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Abstract

This paper examines the factors affecting the quality of solution found by
meta-heuristic search when optimising object-oriented software class models.
From the algorithmic perspective, we examine the effect of encoding, choice
of components such as the global search heuristic, and various means of
incorporating problem- and instance-specific information. We also consider
the effect of problem characteristics on the (estimated) cost of the global
optimum, and the quality and distribution of local optima.

The choice of global search component appears important, and adding
problem and instance-specific information is generally beneficial to an Evo-
lutionary Algorithm but detrimental to Ant Colony Optimisation. The effect
of problem characteristics is more complex. Neither scale nor complexity have
a significant affect on the global optimum as estimated by the best solution
ever found. However, using local search to locate 100,000 local optima for
each problem confirms the results from meta-heuristic search: there are pat-
terns in the distribution of local optima that increase with scale (problem
size) and complexity (number of classes) and will cause problems for many
classes of meta-heuristic search.
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1. Introduction

The task of class modelling within early cycle object orientated software
engineering is often poorly tackled by humans. Issues such as scale and
complexity pose significant issues, but the ongoing history of software failures
shows that their relative effect in creating difficulties is not well understood.
Recent research has demonstrated that this task, also referred to as the Class
Responsibility Assignment Problem, can be successfully tackled by posing it
as a search problem. For the sake of brevity we will hereafter refer to it as
“class modelling”, with the restriction to the context of the early stages of
the development life cycle being taken as read. The “Search Based Software
Engineering” (SBSE) approach to class modelling has been illustrated using
both Evolutionary Algorithms (EA) and Ant Colony Optimisation (ACO)
to perform the underlying search. Each of these outperforms methods based
on a single improving solution, and has been shown to display strengths and
weaknesses - both in terms of optimisation performance, and of how easily
“standard” algorithms can be applied to the domain. However, three major
questions remain unanswered. The first is whether the problems caused
by scale and complexity are a result of human limitations, or do they also
exist when the task is formulated for automated search? The second is how
task-specific information can be incorporated at various levels to manage the
global-local search trade-off, and aid search by avoiding breaking constraints.
The third is the identification of design problem characteristics that make
automated search harder, to inform the creation of a richer and more rigorous
suite of benchmark problems than currently exists.

Our contention is that because of its complex, subjective nature, class
modelling should be tackled via interactive search, augmented with a sur-
rogate fitness function to prevent user fatigue. Therefore ideally the choice
of search method should consider the ease with which it can support users’
input via actions such as “freezing” satisfactory parts of designs. Previously
[19, 20] we compared ACO and EAs as global search algorithms for this task,
concluding that performance issues aside, there are practical reasons for pre-
ferring to use some heuristics. For example, in an ACO “freezing” of partial
solutions can be simply achieved via direct changes to the pheromone ta-
ble. In contrast, it would necessitate manipulation of an EA’s recombination
and mutation operators on-the-fly, although progress has been made in this
direction by interleaving phases of human manipulation and evolution [27].

However, these considerations are orthogonal to the comparative search
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performance, so understanding the latter is vital before we can disregard it,
and clearly algorithmic simplicity cannot be a substitute for poor perfor-
mance. Initial investigations [20] showed that in their canonical form EAs
outperformed ACO. In a recent paper we extended this work to incorpo-
rate the effect of local search to create two different examples of the class of
memetic algorithms (MAs) [9]. Those preliminary studies still showed that
the MAs using evolution as the global search component (hereafter M-EAs)
found higher quality solutions than those based on ACOs (hereafter M-ACO).
It should be noted that for the sake of “fairness” the ACOs in those papers
did not make any use of heuristic or instance-specific information.

This paper extends that study to examine the effect of different ways in
which information can be incorporated within meta heuristic search. Each
of these creates its own bias in determining the probability distribution func-
tions that govern the generation of candidate solutions. From the SBSE
perspective it is important to gain an understanding of how these impact
on performance as class modelling problems vary in scale and complexity.
In order to provide some insights into these issues, Section 2 provides a
brief background to previous research in this problem domain, and the re-
lationship between class modelling and the more abstract problem of graph
partitioning. Section 3 describes the chosen representation, the global and
local search components considered, and different ways in which problem-
specific information can be incorporated. Section 4 describes the experimen-
tal methodology used, then Section 5 describes, and Section 6 analyses the
results obtained. Finally Section 7 summarises the findings and implications
for SBSE in general, and early stage class modelling in particular.

2. Background

2.1. What Makes a Class Modelling Problem Hard?

Early lifecycle class modelling is an intensely human activity wherein rel-
evant concepts and information relating to a design problem are identified.
High quality class models are crucial as the basis of subsequent software
development activities, as inferior designs can lead to deleterious and costly
down-stream consequences. Starting from use case descriptions or user stories
from the design problem domain, various required software system actions
and data are identified. In the object-oriented paradigm such actions and
data correspond to candidate ‘methods’ and ‘attributes’ to be grouped by
means of the ‘class’ construct. Class models thus reveal how these groupings
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relate to relevant concepts and information in the problem domain. There
is evidence to suggest that act of early lifecycle class modelling is non-trivial
and demanding to perform, not least due to the scale and complexity of the
problem domain. For many problems the number of methods and attributes
can run to hundreds, with a corresponding multiplicity of classes. Petre [13]
has suggested that software design problems are often wicked: too big, too
ill-defined, too complex for easy comprehension and solution. Sometimes
the problems are only fully understood after they are solved. Solving such
problems is rarely a matter of brute force or routine. Glass [7] goes further,
suggesting that the scale and complexities of some software designs may be
beyond human comprehension. There is also evidence that designers are
blessed with varying degrees of modelling talent. Even for experienced mod-
ellers, Glass notes that designer performance may vary from 28:1 from the
best to the worst. Curtis [4] also notes a range in talent, observing that
only super-designers can reason across the full breadth and depth of com-
plex, ill-structured problems in order to fully consider the consequences and
decisions of modelling decisions. From the field of education there is evidence
that class modelling is difficult to learn. In a study of 740 undergraduates
and 135 design problems, Svetinovic et al. [26] observe that with respect to
concept identification, “some students just don’t get it”.

