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ABSTRACT 

 

Rubbery foams and similar highly compressible rubbery solids form an important class of 

materials for technology. In order for components made from such materials to be modelled, 

in Finite Element Analysis (FEA) for example, appropriate constitutive laws are required. 

 

The review of the literature revealed that rubbery foams lacked the array of comprehensive 

data sets that have been published for near-incompressible rubbery materials for example. 

Moreover there were important contradictions between accounts of how rubbery foams 

behaved at finite strains. The review of the literature also raised some doubts on what the 

value of Poisson’s ratio (ν) should be for such materials in simple extension – let alone in 

compression. 

 

Most finite strain FEA of rubbery foams seems to use in the constitutive law a finite strain 

version of ν based on logarithmic strains: here called the Poisson index, υ. Some of the 

implications of such approaches have been explored via theory and experiments. Some doubt 

has thereby been cast on such approaches. 

 

In this project experiments performed in simple compression on a normal natural rubber latex 

foam have confirmed that the apparent Poisson ratio can fall to very low values even at rather 

small strains; the apparent Young modulus can drop to low values even at very small strains. 

The experiments have also indicated that: ν, and therefore υ at small strain simple extension, 

can be well below the value of 1/3 usually assumed; the value of υ can rise as extension 

progresses and can exceed ½.  
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1.  INTRODUCTION 
 

This project focuses on highly compressible materials, mainly rubbery foams, and the 

constitutive models used to describe these. Rubbery foams are important materials and 

widely used in health, transport and many other technical areas. Their functions include 

shock and impact reduction, noise absorption and isolation from vibration.  

 

Rubbery materials without voids can undergo large strains of hundreds of percent in tension 

as well as in compression more or less elastically. For materials without voids the shear 

modulus (μ) is ~1 MPa, whereas the bulk modulus (K) is ~2 GPa.  

Because K/ μ is so high these materials have Poisson ratios close to ½ and are sometimes 

called near incompressible.  

 

Voided or cellular rubbery solids otherwise known simply as rubbery foams have shear 

moduli that are generally lower and bulk moduli much lower than those for solid rubbers. 

Foam materials can have open or closed cells with geometry that can be either regular or 

irregular. They can be composites, with hollow or otherwise highly compressible inclusions 

e.g. cork. The single most important feature of a rubbery foam material is the fraction of the 

volume occupied by solid rather than air or another gas. This is the volume fraction (Φ) of the 

foam; provided the density of the gas can be ignored it is equal to the density of the cellular 

material divided by the density of the solid from which it is formed, ρ /ρS . Ultra low density 

foams can have a volume fraction as low as 0.001. General purpose polymeric foams have a 

volume fraction of between 0.05 and 0.2. A foam material is normally described as having a 

volume fraction of below about 0.3. Above this value the dense foam is sometimes described 

as a solid containing isolated pores (Gibson & Ashby, 1997). 

 

Foam materials are especially good at absorbing energy in impacts while keeping the peak 

force below a level that would cause damage. They will always give a lower peak force than 

a non-foam solid of the matrix material (Gibson & Ashby, 1997). The buckling and collapse 

of cells can allow a large amount of energy to be absorbed at a near constant load (Gibson & 

Ashby, 1997). A number of mechanisms can be at work when a foam is absorbing energy. 

Some relate to the elastic deformation of the cells while others depend on the compression or 

flow of the fluid within the cell walls (Gibson & Ashby, 1997). So the behaviour of a 

particular foam depends on the cell wall material; it also depends on whether there are open 

cells so that they are interlinked or closed cells so that the cells are isolated (Schwaber, 1973). 

 

In order for rubbery foams have component modelling done in Finite Element Analysis for 

example, appropriate constitutive laws are required. Such material models usually need to 

describe elastic behaviour up to large deformations; this is the principal subject of the present 

work. Such constitutive laws should give physically plausible and accurate stress and 

dimensional changes for a wide variety and range of deformations in compression and 

tension up to around 100% strain. A material needs to be characterised throughout a wide 

range of modes of deformation and combinations of these modes in order to properly 

simulate conditions a component will encounter. For example a seat cushion will be subject 

to compression but will also experience deformation in tension at the edges of the loaded 

area. Published data up to these large strains for rubbery foam is limited and often of 

indifferent quality. One set of data found in the open literature covering a range of modes of 

deformation for foam is that of Blatz & Ko (1962). Further work has been done by Storåckers 

(1986) on two vulcanised foam rubbers for the same mode of extension and compression over 

a wide range of deformation. Gent & Thomas (1959, 1963) also performed simple, uniaxial, 
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extension and compression experiments on natural rubber foams. More recently tests were 

carried out on two types of polyurethane foam by El-Ratal & Mallick (1996), Mills & 

Gilchrist (1997) also tested polyurethane foam. The same authors also attempted macroscopic 

modelling of foams. Gibson & Ashby (1997) carried out extensive work on rubbery foams 

and many other related cellular solids including cork, wood and bone. 

 

There is generally thought to be a marked and abrupt change in behaviour in compression, 

probably associated with a marked reduction in Poisson’s ratio in turn associated with cell 

buckling (Dienes & Solem, 1999; Mills, 2007; Gibson & Ashby, 1997). When the foam is 

made from suitably rubbery material such presumed buckling does appear recoverable (Gent 

& Thomas, 1959, 1963). Other authors have performed particular experiments on auxetic 

materials – materials exhibiting negative Poisson ratios  (Lakes, 1993; Alderson & Evans, 

1997). 
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2 LITERATURE REVIEW 

 

The main subject of the current dissertation is the behaviour of isotropic compressible elastic 

materials at finite strains, however any valid model of the behaviour of such materials must 

correspond to an infinitesimal strain model at such strains. 

 

2.1 Elasticity at infinitesimal strains and the Poisson ratio (ν) 

 

At infinitesimal strains in linear elastic materials, stresses are proportional to strains. Please 

see Figure 1. 

 

 
 
 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

Figure 1. Unit vectors in the 1, 2 and 3 directions and conventional strain εij and stress σij 

components for a cuboid of material.  

 

Linear elastic, isotropic solids, Hookean or Lamé solids, are characterised, at infinitesimal 

strains, by any two of the elastic constants: E,K,, and   (the 1st Lamé constant, the 2
nd

 

Lamé constant or shear modulus, the bulk modulus, the Young modulus and the Poisson 

ratio). The constants relate stresses to strains; the Poisson ratio can also be used to relate 

principal strains ( i ) to each other. The Poisson ratio is best known for relating lateral strain 

to simple extension; more generally gives the strain in the 3rd direction if the other two strains 

are specified in general biaxial strain under plane stress conditions. Consider a cuboid of 

material aligned with the direction of principal strain (so that ij = 0, i ≠ j) if 11  and 22 are 

applied and faces in the 3 direction are stress free, 33  (i.e. 3 ) is given by  
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
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       (2.1) 

 
(See Mars, 2006 and Appendix I.) 

 

Schematic examples of modes of test are shown in Figure 2 and Appendix II . 
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( w >> l > t  to minimise end effect) 

 

c. Constant cross section or plane compression 

  (l &w >>t and bonded to rigid plates) 

 

d. General biaxial extension 

e. Simple shear 

(l & w >> t and bonded to plates - see (c)) 
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f. Pure volume decrease 

Figure 2. Modes of test for material properties (schematic)  
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Although most solids have Poisson ratios of around 0.3, -1 < ν < ½ is generally accepted as 

being the permissible range in principle for isotropic solids (Mott & Roland, 2009 and 2013; 

Greaves et al, 2011); K falls to zero at the lower limit and rises towards infinity at the upper. 

Clearly, neither the lower nor the upper limit can be reached for any real material, 

nevertheless the upper limit gives an idealisation widely-used in rubber modelling (Treloar, 

1975; Rivlin, 1992). The range 0 ≤ ν < ½ corresponds to “non-auxetic” and -1 < ν < 0 to 

“auxetic” behaviour - see Gibson & Ashby (1997) and Alderson & Evans (1997) for 

example). By considering several modes deformation Mott & Roland (2009 and 2013) argue 

that the non-auxetic range should be further divided and that all normal isotropic elastic 

solids, to which the Lamé framework of elasticity is applicable, have 1/5 ≤ ν < ½.  

 

2.2 Finite deformations 

 

2.2.1 Measures of finite deformation 

 

In what follows F is the deformation gradient ∂x/∂X or 
j

i

ij
X

x
F




  in component form 

(Holtzapfel, 2000; Bower, 2009); X and x are material and spatial coordinates respectively – 

corresponding to the reference configuration and the current configuration . 

 

For isotropic materials that are elastic up to finite strains, deformation is usually measured 

using one of the following (Rivlin, 1992; Holzapfel 2000; Treloar 1976). 

 

(a) The principal scalar invariants ( 321 ,, III ) of the Cauchy-Green deformation tensor, right 

(C) or, here, left (B, sometimes written b); Holtzapfel (2000), Oden (1972, 2000), Rivlin 

(1992), Bower, 2009.  

 

(b) The eigenvalues ( 2

3

2

2

2

1 ,,  ) of B (or C) or their square roots, the principal extension 

ratios or stretches (Eihlers & Eipper, 1998; Storåckers, 1986; Bruhns et al, 2001; Bower, 

2009). 

 

(c) Simple rearrangements of (a) such as the volume ratio 3IJ  and  invariants of “volume 

neutralised” B and C, CCBB
3232  and // JJ    i.e. invariants modified to remain 

unchanged for pure volume change ( 1I  and 2I ) – see Penn (1970), Treloar (1975), Ehlers & 

Eipper (1998), Gough et al (1999) or Bower (2009) for example. (d) Simple rearrangements 

of (b) such as the natural logarithmic or Hencky strains (principal values iie ln ) or the 

volume neutralised principal extension ratios (Simo & Taylor, 1991; Gough et al, 1999; 

Bruhns et al, 2001).  

 

In the above the principal extension ratios and first two principal invariants volume 

neutralised can of course be obtained from the volume neutralised 31/ /JFF  . Please see 

Appendix III for more details.  
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2.2.2 Modelling of elastic behaviour at finite strain and the definition of the Poisson 

index (υ) 

 

What is called herein the Poisson index (υ) is a finite strain version of the Poisson ratio 

relating logarithmic strains ( iie ln ) – please see Blatz & Ko, 1962; Ogden, 1972a). As 

Ogden (1972b) points out, υ will, in general, be a function of the deformation – see also: 

Alderson et al (1997); Pierron, 2010). There is disagreement between various authors on the 

extent to which υ varies with deformation of rubbery foams; some workers indicate that υ 

varies little if at all with extension (Blatz & Ko, 1962; Storåckers, 1986 ) – others indicate 

that υ varies by a surprisingly large amount: El-Ratal & Mallick (1996) and see later in this 

dissertation.  

 

Using Kirchoff stress (Bruhns et al, 2001) some authors use the direct Hencky, (1928) 

approach to extend the equations of isotropic elasticity at infinitesimal strain to calculate the 

stresses at finite strains via logarithmic strain (ei).  iie ln . Some other models, such as 

the Blatz & Ko form of constitutive law (please see below and Blatz & Ko, 1962) or Ogden’s 

model that has come to be known as the hyperfoam model as usually implemented also use 

the Poisson index (υ) and assume that it can be regarded as a constant (Storåckers, 1986.).  

 

Chagnon & Coveney (2008, 2011) argue that irrespective of whether υ is constant or not, it 

can be defined for a particular state of strain, if faces in the 3 direction are stress free, by  

  (2.2a)                      
1

213 eee 









 
or  

  (2.2b)                            1
213





 



  

 

Please see Figure 1. 

 

It should be noted, though, that such a definition hypothesises that aspects of the Hencky 

(1928) approach are appropriate for the material being modelled. 

 

As the logarithmic principal strains (ei) become smaller they tends towards the infinitesimal 

principal strains εi, so at infinitesimal strain the Poisson index υ equals the Poisson ratio (ν). 
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2.3 Forms of constitutive law for rubbery materials – treated as isotropic and elastic up 

to large strains 

 

2.3.1 Rubbery materials without voids 

 

Solid rubbery materials are described as near incompressible because the bulk modulus (K) is 

very large compared with the shear modulus (μ). It is usual to assume that a Helmoltz free 

energy function (W) of the deformation gradient (F) can be used to describe them: 

 

  (2.3)                            FWW   

 

W, also known as the strain energy density, is defined per unit volume in the reference 

configuration (Rivlin, 1992; Gough et al, 1999; Holtzapfel, 2006). Treating rubber as 

incompressible, Rivlin (1948, 1992) used symmetry to argue that because W is a function of 

the deformation gradient it must also be a function of the first two principal invariants of the 

left or the right Cauchy-Green deformation tensor B or C: 

 

  (2.4)                            21 I,IWW   

 

So the current view is that the strain energy density of any isotropic elastic incompressible 

material can be described by equation 2.4 and the stresses found from its derivatives – as 

explained by Rivlin (1948, 1992), Rivlin & Sawyers (1976), Holzapfel (2006), Bower (2009) 

and elsewhere. 

