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Abstract

We consider (closed neighbourhood) packings and their generalization in graphs.
A vertex set X in a graph G is a k-limited packing if for every vertex v € V(G),
|IN[v] N X| < k, where Nv] is the closed neighbourhood of v. The k-limited packing
number Li(G) of a graph G is the largest size of a k-limited packing in GG. Limited
packing problems can be considered as secure facility location problems in networks.

In this paper, we develop a new application of the probabilistic method to limited
packings in graphs, resulting in lower bounds for the k-limited packing number and a
randomized algorithm to find k-limited packings satisfying the bounds. In particular,
we prove that for any graph G of order n with maximum vertex degree A,
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Also, some other upper and lower bounds for Ly (G) are given.

Li(G) >
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1. Introduction

We consider simple undirected graphs. If not specified otherwise, standard
graph-theoretic terminology and notations are used (e.g., see [1, 2]). We are in-
terested in the classical packings and packing numbers of graphs as introduced in
[9], and their generalization, called limited packings and limited packing numbers,
respectively, as presented in [6]. In the literature, the classical packings are often re-
ferred to under different names: for example, as (distance) 2-packings [9, 13], closed
neighborhood packings [11] or strong stable sets [8]. They can also be considered as
generalizations of independent (stable) sets which, following the terminology of [9],
would be (distance) 1-packings.
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Formally, a vertex set X in a graph G is a k-limited packing if for every vertex
v e V(G),
[N N X] <k,

where N[v] is the closed neighbourhood of v. The k-limited packing number Li(G)
of a graph G is the maximum size of a k-limited packing in G. In these terms,
the classical (distance) 2-packings are 1-limited packings, and hence p(G) = Li(G),
where p(G) is the 2-packing number.

The problem of finding a 2-packing (1-limited packing) of maximum size is shown
to be N P-complete by Hochbaum and Schmoys [8]. In [4], it is shown that the
problem of finding a maximum size k-limited packing is N P-complete even for the
classes of split and bipartite graphs.

Graphs usually serve as underlying models for networks. A number of interesting
application scenarios of limited packings are described in [6], including network se-
curity, market saturation, and codes. These and others can be summarized as secure
location or distribution of facilities in a network. In a more general sense, these prob-
lems can be viewed as (maximization) facility location problems to place/distribute
in a given network as many resources as possible subject to some (security) con-
straints.

2-Packings (1-limited packings) are well-studied in the literature from the struc-
tural and algorithmic point of view (e.g., see [8, 9, 11, 12]) and in connection
with other graph parameters (e.g., see [3, 7, 9, 11, 13]). In particular, several pa-
pers discuss connections between packings and dominating sets in graphs (e.g., see
3, 4, 6, 7, 11]). Although the formal definitions for packings and dominating sets
may appear to be similar, the problems have a very different nature: one of the
problems is a maximization problem not to break some (security) constraints, and
the other is a minimization problem to satisfy some reliability requirements. For
example, given a graph G, the definitions imply a simple inequality p(G) < v(G),
where v(G) is the domination number of G (e.g., see [11]). However, the difference
between p(G) and v(G) can be arbitrarily large as illustrated in [3]: p(K, x K,,) =1
for the Cartesian product of complete graphs, but v(K, x K,) = n.

In this paper, we develop an application of the probabilistic method to k-limited
packings in general and to 2-packings (1-limited packings) in particular. In Section
2 we present the probabilistic construction and use it to derive two lower bounds
for the k-limited packing number L(G). Also, using a greedy algorithm approach,
we provide an improved lower bound for the 2-packing (1-limited packing) number
p(G) = Li(G). The probabilistic construction implies a randomized algorithm to
find k-limited packings satisfying the lower bounds. The algorithm and its analysis
are presented in Section 3. Section 4 shows that the main lower bound is asymptot-
ically sharp, and discusses the improvement for 1-limited packings from the greedy
algorithm approach. Finally, Section 5 provides upper bounds for Li(G), e.g. in
terms of the k-tuple domination number 7, (G).

Notice that the probabilistic construction and approach are different from the
well-known probabilistic constructions used for independent sets (e.g., see [1], p.27—
28). In terms of packings, an independent set in a graph G is a distance 1-packing:
for any two vertices in an independent set, the distance between them in G is greater



than 1. To the best of our knowledge, the proposed application of the probabilistic
method is a new approach to work with packings and related maximization problems.

