: 1) 3D feature extraction: Unlike the existing
methods [25, 26, 27, 28] and motivated by [32][33], we design35

a 3D feature encoder, which enables point interaction within
a local neighborhood sphere, by stacking the locally sphere-
wise aggregated feature on point-wise features. Stacking mul-
tiple encoder layers allows further learning deep sphere-wise
features and point-wise features. Afterwards, the point-wise40

features are sequentially sent to the structurally similar decoder
to reconstruct the input points. The output sphere-wise features
of the middle layer are used for characterizing 3D keypoints
descriptor. The mean squared error (MSE) is adopted as the
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Stacked Point Feature Extraction 

and 6-DOF Pose Estimation

(A) The raw point clouds 

of model samples

(B) The raw point clouds 

of real scenario

(C) The result of 6-DOF pose 

estimation

Figure 1: The illustration of the proposed method that directly operates on
the raw point clouds (no need for any structure conversion) and produces the
6-DOF object pose. (A) the raw point clouds of multi-view model samples. (B)
the raw point clouds of real scenario. (C) the result of the 3D object recognition
and 6-DOF pose estimation.

reconstruction loss. 2) Similarity Search: Using the proposed45

encoder, we create a feature database of point clouds spheres
sampled from synthetic model views where each feature holds
a local 6D pose annotation. During testing, we sample point
clouds spheres from the raw point clouds of the testing scene,
and extract the corresponding features afterwards. Then the fea-50

tures are matched against the database via an efficient K-D Tree
search. The matching returns a collection of candidate votes,
which are cast to generate hypotheses. 3) Hypotheses Verifi-
cation: Casting votes can lead to a crowded voting space that
requires further refinement. In order to keep detection compu-55

tationally feasible, we first set a voting threshold to reject the
false hypotheses with low score, and then refine the pose esti-
mation via the Iterative Closest Point (ICP) [34]. At last, the
non-maxima suppression is used to obtain the final refined re-
sults.60

In summary, our main contributions are:

• We propose a simple but effective unsupervised feature en-
coder for point-clouds-based local 3D feature extraction,
which avoids unnecessary computational cost and geomet-
ric information loss caused by data conversions.65

• Benefiting from both our unsupervised feature encoder
and the efficient verification strategy, we present an effec-
tive framework to recognize the 3D objects and estimate
the corresponding 6D pose from the clutter environment
accordingly.70

• Extensive experiments on four public datasets are per-
formed to validate the effectiveness of our method, where
ours outperforms the state-of-the-arts.

2. Related Works

In this section, an overview of the existing works on 3D75

object recognition and 6-DOF pose estimation are presented.
Here, these methods are classified into four categories as bel-
low:

Local feature-based methods: Earlier techniques extrac-
t texture-based local features from the 2D RGB image and then80

back project to 3D space [7, 8, 9, 10, 11]. These methods per-
form well on 3D objects with rich texture surface. However,
many objects in our daily life are texture-less, especially in
the industrial environment. Recently, the RGB-D sensors with
low cost and acceptable accuracy, e.g., Kinect, become popu-85

lar. Several point clouds based features are designed depending
on various local 3D surface [13, 14, 15, 16, 17, 18, 19] with-
out projecting feature points from 2D image to 3D space. The
basic assumption of these methods is that the surface normal of
the corresponding objects have rich variations. These methods90

may cause ambiguity for planar or self-symmetric objects due
to various repeating local surfaces [20].

Template feature-based methods: Template features are
achieved from the scanning model under multi-view, and the
optimal matching is searched by sliding windows, which are95

commonly robust to texture-less objects. Line2D [22] mere-
ly employs the image contours to denote a 3D object with a
limited set of templates and achieves efficient matching by lin-
earizing the memory for parallelization. As an improvemen-
t, LineMod [21] performs robust 3D object detection by em-100

bedding quantized image contours and normal orientations on
RGB-D images. However, these methods are being scaled lin-
early with the number of templates. To this end, R. Rioscabrera
et al. [23] optimizes the matching via a cascaded classification
scheme and gets 10 times speedup. W. Kehl et al. [24] proposes105

an improvement approach based on LineMod template features
via hashing matching.

Patch feature-based methods: Recently, some feature rep-
resentation methods based on local RGB-D patches are pro-
posed, e.g., A. Tejani et al.[25] employ a manually designed110

feature inspired by [21] along with random forests based
voting schemes for the estimation of the 6-DOF pose. A.
Doumanoglou et al. [26] learn patch features via an unsuper-
vised deep Sparse Autoencoder instead of manually designed.
Given that the training classifier requires to learn the back-115

ground as a negative class, the method is normally constrained
as dataset-specific. Instead, W. Kehl et al. [27] train a Convolu-
tion Autoencoder to extract patch features and estimate 6-DOF
pose based on K-nn search, which gives better performance.
Liu et al. [28] present a 3D Voxel Autoencoder by converting120

the point clouds into voxel grids for fully using the 3D spatial
structure information.