 

Maclaurin expansion gives what has come to be known as the Rivlin series form of 

constitutive law (Rivlin & Saunders, 1951): 

 

    (2.5)          33 21

ji

ij IICW 
 

 

If ∂W/∂I1 and ∂W/∂I2 are taken to be constants C10 = C1 and C01 = C2 respectively, equation 

2.5 simplifies to the Mooney, or Mooney-Rivlin, form: 

 

 

    (2.6)          33 2211  ICICW
 

 

Here 2C1 + 2C2 = μ, the shear modulus. If ∂W/∂I2 is taken to be zero, equation 2.6 simplifies 

to the neo-Hookean form (Treloar, 1975): 

 

  (2.7)                             3
2

1  IW


 

 

Equation 2.7 is also given by the Gaussian statistical theory of rubber elasticity  with μ 

proportional to absolute temperature (Treloar, 1975). In the neo-Hookean form, the stresses 

associated with shape changes are calculated with knowledge of just one material constant: 

the shear modulus μ – as is the case at infinitesimal strains. 

 

 

Rivlin & Sawyers (1976) “advance the view that if one adopts the position that W is a 

function of I1 and I2, then, from the viewpoint of the numerical solution of boundary value 
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problems, the fitting of these experimental results by an algebraic expression for W is, in 

large measure, an empty exercise… Indeed, if the solution of the problem involves the use of 

a computer, one could just as well take the experimentally determined dependence of ∂W/∂I1 

and ∂W/∂I2 on I1 and I2 as a constitutive input to the problem.”  

 

The experimental investigation of how ∂W/∂I1 and ∂W/∂I2 depend on I1 and I2 has centred on 

general biaxial extension of  sheets of rubber in the plane stress condition (see Figure 2). 

Treloar (1975) shows, for an incompressible material, the loci of simple extension 

/compression, equibiaxial extension/compression and fixed width extension/compression on 

the I1, I2 plane. The loci are replotted in Figure 3. The curves of simple extension 

/compression and equibiaxial extension/compression give the boundaries of what are possible 

values of I1, and I2 for general biaxial extension. Note that, as expected the loci for simple 

extension/compression, equibiaxial extension/compression merge in to that for fixed width 

extension/compression as the values of I1 and I2 approach 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Loci of simple extension/compression (SE/C), equibiaxial 

extension/compression(EBE/C), fixed width extension/compression(FWE/C) and simple 

shear (SS) for an incompressible material on the I1, I2 plane.  

 

Gent & Rivlin (1951), Rivlin (1992) and Gough et al (1999) have discussed the experimental 

evidence on how W or rather ∂W/∂I1 and ∂W/∂I2 for rubbery materials without voids depend 

on I1 and I2. All three publications make it clear that wherever it is possible to distinguish 

well between ∂W/∂I1 and ∂W/∂I2, because strains are sufficiently large, ∂W/∂I1 is at least five 

times larger than ∂W/∂I2. Gent & Rivlin (1951) suggest, on the basis of their data and the data 

of others, that ∂W/∂I2 is associated with energy dissipation and speculate that structurally it 

may be associated with some form of secondary, relatively fragile reformable, crosslinks. 

Kawabata (1973) performed plane stress general biaxial measurements on natural rubber and 

SBR (styrene-butadiene rubber) materials over a temperature range of 20 to 100 °C. He found 

that ∂W/∂I1 was approximately proportional to absolute temperature (see equation 2.7) but 

3
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that ∂W/∂I2 was substantially temperature independent. He found that the relaxation 

behaviour of ∂W/∂I2 closely resembled that of ∂W/∂I1 and that the relaxation time was almost 

the same. 

 

Gough et al (1999) warned that the common practice of applying conditioning cycles of 

deformation to a test piece may produce anisotropy. They say that their data and the data of 

others for a number of practical rubbery materials is consistent with ∂W/∂I2 being zero but not 

for one material. They point out that when strains are insufficiently large it is no longer 

possible to distinguish between  I1 and I2. 

 

Edwards & Vilgis (1986) have proposed modifying the Gaussian statistical theory of rubber 

elasticity to allow for chain slippage at small strains and to account for stiffening at large 

strains via the tube concept. 

 

Because the role of  ∂W/∂I2 is, at most, less important than that of ∂W/∂I1 in rubber elasticity 

and because dropping ∂W/∂I2 in a model gives benefits, a number of authors have decided to 

do this, including: Yeoh (1990), Arruda & Boyce (1993), Davies et al (1994), Gent (1996) 

and Marlow (2003) who proposes direct use of experimental results for W(I1) in finite 

element analysis. Some of these approaches seem to work well – see Boyce & Arruda (2000) 

for example. 

 

A number of authors, including Mooney (1940), Carmichael & Holdaway (1961) and Valanis 

& Landel (1967) have hypothesised that W can be expressed as a sum of functions of the 

principal extension ratios, or their squares: 

 

      (2.8)                             321  wwwW 
 

 

Rivlin & Sawyers (1976) showed that forms of W conforming to equation 2.8, the “Valanis- 

Landel” hypothesis, imply that the dependence of W on 21  and II conforms to the following: 

 

)92(                       
21

2

22

2

2

221

2

12

1

2

1

.
II

W
I

I

W

III

W
I

I

W

I 














































  

As pointed out by Gough et al (1999) strain energy density functions conforming to the 

Valanis-Landel hypothesis have “been found to work well in practice, at least for unfilled 

rubber up to moderately large strains [by] Obata et al, 1970; Valanis & Landel, 1967; Jones 

& Treloar, 1975; Ogden, 1972”. However, they go on to point out that Gent’s (1996) strain 

energy density function (designed for use up to high strains) does not conform to equation 

(2.9). The same will be true of any strain energy density function which has ∂W/∂I2 ≡ 0 but 

which includes high powers of I1 . 

 

w in equation 2.8 may, in turn, be expanded as a series of integer powers of λi (Mooney, 

1940) or as a general power series (Ogden, 1972a): 

 

   3321
iii

i

iW
 




       (2.10) 

Here the powers, αi can be have any real value. Note that some authors use eigenvalues of B 

in the Ogden series; these are the squares of the principal extension ratios but also often 

written λi. 
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If there is still debate about the possible role of I2 and its origin and about the suitability of 

the Valanis-Landel hypothesis there is further debate about how best to represent the 

compressibility of rubbery materials without voids. 

 

If the ideal, isotropic elastic material is compressible, equation 2.3 gives (Rivlin, 1992; 

Bower, 2009) 

 

  (2.11a)                                                                         321 I,I,IWW   

 

[note that the use of W on the right hand of each of  equations 2.3, 2.4, 2.11a, 2.11b means 

that the strain energy density is a function of the variables written but not that the functional 

is the same in each case.] 

 

or equivalently, but with different Cijk  

 

  (2.11b)                                                                          21 J,I,IWW   

 

Maclaurin series expansion gives (Oden, 1972, 2000): 

 

      (2.12a)                                        333 321

kji

ijk IIICW 
 

 

or equivalently 

 

      (2.12b)                                          333 21

kji

ijk JIICW      

 

The Cauchy stress can be found by using a formula such as the following – see Appendix IV 

or Chagnon (2003) or Bower (2009) for example:  
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         (2.13) 

 

Rivlin (1992) emphasises the difficulty in experimental determination for equations 2.11 or 

2.12 if there are no simplifications; this is because J/WI/W,I/W   and 21 can each 

be functions of JI,I  and 21 . A widely used simplification suggested by Flory (1960; see also 

Gough et al, 1999) is to separate W into an isochoric part purely due to shape change (Ws) 

and a dilational part purely due to volume change (Wv): 

   

    (2.14a)                                                                           21 JWI,IWW vs 
 

 

or equivalently 

 

    (2.14b)                                                                           21 JW,WW vs  
 

used. becan   of any two that so 1 that Note 32131  ,,
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Forms conforming to equation 2.14(a) can be called shape-volume uncoupled – e.g. in 

equation 2.14 0 21  J/WI/WI/W svv . 

 

Blatz & Ko (1962) put forward the following form that is a modification of the Mooney form 

(equation 2.6) allowing for compressibility via a constant Poisson index (υ): 
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where C1 + C2 = μ/2 – please see Treloar (1975) and equations 4.2.2 and 4.2.18. 

 The volume neutralised principal invariants are  

 

                                                                     can write  weso

   and 2

34

21

32

1 IJIIJI //  

    






















  1

21
3   1

21
3 212

2

342

2

212

1

32

1

)/(/)/(/ JIJJCJIJCW 








 

or 

 (2.16)                  1
21

31
21

3 21

2

2

32

2
21

2

1

32

1



























































 


















JIJCJIJCW //

Equation 2.16 shows the Blatz & Ko equation in a way that emphasises that there is a 

particular sort of coupling between shape changes and volume changes in the calculation of 

W. 

  

Penn (1970) measured volume change of rubber in simple extension and found that the 

results were not consistent with shape-volume separation in the strain energy density 

(equation 2.14). Ogden  (1972b) referred to Penn’s work (1970) to argue in favour of the type 

of shape-volume coupling used in the Blatz & Ko model (equation 2.16). Gough et al (1999) 

however said that the experimental errors in Penn’s (1970) measurements of volume change 

were such that shape-volume separation could not be refuted on the basis of his data. They 

do, though, argue for a form of Wv that is an uneven function of (J-1) and that “rises towards 

infinity as it must when the volume approaches zero”. Ehlers & Eipper (1998) on the other 

hand find that shape-volume uncoupled models can lead to unrealistic behaviour with cross-

section increasing at high degrees of simple extension and decreasing at high degrees of 

simple compression. The volume of natural rubber increases slightly at simple extensions up 

to about 100% but decreases at strains of hundreds of percent, because of crystallisation, 

where the nominal Poisson index will therefore exceed ½  (Ogden, 1972b; Treloar, 1975). 

According to Ogden (1972b) at λ1 = 8, J = 0.98 

 

Now J = λ1 λ2 λ3 =  λ λ
-υ

 λ
-υ 

= λ
1-2υ         

(2.17)                   0.505 
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2.3.2 Rubbery foams and other highly compressible materials 
 

If there is some question about whether shape-volume coupling is necessary for rubbery 

materials without voids, for highly compressible rubbery materials (e.g. rubbery foams) 

shape-volume coupling seems difficult to argue against – especially if they are likely to 

undergo large deformation in compression as well as in extension. Equations 2.11 and 2.12 

show the general descriptions but, as stated above, consideration of the dependence of W, or 

its three derivatives, in JI,I  and 21  space would be a major undertaking, perhaps because of 

this, the Blatz & Ko form (equations 2.15 and 2.16) and what is now known as the hyperfoam 

form (Ogden, 1972b; Hill, 1978; Storåckers, 1986; Mills & Gilchrist, 2000a) 

     


i ii

i

i i

i iiiiii JJW 1
2

3
2

2321

3/

2











  (2.18) 

are widely used. Of the constants, i  and i  can take any real value, the initial shear modulus 


i

i0  also 
i

i
i






21
 so multiple constant (sub) Poisson indices can, in principle, 

coexist. However, in practice, a single constant Poisson index is generally chosen 

(Storåckers, 1986; Mills & Gilchrist, 2000a and see below). It can be seen that the hyperfoam 

form is a generalisation of the Blatz & Ko form – please see equation 2.16 and Storåckers 

(1986) for example. 

 

 

 

2.4 Existing sets of data for rubbery foam and micromechanical models 

 

 

Blatz & Ko (1962), Blatz (1963) tested a polyurethane rubbery foam - or rubbery solid with 

pores - with a fraction of rubber by volume of the foam (Φ) of 0.53; unlike some 

polyurethane foams this one was more likely to be isotropic because of the way it was made 

(Blatz & Ko, 1962; Gibson & Ashby, 1997). The material was tested in simple, equibiaxial 

and fixed-width extensions. Their method implied that equation 2.2 was being used. Their 

data shows little scatter and a value of υ = 0.25 was obtained, by means of particularisations 

of equation 2.2. After having decided that υ should be 0.25 Blatz & Ko went on to compare 

the stresses given by their equation (equation 2.15) to the measured stresses. They came to 

the surprising conclusion from this comparison that C1 in equation 2.15 was small and could 

be ignored and so arrived at what has come to be known as the Blatz-Ko form of strain 

energy density function implemented in some commercial Finite Element Analysis software 

(Bower, 2009).  