2. The probabilistic construction and lower bounds

Let A = A(G) denote the maximum vertex degree in a graph G. Notice that
Li(G) =n when k > A + 1. We define

¢ = (@) = (?) and & = &(G) = (At“).

In what follows, we put (Z) =0if b > a.

The following theorem gives a new lower bound for the k-limited packing num-
ber. It may be pointed out that the probabilistic construction used in the proof of
Theorem 1 implies a randomized algorithm for finding a k-limited packing set, whose
size satisfies the bound of Theorem 1 with a positive probability (see Algorithm 1
in Section 3).

Theorem 1. For any graph G of order n with A > k > 1,

kn
T (1

Li(G) = (1)

PrOOF. Let A be a set formed by an independent choice of vertices of G, where
each vertex is selected with the probability

r= <m)“- @

For m =k, ..., A, we denote
An,={ve A:|N(v)NA|l =m}.

For each set A,,, we form a set A/ in the following way. For every vertex v € A,,,
we take m— (k—1) neighbours from N(v)NA and add them to A’ . Such neighbours
always exist because m > k. It is obvious that

A | < (m—k+1)| A,
For m=k+1,...,A, let us denote
By, ={veV(G)—A:|N(v)NA|l=m}.

For each set B,,, we form a set B!, by taking m — k neighbours from N(v) N A for
every vertex v € B,,. We have

|B,| < (m — k)| Byl



Let us construct the set X as follows:

(Us)(9)

It is easy to see that X is a k-limited packing in G. The expectation of | X]| is

E[X]] = E IA! Z!A’ |- Z |B,,]
. N m=k+1 N
> B (A= S m—k+D)An = 3 (m— kB
L R m=k mZk+1
= pn—Y (m—k+DE[A,[[ = > (m—kE[B.|.
m=k m=k-+1

Let us denote the vertices of G by vy, vs,...,v, and the corresponding vertex
degrees by di,ds, ...,d,. We will need the following lemma:

1/k
Lemma 2. Ifp = <m> , then, for any vertex v; € V(G),

(8)a-mms (D)a-prm mzk ®

PROOF. The inequality (3) holds if d; = A. Tt is also true if d; < m because in this

d.
case (n; = 0. Thus, we may assume that

Now, it is easy to see that inequality (3) is equivalent to the following:

o (8)/(2) - S asnns

i=0
Further, A > k implies 7 < %:;, — 1. Taking into account that
A > 0, we obtain
AN A
— | < =cp <Cgm(l+k
(k:) =115—= cr < Cpp1(1+ k)
or
e (5)
Cky1 ( + k) A
Thus,



We have p < %, which is equivalent to 1 —p > AZT’”. Therefore,

A—m\2% AN gy
_ »\A—d; - > = " °
(1=p) >( A ) = A—i

=0

as required in (4). O

Now we go on with the proof of Theorem 1. By Lemma 2,

E[[An|] = ZP[v@-GAm]

o - dz m o d;,—m
= ;p<m)p (1—p)

< pm“; (ﬁ) (1—p)> "

m+1<1 . )Afm

= D p CmM,

p™(1 — p)%~™ is the probability of having vertex v;, i = 1,...,n, in
the set A,,, m=k,...,A. Again, by Lemma 2,

E[|Bn|] = ZP[Uz‘EBm]

n

= > (1-p) (i) p"(1=p)hm

=1

< pmg (ﬁ) (1—p)a it

= p"(1—=p)* " epn,

m
in the set B,,, m=k+1,...,A.

where (1—p) ( d ) p™(1—p)%4~™ is the probability of having vertex v;, i = 1,...,n,

Taking into account that cai; = <Aﬁ 1) = (), we obtain
2 A+1
E[X]] > pn— Y (m—k+1p"™ (1= p)*emn— Y (m—k)p"(1-p)* " eun
m=k m=k+1
Ak
= pn— Z(m + 1)pm+k+1(1 _ p)A—m—kcm+kn
m=0

Z(m + 1)pm+k+1(1 o p)Aimika+k+1n

A—k
m=0



Ak
= pn-— Z(m + D™ = p) 20 (ke + Cmgien)

m=0
A—k
= pn—p"n Z(m 4+ Démaprp™(1 = p)A=rm,
m=0

Furthermore,

A=K\ (m+DI(A+1)
)(m+k—|—1)!(A—k)!

