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Abstract

We consider (closed neighbourhood) packings and their generalization in graphs.
A vertex set X in a graph G is a k-limited packing if for every vertex v ∈ V (G),
|N [v] ∩X| ≤ k, where N [v] is the closed neighbourhood of v. The k-limited packing
number Lk(G) of a graph G is the largest size of a k-limited packing in G. Limited
packing problems can be considered as secure facility location problems in networks.

In this paper, we develop a new application of the probabilistic method to limited
packings in graphs, resulting in lower bounds for the k-limited packing number and a
randomized algorithm to find k-limited packings satisfying the bounds. In particular,
we prove that for any graph G of order n with maximum vertex degree ∆,

Lk(G) ≥ kn

(k + 1) k

√(
∆
k

)
(∆ + 1)

.

Also, some other upper and lower bounds for Lk(G) are given.

Keywords: k-Limited packings, The probabilistic method, Lower and upper
bounds, Randomized algorithm

1. Introduction

We consider simple undirected graphs. If not specified otherwise, standard
graph-theoretic terminology and notations are used (e.g., see [1, 2]). We are in-
terested in the classical packings and packing numbers of graphs as introduced in
[9], and their generalization, called limited packings and limited packing numbers,
respectively, as presented in [6]. In the literature, the classical packings are often re-
ferred to under different names: for example, as (distance) 2-packings [9, 13], closed
neighborhood packings [11] or strong stable sets [8]. They can also be considered as
generalizations of independent (stable) sets which, following the terminology of [9],
would be (distance) 1-packings.
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Formally, a vertex set X in a graph G is a k-limited packing if for every vertex
v ∈ V (G),

|N [v] ∩X| ≤ k,

where N [v] is the closed neighbourhood of v. The k-limited packing number Lk(G)
of a graph G is the maximum size of a k-limited packing in G. In these terms,
the classical (distance) 2-packings are 1-limited packings, and hence ρ(G) = L1(G),
where ρ(G) is the 2-packing number.

The problem of finding a 2-packing (1-limited packing) of maximum size is shown
to be NP -complete by Hochbaum and Schmoys [8]. In [4], it is shown that the
problem of finding a maximum size k-limited packing is NP -complete even for the
classes of split and bipartite graphs.

Graphs usually serve as underlying models for networks. A number of interesting
application scenarios of limited packings are described in [6], including network se-
curity, market saturation, and codes. These and others can be summarized as secure
location or distribution of facilities in a network. In a more general sense, these prob-
lems can be viewed as (maximization) facility location problems to place/distribute
in a given network as many resources as possible subject to some (security) con-
straints.

2-Packings (1-limited packings) are well-studied in the literature from the struc-
tural and algorithmic point of view (e.g., see [8, 9, 11, 12]) and in connection
with other graph parameters (e.g., see [3, 7, 9, 11, 13]). In particular, several pa-
pers discuss connections between packings and dominating sets in graphs (e.g., see
[3, 4, 6, 7, 11]). Although the formal definitions for packings and dominating sets
may appear to be similar, the problems have a very different nature: one of the
problems is a maximization problem not to break some (security) constraints, and
the other is a minimization problem to satisfy some reliability requirements. For
example, given a graph G, the definitions imply a simple inequality ρ(G) ≤ γ(G),
where γ(G) is the domination number of G (e.g., see [11]). However, the difference
between ρ(G) and γ(G) can be arbitrarily large as illustrated in [3]: ρ(Kn×Kn) = 1
for the Cartesian product of complete graphs, but γ(Kn ×Kn) = n.

In this paper, we develop an application of the probabilistic method to k-limited
packings in general and to 2-packings (1-limited packings) in particular. In Section
2 we present the probabilistic construction and use it to derive two lower bounds
for the k-limited packing number Lk(G). Also, using a greedy algorithm approach,
we provide an improved lower bound for the 2-packing (1-limited packing) number
ρ(G) = L1(G). The probabilistic construction implies a randomized algorithm to
find k-limited packings satisfying the lower bounds. The algorithm and its analysis
are presented in Section 3. Section 4 shows that the main lower bound is asymptot-
ically sharp, and discusses the improvement for 1-limited packings from the greedy
algorithm approach. Finally, Section 5 provides upper bounds for Lk(G), e.g. in
terms of the k-tuple domination number γ×k(G).