 

Storåckers (1986) questioned the results of Blatz & Ko (1962) and obtained υ = 0.32 from for 

simple, equibiaxial and fixed-width extension of a natural rubber (NR) foam and υ = 0.49 for 

(b) an EPDM (ethylene-propylene-diene) rubber foam. His method implied that equation 2.2 

was being used. The value of υ for NR foam is well within the expected range but the value 

for the EPDM foam seems high. Storåckers said only that the NR foam was highly 

compressible and the EPDM foam was slightly so. Unfortunately Storåckers preconditioned 

his materials by applying cycles of deformation prior to his tests (please see above and 

Gough et al, 1999). Like Blatz & Ko (1962) strains of up to 50 or 100% were attained in 

Storåckers’ tests. 
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Gent & Thomas (1959, 1963) described a simple micromechanical model, for an idealised 

open cell rubbery foam, of strands of rubber; a Poisson ratio (ν) of ¼ was predicted. They 

performed simple (uniaxial) extension experiments on 15 natural rubber latex foams of 

volume fractions (rubber volume divided by foam volume) Φ varying from 0.093 to 0.568, 

checking that the rubber matrices were all similar. The method of manufacture of the foams 

meant that the foams were likely to be essentially isotropic (Gent & Thomas,1959, 

1963).They measured ν at about 10% simple extension as 0.33   0.04; their set of data 

suggested that ν did not vary with Φ. Gibson & Ashby (1982) described a relatively simple 

micro-mechanical model for open and closed cell foams. Gibson & Ashby’s model, based on 

bending of members, predicted a ν of 0.33. The experimental results of Gent & Thomas 

(1959, 1963), Gibson & Ashby (1982, 1997) and others covering a very wide range of Φ 

together with the model of Gibson & Ashby pointed to ν for open and closed cell foams 

varying little for “all values” of Φ, i.e. up to Φ = 0.6 at least; the combined experimental 

results Gibson & Ashby (1982, 1997) presented showed considerable scatter but “there is no 

systematic variation with density [relative density i.e. Φ]..The average value is about 1/3.” A 

graph summarising published experimental data for ν against Φ is shown in Figure 4. Some 

of Gibson & Ashby’s (1982) results fell outside the range of ν for normal materials, but they 

did not comment on this. They did not state at what strain or strains they made the Poisson 

ratio measurements.  

 

Results presented by Gent & Thomas (1959) included plots of, presumed, nominal stress 

against engineering strain (ε =λ - 1) in simple extension and also for, nominal, simple 

compression for test pieces of natural rubber latex foam of 125.0 . λ was from 0.6 to 

1.15. The plot of stress against λ is essentially linear in extension but shows a sudden drop in 

tangential stiffness (slope of the graph) at small compressive strain (i.e. between λ ≈ 1 and 

0.97). Such behaviour is thought to be associated with the onset of buckling of the cell walls 

or ligaments in the foam (Gent & Thomas, 1959; Gibson & Ashby, 1997). 

 

There have been many publications on attempts at micromechanical modelling of rubbery 

foam since 1963, Gong et al (2005a&b) reviewed some of this work as well as producing 

their own micromechanical models of increasing complexity and performing some physical 

experiments – unfortunately all the experiments were on anisotropic foams. It is noted that 

the modelling results of Gong et al (2005a) for isotropic foam predicted that ν will tend 

towards 0.5 as Φ tends towards zero (please see Figure 4). Gan et al (2005) have also 

reviewed micromechanical modelling of solid foam and also produced a model that predicted 

that ν will tend towards 0.5 as Φ tends towards zero. Neither sets of authors commented on 

the fact that this prediction differed from the predictions of other models and from what most 

of the published experimental data seem to show.  
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Figure 4. Poisson’s ratio ( ) versus volume fraction (Φ) for a range of real and modelled 

foams. 

 

As indicated above, Blatz & Ko (1962) and Storåckers (1986) found that υ did not vary with 

simple extension, equibiaxial extension and fixed width deformation. El-Ratal & Mallick 

(1996) performed simple extension tests on (a) a “seat foam” and (b) a “commercial foam” – 

both polyurethane.  For foam (a) they found that υ at λ = 1.1 was about 0.25 but  

at λ = 1.4, υ  was approximately 0.6. For foam (b) υ at λ = 1.1 was about 0.35 but at λ = 1.4, υ 

was approximately 0.75. These high values of υ correspond to volume ratios (J) as low as 0.8 

in simple extension (equation 2.17). Such volume reductions seem surprising but may be 

possible for rubbery foams at such extensions.  

 

As just described, there is some doubt about whether the Poisson index (υ) can be considered 

constant in extension. However, notwithstanding the findings of Gibson & Ashby (1982), 

there seems to be a consensus that υ does vary considerably in compression. Gibson & Ashby 

(1982) reported measuring the Poisson ratio (ν) in tension and compression. However they 

did not report that values differed depending on whether the test piece was in tension or 

compression. They stated that, in agreement with their theory, there was no systematic 

variation of ν with density and that the average value was about 1/3. However, Mills & 

Gilchrist (2000a) stated “For an open cell foam under uniaxial compression, it is a reasonable 

approximation that the Poisson’s ratio ν = 0 [Poisson index, υ = 0]”. They tested a polyether 

polyurethane foam with a density of 38kg/m
3
. Their compressive stress-strain plot shows a 

sharp reduction in tangential stiffness at compressive strains of a few percent – presumably 
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associated with buckling of cells; the two-term hyperfoam form (equation 2.18) does not 

represent this feature well, showing that it would be difficult to model extension and 

compression. Mills & Gilchrist (2000a) went on to state “when uniaxial compression and 

simple shear data were entered, the [commercial Finite Element Analysis] program could not 

find a convergent fit to the data either for N = 1 or 2 [single term or two term hyperfoam 

form]”. Pierron (2010) tested a “standard low density polyurethane foam” with a density of 

30kg/m
3
. Under conditions approximating to simple compression Pierron’s data shows a 

steep plunge in a tangential, or incremental, Poisson ratio (νt) as extension ratio λ decreased, 

between λ = 1 and 0.95. Despite some increase in νt on further compression, it was still 

negative when compression ended at λ ~ 0.2. 

 

A principal observation in Pierron’s work was the prevalence of localised behaviour, 

including the propagation of zones associated with particular ranges of νt through the 

material. He states “Here, the compression process starts where the load is introduced (top 

and bottom edges) which is consistent with observations from (2) and then propagates in 

bands towards the centre. This results in highly heterogeneous strain maps. This was reported 

in (1) on a very similar foam. ..buckling elastic collapse of whole rows of cells by buckling of 

the cell walls.” Gent & Cho (1999) and Gent (2005) discuss surface instabilities in rubber 

without voids; for the material without voids such instabilities are predicted to form in a 

rubber test-piece in simple compression or in bending when λ = 0.444 has been reached. 

However instabilities were observed by Gent & Cho (1999) at λ = 0.65 in bending of rubber 

without voids. 

 

 

 

2.5 The work of Chagnon & Coveney (2008, 2011) 

 

In unpublished work, Chagnon & Coveney (2008, 2011) used equations 2.2 and 2.13 together 

to obtain the following expression for the class of forms of model of isotropic elastic material 

in which compressibility is expressed by the Poisson index (υ) – as discussed by Ogden 

(1972b) and Hill (1978): 
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For infinitesimal strains, r = /K  because 
 
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So equation 2.19 is a finite strain version of the small strain equation relating bulk modulus, 

Poisson ratio and shear modulus (K, ν, μ). At finite strains, though, the shear modulus can 

have two parts 21 /2 and /2 IWIW   and they, υ and JW  / are, in general, functions of 

21  , II and J. Using equation 2.19 Chagnon and Coveney generated the Blatz & Ko form 

(equation 2.15 or 2.16) that is a modified Mooney first order form. They then generated a 

third order polynomial form, in which  2I  does not appear, that is a modified Yeoh (1990) 

form: the BKY form. They tried to fit the BKY form to Gent & Thomas’ (1959) combined 
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simple extension and compression data for a Φ = 0.125 natural rubber latex foam. Similarly 

to the difficulties Mills & Gilchrist (2000a) experienced with the hyperfoam form, with the 

BKY form Chagnon & Coveney (2008, 2011) were unable to obtain an acceptable fit to the 

combined extension-compression data and concluded that this was almost certainly due to 

rather abrupt changes in the Poisson index when λ is less than but close to 1. 

 

Note that equation 2.19 can be used to modify Cauchy stress equation 2.13 for this class of 

forms to (Chagnon & Coveney, 2011):  

 

    (2.20)                         
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2.6 General discussion 

 

Regarding 

 

 (i) the direct Hencky (1928) approach, 

  

(ii) the Blatz & Ko equation (equation 2.15 or 2.16),  

 

(iii) generalisations of the Blatz and Ko approach suggested by Chagnon & Coveney (2008, 

2011)  

 

and (iv) the hyperfoam form as normally applied,  

 

none are general descriptions for an ideal, isotropic elastic material (in contrast to 𝑊 =

𝑊(𝐹) or 𝑊 = 𝑊(𝜆1, 𝜆2,𝜆3) or equation 2.11). All of (i) to (iv) explicitly or implicitly use 

equation 2.2. This means that one of the ways in which (i) – (iv) are not general is that if, 

under plane stress conditions, λ1λ2 = 1 then λ2 = 1. 

 

It is not a given that a Poisson index (υ) approach is always valid or useful. However for 

normal isotropic rubbery foams there seems a general view that the Poisson ratio and so the 

Poisson index at almost zero strain is close to 0.33 for volume fractions of rubber in the range 

Φ = 0.01 – 0.6 (please see above and Gibson & Ashby, 1982).  

 

As Ogden (1972b) said, it would be convenient if the Poisson index υ could be taken to be 

constant. The data of Blatz & Ko (1963) and Storåkers (1986) points to υ being almost 

constant with strain for simple, equibiaxial and fixed-width extensions - although the value of 

υ given by Blatz & Ko from their data (1963) is surprising: 0.25. In contrast to Blatz & Ko 

(1962) and Storåkers (1986), El-Ratal & Mallick (1996) found that υ varied quite strongly 

with simple extension. There is clearer direct and indirect evidence that υ varies abruptly in 

simple compression. 

 

In practical applications, rubbery foam is often subjected to extension, shear and compression 

but here seems to be lack of experimental data combining, for example, comprehensive shear, 

simple extension and simple compression data for the same rubbery foam in order that 

conclusions can be made about the variation of W and/or its derivatives and of υ with 

deformation. Gent & Thomas (1959) did give simple extension and compression data for the 
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same rubbery foam but did not give information on how volume varied with extension and 

compression – apart from giving the Poisson ratio as close to 0.33. 

 

Regarding the question of 
21  and I/WI/W  , it would be convenient if one or other could 

be ignored for rubbery foams. Blatz & Ko (1962) suggested that 1/ IW  could be ignored for 

their foam – the opposite of what is often the case for rubbery materials without voids. 

However, Blatz & Ko’s method of data analysis involved use of abscissae of 2

2

2

1

  ; this gave 

strong emphasis to the higher deformations where a Mooney form is least likely to be 

applicable (see also, Treloar, 1975).  On giving equal weightings at all levels of deformation 

Chagnon & Coveney (2008) found that setting C1 = 0 in equation 2.16 “gave a particularly 

poor fit to Blatz & Ko’s own data”; they found “a much improved fit was obtained with C1 ≈ 

C2
 
in equation 2.16  and an almost equally good a fit was obtained with C2 = 0”. It should 

also be noted that Blatz & Ko (1962) and Storåkers (1986) reported no tests in compression. 

 

It would be helpful if guidance regarding the behaviour of   and / ,/ , / 21 JWIWIW 

in deformation could be obtained from micromechanical modelling of isotropic foams as well 

as physical tests on foams. Unfortunately, the results of some recent micromechanical 

modelling show serious differences with other evidence.  
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3 RESEARCH QUESTIONS, AIMS, OBJECTIVES & PLAN OF WORK 

 

3.1 Key points from literature review in relation to this piece of work 

 

(i)  For isotropic hyperelastic modelling of rubbery materials without voids it seems clear, 

from investigations by Rivlin & Saunders, 1951) and others (Rivlin, 1992) that the 

importance of the derivative of the strain energy function (W) with respect to the second 

principal invariant of the Cauchy-Green deformation tensors (∂W/∂I2) is minor compared to 

∂W/∂I1. 

 

(ii) As indicated previously, rubbery foams lack the array of comprehensive data sets 

published for finite deformation of unvoided rubbery materials. 