To help overcome these difficulties, manual heuristics and search strate-
gies are available. For example, Larman [10] suggests that the required ac-
tions of the software system-to-be be regarded as responsibilities, i.e., a con-
tract or obligation of a class-to-be. Class modelling then becomes an exercise
in assigning responsibilities to candidate classes. Larman proposes General
Responsibility Assignment Software Patterns (GRASP) to guide the class
modeller. GRASP reflect modelling principles such as separation of concerns,
high internal class cohesion, and low coupling between classes. Wirfs-Brock
and McKean [29] describe a responsibility-driven design approach to class
modelling as a process of discovery and invention. They propose a manual
search strategy, in which modellers make educated guesses about the kinds
of inventions needed based on the nature of the problem domain and the
things that are critical to it. In this manual search candidate models are
evaluated from the perspectives of: information flowing through the model;
decision making, control and coordination activities; and representations of
real-world things that the model needs to know about.
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2.2. Search-Based Software Engineering
Search-Based Software Engineering (SBSE) is a well-established disci-

pline, applied across the whole software development lifecycle [30]. Histor-
ically, comparatively little focus has been directed to the upstream stages,
although this is beginning to be addressed. Typically metrics relating to cou-
pling and cohesion are used to guide meta-heuristic search of design spaces
of object-oriented class models. Bowman et al. [2] used a multi-objective EA
to optimise designs for a number of pre-specified metrics, but only considered
a single problem instance. Simons and Parmee [18, 17] applied interactive
EAs, using linear regression to learn a surrogate fitness model combining cou-
pling with a number of “elegance metrics” to approximate users’ subjective
preferences for different problems. Working slightly later in the development
life-cycle, Sievi-Korte et al.[15] used an M-EA, and Vathsavayi et al.[27] in-
terleaved human and evolutionary adaptation of the usage of patterns.

Although any search algorithm could be used in SBSE, research effort has
tended to concentrate on EAs. Previously we compared the use of ACOs and
EAs for this problem [19, 20], concluding that given sufficient computational
budget, global search via EAs was more effective at finding high quality so-
lutions than that using ACO. When the computational budget was reduced
(as is, for example, often the case in interactive search) the situation was re-
versed. However, with both algorithms, and both representations examined,
a major issue was dealing with the constraint that a valid class model should
contain at least one attribute and at least one method. Those papers used
penalty functions (all invalid models were given zero fitness) and the use of
random regeneration of invalid solutions. Dealing more efficiently with this
constraint would necessitate either a significant adaptation of the underlying
global search heuristics, or the provision of a “repair” mechanism.

A well designed Local Search algorithm that systematically examines the
effect of moving elements between classes provides a simple way of provid-
ing the latter, and also of improving valid solutions. In a recent paper we
reported preliminary studies on the influence of such a component [22]. Re-
sults showed that in the absence of other forms of information the M-EAs
still discovered higher quality solutions that M-ACO, albeit over a longer
timescale. This could be interpreted in one of two ways - either that the M-
ACO are better given a limited computational budget, or that the M-EAs are
better able to escape local optima. However, that paper did not permit any
use of heuristic functions or other problem-specific adaptations. While such
knowledge might require substantial alterations of operators within an evo-
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lutionary framework, it is standard practice in ACO research and is readily
incorporated, as will be shown in later sections.

2.3. Relationship to Graph Partitioning and Similar Problems

The creation of class models can be thought of as a process of grouping
elements (attributes and methods) into classes, so that every class contains
at least one element of each type. The initial description of the problem as
captured via, for example, use-cases, specifies a number of “uses”. For ex-
ample, in a sales application a method “create invoice” might make reference
to attributes such as “customer-id”. Therefore it is natural to think of the
combination of elements and uses as defining a graph G = (V,E) where the
sets of methods M and attributes A are vertices (i.e., V = M ∪A) and a use
of attribute i ∈ A by a method j ∈M creates an edge eij ∈ E.

While many different metrics have been proposed to capture some mea-
sure of the quality of a software design, it is commonly recognised that a good
design will exhibit high cohesion and loose coupling. Hence, uses tend to hap-
pen within a class, and the usage of attributes from one class by methods
of another is minimised. In terms of a graph structure this means dividing
the vertices into a number of discrete partitions so that the number of edges
between partitions in minimised.

This description makes the link between class modelling and graph parti-
tioning clear. Some differences exist - for example, graph partitioning meth-
ods assume all vertices are of the same type and in the most common form
of “uniform graph partitioning” they explicitly try to minimise imbalance,
usually with fixed number of partitions. Closely related “grouping” problems
such as the multiple knapsack problems may consider the “cost” or “value”
or a vertex, but still treat all as essentially of the same type. We note that
requiring each class to contain at least one method and at least one attribute
creates an extra constraint since not all vertices are of the same type.

Graph partitioning is NP-hard and has been extensively studied [1, 8].
A full review is beyond the scope of this paper, but it is notable that many
successful recent applications use a form of spectral partitioning based on
an adjacency graph (an alternative representation of the edge set), and re-
peatedly bi-partition the graph and then its components. In Section 3.6 we
describe the creation of a distance matrix to be used by the ACO, based on
a generalisation of adjacency matrices.