Trainable CNN-based methods: Even various deep learn-
ing based methods have justified their performance on object
detection, classification and segmentation [32, 35, 36], these125

methods remain unable to accurately yield the 6-DOF object
pose as a regression problem [37][38]. For 3D object recogni-
tion, the frequently-used strategy is first to segment and detect
object on the RGB-D images and then back project them to 3D
space to acquire rough location. Eventually, the Iterative closet130

point (ICP) is employed to refine the 6-DOF pose based on the
approximate models [39, 40, 41]. Recently, some end-to-end
methods are proposed [29, 30, 31] to predict the 2D bounding
box in the image and compute the 6D pose using a PnP algo-
rithm [42]. These methods inevitably rely on large amounts of135

identically distributed training data, which acquire extra cost in
collecting these training datasets.
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(A) Raw Point Clouds (B) Farthest Point Sampling (C) Random Sampling

Figure 3: The effect of different sampling methods. (A) The raw input point
clouds. (B) The effect of the Farthest Point Sampling method (FPS). (C) The
effect of the Random Sampling method (RS).

3. Methodology

In this section, the framework of our 3D object recognition
and 6-DOF pose estimation method is introduced. The problem140

can be summarized as given a 3D model M of a specific ob-
ject and a testing scene S , which needs to estimate the 6-DOF
pose of all the M existing in S at one time. Fig. 2 demon-
strates the framework of our method. Generally, it consists of
two main phases: the Offline Training Phase and Online Test-145

ing Phase. 1) In the offline training phase, the stacked feature
encoder is trained first and then generate feature database of al-
l keypoints, which are sampled from synthetic point clouds of
multiple model views. Each feature holds a 6D pose annota-
tion. 2) In the online testing phase, the features of the unknown150

scene are matched among the database by using the K-D tree
searching. The matching results cast a collection of hypotheses
that are refined via a verification strategy.

3.1. Sphere-wise data sampling and grouping

Typically, the point clouds of a low-cost depth sensor is com-155

posed of more than 30k points. Due to the density of the point
clouds varies significantly in the whole space, operating direct-
ly on all points not only increases the memory/efficiency bur-
den, but also disturb the detection accuracy. To this end, the
Farthest Point Sampling (FPS) [43] method is adopted to sam-160

ple keypoints as shown in Fig. 3, where FPS covers the entire
surface shape better comparing with Random Sampling (RS)
[44]. The sampling performance is compared in the experimen-
tal part. For a given point clouds and a support radius r, we first
sample a fixed number t of keypoints kp = [p1, ..., pt], and then165

group the sphere-wise local point sets lp = [p1, ..., pn] with n
points of r-nearest neighboring search radius around each key-
point. The model views and scenes use different sampling num-
ber of t. Specifically, for spheres with a point number more than
and less than n, FPS and Repeated RS methods are used to sam-170

ple n points respectively. In our case, the keypoints sampling
number tm = 512 for model views and ts = 4096 for testing
scenes. The local points sampling number n = 256 with a sup-
port radius r, which is set as 1

3 of the shortest edge of the 3D
model bounding box.175

3.2. Stacked Point Feature Encoder

In this subsection, the process will be elaborated, which ex-
tracts the sphere-wise feature descriptor via the encoder layers.
The offline training phase of Fig. 2 illustrates the hierarchical
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Figure 4: The architecture of the Stacked Point Feature Encoder Layer, which
consists of a 1D Convolution Layer for feature transformation, a Maxpool
Layer for feature aggregation and a Stacked Feature Layer for feature con-
catenation. The following stacked encoder layers yield deep features layer by
layer.

feature encoding process. The architecture details are described180

in the following paragraph as shown in Fig. 4.
Denote S = {lpi = [Xi, Yi, Zi, Ri, Gi, Bi, Ni]

T ∈
R

9}i=1...n as a local sphere containing n points, where lpi
contains XY Z coordinates and RGB values for the i-th point
and Ni is the calculated normal direction, which consists of185

Nx, Ny, Nz . It needs to be explained that the normals are com-
puted before the sampling and grouping of the spheres so as
to ensure the continuity of the surface shape of the input point
clouds. Firstly, each sphere is normalized, including centraliza-
tion and normalization of coordinates, normalization of colors190

and unitization of normal vectors. Next, the normalized spheres
with the size as [b × n × 9] are transformed through the fully
connected layers (FC) into aggregated feature space with the
size as [b × n × c1], where b represents the training batch size
(in our case, b = 4), n represents the number of points, 9 is195

the feature dimension of the initial point-wise features, c1 is
the dimension of transformed features. Specifically, in order to
process 3D point clouds more efficiently, 1D convolution with
[1] kernel size and [1] kernel stride are used to replace the fully
connected layer to transform the input data into [b × n × c1].200