 

(iii) Regarding the modelling of rubbery foam at small strains, Gibson & Ashby (1982) seem 

to be quite definite that the Poisson ratio of normal rubber foams should be close to 0.33. But 

there is considerable scatter in the summary data that Gent & Thomas (1959, 1963) and they 

present. Moreover, Blatz & Ko (1962) found their dense foam had a Poisson ratio (ν) of 0.25; 

El-Ratal & Mallick’s (1996) data points to ν of a slightly lower value for a polyurethane “seat 

foam”. 

 

(iii) Concering (i) above but for rubbery foam, there is a general lack of information in the 

literature. Blatz & Ko (1962) indicate that for their relatively dense rubbery material ∂W/∂I1 

is negligible, although their findings have been questioned by Storåckers, (1986) and by 

Chagnon & Coveney (2008). 

  

(iv) The Poisson index (υ) is a particular finite strain version of the Poisson ratio (ν). The 

Blatz & Ko (1962) and hyperfoam (Ogden, 1972b; Storåckers, (1986); Mills & Gilchrist, 

2000a) constitutive laws for rubbery foams use a constant Poisson index (υ) approach to 

describe the way in which the shape-dependent and volume-dependent parts of the 

constitutive laws are coupled. This feature gives attractive analogies with infinitesimal strain 

but means that both constitutive laws are not fully general. 

 

(v) In modelling with the Blatz & Ko or hyperfoam forms the Poisson index (υ) is assumed 

constant (Blatz & Ko, 1962; Storåckers, 1986; Mills & Gilchrist, 2000a). It seems unlikely 

that υ is the same in compression as it is in extension, but in extension the results of Blatz & 

Ko (1962) and Storåckers (1986) point to constant υ. However, the simple extension results 

of El-Ratal & Mallick’s (1996) show υ increasing from values at or below 0.33 at small 

strains to values well above ½ at large strain. 

 

3.2 Research questions arising 

  

Central questions arising from the literature review are the following. 

 

(a) How does the Poisson index (υ) vary with deformation? There seems to be a particular 

lack of published data showing this for extension and compression for the same rubbery 

foam. 

 

(b) How can the validity of constitutive laws using the Poisson index method, other types of 

shape-volume coupling or no shape-volume coupling be assessed?  
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(c) Do the experimental methods adopted by Blatz & Ko (1962) and Storåckers (1986) seem 

effective for answering (b)? 

 

(d) Do the experimental methods adopted by Blatz & Ko (1962) and Storåckers (1986) seem 

effective for answering the question posed by Rivlin (1992) and others about the relative 

sensitivity of W to changes in the principal invariants. Answering such questions has the 

potential to lead to simplified constitutive laws as has been the case for rubbery materials 

without voids. 

 

 

3.3 Aims, objectives & outline plan of work  
 

(i) Perform experiments to determine how the Poisson index (υ) for a rubbery foam varies 

with extension and compression. 

 

(ii) Considering the modes of deformation they used and the measurements they made, assess 

how effective the methods used by Blatz & Ko (1962) and Storåckers (1986) were in: 

assessing the validity of constitutive laws using the Poisson index; answering questions about 

the relative sensitivity of W to changes in the principal invariants – q.v. (i) in 3.1. 

 

(iii) Examine other ways in which the validity of constitutive laws using the Poisson index 

method, other types of shape-volume coupling or no shape-volume coupling could be 

assessed. Attempt such an assessment. 

 

(iv) Consider other ways in which questions about the relative sensitivity of W to changes in 

the principal invariants could be assessed. Begin such an assessment.  
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4 THEORY        

 

4.1 Loci in JII ,, 21 space, for constant Poisson index ( ), of various modes of 

deformation 

 

In this section loci in JII ,, 21 space, of various modes of deformation are shown for various 

constant values of the Poisson index (υ).  

 

As explained in the literature review, J, the volume ratio is the ratio of the volume a piece of 

material in the current, deformed, configuration to its volume in the reference, undeformed, 

configuration. 
21  and II  are the 1

st
 and 2

nd
 principal invariants of the volume-neutralised left 

Cauchy-Green deformation tensor CB  right, or the ;  2

3

2

2

2

1  and   ,  , the eigenvalues of 

CB or  , are the squares of the volume-neutralised principal extension ratios: 3/1/ Jii   . 

So 1321  . Also 
21  and II  are not affected by purely volume change. Now 

2

3

2

2

2

11  I  and, because of volume-neutralisation, 2

3

2

2

2

12    I .  
21 or  II each 

give the amount of shape change of an element of material – but 
21  and II can have different 

values for different types of shape change so the combined values of 21  and II give the type 

and magnitude of shape change; this information can be shown by projecting onto a plane of 

constant J loci (“trajectories”) in JII ,, 21
space. It should be noted that 

 21 3 and 3 II  but  J0 , where 1   and 321  JII  in the undeformed 

state.  

 

Because the generally accepted permissible range of the Poisson ratio is -1 < ν ≤ ½ this range 

of the Poisson index (υ) is covered in the constant υ loci (“trajectories”) shown in Figure 5.  

See however Mott & Roland (2009, 2013) and chapter 2. Also, it is possible for values of υ > 

½ to occur at finite strain: for example natural rubber “strain crystallises” at high extension 

ratio; thereby increasing its density - although only slightly (i.e. up to a maximum of around 

3% at λ around 8 in simple extension - see Treloar, 1975 pp 20 – 22); this suggests that υ can 

be a function of one or more of JII or  or  21 and can sometimes exceed ½.  

As shown below, for small changes in shape, all shape changes share the same locus 

projected on the 21 , II  plane of constant J: .21 II  Shear gives the same locus, 
21 ,1 IIJ  , 

at all levels of deformation but other types of shape change give loci which deviate from 

21 II   as the level of deformation increases. 

  

As explained in chapter 3 one of the main aims of this MPhil is to begin an examination of 

possible classes of mathematical descriptions for highly compressible rubbery material and to 

propose tests towards such an examination. As described in chapter 2, Ogden’s (1972b) 

hyperfoam form of strain energy density function (W) is often used in finite element analysis 

of such materials and the Blatz & Ko (1962) form is sometimes used; both, explicitly or 

implicitly, use constant Poisson index (υ) quantities. The correctness or otherwise of using υ 

in W for such materials will be discussed later in this dissertation. Certainly, though, υ can be 

expected to vary with deformation of a rubbery foam. Consider a rubbery foam containing a 

low or moderate volume fraction of rubber (Φ). The indications are that at very small strains 

the Poisson index (υ) would not be greater than 0.4. However if such a material is deformed 

such that the volume ratio (J) falls to Φ the voids are expected to close up. Here it seems 
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likely that the material will behave rather like a rubbery material without voids so the Poisson 

index is expected to rise to close to 0.5. As discussed above, υ may also be a function of one 

or both of the 1
st
 two principal scalar invariants of the volume-neutralised Cauchy-Green 

deformation tensor, 1I and 2I . 

 

Nevertheless, plotting the loci for constant υ fulfils at least two useful functions. Firstly such 

plots give some indication of how effective or otherwise a set of tests will be in covering 

JII ,, 21  space. For an isotropic elastic incompressible material the combination of simple 

extension, equibiaxial extension and fixed-width extension tests cover the I1, I2 plane 

reasonably well. (Please see Figure 3 in chapter 2, Rivlin & Saunders, 1951, or Treloar, 

1975). Blatz & Ko (1962) and Storåckers  (1986) both chose this combination of tests for 

rubbery foams. Such loci can help answer the question of how appropriate this choice was for 

highly compressible materials.  

 

Secondly the loci plots give a visual indication of what a particular value or range of values 

of υ would imply about the way J would change with particular modes of deformation. 

 

Perhaps the simplest loci are for pure volume change (the locus follows the J axis, with 

321  II ) and for simple shear. For simple shear, by definition volume is unchanged so J = 

1 and the locus is simply a straight line such that 21 II  , as mentioned earlier. Both loci are 

independent of the value of υ. (Please see Figure 2 for diagrams of modes of test). At υ = ½ 

volume is constant so that “planar” (or “fixed width”) extension/compression becomes “pure 

shear” (i.e. shear without rotation of the principal axes); in this particular case, therefore,  

 

112233 /1/1 and 1    

 

Since 2

3

2

2

2

11  I  and  2

3

2

2

2

12 /1/1/1  I   

 

it immediately follows that (4.1.1)                                                                 21 II   
 

For other modes of deformation use is made of equation 2.2b rewritten here: 

 

   
1

213




 




       

     (4.1.2) 

 

Equation 4.1.2 gives for the volume ratio in plane stress general biaxial deformation: 

  (4.1.3)                                                                              
 

1

21

21321




 



J
 

 

For simple extension/compression (SE/C), fixed width extension/compression (FWE/C), 

equibiaxial extension/compression (EBE/C): 

 
  132

           
SE/C       (4.1.4) 

1 and   2

 
113  



 



       FWE/C       (4.1.5) 

12
-1

2
 

13  and     







          EBE/C     (4.1.6) 
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The simplest pattern of loci is given for the incompressible case (υ = ½, figure 5a; see also 

Literature Review and Treloar, 1975). In this case: J = 1 by definition; the locus for fixed-

width extension compression (FWE/C) coincides with that for simple shear (SS); the locus 

for equibiaxial compression coincides with that for simple extension; the locus for simple 

compression coincides with that for equibiaxial extension.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.a. Loci for simple extension and compression (SE/C), equibiaxial extension and 

compression (EBE/C) fixed width extension and compression (FWE/C) and simple shear 

(SS) for υ = 0.5. 
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Figure 5.b shows loci for υ = 0.25. A value of 0.25 coincides with: the value predicted (in 

extension) by the simple structure-based model of Gent & Thomas (1959, 1963) for Poisson’s 

ratio (ν); the value of the Poisson ratio which Blatz & Ko found for a rubbery foam in SE, 

EBE and FWE. Also, a value of υ = 0.25 is quite close to: Mott & Roland’s lower limit for ν 

for normal elastic solids (0.2); the value indicated by the data of Storåkers (1986) for a 

natural rubber foam (υ ≈ 0.33); the average value of Poisson’s ratio (ν) found by Gent & 

Thomas for 13 natural rubber latex foams (ν ≈ 0.33) – see also the summary graph in the 

literature review; the value of ⅓ predicted by the Gibson & Ashby (1982) model. 

 

The projections onto an 1I , 2I plane of constant J for the loci for SE/C and EBE/C remain 

coincident with each other and are on the same curves as they were for the incompressible 

case; this holds true for all -1 < υ ≤ ½. However, it is clear that for a given value of 1I  the 

values of J are very different in simple extension (SE) and equibiaxial extension (EBE). 

  

As expected, Figure 5.b shows that the locus for SS at υ = 0.25 is as it was at υ = 0.5: it 

remains a straight line of  J = 1, 21 II  ; as stated above, this holds true for all -1 < υ ≤ ½. 

However the locus for FWE/C is no longer coincident with that for SS. Instead, the loci for 

FWE/C and for SE/C have become rather close in 1I , 2I , J space. 

 

For a given 1I and for J > 1 the value of J for the various modes of deformation are in the 

order: SS (lowest, J = 1), SE/C, FWE/C, EBE/C (highest).  

 (i) (extension and compression) 
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 (ii) 

Figure 5.b. Loci for simple extension and compression (SE/C), equibiaxial extension and compression 

(EBE/C) fixed width extension and compression (FWE/C) and simple shear (SS) for υ = 0.25.  
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Figure 5.c shows loci for υ = 0 and marks the boundary between ‘normal’ and auxetic 

behaviour. (But see Mott & Roland, 2013.) As might be expected, the loci for FWE/C and 

SE/C are now coincident in 1I , 2I , J  space. However, unsurprisingly, the locus for EBE/C 

shows considerably greater volume increase (at any given 1I ) than do the loci for FWE/C and 

SE/C. 
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(i) (extension and compression) 

 

Figure 5.c (i-ii). Loci for simple extension and compression (SE/C), equibiaxial extension and 

compression (EBE/C) fixed width extension and compression (FWE/C) and simple shear (SS) for υ 

= 0. 

 



32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.d shows loci for υ = -0.25 and thus gives some insight into auxetic behaviour. The 

locus of FWE/C on the 21 , II plane has moved back inwards from the locus of SE/C and 

EBE/C. For a given 1I and for J > 1 the value of J for the various modes of deformation are 

now in the order: SS (lowest, J = 1), FWE/C, SE/C, EBE/C (highest). (For J < 1 the order is 

reversed.) So compared to what was the case for υ = 0.25, FWE/C and SE/C have changed 

places; this holds true for all -1 < υ < 0. 