Both EAs and ACO [28] have been proposed for graph-partitioning and
related problems. One major problem addressed by [6, 11] is that of repre-
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sentation. One active research question is whether it is possible, or indeed
desirable, to avoid the explicit redundancy that comes from assigning arbi-
trary labels to groups. A further problem is that even multiple-colony ACO
models, wherein each colony forms a separate partition, use a permutation
type representation by default. This introduces extra redundancy, since the
many solutions corresponding to different permutations of the nodes in a
partition are semantically identical. Section 3.5 describes a modification of
ACO’s pheromone update mechanism to remove this redundancy.

3. Representation and Algorithms

This section briefly overviews the way in which class modelling is posed
as a search problem, and the three search algorithms used in this paper.

3.1. Representation

In order to map readily onto freely available ACO source code, we borrow
a representation commonly used for Vehicle Routing Problems. A solution
is considered to be a permutation of a set of items, comprising the design
elements plus “end-of-class” markers. If a problem has a attributes and m
methods, to be grouped into up to c classes, the representation is then a
permutation of size l = a+m+ c− 1. The value in the ith position denotes
the element that occurs in the ith place in the tour, where the attributes are
numbered from 1 to a, the methods from a+1 to a+m and the “end-of-class”
markers from a+m+1 to a+m+c−1. Since the permutation for a candidate
solution might contain adjacent end-of-class elements, c represents an upper
limit on the number of classes in any given solution, rather than a fixed value.
When the representation of a solution is decoded to give the candidate class
model, a simple array class = [c1, . . . , ca+m] is constructed whose jth element
gives the class (from 1 to c) of element j using the numbering scheme above.

As discussed in the previous section, this representation contains two
sources of redundancy: the order in which classes are specified; and the order-
ing within a class. The former is common to many meta-heuristic approaches
to grouping problems, and it has been argued that it can be beneficial by
increasing diversity and delaying convergence [11]. To investigate the effect
of the latter, Section 3.5 investigates a mechanism for its removal.
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3.2. Evolutionary Algorithm

The EA chosen is a standard generational genetic algorithm. Parents are
chosen by deterministic binary tournaments, with elitism so that the incum-
bent replaces the least fit of the newly created offspring if better. Crossover
was applied with probability 0.7. We do not provide a full algorithmic de-
scription of the EA as this is a well known algorithm with many descriptions
online. Full details of the operators used can be found in [5]. Parameter
values were determined by extensive preliminary testing. To examine the
effect of in-class redundancy we investigated two different representations.
The first was the permutation outlined above with length l = a + m − 1,
in which case we used Edge Recombination, and mutation randomly applied
one of Swap, Insert and Invert operators. The second was a direct encod-
ing of class labels to elements with a representation of length l = a + m
and search space {1, . . . , c}a+m. In this case we used uniform crossover, and
mutation randomly chose a new allele value for each position applied.

There is now a significant body of evidence in favour of the use of self-
adaptive mutation rates (see, for example, [12]). Following one of the schemes
proposed by Serpell and Smith [14], each individual contained an extra gene
encoding the mutation probability pm, and we adopted the following method
for mutation of each offspring:

1. With probability 0.2 the encoded value of pm was changed to a new
value, selected uniformly at random from the fixed set of allowed values.

2. The value for pm was multiplied by the representation length l, and the
result truncated to an integer to give the number of mutation events.

3. The chosen mutation operator was then applied the number of times
determined in the previous step to randomly chosen positions.

A fixed set of ten mutation rates was defined as pm ·l ∈ {0.001, 0.002, 0.01,
0.02, 0.1, 0.2, 1, 2,MIN(0.25l, 5),MIN(0.25l, 10)}. A range of population
sizes were used as detailed in Section 4.4.

3.3. Ant Colony Algorithm

Following some preliminary experimentation, and guided by the find-
ings reported in [19, 20], we applied a MAX-MIN ACO [25]. The following
brief description considers a problem where the ACO seeks a least-cost path
through a set of nodes, such as the TSP. Full details may be found in [24, 25].

The ACO maintains an l × l “pheromone matrix” P , which reflects the
search history, and an l × l matrix H of heuristic information. Together
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these define the probability distribution function for the generation of new
solutions. In each iteration N ants are each placed at random at a starting
node and tours are independently created. To construct its tour, at each
successive node i, the ant creates a list S of all the as-yet unvisited nodes.
It then selects a next node j ∈ S from the list with probability:

pmove(ij) =


Pαij ·H

β
ij∑

j 6=i,j∈S Pαij ·H
β
ij

, if j ∈ S

0 , otherwise.
(1)

After the ant has constructed a full solution its fitness f is measured. If
best denotes the least cost path for generation t, and {ij} ∈ best is taken to
mean that edge {ij} is traversed in that path, then the pheromone matrix
M is updated at the end of each generation according to:

P t+1
ij =

{
(1− ρ) · P t

ij + 1/fbest , if {ij} ∈ best,
(1− ρ) · P t

ij , otherwise.
(2)

The key factors which distinguish the MAX-MIN ACO are that the
pheromone matrix P is initialised to its maximum value, is only updated with
the information from the best ant per generation, and that the pheromone
levels are truncated to a pre-specified range to avoid over saturation.