To extract sphere-wise features, which represent the global fea-
tures of the local 3D points sphere, the max pooling layer is
used as a symmetric function that aggregates information from
all the point-wise features to achieve sphere-wise features with
the size as [b×1×c1]. The use of max pooling layer is not only205

to aggregate the spatial dimension of features, but also to ensure
the permutations invariance of the unordered 3D points. After-
wards, the sphere-wise features are fed back to per point-wise
features by stacking the sphere-wise features on each of the
point-wise features with size as [b×n×c2], where c2 = 2×c1.210

Through this way, the new stacked point-wise features are able
to preserve both the local and global information.

We use [ciin, c
i
out] to represent the I/O of i-th encoder lay-

er that transforms input features of dimension cin into output
features of dimension cout. For the first encoder layer, c1in is 9215

that represents there are 9 dimensions of the raw points clouds
attributes. For each encoder layer, there are two output fea-
tures, i.e., the sphere-wise feature csphereout and the new stacked
point-wise feature cstackedout . Only cstackedout could be transformed
through next encoder layer into deeper sphere-wise and point-220

wise features; the csphereout could only be extracted from the end
of the encoder layers.
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Figure 2: The framework of our 3D object recognition and 6-DOF pose estimation method. 1) In the offline training phase, the stacked point feature encoder is
trained first and then generate feature database of all keypoints, which are sampled from synthetic point clouds of multiple model views. 2) In the online testing
phase, the features from the unknown real scene are matched among the database by using the K-D tree searching method. Afterwards, the matching results are
achieved by using the hypothesis & verification strategy.

3.3. The Offline Training Network
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Figure 5: The complete framework and parameter configuration of the Autoen-
coder. It has three stacked encoder layers and three symmetric decoder layers.
The center layer shared between the encoder and decoder. The output of the
maxpool in the center layer is used as the final sphere-wise features. The mean-
squared error (MSE) is used as the reconstruction loss.

For the offline training, an unsupervised feature encoder-
decoder network is presented as shown in Fig. 5. The decoders225

have the same structure to the encoders, which are used to re-
construct the input point clouds features. Several papers have
proved that the features extracted by unsupervised reconstruc-
tion have effective performances [26, 27, 28]. In our case, the
network has three stacked encoder layers and three symmetric230

decoder layers. The complete network structure and parame-
ter configuration are show in Fig. 5, where the center layer is
shared by the encoders and decoders. The output features of

the maxpool in the center layer are used as the final sphere-
wise features (here the feature dimension is 64). Each encoder235

layer is composed of a 1D Convolution Layer, a maxpool lay-
er and a stacked feature layer. The mean-squared error (MSE)
is used as the reconstruction loss. For a visual impression of
the reconstruction quality, the results of two random sampled
spheres from testing scene are shown in Fig. 6, where both the240

reconstruction results of the [XY ZRGB] and the [NxNyNz]
are shown almost similar. The [NxNyNz] shown is converted
to the corresponding values within HSV color space.

(Input1) (Recons1)

[XYZRGB] [NxNyNz] [XYZRGB] [NxNyNz]

(Input2) (Recons2)

Figure 6: The visual impression of the reconstruction quality for two sam-
pled spheres from testing scene, where both the reconstruction results of the
[XY ZRGB] and the normal [NxNyNz ] shown are almost similar. The nor-
mal shown is converted to HSV color.

After the completion of the training, the features of all 3D

4



C
o
u

n
t

Recognition Results τ=0.7 τ=0.8 τ=0.9 Score histogram 
Score

Figure 7: 6D cast voting space with different τ values. The projected voting centroids are colored following their voting score, which is mapped by an HSV
colormap. The Saturation (S) and Value (V) are fixed to maximum and mapping the score to the range of Hue (250→360) corresponding to (blue→red). It can be
seen clearly that with the increase of τ , most false candidates are filtered out and the true candidates around the object centroid with a higher score is remained.

point clouds spheres y sampled from synthetic model views are245

used to create a feature database, where each feature holds a
local 6D pose annotation [yaw, pitch, roll, tx, ty, tz] ∈ R

6. In
our case, the annotation [yaw, pitch, roll] represents the pose
transformation of each model view under the model’s coor-
dinate frame and the annotation [tx, ty, tz] is the offset from250

the sphere center (x, y, z) to the model center (0, 0, 0), where
(tx = 0− x, ty = 0− y, tz = 0− z). In this case, the model’s
coordinate frame is built on the model center.