Notice that the probabilistic construction and approach are different from the
well-known probabilistic constructions used for independent sets (e.g., see [1], p.27–
28). In terms of packings, an independent set in a graph G is a distance 1-packing:
for any two vertices in an independent set, the distance between them in G is greater
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than 1. To the best of our knowledge, the proposed application of the probabilistic
method is a new approach to work with packings and related maximization problems.

2. The probabilistic construction and lower bounds

Let ∆ = ∆(G) denote the maximum vertex degree in a graph G. Notice that
Lk(G) = n when k ≥ ∆ + 1. We define

ct = ct(G) =

(
∆
t

)
and c̃t = c̃t(G) =

(
∆ + 1
t

)
.

In what follows, we put
(
a
b

)
= 0 if b > a.

The following theorem gives a new lower bound for the k-limited packing num-
ber. It may be pointed out that the probabilistic construction used in the proof of
Theorem 1 implies a randomized algorithm for finding a k-limited packing set, whose
size satisfies the bound of Theorem 1 with a positive probability (see Algorithm 1
in Section 3).

Theorem 1. For any graph G of order n with ∆ ≥ k ≥ 1,

Lk(G) ≥ kn

c̃
1/k
k+1 (1 + k)1+1/k

. (1)

Proof. Let A be a set formed by an independent choice of vertices of G, where
each vertex is selected with the probability

p =

(
1

c̃k+1 (1 + k)

)1/k

. (2)

For m = k, ...,∆, we denote

Am = {v ∈ A : |N(v) ∩ A| = m}.

For each set Am, we form a set A′m in the following way. For every vertex v ∈ Am,
we take m−(k−1) neighbours from N(v)∩A and add them to A′m. Such neighbours
always exist because m ≥ k. It is obvious that

|A′m| ≤ (m− k + 1)|Am|.

For m = k + 1, ...,∆, let us denote

Bm = {v ∈ V (G)− A : |N(v) ∩ A| = m}.

For each set Bm, we form a set B′m by taking m− k neighbours from N(v) ∩ A for
every vertex v ∈ Bm. We have

|B′m| ≤ (m− k)|Bm|.
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Let us construct the set X as follows:

X = A−

(
∆⋃

m=k

A′m

)
−

(
∆⋃

m=k+1

B′m

)
.

It is easy to see that X is a k-limited packing in G. The expectation of |X| is

E[|X|] ≥ E

[
|A| −

∆∑
m=k

|A′m| −
∆∑

m=k+1

|B′m|

]

≥ E

[
|A| −

∆∑
m=k

(m− k + 1)|Am| −
∆∑

m=k+1

(m− k)|Bm|

]

= pn−
∆∑

m=k

(m− k + 1)E[|Am|]−
∆∑

m=k+1

(m− k)E[|Bm|].

Let us denote the vertices of G by v1, v2, ..., vn and the corresponding vertex
degrees by d1, d2, ..., dn. We will need the following lemma:

Lemma 2. If p =
(

1
c̃k+1 (1+k)

)1/k

, then, for any vertex vi ∈ V (G),(
di
m

)
(1− p)di−m ≤

(
∆
m

)
(1− p)∆−m, m ≥ k. (3)

Proof. The inequality (3) holds if di = ∆. It is also true if di < m because in this

case

(
di
m

)
= 0. Thus, we may assume that

m ≤ di < ∆.

Now, it is easy to see that inequality (3) is equivalent to the following:

(1− p)∆−di ≥
(
di
m

)
/

(
∆
m

)
=

(∆−m)!/(di −m)!

∆!/di!
=

∆−di−1∏
i=0

∆−m− i
∆− i

. (4)

Further, ∆ ≥ k implies ∆
k
≤ ∆−i

k−i , where 0 ≤ i ≤ k− 1. Taking into account that
∆ > 0, we obtain (

∆

k

)k
≤

k−1∏
i=0

∆− i
k − i

= ck < c̃k+1(1 + k)

or
1

c̃k+1 (1 + k)
<

(
k

∆

)k
.