We would like to gratefully thank the authors and maintainers for the
public provision of the ACOTSP package version 1.02 [24]. The original code
was modified to call the same code as used by the EA for the fitness function
and the new Local Search algorithm described in the next section. Sub-
stantial preliminary experimentation revealed that the default recommended
settings appeared to provide robust performance. These were α = 1 (expo-
nent of pheromone used to calculate next-node probabilities), and ρ = 0.02
(pheromone decay rate). In Section 3.6 we describe the use of an additional
matrix of heuristic “distance information”. Experimentation with a range
of values showed that results obtained were fairly robust to changes in the
value of β (i.e., did not significantly differ), and so hereafter we report re-
sults with either the default setting of 2.0, or a value of 0.0 to remove this
heuristic information. Different numbers of ants were used as described in
Section 4.4. One significant change made, which resulted in a reversal in the
rankings compared to the results we published in [22]. This was that the
number of elapsed iterations of generating a complete set of ants with no im-
provement before the restart mechanism was invoked was greatly increased
to 5000 generations.
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3.4. Local Search Algorithm

The single-step greedy local search algorithm in Fig. 1 was implemented.
Using problem-specific information in terms of task constraints, the pertur-
bation operator moves one element to a different class as long as it does not
leave behind an invalid class. Taking account of instance-specific informa-
tion, a method can only move to a “receiving” class that has an attribute
that it uses and vice-versa. This last condition does not assure that the
fitness of the neighbour is superior to that of the incumbent, but rules out
evaluating some of the least fit neighbours - at least in terms of coupling.
Together these restrictions greatly reduce the size of the neighbourhood that
needs to be examined, and so make local search more efficient.

3.5. Problem Specific Heuristics: Modified Pheromone Update

As noted above, the permutation representation creates redundancy, since
the order in which elements appear within a class is immaterial. The following
modification to Eq. 2 was designed to remove this effect, by increasing the
pheromone laid down between all pairs of members of the same class in the
best solution, and reducing it for all out of class members. Using class∗[i] to
denote the class label of element i in the best solution of a given iteration:

P t+1
ij =


(1− ρ) · P t

ij + 1/fbest , if i, j ≤ a+m and class∗[i] = class∗[j],

(1− ρ) · P t
ij − 1/fbest , if i, j ≤ a+m and class∗[i] 6= class∗[j],

(1− ρ) · P t
ij , otherwise.

Not shown here for reasons of space, are results using only the positive
reinforcement (i.e., omitting the middle line of the equation above) which
demonstrated worse performance.

3.6. Instance Specific Heuristic Information: Distance matrices

When applying ACO to routing problems such as the TSP, the heuristic
matrix H can naturally encode for features such as the distance between
nodes by setting Hij = 1/distance(i, j), to increase the probability of ants
selecting nearby unvisited nodes as per Eq. 1. For the class modelling, there
is no natural correlate of distance. However, as noted in Section 2.3, spectral
graph partitioning approaches make use of a 0/1 “Adjacency Matrix” U
formed by the edge set.
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BEGIN

/* given a starting solution i */
Decode i into a set of classes C;

set fi = calculate fitness(i) ;

set set of possible moves S = {} ;

/* Build up a list of possible moves */
/* Taking the problem constraints into account */
/* and not increasing coupling */
FOR EACH class c ∈ C DO

FOR EACH element j ∈ c DO

IF (j is not the only attribute or method in c ) THEN

FOR EACH class k ∈ C, k 6= c DO

IF j is a method and uses an attribute in k
OR j is an attribute and is used by a method in k THEN

set S = S ∪ {j, k};
FI

OD

FI

OD

OD

/* Greedy search over the possible valid moves */
Randomise Order of S;
set improved = FALSE;

WHILE ( S 6= {} AND improved = FALSE ) DO

take next possible move from S;
apply move to create new solution j;
set fj = calculate fitness(j);
IF ( f(j) < f(i)) THEN

set i = j;
set improved = True;

FI

OD

END

Figure 1: Pseudocode of the Local Search algorithm
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For each task, based on the use cases in the documentation and the
numbering scheme above, an l × l matrix U was constructed with:

Uij =


1 i ≤ a, a < j ≤ a+m, if method j uses attribute i,

1 j ≤ a, a < i ≤ a+m, if method i uses attribute j,

0 otherwise.

Furthermore, since Uij is the number of one-step paths between elements i
and j, a useful result is that Un

ij is the the number of length-n paths between
i and j. We therefore calculate matrices Un for a range of values of n and
from these define a Distance Matrix D with elements Dij = MIN(n) such
that Un

ij > 0. The heuristic information matrix H is thereafter defined as
Hij = 1/Dij, for all non-zero Dij and zero otherwise.

In terms of class modelling, this means that if method i uses attributes j
and k, then Dij = Dik = 1 and Djk = 2. The same is true if i is an attribute
used by methods j and k. We examined path lengths up to a distance of
n = 10 - no problems examined had elements further apart.

4. Methodology

4.1. Quality Metrics

Many different quality measures have been proposed in the literature,
and it remains an open question whether a multi-objective approach should
be applied. However, it should be noted that the aim of class modelling is
not to attain an approximation of the Pareto front since the extrema are
of no interest. For example, one non-dominated solution always exists that
achieves zero coupling by putting all elements into a single class. However,
this goes against the whole spirit of object-orientated design, and in practice
software designers deprecate this “anti-pattern”, as it tends to lead to low
cohesion (amongst other problems)[3].

Several authors have pursued the concept of “design elegance” in this and
other fields. We have recently proposed several metrics that directly reflect a
sense of “elegance” in terms of a symmetrical distribution of attributes and
methods in a design[17].

In previous papers [18, 21] we have examined which metrics actually
correspond to designers’ preferences, via extensive interactive experiments
wherein users’ subjective judgements were used to build surrogate models.
The results of these experiments demonstrated that the judgements made by
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a spread of users correlated highly to those of a surrogate model comprising a
simple linear regression of a few metrics. Moreover, when presented with the
candidate solutions obtained by meta-heuristic search using this model, users
reported high degrees of satisfaction. This suggests strongly that the designs
created did make sense to the users, despite having been created without any
semantic knowledge of the labels on various elements such as name, address,
booking etc.