3.4. The Online Hypotheses Generation and Verification

In this subsection, we intend to generate hypotheses of the255

candidate 6-DOF pose and refine them. For a given testing
scene, the features of all 3D point clouds spheres sampled from
the scene are exploited to find the pairwise correspondences
from the feature database for 6-DOF pose estimation. Since
the size of the training feature database is huge to cover all sam-260

pling views of the object model, the K-D Tree searching method
is used to search the optimal correspondences for each sphere-
wise feature efficiently. During testing, we sample the keypoint
s = (sx, sy, sz) with associated sphere x from unknown scene
first and then compute its feature f(x) and search the nearest265

spheres y1, ..., ym from database. Each neighbor casts a glob-
al vote v(s, y) ⇒ (tx + sx, ty + sy, tz + sz, yaw, pitch, roll)
with an associated weight as w(v) = e−||f(x)−f(y)|| depending
on the feature distance. This method is flexible enough to alter
the number of possible vote candidates by tuning the search ra-270

dius R, and the searched candidates will only be voted if they
hold a similar feature distance. This reduces the impact of noise
sensitivity on the method and is more easily constrained by the
number of votes. For different objects, the value of R needs
to be adjusted manually according to the actual feature output.275

We adjust this value by observing and sampling several most
similar feature distances.

Due to noise sensitivity and feature ambiguity, the valid
voting candidates can lead to a crowded voting space,
which requires further refinement to make it computa-280

tionally feasible. For the crowed 6-DOF voting space
[yaw, pitch, roll, tx, ty, tz], we first group it into equal voxel
grids and add cumulative candidate weight w(v) to each grid.
Then, by computing the weight histogram, a dynamic threshold
τ ∈ [0, 1] is designed to reject 90% grids (in our case, τ = 0.9)285

with low weight. As τ increases, more false candidates are fil-
tered out. The filter results of different τ are shown in Fig. 7.

For the remaining candidates, each is refined by the Iterative
Closest Point (ICP) to refine the transformation and calculate a
matching score ε, where ε > 0.8 (in our case) means the over-290

lap ratio between the object model and the scene surface. The
non-maximum suppression is followed to find the local maxi-
mums depending on the voting weight, where each generates
the final hypotheses [Rc, Tc].

4. Experiments295

In this section, we compare our method with several rep-
resentative 3D object recognition methods, such as LineMod
[21], SSD-6D [29], AE-HF [26], Spin image [15]. The ex-
periments are evaluated on four publicly available datasets (the
LC-HF dataset [25], the LineMod dataset [21], the AE-HF bin-
picking dataset [26]) and the UWA dataset [20], which contain
multiple objects with various interferences, e.g., occlusion, illu-
mination change, cluttered background and no-colors. For the
evaluation metric, we first adopt the F1-score defined in LC-HF
[25]. The estimation is deemed correct if the mean distance m
between the true pose [R, T ] of model M vertices and those
estimated given the pose [Rc, Tc] is less than λ (here is 15%)
of the objects diameter [25]. Secondly, we adopt the Average
of the 3D distance (ADD) metric defined in [21]. We take a
pose estimate to be correct if the mean distance m is less than
λ (here is 10%) of the object diameter [21]. Specifically, for
rotationally symmetric objects, the mean distance is computed
as Eq. 1:

m = avg
∑

x∈M

min
M

||(Rx+ T )− (Rcx+ Tc)||. (1)

Thirdly, we adopt the Recognition rate under different Occlu-
sion rate defined in [20]. The occlusion rate is defined as Eq. 2:

occlution = 1− model visible surface area in scene
total model surface area

. (2)

4.1. Results On the LC-HF Dataset [25][27]

This dataset [25][27] contains 6 objects and each testing im-
age has 2-3 same targets, which are placed on a cluttered round
table. Each target is associated with the 3D mesh model and
assigned a ground-truth [R, T ] matrix.300
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(A1) coffee (A2) coffee (B1) camera (B2) camera (C1) joystick (C2) joystick

(D1) juice (D2) juice (E1) shampoo (E2) shampoo (F1) milk (F2) milk

Figure 8: Some demo results and the voting maps of our method on the LC-HF dataset [25][27], where the recognition results are shown as the green transformed
model overlaid the estimated location (A1-F1). Areas with the high voting score are also clearly clustered in the object centroid (A2-F2).

Table 1: The statistic results of average F1-score of the re-annotated LC-HF
datasets [25][27] in comparison with LineMod [21], LC-HF [25], ConvAE [27],
VoxelAE [28] and SSD-6D [29]. The best results and the second best results
are represented with red and blue fonts.