< (% Jarmmam - (oo

We obtain, by the binomial theorem,

(m+1)Cmiks1 = (
m

~— (A—k
E[|X] > pn—P"““nZ( m >5k+1p’”(1—p)A"“‘m

m=0

= pn— pk+1n6k+1

= pn(l—p"é)
kn
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Since the expectation is an average value, there exists a particular k-limited packing

of size at least —

kn

Ltk

( as required. The proof of the theorem is complete. [
Ch+1

The lower bound of Theorem 1 can be written in a simpler but weaker form as

follows:

Corollary 3. For any graph G of order n,

kn

> G

PRrOOF. It is not difficult to see that

_ (A+ 1)k’+1
N ES]

and, using Stirling’s formula,

€ €

R ( (ﬁ)’“) )

By Theorem 1,

kn ((k + 1)) kn X 2ork k kn

L > ‘
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while for & > 2 it can be rewritten in the equivalent form: 27k > (1 + 1/k)%*
e? —o(1). O

> 1. The last inequality is obviously true for k£ = 1,

In the case k = 1, Theorem 1 gives the following lower bound for the 2-packing
(1-limited packing) number:

Corollary 4. For any graph G of order n with A > 1,

n

p(G) = Li(G) > IANATT) (5)

Let 6 = §(G) denote the minimum vertex degree in a graph G. The lower bound
of Corollary 4 can be improved as follows:

Theorem 5. For any graph G of order n,

p(G):Ll(G)>n+A(A_6) n

=TATFL T AL (©6)

PROOF. Choose any vertex v € V(G) of the minimum degree § in G. Then add v to
a set X and remove vertices of N[N [v]] from the graph to obtain G' = G — N[N|v]],
where N[N[v]] = {w : w € NJu] for some u € N[v]} is the so-called second closed
netghbourhood of v in GG. Recursively apply the same procedure to the remaining
graph G’ until it is empty. It is not difficult to see that X is a 1-limited packing

%ﬁ;‘ﬂ: we remove at most 1+ A+ A(A —

1) = 1+ A? vertices at each iteration, but at most 14+3d+36(A—1) = 1+ JA vertices
at the first iteration, and (1 + A?) — (1 +6A) = A(A —9). O

(distance 2-packing) of size at least [

The proof of Theorem 5 provides a greedy algorithm to find a distance 2-packing
(1-limited packing) satisfying bound (6). We explain later in Section 4 why the
lower bound of Theorem 5 is as good as lower bound (5) of Corollary 4 for almost
all graphs.

3. Randomized algorithm

A pseudocode presented in Algorithm 1 explicitly describes a randomized algo-
rithm to find a k-limited packing set, whose size satisfies bound (1) with a positive
probability. Notice that Algorithm 1 constructs a (preliminary) k-limited packing
X' by recursively removing unwanted vertices from a randomly generated set A.
This is different from the probabilistic construction used in the proof of Theorem
1. The recursive removal of vertices from the set A may be more effective and effi-
cient, especially if one tries to remove overall as few vertices as possible from A by
maximizing intersections of the sets A/, (m=k,...,A)and B, (m=k+1,...,A).

At the final stage, Algorithm 1 does a (greedy) extension of the preliminary
k-limited packing X’ derived from the randomly generated set A. Our experimen-
tal tests with randomly generated problem instances show the following: although

7



the randomized part of Algorithm 1 may eventually return a preliminary k-limited
packing set slightly smaller than lower bound (1), the extension of this set to a
maximal k-limited packing always satisfies (1). This is of no surprise, because the

expectation of the size of randomly formed set A in Algorithm 1 is E[|A|] = pn,
A

k

a smaller value:

~1/k
where p = ( ( (A + 1)) , while the expression for lower bound in (1) yields
kn k k

= pn =
5114561 (1+ ke k+1 k+1

E[JA]] < E[JA]].

From the experimental tests, an initially formed set A may contain only few redun-
dant vertices to be removed to obtain the preliminary k-limited packing X’. As a
result, the preliminary k-limited packing X’ in many cases satisfies lower bound (1),
and the extension of X’ to a maximal k-limited packing X seems to always satisfy
(1). In our view, since the problem is N P-hard, Algorithm 1 constitutes a simple
efficient approach to tackle the problem in practice and, hopefully, can be useful to
solve some hard instances of the problem.