Based on the regression co-efficients identified, we consider a single cost
function (to be minimised) composed of two equally weighted elements:

fcomb = 0.5 ∗ (fcbo + fnac) (3)

The first element is based on the Coupling Between Objects (CBO) measure.
The cost is defined as the percentage of all uses that are “out of class”:

fcbo = 100 ·
∑

i

∑
j,class(j) 6=class(i) Uij∑

i

∑
j, Uij

. (4)

The second cost element is the Numbers Among Classes (NAC):

fnac =
100

6
∗
(σm

2
+
σa
2

)
(5)

where σm and σa denote the standard deviations across all classes of the
numbers of methods and attributes per class, truncated to the range [0, 6].
The lower this value, the more symmetrical the appearance of attributes and
methods among the classes in the design, hence it tends to counterbalance
the effect of the CBO metric.

4.2. Performance Metrics

Given that ultimately we are concerned with the use of these search
heuristics embedded in an interactive design tool, that we assume the use
of a surrogate fitness measure, and that we do not know an “optimal” fitness
for each instance, we compare different search algorithms according to their
effectiveness and consistency in finding good solutions.

For reasons of space and clarity we typically present the results graphi-
cally in the form of plots of mean performance over each algorithm-instance.
SPSS v20 was used to carry out a two-way Analysis of Variance with 1000-fold
boostrapping to allow for the possibility that the results are not normally-
distributed. The cost of best solution found in a run was the dependant
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variable and fixed factors instance and algorithm, followed by post-hoc test-
ing for significant differences at the 95% level using Tukey’s HSD test. This
test groups the results into homogenous subsets, so that the results for two
variants may only be assumed to be statistically significantly different if they
do not co-occur within any subset.

4.3. Problem Instances

To aid comparison with other published works, we used the three software
design problems detailed in [16] which span a range of size and complexity.
The first (CBS) is a generalized abstraction of a Cinema Booking System, the
second (GDP) is a university system for student records, and the third (SC)
is based on an industrial case study for booking cruise holidays. Results for
manually produced designs are reproduced in Table 1, along with statistics
about the problem instances. Please note that we are considering the early
stages of design before a framework has been adopted, hence the number of
classes is far smaller than it would be at a later stage.

It would of course be preferable to use a wider set of benchmarks. As
we noted in Section 2.2, previous papers on this task have typically only
used a single problem, and there are no accepted benchmarks. Neither is the
required documentation typically available for large open source projects.
A more robust approach typically used within the optimisation community
is the use of parameterised randomised test generators. However, to have
value it is necessary to identify appropriate parameters that can give rise
to a range of problems exhibiting different sources of difficulties for search
methods, and that knowledge is lacking in the field. Therefore we create a
number of different variants of our problems to facilitate the identification of
those factors which consistently affect the quality of solutions attainable.

Table 1: Measures of problems and their manual designs

Name Instance Features Manual Solution
Attributes Methods Uses Classes fcbo fnac fcomb

CBS 16 15 39 5 15.4 13.7 14.6
GDP 43 12 121 5 29.7 43.2 36.5
SC 62 30 126 16 45.2 25.33 34.3

The representation chosen permits models with variable numbers of classes
to be present, since “end-of-class” markers could be adjacent in a permu-
tation. Initially, to facilitate easy comparisons with the results produced
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manually (which for the SC represented several hours work) we imposed the
condition that evolved designs should contain the same number of classes as
the manual ones. Candidate solutions for the CBS and GDP problems are
therefore required to have 5 classes, and SC has 16 (denoted SC16 below). As
described later, we also considered versions of the SC problem with different
fixed numbers of classes to examine the effect of increasing complexity.

4.4. Algorithm Parameters

The parameters specific to the ACO and EA are listed above. We ran
experiments with 25, 50 and 100 individuals. Each algorithm was run one
hundred times on each problem instance, with each run allowed to make
100,000 calls to the evaluation function. The algorithms resulting from dif-
ferent combinations of the search components are denoted as follows:

• A prefix m- denotes that the local search operator was applied to each
candidate solution once created.

• EA and AC denote the global search methods EAs and ACO.

• A suffix of −R denotes that a repair function was used to repair invalid
solutions by moving elements from the most populated class to under-
populated classes as needed.

• A suffix of -C denotes that a mechanism was used for reducing the
redundancy caused by the sequence within a class. This is either an
integer based representation with uniform crossover for the EA or the
modified pheromone update mechanism for the ACO.

• A suffix of -b indicates that heuristic information was used within the
constructive phase of the ACO.

Hence, for example, the variant m-EA is an EA using the permutation repre-
sentation with edge recombination and local search, and AC-RCb is an ACO
using the use-distance heuristic during path construction, with the repair
mechanism applied to solutions once they are constructed and the modified
pheromone update mechanism.
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5. Results

No differences in the overall patterns of behaviour were observed when
comparing results side-by-side for the three different population sizes, al-
though a not-unexpected increased variability meant that fewer differences
were statistically significant with 25 members. Thus for clarity and brevity
we hereafter report results with a population size of 100.

5.1. Effects of Constraints and Repair

We begin by comparing the effect of the constrains implicit within our
problem domain - namely that each class should contain at least one method
and attribute. The approach taken was that designs with invalid classes
were awarded a nominal fitness of 887 ( a value chosen at random that is
substantially bigger than the highest cost of 100.0 for a valid solution). This
enables us to simply analyse our results to determine how many runs never
found valid solutions, as a function of problem and algorithm.

The use of an EA as the global search component of the algorithm al-
most always enables the location of valid solutions. When it does not (EA on
SC15), we see that redundancy avoidance, and/or the use of the repair func-
tion ensure search locate valid solutions. However, the use of Local search
does not appear to affect the number of runs on which valid solutions are
located (82 out of 100 in both cases). Given that the local search employed
will perform an exhaustive search of the one-swap neighbourhood if neces-
sary, this suggests that regardless of representation (redundancy avoidance),
large swathes of the search space are invalid - effectively featureless plateaus
given the penalty function we apply.