 

Except for SS, J changes strongly as 1I varies for each mode of deformation at υ = -0.25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

     

Figure 5.d (i-ii). Loci for simple extension and compression (SE/C), equibiaxial extension 

and compression (EBE/C) fixed width extension and compression (FWE/C) and simple 

shear (SS) for  υ = -0.25. 
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Figure 5.e shows loci for υ = -0.5 and thus gives some insight into more auxetic behaviour. 

The locus of FWE/C on the 21 , II plane has moved inwards further from the locus of SE/C 

and EBE/C. 

 

For EBE/C and SE/C J changes noticeably more strongly with 1I than was the case at 

υ = -0.25. 
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Figure 5.e (i-ii). Loci for simple extension and compression (SE/C), equibiaxial extension and 

compression (EBE/C) fixed width extension and compression (FWE/C) and simple shear (SS) for 

υ = -0.5. 
 

(ii)  (i) (extension and compression) 
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Figure 5.f shows loci for υ = -0.75 and thus gives some insight into still more auxetic 

behaviour. The locus of FWE/C on the 21 , II plane is now quite close to the locus of SS. 

 

For EBE/C and SE/C the dependence of  J on 1I is now so strong that, except at very small 

values of J, it is difficult to distinguish the loci from a line parallel to the J axis and passing 

through 1I  = 3. 
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(i) (extension and compression) 

Figure 5.f (i-ii). Loci for simple extension and compression (SE/C), equibiaxial extension and 

compression (EBE/C) fixed width extension and compression (FWE/C) and simple shear (SS) for υ 

= -0.75. 
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Figure 5.g shows loci for υ = -0.9999 and thus gives some insight into still more extreme 

auxetic behaviour. The locus of FWE/C on the 21 , II plane is now essentially coincident with 

the locus of SS – qv figure 5.a.  

 

For EBE/C and SE/C the dependence of  J on 1I is now so strong that it is virtually 

impossible to distinguish the loci from a line parallel to the J axis and passing through 1I  = 

3. For FWE/C the dependence of J on 1I at υ = -0.9999 is somewhat similar to that at υ = -

0.75. 
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Figure 5.g (i-ii). Loci for simple extension and compression (SE/C), equibiaxial extension and 

compression (EBE/C) fixed width extension and compression (FWE/C) and simple shear (SS) for υ 

= -0.9999. 
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Summary of work on loci in JII ,, 21 space 

The plots showing loci in JII ,, 21 space (for constant ) of various modes of deformation 

bring into clear view the size of the task for comprehensive characterisation of a highly 

deformable and compressible elastic material. If, as might be expected,   is a function of 

deformation, the plots shown earlier in this section provide hints as to confusions that might 

arise in interpretation of experimental data – particularly with regard to analysis of data from 

fixed width extension/compression (FWE/C, “planar tension”) tests, where the locus changes 

in position on the 21 , II  plane as   changes. At   = 0.25 - which seems not far from a typical 

reported value for a rubbery foam in extension, the loci on the 21 , II plane for FWE/C and 

simple extension/compression (SE/C) are rather close. This in turn means that doing both 

tests, rather than just one of the two, may add little information or insight and may quite 

possibly lead to confusion – especially given experimental errors and the possibility that 
varies with deformation. (Please see earlier discussion of the work of Blatz & Ko (1962) and 

Storåkers (1986) in the Literature Review.) It appears that simple shear would be a better 

choice of test than fixed width extension compression (FWE/C). As might be expected, the 

loci for values of υ < 0.2 seem very strange (see also Mott & Roland, 2013). 
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4.2  Generalisation of Blatz & Ko’s approach and behaviour in specific modes of 

deformation 

 

4.2.1  Generalisation of Blatz & Ko’s approach 

 

As indicated in chapter 2 Blatz & Ko (1962) described an isotropic hyperelastic compressible 

material by: 

 

index.Poisson   theis 

ratio;  volume theis 

n tensor;deformatio

Green Cauchyleft  dneutralise  volumethe, of invariants principal first two  theare and 

density;energy strain   theis  

:where

 (4.2.1)                  1
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This is a particularisation of the general approach (see Rivlin, 1992 for example) in which the 

material is described by the dependence of W on JII  and  , 21  or 

J/WI/WI/W   and  , 21  on JII  and  , 21 . In equation 4.2.1: 

 

(a) the dependence of  ∂W/∂J on JII  and  , 21  is described via the Poisson index (υ); 

 

(b) the Poisson index does not vary with JII or   , 21 ; 

 

(c) 21   and I/WI/W  do not vary with  or  21 II  - so Blatz & Ko’s equation 4.2.1 can be 

described as a Mooney-related form of constitutive law. 

 

For Blatz & Ko’s form 
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It seems rather unlikely that propositions (b) and (c) would be correct for situations where 

there are compressions and large extensions so Chagnon & Coveney (2007 & 2011) proposed 

that (b) and (c) be dropped. Propositions (a) and (b) will be returned to in the experimental 

chapter. Here preparations for the examination of proposition (a) will be made by setting out 

expressions for stresses written in terms of  and  , 21 I/WI/W   – each allowed to vary 
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with JI,I  and  1 for various modes of deformation; a material described in such a way will 

be called a Generalised Blatz & Ko (GBK) material. The steps leading to the expressions are 

given in Appendix V. 

 

4.2.2  Simple uniaxial extension and compression (SE/C) 

 

Consider a cuboid of material, with sides aligned with the principal axes of deformation, with 

normal stresses applied to the 1 faces. The 2 and 3 faces are stress free. λ is the extension 

ratio in the 1 direction. For a GBK material description, the Cauchy stress is given by: 
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and the nominal stress is given by 
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υ(λ) can be found from volume changes in simple extension but because there is only one 

component of stress, )(
1


I
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
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 and )(
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
I

W




cannot be deduced from a SE/C (simple 

extension/compression) test alone. 

 

Putting λ = 1 + ε, equation 4.2.3 or 4.2.4 gives, for small strain (ε): 
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equation 4.2.5 can be seen to be in agreement with the usual infinitesimal strain expression: 

 

  (4.2.6)                                                                                                         1211  E

 
The Poisson index (υ) and the nominal stress can be measured in simple 

extension/compression and then equation 4.2.5 can be used to establish to what extent υ 

changes and to what extent  21 I/WI/W   changes at small strains. 
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 4.2.3 Equibiaxial extension/compression (EBE/C)  

 

Consider a cuboid of material, with sides aligned with the principal axes of deformation, with 

normal stresses applied to the 1 and the 2 faces. The 3 faces are stress free. λ is the extension 

ratio in the 1 direction and in the 2 direction. For a GBK material description, the Cauchy 

stress is given by: 
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and the nominal stress is given by 
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Similarly to the case of SE/C, υ(λ) can be found from volume changes in EBE/C but because 

the two non-zero components of stress are the same, )(
1


I

W




 and )(

2


I

W




cannot be deduced 

from an EBE/C test alone. 

In fact, SE/C and EBE/C are the only particular cases of plane stress general biaxial 

deformation which, because of symmetry, do not enable any possible role of
2I in W to be 

distinguished from the role of 
1I . Even considered together, SE/C and EBE/C cannot be used 

to distinguish the roles of 
1I and 

2I because, for the same 
1I , J for SE/C is different from 

EBE/C. 

 

4.2.4 Fixed width extension/compression (FWE/C) 

 

Consider again a cuboid of material with sides aligned with the principal axes of deformation, 

with normal stresses applied to the 1 and the 2 faces. The 3 faces are stress free. λ is the 

extension ratio in the 1 direction and in 2 direction the length is fixed. For a GBK material 

description, the Cauchy stress is given by: 

 



40 

 

(4.2.9)                                                                                                                                                       

000

00

00

2

000

00

00

2
2

1

21

3

1
 

1

81

3

1
 

1

87

3

1
 

1

81

3

1
 

1

1

45

3

1
 

1

105

3

1
 

1

45

3

1
 

1

41

3

1

I

W

I

W












































































































































σ

 

and the non-zero nominal stresses are given by 
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and 
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It can be seen that in the case of the stresses for FWE/C there are two different expressions 

for non-zero stress components; for each value of λ the value of 
1I

W




 should be the same for 

the two stress components – and similarly for 
2I

W




. Thus there are two simultaneous 

equations with two unknowns at each value of λ and we can solve for 
1I

W




 and 

2I

W




 at each 

value of λ. So FWE/C seems to be a potentially useful mode of deformation for determining 

the relative importance of 
1I

W




 and 

2I

W




 , however force would have to be measured in 

directions parallel to and perpendicular to the applied displacement; this is rarely done – but 

see Gough et al (1999). 

 

Simple extension/compression (SE/C), equibiaxial extension/compression (EBE/C) and fixed 

width extension/compression (FWE/C) are particular cases of (pure, plane stress) general 

biaxial extension/compression. I will now look at some types of deformation other than pure, 

plane stress) general biaxial extension/compression. 

 

4.2.5 Constant cross-section, or plane, extension/compression 

 

Constant cross-section extension/compression is a particular case of general triaxial 

deformation. In this mode of test a slab of material whose dimension in the 1 direction is 

much smaller than in the 2 and 3 directions is tested. Please refer to Figure 2 or Appendix II. 

The 1 dimension is increased or decreased but, ignoring edge effects, lengths in the 2 and 3 

directions remain constant: 

 

11 Xx  ; 22 Xx  ;
33 Xx 
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For a GBK material, the Cauchy stress is: 
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The 1,1 component of nominal stress is equal  to the 1,1 component of Cauchy stress because 

there is constant area for this face. For nominal stress the matrix terms for both the 2,2 and 

for the 3,3 components become  r/   32
 and  32 /r   .  Here r = 2(1+υ)/(3(1-2υ)). 

  

For the shape-volume uncoupled form, for which    JWI,IWW VS  21 , the Cauchy stress 

is:  
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In constant cross-section extension/compression, volume is controlled and various 

components of stress could, in principle, be measured by means along the lines of those used 

by Gough et al (1999). Differences in the powers present in stress components given by the 

GBK form could possibly enable  and , 21 IWIW  to be deduced. However, it should 

be noted that r may vary in  &21 JII , space and would need to be deduced. 

 

For infinitesimal strains, the above expressions (GBK and shape-volume uncoupled 

materials) give: 
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           (4.2.13) 

 

As expected, equation 4.2.13 gives K + 4μ/3: the plane modulus – see Mott & Roland (2013) 

for example.   

 

4.2.6 Pure volume change 

 

In the general case, the Cauchy stress can be found from: 
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In the particular case of  a GBK material, the Cauchy stress is given by:  
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Here r = 2(1+υ)/(3(1-2υ)). Once more, it could be difficult to disentangle the effects of 

variations in 
11  I/W,I/W   and in υ. 

For a shape-volume uncoupled material (W = Ws + Wv) the Cauchy stress is, very simply: 

 

(4.2.16)                                                                   IIσ
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4.2.7 Simple shear 

 

Please see Figure 6 and refer to Figure 2 or Appendix II for a schematic diagram of the 

practical arrangement for simple shear. As was the case for fixed cross-section 

extension/compression, edge effects are ignored. 

 

 

 

 

 

 

 

 

 

 

Figure 6. Simple shear: a material point at P in the undeformed condition moves to P’. e1 

and e2  are unit coordinate vectors. 

 

For simple shear (Figure 6) current coordinates of material points are related to the 

coordinates in the reference configuration by: 

 

θ 

P’ P 

e2

1 

e1 
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(4.2.17)                                                          3322211 Xx;Xx;XXx    

Here γ = tanθ. 

 

In the general case of an isotropic hyperelastic material the Cauchy stress is given by: 
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Because the deformation is simple shear J = 1. Now for a shape-volume uncoupled form 

∂W/∂J must be zero at J = 1 - so that the spherical stress is zero at zero volume change. So the 

Cauchy stress is given by: 

(4.2.19)                             
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For a GBK material the Cauchy stress is given by 

(4.2.20)                                                                    
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As γ tends to zero the nonlinear terms on the diagonals in the above equations disappear 

leaving only the shear stresses showing that .
2

 to tends
21
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Note that σ12 = σ21 = 2(
21 I/WI/W   )γ and σ11 - σ22 = 2(

21 I/WI/W  )γ
2 

both in equation 4.2.19 and 4.2.20 so both are in accordance with the universal rule described 

in Beatty (1987) for example – as is 4.2.18.  
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𝛾𝜎12 = 𝜎11 − 𝜎22    (4.2.21) 

 

 

Equation 2.2 defining υ in terms of dimensional changes in plane stress indicates that if λ1 λ2 

= 1, as is the case in simple shear, then λ2 = 1 – i.e. there is plane strain also. Correspondingly 

equation 4.2.20 shows that for simple shear, which is a plane strain deformation, the GBK 

material gives plane stress. Examination of equation 4.2.18 shows that this need not be the 

case. So simple shear seems to be a potentially good way of testing the validity of the GBK 

approach. It also seems to have the potential to give indications of the relative magnitudes of  

   ,     
1I

W




    

2I

W




 .    and 

J

W




Unlike in other modes of deformation υ does not appear in the 

expression for Cauchy stress for simple shear of a GBK material. 