Algorithm 1: Randomized k-limited packing
Input: Graph G and integer k, 1 < k < A.
Output: k-Limited packing X in G.

begin
_ 1 vk
Compute p = EARgE ;
Initialize A = (J; /* Form a set ACV(G) */

foreach wvertez v € V(G) do

| with the probability p, decide whether v € A or v ¢ A;
end

/* Recursively remove redundant vertices from A */

foreach wvertez v € V(G) do
Compute r = |N(v) N Al;
if ve A and r > k then

| remove any r — k + 1 vertices of N(v) N A from A;
end
if v ¢ A and r > k then

| remove any r — k vertices of N(v) N A from A;

end
end
Put X’ = A; /* X' is a k-limited packing */
Extend X’ to a maximal k-limited packing X;
return X,

end

Algorithm 1 can be implemented to run in O(n?) time. To compute the prob-

A —1/k A
ability p = ( ( I ) (A + 1)) , the binomial coefficient ( can be computed

k
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by using the dynamic programming and Pascal’s triangle in O(kA) = O(A?) time
using O(k) = O(A) memory. The maximum vertex degree A of G can be computed
in O(m) time, where m is the number of edges in G. Then p can be computed
in O(m + A?) = O(n?) steps. It takes O(n) time to find the initial set A. Com-
puting the intersection numbers r = |N(v) N A| and removing unwanted vertices
of N(v) N A’s from A can be done in O(n + m) steps. Finally, checking whether
X’ is maximal or extending X' to a maximal k-limited packing X can be done in
O(n +m) time: try to add vertices of V(G) — X’ to X’ recursively one by one, and
check whether the addition of a new vertex v € V(G) — X’ to X’ violates the condi-
tions of a k-limited packing for v or at least one of its neighbours in GG with respect
to X’ U {v}. Thus, overall Algorithm 1 takes O(n?) time, and, since m = O(n?) in
general, it is linear in the graph size (m + n) when m = 6(n?).

Also, this randomized algorithm for finding k-limited packings in a graph G can
be implemented in parallel or as a local distributed algorithm. As explained in
[5], this kind of algorithms are especially important, e.g. in the context of ad hoc
and wireless sensor networks. We hope that this approach can be also extended to
design self-stabilizing or on-line algorithms for k-limited packings. For example, a
self-stabilizing algorithm searching for maximal 2-packings in a distributed network
system is presented in [12]. Notice that self-stabilizing algorithms are distributed
and fault-tolerant, and use the fact that each node has only a local view/knowledge
of the distributed network system. This provides another motivation for efficient
distributed search and algorithms to find k-limited packings in graphs and networks.

4. Sharpness of the lower bounds

We now show that the lower bound of Theorem 1 is asymptotically best possible
for some values of k. The bound of Theorem 1 can be rewritten in the following

form for A > k:
kn

(k+1)</(@> (A+1).

Combining this bound with the upper bound of Lemma 8 from [6], we obtain that
for any connected graph G of order n with minimum degree 6(G) > k,

1 k k

X n < Ly(G) < ——n. (7)
F+1 b+ 1
(/(é) (A+1)

Notice that the upper bound in the inequality (7) is sharp (see [6]), so these bounds
provide an interval of values for L;(G) in terms of £ and A when k& < 4. For regular
graphs, § = A, and, when k = A, we have

1 1
= —1 as k — oo.

\/@) asy ®FU7

Li.(G) >




Therefore, the bound of Theorem 1 is asymptotically sharp for regular connected
graphs in the case k = A. In other words, there are graphs whose k-limited packing
number is arbitrarily close to the bound of Theorem 1. Thus, the following result
holds:

Theorem 6. When n is large, there exist graphs G such that

1i(G) < 5 b (1+ o(1)). 8)

iy (L4 k)11

As shown above, the graphs satisfying Theorem 6 contain regular connected ones
for K = A. This class of graphs can be extended, because it is possible to prove
that the bound of Theorem 1 is asymptotically sharp for connected graphs with
k=A(1-o0(1)), d(G) > k.

Notice that, for regular graphs, the condition & = A and Lemma 5 from [6] imply
Li(G) = n—~(G). Then the classical upper bound (9) for 7(G) gives a weaker lower
bound for L;(G) than Theorem 1.