When ACO is the global search component, a very different picture
emerges. With below 9 classes all runs locate valid solutions, but above
11 classes none do without the use of the repair function. In the transition
case (11 classes), starting from a baseline of 25 runs locating valid solutions
for the ACO alone, and 12 for the memetic version m-AC, the following
effects are notable:

• adding the distance information makes matters worse – the number of
“successful” runs drops to 16(AC-b) and 6(m-AC-b);

• avoiding redundancy improves the situation – the number of successful
runs increases to 42 (AC-C) and 50 (m-AC-C);
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• there are synergies between the three additional components. The num-
ber of “successful” runs rises to 92 for AC-Cb. Recalling the form of
Eq. 1, and noting that the effect on the modified pheromone update
is that more components of P will have their rate of decay reduced,
this might suggest that the effect of the distance-based heuristic in-
formation is too great. On the other hand, the cost of a “tour” as
measured by the combined cost function is between 0 and 100, whereas
the lower bound on the estimated cost of a nearest-neighbour tour gen-
erated by our distance matrix would be N , so clearly some kind of
problem-specific scaling mechanism may be necessary.

Given these results, for the sake of improving the clarity of the figures
and tables, hereafter we only report results using the repair function.

5.2. Effect of Search Components on Quality of Solution
Figure 2 shows the mean (top) and absolute (bottom) values of the best

solutions found, with algorithms on the x-axis and a separate line for each
problem. As can be seen, the use of an EA as the global search component
gives better performance across all problem types. Note that in the top
figure the ordering of algorithms on the x-axis, with local search alternately
absent/present creates a sawtooth shape of lines for each problem, illustrating
the benefits of local search. Note also that for the SC problem with fewer than
11 classes (dotted/dashed lines) the curves are fairly flat, whereas the effect
of different search components is more noticeable for more complex problems
(SC11 and above - solid lines). In the bottom figure the sawtooth effect for
the ACO values now starts at SC10 rather than SC11. The differences in the
values of the best values ever found (i.e., allowing for multiple runs) is smaller
between EA and AC, and in fact for the CBS problem the best solutions ever
found are discovered by AC-R, m-AC-R,AC-Rb and m-AC-Rb.

Table 2 shows the statistically significantly different sub-groups with their
mean values for all problems. The following observations can be made:

• The use of an EA as the global search component of search means runs
of the search process discover lower cost solutions than using ACO.

• In every case except EA-RC (where the difference is not significant),
the addition of local search enables discovery of lower cost solutions.

• Redundancy avoidance helps the EA.

• Neither redundancy avoidance nor distance information aids the ACO.
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Figure 2: Overall (bottom) and Mean (top) of best solution found for each problem.

5.3. Effect of Problem Characteristics

To better understand the influence of characteristics of the search prob-
lem, a local search algorithm was run 100,000 times on each problem using
both permutation and integer (i.e., redundancy avoiding) encodings. Each
run started with a randomly created candidate solution, and applied the
1-move local search method above until no further improvements could be
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Table 2: Results of testing to discriminate homogenous subsets. Values in cells are means
for lowest cost found per run.

Subset
Algorithm 1 2 3 4 5 6 7 8 9 10

EA-RC 23.3
m-EA-RC 23.4
m-EA-R 25.8

EA-R 26.0
m-AC-R 46.8

AC-R 48.5
m-AC-Rb 48.7

AC-Rb 50.8
m-AC-RCb 53.0
m-AC-RC 53.7
AC-RCb 55.3
AC-RC 56.2

found. For each of these local optima was stored its cost, the difference
in cost, and the number of different values (i.e., the extension of Hamming
Distance) from the lowest cost solution found during the 100,000 runs.

Table 3 displays the lowest cost solutions found, with the hand-crafted
results for comparison. Immediately noticeable is that despite the variation
in mean search results noted above, the best solution found for each problem
does not change to anything like the same extent. To put this another way,
it would appear that neither the scale nor complexity of the problem greatly
affect the cost of the global optimum, but they do make the landscape harder
to search. This is equally true for both encodings, which of course have differ-
ent genotype-phenotype mappings, and hence present different landscapes to
the global search element. We note that in every case meta-heuristic search
was able to find solutions better than the provided hand-crafted solutions,
and inspection showed that these made semantic sense.

The first characteristic investigated was the number, quality and distri-
bution of local optima within the search landscapes. Given the size of the
search space, and that graph-partitioning is NP-complete, the lowest cost
ever found was used as an estimate of the global optimum cost f ∗comb for each
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Table 3: Lowest Cost solutions found by different search algorithms for each problem.

Enco Search Problem
ding Method CBS GDP SC5 SC7 SC9 SC11 SC13 SC15

Perm. mAC-R 9.2 30.3 42.5 49.4 48.0 41.5 41.5 42.5
mEA-R 16.3 19.9 21.5 24.7 25.7 25.9 26.5 25.8

LS 16.9 20.4 21.6 26.5 25.7 28.1 27.8 27.2
Int. mEA-RC 14.9 18.3 19.0 21.9 22.4 23.5 24.4 24. 6

LS 16.3 19.8 20.9 22.7 24.1 24.7 25.1 25.2
Human 14.6 36.5 34.3

Best 9.2 18.3 19.0 20.5 22.4 20.6 20.6 21.6

problem. The top pane of Figure 3 shows for each problem the distribution
of the normalised fitness differences - that is to say, of (fcomb − f ∗comb)/f

∗
comb.