 

Although the main subject of this dissertation is highly compressible elastic materials the 

theoretical results are also interesting in the context of near-incompressible elasticity. The 

stress components are quite different in equations 4.2.19 and 4.2.20 - except if 

.// 12 IWIW   The pressure is always zero in equation 4.2.19 because J = 1 and ∂W/∂J 

must be zero there for a shape-volume uncoupled form. 

 

However, if an incompressible isotropic elastic material is described as having a Poisson ratio 

υ = ½ it can immediately be seen from equation 2.2, with υ = ½ that if λ1λ2 = 1 then λ3 = 1. 

That is, for an incompressible isotropic elastic material in shear, plane strain and plane stress 

can coexist. See also Lai et al (2010).This means that the shape-volume uncoupled material 

description does not, in general, produce the pressure needed to give the correct stresses as a 

material tends towards incompressibility. So it seems that the shape-volume uncoupled 

material description gives the wrong stress components for a near-incompressible material in 

simple shear and the errors might not be small.  

 

 

4.3 Further experimental test options considered 

 

The omission of 
12 or  I/WI/W  would simplify models for isotropic elastic materials - 

particularly for foams as this would reduce the 1I , 2I , J space to a two-dimensional plane.  

 

In investigating the dependence of W on 1I , 2I  and J,  the hypothesis would be that 2I  

plays little or no role for foamed elastomers. To support or refute this hypothesis we would 

need to take a test piece to pairs of states where 1I and J are the same but 2I is different. The 

following four test options were considered and loci in 1I , 2I , J space were plotted for two 

of them – please see Appendices III and V. In order to get some idea of what the difference in 

2I  would be for each pair of states, constant Poisson ratio (υ = 0.25) was assumed in the 

calculations performed for options 2 and 3. 

 

Test option 1 
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This option involved equibiaxial extension plus superposed hydrostatic pressure (or 

equivalent means to control volume) compared with simple extension.  

 

An equibiaxial extension or simple extension test could be performed within a pressure 

chamber to allow volume to be controlled. The chamber could be within a second chamber to 

allow volume change to be monitored (e.g. via liquid column displacement, i.e. a measuring 

pipette as in section 5.5) and for pressurisation to be uniform. Pressure needed for this will be 

low - approximately 1 bar because K for the foam is ~0.1MPa; please see chapter 5. Changes 

in liquid column displacement, and so volume, to be measured optically via a “reinforced” 

window.  

 

The test piece could be deformed by one of four possible methods; (i) a weight attached to 

the test piece, tilting the chamber would increase load. This method would only be 

straightforward for single axis tests. (ii) A fine wire or rotating drive, or drives, through the 

measuring pipette to actuate a test. (iii) Guided magnets outside the chamber to control soft 

iron or magnetic test clamps.  

 

Such apparatus could, however, involve a lot of time, effort and cost. Friction could pose 

problems. Also, an open cell foam could not be used without sealing.  

 

 

Test option 2 

 

The second option considered was to use (a) equibiaxial extension followed by simple shear 

of the top surface relative to the bottom surface, compared with (b) simple extension.  

 

Calculations were carried out to examine this option. These showed that with 1I  and J held at 

equal values – for (a) and (b) - there was very little difference in 2I ; for this reason this 

method was discounted. This method could be a lot cheaper and quicker to do than previous 

option however it is conceptually less “clean” and the mathematics could be more difficult. 

Attachment of the test piece to the plates could also be a problem. 

 

 

 

Test option 3 

 

This option involved using (a) simple extension and comparing this with: (b) plane, i.e. fixed 

cross-section, extension combined with simple shear.  

 

Calculations were again carried out to examine this option.  At J = 1.5 and 1I  = 4.88 - and 

with a simple shear of = 1 for (b) -  the value of 2I was 4.2 for (a) and 4.45 for (b). This 

suggested that adequate separation between 2I values could be obtained for this option. 

Option 3 may, though, be experimentally difficult due to problems of attachment of foam to 

the plates. Various methods including glue and stitching using rubber thread could be tried. 
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Test option 4. 

 

This final option considered involved a simple shear test. As explained in the literature review 

and in the theory chapter, different classes of constitutive law for rubbery materials give 

contrasting patterns of components in the stress tensors produced in simple shear. Experiments 

in simple shear can be used to give insight about what models should be used – e.g. into 

whether there should be coupling between J and the other principal scalar invariants and into 

whether it might possible to omit 1I  or 2I from the strain energy density function (W). 

 

A shear test will be experimentally less complex to perform than the combined tests considered 

in previous options – however option 4 is also less generally informative in some respects 

than other test plans outlined above. 

 

Of the various types of test considered only a selection were to be performed due to limited 

time and resources. Shear was a first choice as it would be experimentally straightforward and 

produce useful data. Simple extension would also be useful to test for anisotropy and to obtain 

data to evaluate the Poisson index.  

 

Practical aspects of further characterisation on the JI ,1 plane 

 

If W did not vary with 2I the following approach could be tried. Independently controlled 

shape change and volume reduction should be relatively straightforward to arrive at – for 

example by simple extension of the rubbery foam - within a sealed envelope of thin rubber 

membrane if the foam is open - followed by pressurisation. However, independently 

controlled shape change and volume increase is likely to be more difficult to achieve in such 

a simple and straightforward way; a more complicated method might prove necessary - such 

as that adopted by Mills (2007): constant cross-section compression or extension of a slab of 

rubbery foam bonded between two nominally rigid plates, changing 1I  and J , combined 

with simple shear of the same slab, changing 1I  alone. It may be that there are some zones of 

the JI ,1 plane inaccessible to such a test.  
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5 EXPERIMENTAL WORK  

 

5.1 Materials for experiments 

 

5.1.1 Introduction 

 

For the experimental programme, a material that was close to being isotropic and hyperelastic 

and which was capable of undergoing quite large strains without failure was required. This 

was to allow the study of behaviour well above the region of infinitesimal strain. These 

requirements are difficult to achieve together. For example, polyurethane foam is often 

produced in a way (a) that results in it “rising” in the mould, rather as true bread does; this 

almost inevitably leads to elongated cells and the likelihood of anisotropy (Gibson & Ashby, 

1997). Other options for manufacturing a rubbery foam include: (b) whipping air into a 

suitable liquid, then crosslinking this mousse; (c) casting a suitable elastomer around 

compressible particles or particles that can be washed away subsequently. On further 

reflection, method (c) was thought unsuitable because the materials produced would either be 

rather weak - such as when silicone rubber with little or no filler was used as the castable 

elastomer - or would give too much energy dissipation and history dependence on 

deformation - such as when silicone with high levels of silica filler was used as the castable 

elastomer. Similarly a cork-filled polyurethane was expected to give significant amounts of 

energy dissipation and history dependence on deformation. It should be noted, though, that 

despite being judged unsuitable for other tests, a cork-filled polyurethane was chosen for the 

pressure-volume test work to try out the test method in principle. This was because it was 

believed that the cork-filled polyurethane, unlike the natural rubber latex foam, was 

essentially a closed cell material so that practical problems in pressure-volume testing would 

be avoided. Please see section 5.5. 

 

Manufacturing process (b) can be expected to result in an essentially uniform and isotropic 

foam - provided that the foam is not of very high density; also, natural rubber, without filler, 

is among the most elastic elastomers but is also highly extensible. Natural rubber does, 

though, undergo some crystallisation at extreme strains and can become less elastic under 

these conditions (Treloar, 1975). It should also be noted that natural rubber latex foam fails at 

lower extensions than does natural rubber without voids (Gent & Thomas, 1959b, 1963). 

 

Several suppliers of natural rubber latex foam were contacted and a number of test pieces 

were obtained. Unfortunately the natural rubber latex foam obtained in these early attempts 

was either available only in thicknesses less than 3 mm and judged to be inadequate for the 

experiments planned or had rather large (~5mm diameter) holes through the thickness and it 

was felt that the large through-holes would lead to anisotropy. 

 

Eventually, a test piece of 12.5 mm thick open cell natural rubber latex foam with no 

through-thickness holes was obtained from Pentonville Foam, 104/106 Pentonville Road, 

London N1 9JB, UK. From figure 7 it can be seen that the structure is rather irregular with 

pore sizes ranging from approximately 0.1mm to 1mm.  
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5.1.2 Measurement of the density of the natural rubber latex foam 

 

The volume (Vf) of a cuboid slab of the Pentonville Foam natural rubber latex foam was 

found by measuring the length (l), breadth (b) and thickness (h); its mass (mf) was found by 

weighing. The error in measured volume was estimated to be ±2%; this was due to slight 

irregularity in the cut surfaces of the cuboid and was much larger than the percentage error 

for mass measurement. The density of air was ignored in calculating the density of the foam 

(ρf). 

 

 

𝜌𝑓 =  
𝑚𝑓

𝑉𝑓
=  

𝑚𝑓

𝑙 ×  𝑏 ×  ℎ
=  

125.3g

1163cm3
 = 0. 108g cm3⁄ = 108kg m3⁄  ± 2% 

 

(5.1.1) 

5.1.3 Finding the volume fraction of rubber in the foam 

 

Taking a figure for the density of unfilled natural rubber 𝜌𝑁𝑅 = 950kg m3⁄  ±1% (MRPRA, 

1984) the volume fraction of rubber in the foam was calculated to be 

 

 

Φ =  
𝜌𝑓

𝜌𝑁𝑅
=  

108

950
= 0.114 ± 3%     i. e.  0.114 + −⁄  0.003 

 

           (5.1.2) 

  

5.1.4 Finding the volume fraction of closed cells in the foam 

 

The volume of water (Vw) needed to saturate a known volume of the foam (Vf) was measured 

so as to find the sum of the volume fraction of rubber (Φ) plus the volume fraction enclosed 

within closed cells (Φclosed) for the natural rubber latex foam. A cuboid of the foam material 

(𝑉𝑓 = 1232 + −⁄  25cm3) was placed within a perspex container constructed to fit snugly 

against the cube faces. The top level of the foam was marked on the container before water 

was added in order to check that the final saturated volume was equal to the initial volume. 

Figure 7. Pentonville Foam natural rubber latex foam with mm rule to show scale of 

cells. Face shown is the opposite side to the face with “skin” and as received 

condition. 
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The perspex container and the foam test piece were both submerged in a tank of water and 

the foam thoroughly squeezed by hand to remove all air bubbles before being placed into the 

container. This method allowed the foam to be fully saturated and also allowed it to regain its 

original dimensions before being fitted into the container. (An earlier method involved 

adding water to the dry foam in the perspex container. This made it difficult to remove all of 

the air and there were also problems in regaining the original height of the test piece due to 

the friction of the container sides.) Once the foam was at the original height the excess water 

was removed so that the water surface was level with this height. The water had a small 

amount of liquid detergent added to reduce the possible repellent effect that may have been 

caused by greasiness on the surface of the rubber: 10ml of detergent was added to 5 litres of 

water. 

 

A total of 1074 + −⁄  3cm3 of water (𝑉𝑤) was needed to saturate the foam. The volume of water 

was measured by subtracting the dry weight from the final weight using laboratory scales. 

 

 
𝑉𝑤

𝑉𝑓
=

1074

1232
± 2% = 0.872 ± 0.017 =  1 − Φ − Φ𝑐𝑙𝑜𝑠𝑒𝑑             

 

∴  Φ𝑐𝑙𝑜𝑠𝑒𝑑 = 1 − 0.128 ± 0.017 − 0.114 ± 0.003 = 0.014 ±  0.02    (5.1.3) 
 

This indicated that in the natural rubber latex foam the, volume, proportion of the voids that 

were closed [Φclosed/(1- Φ)] was most likely to be approximately 0.014/0.89 or about 1½% - 

however the experimental errors could mean that Φclosed could be as low as zero or possibly as 

high as 0.134. That is between 0%  and 15%, by volume, of the cells are closed. It seems 

likely that the experimental errors given are high estimates and that therefore the percentage 

by volume of closed cells was close to zero. 

 

5.1.5 Removal of “skin” from the Pentonville Foam natural rubber latex foam 

 

The natural rubber latex foam supplied by Pentonville Foam had a continuous rubber skin on 

one major face. The skin was approximately 1.5mm thick. It was felt that this could lead to 

anisotropy so experimental results were carefully examined. 