Thus,

pk <

(
k

∆

)k
or p <

k

∆
≤ m

∆
.
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We have p < m
∆

, which is equivalent to 1− p > ∆−m
∆

. Therefore,

(1− p)∆−di >

(
∆−m

∆

)∆−di
≥

∆−di−1∏
i=0

∆−m− i
∆− i

,

as required in (4).

Now we go on with the proof of Theorem 1. By Lemma 2,

E[|Am|] =
n∑
i=1

P[vi ∈ Am]

=
n∑
i=1

p

(
di
m

)
pm(1− p)di−m

≤ pm+1

n∑
i=1

(
∆
m

)
(1− p)∆−m

= pm+1(1− p)∆−mcmn,

where p

(
di
m

)
pm(1 − p)di−m is the probability of having vertex vi, i = 1, . . . , n, in

the set Am, m = k, . . . ,∆. Again, by Lemma 2,

E[|Bm|] =
n∑
i=1

P[vi ∈ Bm]

=
n∑
i=1

(1− p)
(
di
m

)
pm(1− p)di−m

≤ pm
n∑
i=1

(
∆
m

)
(1− p)∆−m+1

= pm(1− p)∆−m+1cmn,

where (1−p)
(
di
m

)
pm(1−p)di−m is the probability of having vertex vi, i = 1, . . . , n,

in the set Bm, m = k + 1, . . . ,∆.

Taking into account that c∆+1 =

(
∆

∆ + 1

)
= 0, we obtain

E[|X|] ≥ pn−
∆∑

m=k

(m− k + 1)pm+1(1− p)∆−mcmn−
∆+1∑

m=k+1

(m− k)pm(1− p)∆−m+1cmn

= pn−
∆−k∑
m=0

(m+ 1)pm+k+1(1− p)∆−m−kcm+kn

−
∆−k∑
m=0

(m+ 1)pm+k+1(1− p)∆−m−kcm+k+1n
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= pn−
∆−k∑
m=0

(m+ 1)pm+k+1(1− p)∆−m−kn (cm+k + cm+k+1)

= pn− pk+1n

∆−k∑
m=0

(m+ 1)c̃m+k+1p
m(1− p)∆−k−m.

Furthermore,

(m+ 1)c̃m+k+1 =

(
∆− k
m

)
(m+ 1)!(∆ + 1)!

(m+ k + 1)!(∆− k)!

≤
(

∆− k
m

)
(∆ + 1)!

(k + 1)!(∆− k)!
=

(
∆− k
m

)
c̃k+1.

We obtain, by the binomial theorem,

E[|X|] ≥ pn− pk+1n
∆−k∑
m=0

(
∆− k
m

)
c̃k+1p

m(1− p)∆−k−m

= pn− pk+1nc̃k+1

= pn(1− pkc̃k+1)

=
kn

c̃
1/k
k+1 (1 + k)1+1/k

.

Since the expectation is an average value, there exists a particular k-limited packing
of size at least kn

c̃
1/k
k+1 (1+k)1+1/k

, as required. The proof of the theorem is complete.

The lower bound of Theorem 1 can be written in a simpler but weaker form as
follows:

Corollary 3. For any graph G of order n,

Lk(G) >
kn

e(1 + ∆)1+1/k
.

Proof. It is not difficult to see that

c̃k+1 ≤
(∆ + 1)k+1

(k + 1)!

and, using Stirling’s formula,

(k!)1/k >

(
√

2πk

(
k

e

)k)1/k

=
2k
√

2πk
k

e
.

By Theorem 1,

Lk(G) ≥ kn ((k + 1)!)1/k

(∆ + 1)1+1/k (1 + k)1+1/k
>

kn

e(1 + ∆)1+1/k
×

2k
√

2πk k

1 + k
>

kn

e(1 + ∆)1+1/k
.
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Note that
2k√

2πk k
1+k

=
2k√

2πk
1+1/k

> 1. The last inequality is obviously true for k = 1,

while for k ≥ 2 it can be rewritten in the equivalent form: 2πk > (1 + 1/k)2k =
e2 − o(1).