Objects [21] [25] [27] [28] [29] OURS

Coffee 0.942 0.891 0.972 0.977 0.983 0.996
Shampoo 0.922 0.792 0.910 0.857 0.892 0.931
Joystick 0.846 0.549 0.892 0.739 0.997 0.958
Camera 0.589 0.394 0.383 0.681 0.741 0.949
Juice 0.595 0.883 0.866 0.866 0.919 0.970
Milk 0.558 0.397 0.463 0.493 0.780 0.831

Average 0.740 0.651 0.747 0.768 0.885 0.939

The statistic recognition results are shown in Tab. 1, where
the overall average F1-score of our method is 93.9%, in com-
parison with LineMod (74.0%) [21], LC-HF (65.1%) [25],
ConvAE (74.7%) [27], VoxelAE (76.8%) [28] and SSD-6D
(88.5%) [29] respectively. Here, [29] counts a detection to305

be correct when the IoU score of a predicted bounding box
with the groundtruth box is higher than 0.5. It is evident that
LineMOD fares very well on most sequences with low occlu-
sion (e.g., coffee, shampoo and joystick). It only shows prob-
lem where objects sometimes are partially visible (e.g., milk) or310

where the objects are confused by the background (e.g., camera
and juice). LC-HF improves the inherent robustness to fore-
ground occlusions by using patch representation, but its overall
performance is not fully exploited due to the complex parame-
ter adjustment of hough voting strategy. ConvAE improves the315

overall performance by using deep RGBD patch representation
and combining simple and valid voting strategy. Due to the loss
of geometric information in the process of projection from 3D
to 2D for RGBD data, it decreases the precision by the cluttered
environment. Although VoxelAE deals 3D points, the process320

of voxelization also leads to the loss of geometry information
and introduces unnecessary memory expenditure. SSD-6D is a
supervised CNN-based method, which requires a lot of scene
distribution data and predicts the object 2D bounding box and

a rough estimate of the objects orientation in RGB image. The325

final 6-DOF estimation is calculated by several stages of refine-
ment and verification. This process will magnify the error of
2D prediction and then affect the 6-DOF pose estimation. In
contrast to most existing methods, ours deals 3D points without
any data conversion (e.g., voxelization), which makes full use330

of geometric information and does not dataset specific.
Ours also give rise to a good result for the camera model

and the joystick model, where the camera model is small in
size and looks similar to the background and the joystick model
has thin and thick part. Especially for the milk model, while335

this model is texture-less, smooth-surface and contains other
distracting objects on it, ours shows better results. It is evi-
dent that the learned features can handle various object appear-
ance. Fig. 8 demonstrates our recognition results on the LC-
HF dataset, where ours can accurately estimate the objects pose340

with amounts of clutter. We use the metric Eq. 1 when eval-
uating the pose accuracy for the rotationally invariant objects,
coffee, shampoo, camera and juice.

4.2. Results On the LineMod Datasets [21]

This dataset [21] contains 15 objects and each testing im-345

age has only one target, which is placed on a desk with heavy
amounts of occlusion and clutter. Each object is associated with
the 3D mesh model and assigned a ground-truth [R, T ] matrix
in more than 1k testing images. Since the mesh models of the
bowl and the cup are missing, we test the other 13 models as350

well as [25]. The statistic recognition results of average F1-
score and ADD metric are shown in Tab. 2.

Firstly, we also give the statistic recognition results of aver-
age F1-score in comparison with LineMod [21], LC-HF [25],
ConvAE [27] and SSD-6D [29] respectively, where the average355

F1-score of our proposed method is 93.4% outperforming the
state-of-the-arts, e.g., the second best one ConvAE (92.88%),
the third best one SSD-6D (88.50%) and so on. Here, [29]
counts a detection to be correct when the IoU score of a pre-
dicted bounding box with the groundtruth box is higher than360

0.5. Specially, ours yields the best results for 3 out of all 13
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(A1) ape (A2) ape (B1) cat (B2) cat (C1) glue (C2) glue

(D1) can (D2) can (E1) phone (E2) phone (F1) eggbox (F2) eggbox

(G1) bvise (G2) bvise (H1) driller (H2) driller (I1) lamp (I2) lamp

S
m

a
ll

M
e
d
iu

m
L

ar
g
e

Figure 9: Some demo results and the voting maps of our method on the LineMod dataset [21], where the recognition results are shown as the green transformed
model overlaid the estimated location (A1-I1). We roughly divided the objects into three scales: the small size (top row), the medium size (middle row) and the
large size (bottom row). Areas with the high voting score are also clearly clustered in the object centroid (A2-I2).

Table 2: The statistic results of average F1-score and ADD metric on the
LineMod dataset [21] in comparison with LineMod [21], LC-HF [25], Con-
vAE [27], SSD-6D [29], BB8 [30] and Seamless [31]. The best results and the
second best results are expressed in red and blue fonts. The ADD metric of
Seamless [31] is acquired without refinement and for reference only.