As shown in Theorem 5, in contrast to the situation for relatively ‘large’ values of
k, bound (1) of Theorem 1 (see Corollary 4) can be improved for distance 2-packings
(1-limited packings), i.e. when k = 1. However, this improvement is irrelevant for
almost all graphs. A 1-limited packing set X in G has a very strong property that
any two vertices in X are at distance at least 3 in GG. It is well known that almost
every graph has diameter equal to 2 (e.g., see [10]). Therefore, p(G) = L1(G) = 1
for almost all graphs. Thus, in the case £k = 1, Theorem 1 yields a lower bound
of 1 for almost all graphs and is as good as Theorem 5. Notice that the bound of
Theorem 5 is sharp, for example, for any number of disjoint copies of the Petersen
graph. In the other cases, when GG has a diameter larger than 2, one is encouraged
to use the greedy algorithm and lower bound (6) provided by Theorem 5, because
it improves bound (5) of Corollary 4 by a factor of 2 4 o(1).

5. Upper bounds

As mentioned earlier, p(G) = L1(G) < v(G). In [6], the authors provide several
upper bounds for Ly (G), e.g. Ly(G) < kv(G) for any graph G. Using the well-known
bound (see e.g. [1])

In(§ + )+1
P
G) < MR, o)
we obtain (G4 1) 41
n(d+1) +
< —“’ kn.
Ly (G) < 51 kn (10)

Even though this bound does not work well when £ is ‘close’ to 9, it is very reasonable
for small values of k.

We now prove an upper bound for the k-limited packing number in terms of
the k-tuple domination number. A set X is called a k-tuple dominating set of G
if for every vertex v € V(G), |[N[v] N X| > k. The minimum cardinality of a k-
tuple dominating set of G is the k-tuple domination number v« (G). The k-tuple
domination number is only defined for graphs with 6 > k& — 1.
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Theorem 7. For any graph G of order n with 6 > k — 1,
Li(G) < vxk(G). (11)

PROOF. We prove inequality (11) by contradiction. Let X be a maximum k-limited
packing in G of size L(G), and let Y be a minimum k-tuple dominating set in G
of size 7y (G). We denote B =X NY,ie. X = AUB and Y = BUC, where A
and C' are disjoint. Assume to the contrary that Li(G) > v«x(G), thus |[A| > |C].
Since Y is k-tuple dominating set, each vertex of A is adjacent to at least k
vertices of Y. Hence the number of edges between A and B U C'is as follows:

e(A,BUC) > k|A|.

Now, every vertex of C' is adjacent to at most k vertices of X, because X is a k-
limited packing set. Therefore, the number of edges between C' and A U B satisfies
e(C, AU B) < k|C]|.

We obtain
e(C,AUB) <k|C| < k|A| <e(A,BUC),
ie. ¢(C,AUB) < ¢(A,BUC). By eliminating the edges between A and C, we
conclude that
e(C,B) < e(A, B).

Now, let us consider an arbitrary vertex b € B and denote s = |N(b) N A|. Since
X = AU B is a k-limited packing set, we obtain |N(b) N X| < k — 1, and hence
IN(b) N B| < k — s — 1. On the other hand, Y = BU C is k-tuple dominating set,
so |[N(b) N Y| > k — 1. Therefore, |[N(b) N C| > s. Thus, [N(b) N C| > |N(b) N A
for any vertex b € B. We obtain,

e(C,B) = e(A, B),
a contradiction. We conclude that L (G) < vx«i(G). O

Notice that it is possible to have ¥ = A + 1 in the statement of Theorem 7,
which is not covered by Theorem 1. Then 6 = A, which implies the graph is
regular. However, Ly(G) = v« (G) = n for k = § +1 = A + 1. In non-regular
graphs, 6 + 1 < A, and k < A to satisfy the conditions of Theorem 1 as well.

For t <, we define

§=0—k+1 and b =h(G)= (511).

Using the upper bound for the k-tuple domination number from [5], we obtain:
Corollary 8. For any graph G with 6 > k,
5/
Li(G)<|[1—- == n. 12
A N e .

In some cases, Theorem 1 and Corollary 8 simultaneously provide good bounds
for the k-limited packing number. For example, for a 40-regular graph G:

0.312n < Las(G) < 0.843n.
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