In the case k = 1, Theorem 1 gives the following lower bound for the 2-packing
(1-limited packing) number:

Corollary 4. For any graph G of order n with ∆ ≥ 1,

ρ(G) = L1(G) ≥ n

2∆(∆ + 1)
. (5)

Let δ = δ(G) denote the minimum vertex degree in a graph G. The lower bound
of Corollary 4 can be improved as follows:

Theorem 5. For any graph G of order n,

ρ(G) = L1(G) ≥ n+ ∆(∆− δ)
∆2 + 1

≥ n

∆2 + 1
. (6)

Proof. Choose any vertex v ∈ V (G) of the minimum degree δ in G. Then add v to
a set X and remove vertices of N [N [v]] from the graph to obtain G′ = G−N [N [v]],
where N [N [v]] = {w : w ∈ N [u] for some u ∈ N [v]} is the so-called second closed
neighbourhood of v in G. Recursively apply the same procedure to the remaining
graph G′ until it is empty. It is not difficult to see that X is a 1-limited packing

(distance 2-packing) of size at least
⌈
n+∆(∆−δ)

∆2+1

⌉
: we remove at most 1 + ∆ + ∆(∆−

1) = 1+∆2 vertices at each iteration, but at most 1+δ+δ(∆−1) = 1+δ∆ vertices
at the first iteration, and (1 + ∆2)− (1 + δ∆) = ∆(∆− δ).

The proof of Theorem 5 provides a greedy algorithm to find a distance 2-packing
(1-limited packing) satisfying bound (6). We explain later in Section 4 why the
lower bound of Theorem 5 is as good as lower bound (5) of Corollary 4 for almost
all graphs.

3. Randomized algorithm

A pseudocode presented in Algorithm 1 explicitly describes a randomized algo-
rithm to find a k-limited packing set, whose size satisfies bound (1) with a positive
probability. Notice that Algorithm 1 constructs a (preliminary) k-limited packing
X ′ by recursively removing unwanted vertices from a randomly generated set A.
This is different from the probabilistic construction used in the proof of Theorem
1. The recursive removal of vertices from the set A may be more effective and effi-
cient, especially if one tries to remove overall as few vertices as possible from A by
maximizing intersections of the sets A′m (m = k, . . . ,∆) and B′m (m = k+1, . . . ,∆).

At the final stage, Algorithm 1 does a (greedy) extension of the preliminary
k-limited packing X ′ derived from the randomly generated set A. Our experimen-
tal tests with randomly generated problem instances show the following: although
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the randomized part of Algorithm 1 may eventually return a preliminary k-limited
packing set slightly smaller than lower bound (1), the extension of this set to a
maximal k-limited packing always satisfies (1). This is of no surprise, because the
expectation of the size of randomly formed set A in Algorithm 1 is E[|A|] = pn,

where p =
((

∆
k

)
(∆ + 1)

)−1/k

, while the expression for lower bound in (1) yields

a smaller value:
kn

c̃
1/k
k+1 (1 + k)1+1/k

=
k

k + 1
pn =

k

k + 1
E[|A|] < E[|A|].

From the experimental tests, an initially formed set A may contain only few redun-
dant vertices to be removed to obtain the preliminary k-limited packing X ′. As a
result, the preliminary k-limited packing X ′ in many cases satisfies lower bound (1),
and the extension of X ′ to a maximal k-limited packing X seems to always satisfy
(1). In our view, since the problem is NP -hard, Algorithm 1 constitutes a simple
efficient approach to tackle the problem in practice and, hopefully, can be useful to
solve some hard instances of the problem.

Algorithm 1: Randomized k-limited packing

Input: Graph G and integer k, 1 ≤ k ≤ ∆.
Output: k-Limited packing X in G.

begin

Compute p =
(

1
c̃k+1 (1+k)

)1/k

;

Initialize A = ∅; /* Form a set A ⊆ V (G) */

foreach vertex v ∈ V (G) do
with the probability p, decide whether v ∈ A or v /∈ A;

end
/* Recursively remove redundant vertices from A */

foreach vertex v ∈ V (G) do
Compute r = |N(v) ∩ A|;
if v ∈ A and r ≥ k then

remove any r − k + 1 vertices of N(v) ∩ A from A;
end
if v /∈ A and r > k then

remove any r − k vertices of N(v) ∩ A from A;
end

end
Put X ′ = A; /* X ′ is a k-limited packing */

Extend X ′ to a maximal k-limited packing X;
return X;

end

Algorithm 1 can be implemented to run in O(n2) time. To compute the prob-

ability p =
((

∆
k

)
(∆ + 1)