 

Having examined results it was decided that in initial simple extension experiments the 

rubber skin was leading to an anisotropic response and so the skin was removed. This was 

carried out by carefully peeling away the skin. Once a few centimetres was detached this 

could be gripped and carefully pulled by hand. The removed layer had a fairly consistent 

thickness of about 1.5mm. 

 

5.1.6 Conditioning of the test piece 

 

As explained in the literature review rubbery test pieces are often subjected to conditioning 

(“scragging”) cycles so as to reduce energy dissipation. However, I followed the guidance of 

Gough et al (1999) and did not aim to “scrag” the material routinely. This was to try to 

minimise deformation-induced anisotropy. In order to minimise energy dissipation in my 

tests deformation was slow for simple shear (SS) and very slow for simple 

extension/compression (SE/C). 
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5.2 Simple shear test 

 

5.2.1 Apparatus and experimental procedure  
 

A simple shear test was performed on the natural rubber latex foam test piece supplied by 

Pentonville Foam in the as received condition. Dimensions of the test piece were 100mm x 

100mm x 12.5mm. The large faces of the test piece were bonded by means of a contact 

adhesive to two parallel steel plates. The thicknesses of the plates were 5mm. The lower plate 

was attached to a heavy duty (5.55kN) low noise low friction linear bearing and driven by a 

hydraulic ram. The upper plate was attached to a load cell; capacity of this was: F1 = 2500N,  
F2 = 5000N,   F3 =2500N. Please see figures 8 and 9. The height of the plate was adjusted by 

means of a parallelogram mechanism that kept the plates aligned. The parallelogram 

mechanism was then locked in place so that no tensile or compressive load would be applied 

to the undeformed test piece.  In the experiment the components of force in the 1 and 2 

directions were measured: F1 and F2 corresponding to σ21 and  σ22. Please see figures 9 and 

10. Displacement of the sliding, lower, plate was measured using a linear variable differential 

transformer (LVDT). The test was performed to a maximum shear strain, γ, of 1. A cycle was 

performed with a triangular variation of displacement with time and with a time period of 32s 

per cycle;│d γ/dt│= 0.125s
-1

.  It was therefore possible for any energy dissipation, 

“hysteresis”, to be observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Simple shear test apparatus. (Scale can be judged from the rubber foam test piece 

which is 100mm long) 

 

(a) 6 degree-of-freedom load cell (able to measure 3 components of force F1, F2, F3  and 3 

components of moment M1, M2, M3). 

(b) Shear test piece 100mm x 100mm x 12.5mm of natural rubber latex foam supplied by 

Pentonville Foam. 

(c) Low noise, low friction linear bearing. Deutsch star, model D97419. 

(d) Hydraulic ram under servohydraulic control. LVDT attached to ram. 

 

(a) 

(b) 

(d) 
(c) 
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Figure 9. Diagram illustrating shear test piece comprising natural rubber latex foam (b) 

 

(l = w = 100mm, h = 12.5mm) and steel plates (b’ and b’’) for simple shear test. Unit vectors 

for coordinate system also shown. 

 

The larger arrow in figure 9 indicates the direction of displacement of the bottom plate, u1 to 

produce shear in the test piece. Shear strain (γ) was calculated from the hydraulic ram 

displacement divided by the foam thickness (h).  

 

Use of the displacement of the hydraulic ram to measure displacement of the lower plate of 

the test piece and, so, the shear strain in the foam, was justified, apart from edge effects and 

some edge peeling, because the foam was firmly bonded to rigid plates and because of the 

very high rigidity of the parallelogram mechanism, the linear bearing, the hydraulic ram and 

relevant connections. The foam thickness also remained constant due to the rigidity of the 

locked parallelogram mechanism and accurate alignment of the linear bearing. Please see 

figure 8. 

 

5.2.2 Results and discussion for simple shear test 

 

Results from these tests were compared with stress components given by a coupled and an 

uncoupled material model in order to clarify the extent to which either model is appropriate. 

As mentioned above, there were some problems with the foam peeling away from the plates 

at the extreme ends as shear took place, and the test piece showed some energy dissipation, 

“hysteresis”, and history dependence. 

 

 

 

 

 

 

 

 

 

 

Figure 10. Simple shear. Shear strain γ = tanθ. 

 

Simple shear is shown in figure 10. The deformation is plane strain and constant volume (J = 

1). For shear strain γ:  

 (5.2.1)                                                                 ; ; 3322211 XxXxxXx    

e3 e1  

e2  

U1 

w (b) l 

h 
(b’) 
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e2

1 

e1 
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Referring to section 4.2.7 in this dissertation, and rewriting the equations here for 

convenience, the Cauchy stress for a general isotropic elastic material in simple shear is given 

by: 

 

(i) 
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 (ii)     For a GBK material description: 
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This indicates that a simple shear test appears to be a potential way of distinguishing between 

the roles of 1I and 2I . If the role of 1I  was found to be dominant, the dependence of 
1I

W




 on 

1I could be easily found because 32

1  I . 

 

(iii) For the shape-volume uncoupled material description:  
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At γ = 1 the shape-volume uncoupled material description gives  

σ33 =2 3/)/)/( 12 IWIW   but the GBK material description gives σ33 = 0.  
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In figure 11 it can be seen that 𝜎21 at γ = 0.1 is about 1.5 kPa, corresponding to a shear 

modulus μ ≈ 15kPa, and at γ = 1 it is about 10kPa.This indicates that )//( 21 IWIW 

decreases by only about a third between γ = 0 and γ = 1. During shear the number 3 and the 

number 1 surfaces of the test piece became slightly concave. The fact that 𝜎33 is positive 

suggests that 
2I

W




is greater than 

1I

W




or that 

J

W




 is large. The fact that 𝜎22 is positive is also 

consistent with 
J

W




being large. The results appear to indicate that neither the GBK nor the 

shape volume uncoupled forms are correct. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Plots of 𝜎21 and 𝜎22 against γ for simple shear test.  
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5.3 Simple extension tests 

 

5.3.1 Apparatus  

 

Simple extension tests were carried out on a natural rubber foam test piece cut from a foam 

sheet supplied by Pentonville Foam, as described above. An Instron 4204 single axis screw 

driven electromechanical test machine was used to perform these tests. Please see figure 12. 

The standard maximum distance between grips for the Instron 4204 test machine was 

1000mm. However as the unstrained sample measured 850mm, increasing to 1275mm at 
1 = 

1.4 the upper grip needed to be offset. This was achieved by attaching the upper grip to an 

essentially rigid aluminium strut which gave a new extended range between grips of up to 

1900mm. In order to measure tensile force a load cell was attached at the fixed end of the 

sample. This was a 100lb RDP model 31 load cell which was first calibrated using laboratory 

weights. Please see figure 12. 

 

To avoid any possible problems caused by end effects the test piece was made 90% longer 

than the central region to be measured, namely the gauge length . The additional lengths of 

200mm at each end allowed the central region to contract laterally with no restriction due to 

clamping. The width of the undeformed test piece was 60mm and the total length between 

grips was 850mm; the thickness was 12.5mm. The distance between the pointers used to 

measure extension ratio, 
1  was 450mm; please see points marked (b) in figure 12.  

 

The test piece was held using wooden grips with large tapered “lead ins” so as to avoid 

breakage at high extensions. Grips were produced in-house for this purpose. Both pairs of 

grips were faced with 400 grit abrasive paper to prevent slippage. 
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(a) 
(d) 

(b) 

(a) 

(c) 

(e) 

(b) 

Figure 12. Simple extension test piece, grips and coordinate system. 

 

(a) Tapered wooden grips with abrasive paper on gripping surfaces. 

 

(b) Pointers aligned with mm scale. (Note that the steel rule shown is 700mm long; scale can be 

judged from this.) 

 

(c) Natural rubber latex foam test piece. 

 

(d) Load cell. 

 

(e) Movable crosshead. 

 

 

 

 

 

 

Figure 13. (a) and (b) Details of upper and lower pointers and mm scale. 

 

e3 

e2  

e1 
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Figure 14. Side view of tapered 

wooden grip holding foam test piece. 

Abrasive paper can be seen on the 

tapered edges. Each half of wooden 

grip was 18.5mm thick, from which 

the scale can be judged. 

Figure 16. Detail of rigid aluminium 

strut used to offset upper grip. 

Figure 15. Details of arrangement 

of central markers.  
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 5.3.2 Deformation measurement 

 

One practical issue was deformation measurement as this could not be done using standard 

methods available in the structures laboratory.  

 

The following standard methods were considered but none found to be suitable: 

  

(i)  Conventional contact extensometry as for “normal”, i.e. hard, materials. This was not 

suitable because of problems with attachment to the foam material. In addition the range of 

travel for these devices would be far too low for this type of test. 

 

(ii) Change in total distance between grips (via crosshead displacement) would not be 

suitable on its own in these experiments because lateral strains also needed to be measured. 

 

(iii) Video extensometry systems are available from Instron. Such standard video 

extensometry could possibly work, however with a rubbery foam material the displacements 

could be much greater than those systems are designed for. It is possible that software could 

be modified to allow such a system to be used, although further information would be needed 

to confirm this. Cost was also an issue.  

 

To overcome the measurement problem a high resolution method based on optical principles 

was successfully developed which enabled the extension ratios in the axial and lateral 

directions to be measured ( 1  and 
2 ). An arrangement of nine very small (~2.5mm) pointed 

adhesive markers were attached to the central region and a count of pixels was used to obtain 

strain measurements for both 
1  and 

2 . A pair of additional fine adhesive pointers and a 

mm scale were attached and these were used to quickly estimate and set principal extension 

ratio 1  to the required values during tests. Please see figures 12 – 15. 

 

 

5.3.3 Experimental procedure 

 

Extension tests were performed very slowly. The extension was increased in graduated steps 

and paused for 30 seconds at each step to allow a photograph to be taken - a high resolution 

(10 megapixel) digital camera with tripod was used - and data was obtained from these 

photographs. For all tests the extension was increased until the principal extension ratio 1 had 

increased to 1.4. A scale level with the surface to be measured was visible in all photographs.  
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5.4 Simple compression tests  

 

5.4.1 Apparatus and procedures 

 

Simple compression tests were carried out on a 112.5mm cube of natural rubber latex foam 

which was constructed from a stack of nine squares each of thickness 12.5mm. The foam was 

the same natural rubber latex foam referred to previously that was supplied by Pentonville 

Foam. As was the case for the simple extension tests, the “skin” was peeled off prior to 

assembly of the cube. 

 

The Instron 4204 test machine used for the simple extension tests was used to perform these 

compression tests. Some practical difficulties were encountered. One problem was with 

deformation measurement as this could not be done using standard extensometers available in 

the structures laboratory as their range was too small. To solve this problem the same high 

resolution optical method as used for the simple extension tests was used and, viewing from 

the front, this allowed deformation in the vertical and horizontal directions, 1 and 2 

directions,  to be measured. Please see figures 17 and 18. In figure 18 the pattern of 13 small 

markers is also shown. As in the simple extension tests, the simple compression tests were 

performed with a very low strain rate. The crosshead was moved in 2.5mm increments up to a 

maximum displacement of 67.5mm (λ1 = 0.4). After each increment the crosshead was 

paused for 30 seconds after which a photograph was taken. 

 

Contrary to expectation, initial tests indicated that end effects were small – there was little or 

no “barrelling” as judged by the markers and the outline of the test piece. There was also little 

or no “lead in” – initial nonlinearity - of force against displacement. For subsequent tests the 

positions of the top and bottom lines of three markers were not used in the calculation of 

extension ratios. Please refer to figure 18. The remaining markers were used to calculate 

principal extension ratio λ2. Because the test apparatus was essentially rigid compared with 

the natural rubber latex foam test piece and because of the lack of end effects and “lead in”, 

the displacement of the cross-head of the test machine was used to calculate principal 

extension ratio λ1. Checks confirmed that this method of calculating λ1 conformed with 

calculations of λ1 by the markers method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Apparatus for simple compression test. 

(a) Moveable crosshead; (b) Load cell within crosshead; 

(c) Natural rubber latex foam test piece; (d) Upper and lower platens.  