As can be seen, the local optima in the permutation-based landscapes have
higher costs (larger normalised differences) than their counterparts in the
integer-encoded redundancy-avoiding landscapes. In both cases there is a
very wide spread of values, and given that the median normalised difference
is mostly over 0.5, most of the local optima have costs more than 150% of
the global best. Apart from the CBS results, it is also noticeable that the
distributions of values are fairly constant for the integer encodings. However
for the permutation encodings they rise from GDP through to SC5 and SC7
(where most local optima costs are twice the global best) before reducing as
the number of classes increases. These findings are line with the results of
the algorithm comparison above, especially for ACO, and suggest a reason
for those results - that ACO is getting stuck in local optima, and that these
tend to have higher fitness values for some problems.

The bottom pane of Figure 3 shows the normalised distance - that is,
proportion of elements with a different class label to that in the estimated
global optimum. This shows that typically local optima have no elements
with values in common to the estimated global optimum for permutation
encodings. For the redundancy-avoiding integer encoding, it is noticeable
that CBS,GDP and SC5, which all have 5 classes, have similar distributions,
and that the typical distance rises thereafter for the SC problems.

Figure 4 brings these results together in scatter plots of normalised fitness
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difference vs normalised distance, with regression lines fitted. Although the
co-efficient of correlation is fairly low, it is worth noting the slope of the
lines. These provide clues to the reason for worse performance observed for
ACO and local search on GDP, SC5 and SC7 on the permutation landscapes:
there is a negative correlation between cost difference and distance. In other
words the more highly fit local optima tend to be further from the global
optimum. In contrast, for the SC11,SC13 and SC15 problems the correlation
is positive, and so moving from one local optimum to a better one will, on
average, lead towards the global optimum.

To examine how much of this was the effect of the redundancy in the
encoding, we re-ran the local search experiments for the 5-class problems with
integer encoding. At the end of each experiment we generated all 5! = 120
possible versions of the best solution by permutating the class labels. Then
for each local optima we recorded the distance to the closest copy of the
global optimum. Again, measuring the excess cost, and normalised distance,
we examined the spread of these measures as shown in Figure 5. As can be
seen from the top two panes, the distributions of distances and excess cost
follow a normal distribution in all three problems. Comparing excess cost to
the pooled mean and median values, the CBS distribution contains more high
cost solutions and the GDP fewer. Comparing the distances, it is noticeable
that the spread of values is far wider, and the mean of the distribution lower,
for the CBS than the GDP, which in turn is wider than the SC. This is clear
from the scatter plot as well. Since there are more local optima closer to the
global optimum for CBS, it follows that there is a higher chance of escaping
from an arbitrary local optimum (e.g., reached early in randomly initialised
search) to a global optimum on that problem.

The next aspect to be considered is the effects of scale and complexity.
Table 4 shows the co-efficient of determination R2, a measure of the amount
of the observed variation explained by a linear regression model of the cost
of the solutions found in terms of different problem descriptors. The rows
give the results from the 100,000 iterations of local search on two different
representations, and from the meta-heuristic search algorithms (100 runs per
algorithm variant). Scatter plots showed that in every case the correlation
was weakly positive - the cost of the local optima found increased in line with
the different measures of problem scale or complexity.

• For all but the EA with integer representations (EA-RC/m-EA-RC)
the association with the number of classes is extremely weak.
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Figure 5: Histograms of excess cost (Top), and distance to closest copy of global optimum
(Middle), and Scatter plots (Bottom) showing the distribution of local optima for the five
class problems. Reference lines show the mean and median of the pooled distributions

• For all algorithms the number of uses per method is insignificant.

• All other effects appear significant, but since they only have three values
they are effectively serving as proxies for the problem instance.

• The degree of correlation is insignificant (R2 < 0.15) for the other
possible predictors “uses/methods/attributes per class”.

To delve further into these results we used the automatic linear regression
tool in SPSS to build a model for predicting the lowest cost per run. This
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Table 4: Co-efficients of determination for linear models relating various measures of
problem characteristics to the observed quality of solutions.

Best vs.
R2 Classes Attributes Methods Uses Uses per Uses per

method attribute
LS int. 0.155 0.529 0.487 0.398 0.025 0.378

LS perm. 0.005 0.477 0.294 0.461 0.006 0.175
EA int. 0.673 0.692 0.615 0.547 0.031 0.471

EA perm 0.489 0.816 0.723 0.644 0.003 0.559
AC perm. 0.148 0.836 0.544 0.805 0.034 0.358

procedure converts continuous variables into ordinal ones, then uses forward
stepwise predictor selection based on information criteria to build a model
based on this series of binary decisions (e.g.,“classes= 5”, “classes= 6”, etc.).
Therefore the choice of effects selected, and their relative importance, gives
insight into the factors that affect the quality of results found.

For the results of EA-RC/m-EA-RC the model produced yielded a pre-
dictive accuracy of 96.6%. The relative importance of classes was 0.746, that
of the transformed variable “attributes=16” was 0.254, all other effects were
removed by modelling process as insignificant.

By way of contrast, repeating this process for the pooled results with
the permutation representation only yielded a model with a 44.5% predictive
accuracy. The importance of the transformed value of Uses per Attribute
was 0.915, that of classes was 0.085, all others were removed. If the tool was
allowed to use the type of global search component, the predictive accuracy
increased to 88.2%. The relative importance of effects selected in the model
was global search (0.701), attributes 0.278 and classes 0.014.

6. Analysis

To a large extent the results of the statistical landscape analyses merely
confirms what the figures above have already suggested: namely that the
principal factor determining the quality of solution found appears to be the
choice of search heuristic. For all of the problems investigated it appears that
solutions exist with similarly low cost fcomb, the difficulty lies in locating these
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in the presence of many local optima. To give an idea of the number of these,
there were less than ten duplicates in the 100,000 local optima located per
problem. Moreover, the local optima appear to become both higher cost,
and on average further from the global optimum as the complexity of the
problem is increased.