)−1/k

, the binomial coefficient

(
∆
k

)
can be computed
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by using the dynamic programming and Pascal’s triangle in O(k∆) = O(∆2) time
using O(k) = O(∆) memory. The maximum vertex degree ∆ of G can be computed
in O(m) time, where m is the number of edges in G. Then p can be computed
in O(m + ∆2) = O(n2) steps. It takes O(n) time to find the initial set A. Com-
puting the intersection numbers r = |N(v) ∩ A| and removing unwanted vertices
of N(v) ∩ A’s from A can be done in O(n + m) steps. Finally, checking whether
X ′ is maximal or extending X ′ to a maximal k-limited packing X can be done in
O(n+m) time: try to add vertices of V (G)−X ′ to X ′ recursively one by one, and
check whether the addition of a new vertex v ∈ V (G)−X ′ to X ′ violates the condi-
tions of a k-limited packing for v or at least one of its neighbours in G with respect
to X ′ ∪ {v}. Thus, overall Algorithm 1 takes O(n2) time, and, since m = O(n2) in
general, it is linear in the graph size (m+ n) when m = θ(n2).

Also, this randomized algorithm for finding k-limited packings in a graph G can
be implemented in parallel or as a local distributed algorithm. As explained in
[5], this kind of algorithms are especially important, e.g. in the context of ad hoc
and wireless sensor networks. We hope that this approach can be also extended to
design self-stabilizing or on-line algorithms for k-limited packings. For example, a
self-stabilizing algorithm searching for maximal 2-packings in a distributed network
system is presented in [12]. Notice that self-stabilizing algorithms are distributed
and fault-tolerant, and use the fact that each node has only a local view/knowledge
of the distributed network system. This provides another motivation for efficient
distributed search and algorithms to find k-limited packings in graphs and networks.

4. Sharpness of the lower bounds

We now show that the lower bound of Theorem 1 is asymptotically best possible
for some values of k. The bound of Theorem 1 can be rewritten in the following
form for ∆ ≥ k:

Lk(G) ≥ kn

(k + 1) k

√(
∆
k

)
(∆ + 1)

.

Combining this bound with the upper bound of Lemma 8 from [6], we obtain that
for any connected graph G of order n with minimum degree δ(G) ≥ k,

1

k

√(
∆
k

)
(∆ + 1)

× k

k + 1
n ≤ Lk(G) ≤ k

k + 1
n. (7)

Notice that the upper bound in the inequality (7) is sharp (see [6]), so these bounds
provide an interval of values for Lk(G) in terms of k and ∆ when k ≤ δ. For regular
graphs, δ = ∆, and, when k = ∆, we have

1

k

√(
∆
k

)
(∆ + 1)

=
1

(k + 1)1/k
−→ 1 as k →∞.

9



Therefore, the bound of Theorem 1 is asymptotically sharp for regular connected
graphs in the case k = ∆. In other words, there are graphs whose k-limited packing
number is arbitrarily close to the bound of Theorem 1. Thus, the following result
holds:

Theorem 6. When n is large, there exist graphs G such that

Lk(G) ≤ kn

c̃
1/k
k+1 (1 + k)1+1/k

(1 + o(1)). (8)

As shown above, the graphs satisfying Theorem 6 contain regular connected ones
for k = ∆. This class of graphs can be extended, because it is possible to prove
that the bound of Theorem 1 is asymptotically sharp for connected graphs with
k = ∆(1− o(1)), δ(G) ≥ k.

Notice that, for regular graphs, the condition k = ∆ and Lemma 5 from [6] imply
Lk(G) = n−γ(G). Then the classical upper bound (9) for γ(G) gives a weaker lower
bound for Lk(G) than Theorem 1.

As shown in Theorem 5, in contrast to the situation for relatively ‘large’ values of
k, bound (1) of Theorem 1 (see Corollary 4) can be improved for distance 2-packings
(1-limited packings), i.e. when k = 1. However, this improvement is irrelevant for
almost all graphs. A 1-limited packing set X in G has a very strong property that
any two vertices in X are at distance at least 3 in G. It is well known that almost
every graph has diameter equal to 2 (e.g., see [10]). Therefore, ρ(G) = L1(G) = 1
for almost all graphs. Thus, in the case k = 1, Theorem 1 yields a lower bound
of 1 for almost all graphs and is as good as Theorem 5. Notice that the bound of
Theorem 5 is sharp, for example, for any number of disjoint copies of the Petersen
graph. In the other cases, when G has a diameter larger than 2, one is encouraged
to use the greedy algorithm and lower bound (6) provided by Theorem 5, because
it improves bound (5) of Corollary 4 by a factor of 2 + o(1).