Metric F1-Score (λ = 0.15) ADD (λ = 0.1)

Objects [21] [25] [27] [29] OURS [31] [30] OURS

ape 53.3 85.5 98.1 76.3 93.5 21.62 40.4 68.6
bvise 84.6 96.1 94.8 97.1 95.2 81.80 91.8 78.9
cam 64.0 71.8 93.4 92.2 96.3 36.57 55.7 87.2
can 51.2 70.9 82.6 93.1 94.3 68.80 64.1 83.0
cat 65.6 88.8 98.1 89.3 94.8 41.82 62.6 84.4
driller 69.1 90.5 96.5 97.8 93.2 63.51 74.4 80.5
duck 58.0 90.7 97.9 80.0 96.2 27.23 44.3 81.3
eggb 86.0 74.0 100 93.6 96.0 69.58 57.8 84.4
glue 43.8 67.8 74.1 76.3 88.2 80.02 41.2 62.8
holep 51.6 87.5 97.9 71.6 90.8 42.63 67.2 77.8
iron 68.3 73.5 91.0 98.2 92.3 74.97 84.7 81.3
lamp 67.5 92.1 98.2 93.0 95.7 71.11 76.5 85.8
phone 56.3 72.8 84.9 92.4 88.4 47.74 54.0 74.5

Average 83.44 81.69 92.88 88.50 93.40 55.95 62.7 79.3

models and all the others are getting the second best results.
Although the results of most models are not the best, ours are
the most balanced by integrating 3D geometric information.

Secondly, we give the statistic recognition results of AD-365

D metric, where the ADD metric of our proposed method is
79.3%, in comparison with more CNN-based method, BB8
(62.7%) [30] and Seamless (55.95% without refinement for ref-
erence only) [31]. BB8 is made of one CNN to coarsely seg-
ment the object and another to predict the projections of the370

objects 3D bounding box given the segmentation in 2D image,
which are then used to compute the 6D pose using a PnP [30]

algorithm and further pose refinement. Unlike BB8 methods,
which require multi-stage of processing, Seamless is a single-
shot method that takes the image as input and directly detects375

the 2D projections of the 3D bounding box vertices. The objects
6D pose is then estimated using the PnP algorithm without any
refinement. For these methods, the main problem is to predict
in the 2D image space, and then get the 6-DOF estimation of
the objects in the 3D space by spatial mapping. The error of 2D380

prediction is further magnified in the process of spatial map-
ping. In contrast to these methods, the overall ADD metric of
ours shows better results.

Fig. 9 demonstrates our recognition results on the LineMod
dataset, where ours can accurately estimate the objects pose385

with heavy amounts of occlusion, scale change and clutter. We
use the metric Eq. 1 when evaluating the pose accuracy for the
rotationally invariant objects, glue, eggbox as well as [21].

Table 3: The statistic results of average F1-score on the AE-HF bin-picking
dataset [26]. The best results and the second best results are expressed in red
and blue fonts.

Objects LC-HF[25] AE-HF [26] OURS

CoffeeCup 0.314 0.361 0.469
Juice 0.248 0.290 0.412

4.3. Results On the AE-HF Bin-picking Datasets [26]

This dataset [26] constructs two bin-picking scenarios, where390

each contains multiple same targets, 16 for bin-coffee scenario
and 5 for bin-juice scenario. Different from the two household
datasets LC-HF datset [25] and LineMod dataset [21] with ob-
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(A1) bin-coffee (A2) bin-coffee (B1) bin-juice (B2) bin-juice

Figure 10: Some demo results and the voting maps of our method on the AE-HF bin-picking dataset [26], where the recognition results are shown as the green
transformed model overlaid the estimated location (A1, B1). As can be seen that ours can accurately recognize the objects pose even with heavy amounts of
self-occlusion (A2, B2).

jects placed separately, the serious aliasing and self-occlusion
between multiple objects make the dataset more challenging.395

The statistic recognition results of average F1-Score are
shown in Tab. 3, where our method outperforms LC-HF [25]
and AE-HF [26] with about 30% improvement. For the most
existing RGB-D patch-based methods (e.g., LC-HF, AE-HF),
the features usually contain more interferences due to the local400

patches that inevitably cover part of the background, as shown
in Fig. 11 (A), where the red part is the background. In con-
trast, our method extracts features from the local point clouds
spheres, which contains relatively little interference because of
the definite spatial location. As shown in Fig. 11 (B), the lo-405

cal sphere contains only the surface of the target without any
background. Fig. 10 demonstrates our recognition results on
the AE-HF bin-picking dataset, where the targets have accurate
voting centers. As a result, ours are able to accurately recognize
the object pose even with heavy amounts of self-occlusion.410

(A) RGB-D Patch (B) Point Clouds Sphere

Figure 11: The demonstration of the local RGB-D patch and the local point
clouds sphere. (A) The RGB-D patch contains part of the background. (B)
The point clouds sphere contains only the surface of the target without any
background.