Taken together with the results for search performance, Figure 5 shows a
clear relationship between the distribution of local optima within the search
space, and the ability of search algorithms to reliably locate solutions close
to the estimated global minimum cost.

For all but the simplest problem (CBS), EA-based variants outperformed
their ACO-based counterparts, and behaved robustly with respect to problem
scale and complexity. The two ways of adding of problem-specific knowledge
to the EA (reducing redundancy via the choice of encoding, and using a repair
function) were both beneficial, as was the use of instance-specific information
in the local-search algorithm.

In contrast, although the ACO required the repair function for the more
complex functions, adding information via distance heuristic, and reducing
redundancy were both detrimental to the ACO-based variants. We hypoth-
esize that both of these may have the effect of focussing search, causing
premature convergence. To test this, we examined ACO runtime logs, which
revealed that the lowest cost solutions are typically discovered an order of
magnitude sooner than the equivalent EA-based experiments. This suggests
that basins of attraction of fewer local optima are sampled during search.
Given the relationship between the quality of local optima and their distance
from the global optima (and hence from other low cost solutions) shown in
Fig. 4 this explains the performance curves seen in Fig. 2. For some mid-scale
problems (SC5-7) the negative quality-distance correlation means that algo-
rithms which move from local optima to local optima will actually move away
from the global optima, and because of the redundancy of the permutation
encoding will actually be moving into more sparsely populated regions, where
they are more likely to to become trapped. There remains the possibility that
our results would dramatically change if we could find some “magic” set of
settings that reduced this problem of ACO premature convergence, since we
did not exhaustively tune the parameter values. However, our preliminary
investigations did include all combinations of several different values for each
parameter, in addition to the recommended settings.

The principal threats to the validity of this analysis are two-fold: that we
have only used three base problems, and that the artefacts may arise from
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our choice of fitness function.
It should be noted at the outset that the field suffers from a lack of bench-

marks. Our previous papers use three problems, the other papers cited in
Section 2.2 use only one [2, 27]; or two [15]. Clearly this poses a threat to the
validity of those results, and our findings above. The development of a reli-
able benchmark set would greatly aid comparison of experimental methods.
Elsewhere we have reported on the design of tuneable randomised test land-
scape generators where various factors such as the problem size, the number
and relative size of local optima, the degree of epistatic interference between
partitions of the search space, and “deceptiveness” could be tuned to facili-
tate algorithm design and analysis [23]. Hence some of our experimentation
into the factors that appear to make problems hard for SBSE. It would ap-
pear that, although the quality of the best solution present does not change
much for our weighted-sum metric, the problem size (effectively the size of
the graph to be partitioned), and the number of uses per attribute (closely
related to the degree of the graph) are the major factors in determining the
reliability with which the lowest cost solutions can be found.

The question of the cost metric used is more subtle. In earlier papers we
reported results from fCBO on its own, as well as in combination with fNAC ,
which were broadly in line with our results here. It remains for future work to
consider the effects of incorporating other measures of elegance or of cohesion
etc., and of course it could be argued that it might be more appropriate to
adopt a multi-objective approach, modifying a MOEA to focus away from
the “ends” of the pareto front. However, as we have pointed out before, the
proliferation of proposed quantitative metrics outstrips the current limits of
MOEA algorithms, and moreover we have evidence that human qualitative
judgements correspond closely to surrogate models built from a few elements.

As well as given an indication of the value of different search components
in the face of increasing problem instance scale and complexity, the results
also provide possible insights into what makes the class modelling problem
hard for software engineers to perform. Firstly, software engineers typically
do not exploit use information (available in use case descriptions or user
stories) when manually evaluating their candidate class models. However, the
above results show that it is beneficial to exploit this information, especially
as heuristic knowledge appears to be generally beneficial to search.
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7. Conclusions

We preface our remarks by the acknowledging that the lack of bench-
marks, especially large-scale instances for this task mean that we must be
somewhat cautious in our findings. Nevertheless, our results have gone some
way towards identifying the problem characteristics that are important to
vary when selecting or constructing a range of test instances.

For early lifecycle design of object-oriented class models, and given the
computational budget allowed, using Evolutionary Algorithms as the global
search component of an algorithm outperforms the use of Ant Colony Opti-
misation. EAs are more capable at handling constraints, and the influence of
different search components such as repair functions, redundancy avoidance
and local search is beneficial to the search process. Although competent on
the less complex problems, using ACO on the more complex solutions often
failed to find valid solutions without the use of a repair function. Other
methods for incorporating problem-specific information appeared to exacer-
bate the tendency of the ACO to prematurely converge. On certain problems
this causes a rapid decrease in performance, and landscape analysis revealed
that this coincided with a landscape structure exhibiting a positive fitness-
distance correlation, where low-cost local optima are more typically further
from the global optimum than higher cost ones.

To better understand the search landscapes, and how these related to
problem characteristics, we used iterated random-restart local search to probe
the local optimum structure of the landscape. All problems contained a huge
number of local optima, with little structure to their distribution relative
to the estimated global optimum. Both increasing complexity (classes) and
scale (number of problem elements to be grouped) caused the cost of local
optima to increase. Interestingly, however, there was not a corresponding
change in the cost of the best solution ever found, which we use as a proxy
for the global optimum.

In other words as problems become harder and more complex, equally
good solutions are still out there to be found, the challenge for search algo-
rithms lies in finding them amongst a plethora of local optima, often leading
in misleading directions. In future work we aim to deepen our understanding
of this effect, address the problem of a lack of benchmarks in the field, and
apply this analysis of the effects of search components and problem charac-
teristics to other branches of SBSE.
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