5. Upper bounds

As mentioned earlier, ρ(G) = L1(G) ≤ γ(G). In [6], the authors provide several
upper bounds for Lk(G), e.g. Lk(G) ≤ kγ(G) for any graph G. Using the well-known
bound (see e.g. [1])

γ(G) ≤ ln(δ + 1) + 1

δ + 1
n, (9)

we obtain

Lk(G) ≤ ln(δ + 1) + 1

δ + 1
kn. (10)

Even though this bound does not work well when k is ‘close’ to δ, it is very reasonable
for small values of k.

We now prove an upper bound for the k-limited packing number in terms of
the k-tuple domination number. A set X is called a k-tuple dominating set of G
if for every vertex v ∈ V (G), |N [v] ∩ X| ≥ k. The minimum cardinality of a k-
tuple dominating set of G is the k-tuple domination number γ×k(G). The k-tuple
domination number is only defined for graphs with δ ≥ k − 1.
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Theorem 7. For any graph G of order n with δ ≥ k − 1,

Lk(G) ≤ γ×k(G). (11)

Proof. We prove inequality (11) by contradiction. Let X be a maximum k-limited
packing in G of size Lk(G), and let Y be a minimum k-tuple dominating set in G
of size γ×k(G). We denote B = X ∩ Y , i.e. X = A ∪ B and Y = B ∪ C, where A
and C are disjoint. Assume to the contrary that Lk(G) > γ×k(G), thus |A| > |C|.

Since Y is k-tuple dominating set, each vertex of A is adjacent to at least k
vertices of Y . Hence the number of edges between A and B ∪ C is as follows:

e(A,B ∪ C) ≥ k|A|.

Now, every vertex of C is adjacent to at most k vertices of X, because X is a k-
limited packing set. Therefore, the number of edges between C and A ∪B satisfies

e(C,A ∪B) ≤ k|C|.

We obtain
e(C,A ∪B) ≤ k|C| < k|A| ≤ e(A,B ∪ C),

i.e. e(C,A ∪ B) < e(A,B ∪ C). By eliminating the edges between A and C, we
conclude that

e(C,B) < e(A,B).

Now, let us consider an arbitrary vertex b ∈ B and denote s = |N(b)∩A|. Since
X = A ∪ B is a k-limited packing set, we obtain |N(b) ∩ X| ≤ k − 1, and hence
|N(b) ∩ B| ≤ k − s− 1. On the other hand, Y = B ∪ C is k-tuple dominating set,
so |N(b) ∩ Y | ≥ k − 1. Therefore, |N(b) ∩ C| ≥ s. Thus, |N(b) ∩ C| ≥ |N(b) ∩ A|
for any vertex b ∈ B. We obtain,

e(C,B) ≥ e(A,B),

a contradiction. We conclude that Lk(G) ≤ γ×k(G).

Notice that it is possible to have k = ∆ + 1 in the statement of Theorem 7,
which is not covered by Theorem 1. Then δ = ∆, which implies the graph is
regular. However, Lk(G) = γ×k(G) = n for k = δ + 1 = ∆ + 1. In non-regular
graphs, δ + 1 ≤ ∆, and k ≤ ∆ to satisfy the conditions of Theorem 1 as well.

For t ≤ δ, we define

δ′ = δ − k + 1 and b̃t = b̃t(G) =

(
δ + 1
t

)
.

Using the upper bound for the k-tuple domination number from [5], we obtain:

Corollary 8. For any graph G with δ ≥ k,

Lk(G) ≤

(
1− δ′

b̃
1/δ′

k−1(1 + δ′)1+1/δ′

)
n. (12)

In some cases, Theorem 1 and Corollary 8 simultaneously provide good bounds
for the k-limited packing number. For example, for a 40-regular graph G:

0.312n < L25(G) < 0.843n.
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