4.4. Results On the UWA Datasets

The UWA dataset [20] contains 5 objects and 50 real test-
ing scenes, where each scene is scanned by a Minolta VIVID
910 laser scanner by placing 4-5 different models in the scene
without color information. Exclude the Rhino model due to it415

contains large holes and cannot be recognized well, other ob-
jects are associated with the 3D mesh model and assigned a
ground-truth [R, T ] matrix.

Specifically, we use [X,Y, Z,Nx, Ny, Nz] without RGB in-
formation as the only input of the feature encoders. The statistic420

recognition results are shown in Tab. 4, when the object occlu-
sion rate is between 0 and 84%, the overall average recognition
rate of our method is the second best 97.7%, in comparison with
Tensor (96.6%) [15], Spin image (87.8%) [15], EM (97.5%)
[16] and RoPS (98.8%) [17] respectively.425
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Figure 14: The recognition rate against different occlusion on the UWA dataset
without Rhino model.

Table 4: The statistic results of average recognition rate on the UWA dataset
[20] without Rhino model, where the the occlusion rate is between 0 and 84%.
The best results and the second best results are expressed in red and blue fonts.

The occlusion rate is between 0 and 84%
Methods Tensor [15] Spin image[15] EM [16] RoPS [17] OURS
Avg 96.6 87.8 97.5 98.8 97.7

Although our method is designed to be better at dealing with
scenes with color information, it is still applicable for such
no-color dataset. Compared with other special methods, ours
achieves 97.7% recognition rate when the occlusion rate is be-
tween 0 and 84%, which is close to the optimal RoPS method.430

As shown in Fig. 14, when the occlusion rate exceeds 84%, the
recognition rate of ours is still better than most of the state-of-
the-arts. In addition, we manually patched the Rhino model
as shown in Fig. 12 and labeled all 23 scenes containing Rhi-
no using ICP method. The overall average recognition rate of435

our method is 92.3%, when the occlusion rate of Rhino model
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(A) Rhino model with holes (B) Rhino model after patched

Figure 12: Rhino model patched with Geomagic Studio. We convert the normal to HSV color space for visualization.

(A1) The first sample scene (A2) Our recognition result (B1) The second sample scene (B2) Our recognition result

Figure 13: Two sample scenes and our recognition results on the UWA dataset, the correctly recognized objects are covered by their 3D models. We convert the
normal to HSV color space for visualization.

is between 0 and 74%. The overall average recognition rate is
52.2% in the whole occlusion range. Fig. 13 demonstrates our
recognition results on two sample scenes on the UWA Dataset,
where ours can also accurately recognize objects without color.440

4.5. Results on the Average Running Time

We present the average time consumption of our method on
the LC-HF dataset [25] and the comparison with ConvAE [27].
As shown in Tab. 5, we record the corresponding time of var-
ious stages, including Data sampling, Feature extraction, Hy-445

potheses generation and Refinement. The total average running
time for our method is 774ms, which is close to the 670ms us-
age of ConvAE. Specifically, we use different platforms for d-
ifferent phases and record the time separately.

Table 5: Comparisons of the average runtime of ours and ConvAE [27] on the
LC-HF dataset [25].

Stage ConvAE (ms) OURS (ms)

Data Sampling 0.03 12.5
Feature Extraction 477.3 47.4
Hypothesis Generation 63 186.2
Refinement 130.5 528.4

Online testing 670.8 774.5

In our case, it contains data sampling (keypoints kp and lo-450

cal points lp sampling) and spheres grouping. We use GPU
for parallel acceleration, which can sample and group the raw
point clouds of more than 30K into local spheres of 4K with

about 12ms. The feature extraction use about 47ms, which is
less than ConvAE (477ms). We implement this phase on the455

Tensorflow framework based on Pointnet model [33] with a N-
VIDIA TITAN XP (12GB RAM). The Hypotheses generation
and Refinement consume more time than ConvAE due to oper-
ations on point clouds directly. Both the Hypotheses generation
and Refinement are executed on a standard PC with a general460

Intel CPU (i5-3470) at 3.20GHz, 16GB RAM.
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Figure 15: The architecture of the Non-stacked Point Feature Encoder Layer,
which generates the features without stacked operations.

4.6. Comparisons on the Different Network Architecture

In order to justify the effectiveness of the stacked point fea-
ture encoder, we compare it with another architecture on the
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AE-HF bin-picking dataset [26].465

As shown in Fig. 15, we extract the sphere-wise features and
point-wise features for this architecture without stacked oper-
ations. Given a normalized sphere with initial point-wise fea-
tures, we transform it through the 1D convolution layer into a
aggregated feature space and use maxpool layer to further ag-470

gregate information from the new point-wise features to sphere-
wise features. The statistic recognition results of average F1-
Score are shown in Fig. 16, where we compare two architec-
tures with different number of encoder layers. We can see intu-
itively that for both the two different architectures, by increas-475

ing the number of encoder layers from 1∼3 (include the center
layer), the recognition results increase obviously. By fixing the
number of the encoder layers, the recognition result of the s-
tacked point feature encoder in our case is more effective than
the non-stacked point feature encoder, which can be attributed480

to the fact that the stacked operation augments the local sphere
features by concatenating the locally aggregated features layer
by layer.
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Figure 16: Comparisons on the performance of the two architecture with the
different number of encoder layers.

4.7. Comparisons on the Different Sampling Methods

One of the most important processes for 3D point clouds in485

object recognition scenarios is to sample the input point clouds
(∼30K) to decrease the memory/efficiency burden on the com-
puting platform. The most commonly used sampling methods
for point clouds are Voxel-based Uniform Sampling (VS) [45]
and Random Sampling (RS) [44]. However, the VS method490

is unable to limit the sampling points number, which is not
suitable for our network structure, and ours needs a fixed in-
put size. The RS method is suitable for our network, but the
sampling points cannot fully cover the surface of the input da-
ta, because of its inherent randomness during sampling. To this495

end, we adopt the Farthest Point Sampling (FPS) [43] method
and present the comparison results with RS on the AE-HF bin-
picking dataset [26] as shown in Fig. 17. By fixing the key-
points number (kp = 4096) and the local points number (lp =
256), we can see that the recognition result of the FPS is more500

effective than the RS method due to the FPS can fully cover the
surface of the input point clouds.

In addition, we present the recognition results with differen-
t FPS sampling number of the kp and lp as shown in Fig. 18,
where the average F1-score increases obviously along with the505

(kp=4096, lp=256)
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Figure 17: Compare the performance of RS [44] and FPS [43].

kp that is designed to increase from 1024 to 4096. By fixing
the kp and increasing the lp, the average F1-score can also be
improved. But when the lp exceeds 128 (in our case), it offers
a slight improvement and comes at the expense of additional
computational time. This is because the increase of kp aug-510

ments the coverage of the target surface, and the increase of
the lp can also enhance the expression of the local features, but
when exceeding a threshold, it can fully express the local sur-
face without more.
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Figure 18: Comparisons on the performances of different sampling size of key-
points kp and sampling size of local points lp.

4.8. Comparisons on the Different Support Radius r515

The support radius r determines the range of the local sphere,
which contains the local surface points for feature extraction.
We present the recognition results of different size of the sup-
port radius r on the AE-HF bin-picking dataset [26].
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Figure 19: Comparisons on the performance of different support radius r.

We varied the size of the support radius r to 1
6 , 1

3 and 2
3 ,520

which means the proportion of the shortest object dimension-
s. As shown in Fig. 19, the 1

3 shows the best performance. It
also shows that an increase in the support radius r significant-
ly improves the accuracy ( 16 ∼ 1

3 ), while on the other hand, an
excessive increase ( 23 ) of the r offers a slight decrease. This is525

because the appropriate support radius r is sufficient to express
local features; instead, an oversize r will incur background in-
terference.
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5. Conclusions

In this paper, a deep stacked point feature is designed for 3D530

point clouds representation, which is able to preserve the origi-
nal geometric information of objects to the greatest extent. We
scrap the handcrafted feature engineering for 3D point cloud-
s and propose a simple but effective unsupervised feature en-
coder that can be directly operated on a collection of local 3D535

point clouds spheres, which avoids the geometric information
loss and reduces the computational costs. The feature extrac-
tion is enabled within a local neighborhood sphere, by stacking
the locally sphere-wise aggregated feature on point-wise fea-
tures. During offline training, the stacked point feature encoder540

is trained first and then generate a feature database of all key-
points, which are sampled from synthetic model views. During
online testing, a number of scene features, which are sampled
by farthest sampling method, match against the database of syn-
thetic model views and cast 6D model votes. The votes are sub-545

sequently filtered to refine hypotheses. The proposed method
is evaluated on four datasets and the results prove that ours can
generalize well to multiple scenarios and deliver comparable
or even superior performance than the state-of-the-arts. In the
future work, we intend to extend the current pipeline to a super-550

vised end-to-end network, which operates on pure point clouds
and directly predicts the 6-DOF pose in 3D space.
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