(d) 
(c) 

(b) 
(a) 
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Figure 18. Simple compression test (a) λ1 = 1   (b) λ1 = 0.7 (c) λ1 = 0.4 (d) coordinate system. 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

(c) 
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5.4.2 Results and discussion for simple extension and compression tests 

 

 

The results from these tests were qualitatively similar to those of Gent & Thomas (1959, 

1963) and figure 19 shows that in simple extension nominal stress against extension ratio (N 

against λ1) is largely linear although my results show higher stiffness than theirs. The results 

from the compression tests were closer to those of Gent & Thomas than in extension. As 

expected, the foam used in my tests was much softer in compression than in extension. It 

should be noted that although there appeared to be a discontinuity of slope in N against λ1 

near λ = 1 closer inspection showed that although the slope did change quite sharply the 

change was continuous – with the change happening in the range λ1 ≈  0.995 to 0.990. As was 

the case for Gent & Thomas (1959, 1963), the dependence of nominal stress (N) against 

extension ratio (λ1) in extension was remarkably near linear in the tests I performed. My data 

indicates the near linearity extending to the highest extension ratio reached: λ1 ≈ 1.4. The 

Young’s modulus implied was about 100kPa. 

 

 

 

 
(Data from current tests: blue squares. Data of Gent & Thomas (1959, 1963): red squares.) 

 

Figure 19. Nominal stress (1,1 component N) against extension ratio (λ1). 
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Figure 20. Lateral Hencky (lnλ2) strain against longitudinal Hencky strain (lnλ1). 

 

 

 

 

 
 

Figure 21. Poisson index (υ) versus lnλ1.  (Open circles indicate test results beyond the 

normally expected value of υ = 0.5. The red point is the summary value given by Gent & 

Thomas (1959); the standard deviation of their values is indicated by the error bar.) 
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Lateral logarithmic strain (lnλ2) against longitudinal logarithmic strain (lnλ1) is shown in 

Figure 20.  From this the Poisson index (υ) against lnλ1 was found (figure 21). Unlike Blatz & 

Ko (1962) and Storakers (1986) my data did not show that υ was constant in extension, 

instead υ increased approximately linearly with lnλ1. υ increased from close to 0.22 to more 

than ½ - indicating volume reduction in extension, please see open circles on the graph - but 

not as much as El-Ratal & Mallick (1996) reported. The variation of υ with lambda λ1 was 

surprising at first but the experiments were repeated several times and data carefully checked 

and rechecked and found to be as shown. This gives a high degree of confidence that the 

variation of υ shown in the figure is a true reflection of the behaviour of this natural rubber 

latex foam. 

 

These results also indicate that υ falls quite steeply as lnλ1 decreases in simple compression 

however υ does not seem to reach quite such low values as those of Pierron (2010), although 

he did not quote his results in quite the same way. Examining stress and υ in figures 19 and 

21at lnλ1 = 0.1 and -0.1 – i.e. λ1 = 1.105 and 0.905 - it can be seen that ( 21  IWIW  ) is 

much lower even at this quite modest compression than in extension. Please refer to equation 

4.2.5.  

 

The available experimental data, including that generated in the course of this MPhil, 

supports the view that, depending on the precise material and test procedure, the Poisson 

index (υ) can be approximately constant with simple extension or can vary considerably. Also 

the available experimental data casts doubt on the view that the Poisson ratio of a rubbery 

foam - and therefore the Poisson index at very small strains - can always be taken as equal to 

0.33. 

 

TheYoung modulus (𝐸 ≈ 100kPa) and the Poisson ratio )22.0(  of the natural rubber latex 

foam in simple extension will now be considered alongside its shear modulus measured in 

simple shear ( ≈ 15kPa). Using the usual infinitesimal strain relationship [E = 2(1+ ν ) μ] it 

can be seen that the foregoing values are mutually inconsistent: 2(1+ ν ) μ gives a value of 37 

kPa whereas the value of E measured in simple extension was 100kPa. Calculations and 

calibrations were checked and rechecked and likely experimental errors were estimated at 

10% at the very most and so could not account for the large discrepancy. Possible 

explanations for the large discrepancy could be: edge effects, some misalignment or slight pre 

-deformation in the simple shear test. It is noted that at very small strains the Poisson index -

and so the Poisson ratio - is close to 0.2 but that υ changes quite strongly with strain. Could 

such behaviour indicate that the normal small strain relationships can no longer be used in the 

usual way for such complex materials? (See also Mott & Roland, 2009, 2013.) Indeed if a 

“compressive Young’s modulus” “Ec” is calculated by dividing stress by engineering strain 

(𝜀1 = 𝜆1 − 1)at λ1 = 0.9 we get “Ec”  33kPa. This is in reasonable agreement with  12

with  15kPa as before and  = 0. The question mark over agreement between the simple 

extension and shear tests does cast some doubt on some of the provisional conclusions 

reached from the shear tests. 
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5.5 Pressure-volume tests 

 

5.5.1 Apparatus and procedures 

 

Measurement of the pressure-volume behaviour of a highly compressible rubbery material 

would add to the data against which any constitutive law can be tested. Data for simple 

extension gives elastic constants Young’s modulus (E) and Poisson’s ratio (ν) and these 

constants can be examined with shear modulus (μ) and bulk modulus (K) for mutual 

consistency via the usual inter-relationships between small strain elastic constants. Accurate 

measurement of the pressure-volume behaviour of an open-cell rubbery foam would be very 

difficult so, as first step, the pressure-volume behaviour of two closed-cell materials were 

measured.  

 

The materials studied were cork-filled polyurethane elastomers (PU); experiments were 

performed to measure the quasi-static pressure-volume (p-V) characteristics of these 

composite materials. Two grades (PR1 and PR5) were obtained from Dr Antunes of 

University of Minho, Portugal. PR1 and PR5 had densities of approximately 750 kg/m
3
 and 

585 kg/m
3
 respectively and the density of the PU was around 960 kg/m

3
 (ρ1; Antunes, 2008). 

Please see figure 22 below. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 22(a) PR1.          Figure 22(b) PR5. 

 

The test-piece diameter is 30mm and this indicates scale in both photographs. 

 

 

The density of cork (ρ2) is expected to be around 200kg/m
3
 and this value seems broadly 

consistent with formulations and density information given by Antunes (2008); Gibson et al 

(1981) give a value of 170kg/m
3
 for the density of the cork they studied. The bulk modulus of 

polyurethane elastomer is expected to be approximately 2000MPa (Roland, 2011, page 201). 

Cork is an anisotropic material but approximately 0.25 seems to be a typical value of the 

Poisson ratio equivalent and around 3MPa seems to be a typical value of the shear modulus 

equivalent (Gibson et al, 1981). Using 




)21(3

)1(2




K  (Rees, 1990 and Appendix I) with ν = 

0.25 and μ = 3 MPa gives a bulk modulus of around 5 MPa for cork. Consider now volume V 

of a cork-filled PU   with V1 the volume of PU and V2 the volume of cork. The density of the 

cork-filled PU 
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 ρ = (V1 ρ1 + V2 ρ2)/V                                               (5.5.1)  

  (5.5.3)                                                                                -

(5.5.2)                                             
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So the volume fraction of cork in PR1 can be estimated: 
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Similarly, the volume fraction of cork in PR5 can be estimated: 

 

(5.5.5)                                                                                     49.0
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The volume strains of (1) the PU and (2) the cork within the composite (εVi = ΔVi/Vi = J-1) 

are related to a purely spherical stress (-p): 
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Here J is the volume ratio. 

 

So PR1 and PR2 are expected to have bulk moduli 

 

(5.5.8)                MPa 10
5
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2000
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 and MPa 18
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respectively. So, PR1 is expected to have a bulk modulus just under twice that of PR2; this is 

because the polyurethane has a bulk modulus that is so much higher than cork’s. 

 

In order to minimise the influence on volume measurements of changes in container volume 

caused by pressure increase, a dilatometer was used within a pressure chamber (figure 23). 

The narrow window for viewing the dilatometer had an external width of 16mm and was 

fitted with 17mm thick borosilicate glass. The internal cavity within the aluminium pressure 

chamber closely followed the shape of the dilatometer which it accommodated – minimising 

the volume of the fluid (air) in the pressure chamber so as to minimise associated stored 

energy. The dilatometer (figure 24) - made in-house by attaching a graduated glass tube 

(from a 1ml pipette) to a standard (25ml) specific gravity (SG) bottle - was used within the 

pressure chamber. The primary pressurising fluid (PPF) within the dilatometer acting on the 

pieces of compressible rubbery composite was water. The pressure was applied - via air, the 

secondary pressurising fluid - using a 15 bar compressor and was monitored using a pressure 
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sensor with a range of 0-25 bar. A computer program allowed images to be captured from a 

modified webcam as well as recording the pressure. Data was logged at typically one 

measurement per second.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Photograph of the pressure chamber in situ, showing fibre-optic lights etc.  

The height of the pressure chamber was 235mm inclusive of the base - and its width and 

depth – both exclusive of the base - were 100mm and 110mm respectively; these dimensions 

indicate scale.   
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Figure 24. Dilatometer and cork-filled polyurethane (cork/PU) pieces. 

 

 

5.5.2 Experimental method 

 

Pieces of test material were chopped into smaller pieces (~ 2 x 2 x 6mm) to facilitate 

insertion into the dilatometer which was then topped up with the primary pressurising 

fluid (PPF). De-ionised water was used as the PPF to facilitate visibility and minimise 

health hazards. The volumes of the PPF and test material were determined by weight and 

knowledge of density. In all tests, recently-boiled water at or below 60C was poured into 

the dilatometer; on cooling in situ this eliminated bubbles. In addition several cycles of a 

combination of gentle heating at ~50ºC - by placing the dilatometer into a water bath - 

Dilatometer tube 

Water column 

Specific gravity bottle 

(~25ml) 

Cork/PU pieces 

180mm 
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and degassing were performed to ensure all trapped air was removed from the 

dilatometer. 

 

Next the dilatometer was sealed into the pressure chamber and left in a temperature-

controlled room, at 23±3ºC, for 24 hours before pressure-volume (p-V) testing.  The 

height of the PPF column was recorded via the computer triggered camera. The images 

and pressure values were logged onto the PC. Volume measurements were obtained via 

computer-generated cross-hairs acting on the captured images of the dilatometer tube 

(figure 25).  

 

 
Figure 25. Typical image showing part of dilatometer tube. 

 

(Axes show pixel numbers.  Note image is rotated 90° anticlockwise). 

 

 

Since water was being used as the PPF there was potential for significant differences 

between advancing and receding contact angles; in order to avoid this problem, extremely 

slow decompression was used; in addition a drop of paraffin oil was floated on the water 

in the graduated neck of the dilatometer as it produced a more stable contact angle, and 

therefore meniscus, than water alone during the p-V test. 

 

For each p-V test the following procedure was followed: one cycle to 13 bar (above 

atmospheric pressure) and back to atmospheric pressure (patm) then rest for 24 hours; a 

repeat cycle to 13 bar and back to patm was then performed. 
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5.5.3 Results and discussion for pressure-volume tests 

 

The normalised, or fractional, volume reduction was calculated:   J
V

VV



1

0

0
 (J is the 

volume ratio) and pressure-volume plots were made (figures 26 and 27).  

 

 

 
 

 

Figure 26. Plot of pressure against fractional decrease in volume (1-J) for cork filled 

polyurethane, PR1. 

 

 
 

Figure 27. Plot of pressure against fractional decrease in volume (1-J) for cork filled 

polyurethane, PR5.  
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The bulk modulus (K) for each of the two cork-filled materials was found by fitting a straight 

line, by least squares, to the low strain portion of each of the plots of pressure (p) against 

volume strain (1-J) - with the “lead in” sections of the curves ignored - shown in red in 

figures 26 and 27. A value for K of 6.4+/-0.2 MPa was found for PR1 and a value for K of 

2+/-0.2 MPa was found for PR2. Thus the estimated value for K was almost three times the 

measured value for PR1. For PR5 the estimated value for K was five times the measured 

value. The measured values for K of the cork-filled PU materials correspond to a value of 

around 1MPa for the effective bulk modulus of cork. The low experimental values for K 

might also be because there were voids in the finished cork-filled polyurethane materials that 

were additional to those in the cork cells themselves, or might be because of other effects of 

local inhomogeneity or anisotropy. 

 

At values of 1-J above about 0.03, the curve of p against 1-J is significantly non-linear for 

both composite materials tested. The gradient of the pressure-volume curve first begins to 

decrease; this probably corresponds to buckling of cell walls within the cork material. At 

large volume reductions (1-J ≈ 0.12 for PR1 and 1-J ≈ 0.25 for PR5) the gradient becomes 

much steeper and this probably corresponds to cells closing within the cork. There is also a 

high degree of hysteresis shown in the results. This is probably due to hysteresis in the p-V 

characteristic of the cork material  – Gibson et al (1981) also observed high hysteresis for 

pure cork in simple compression. Other factors contributing to hysteresis could be slippage 

and friction at the polymer/cork interface and/or mass transport of water and/or air in the 

cork-filled PU.  
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6 CONCLUSIONS & RECOMMENDATIONS 

 

Published experimental data and experiments done in these MPhil studies support the view 

that, depending on the precise rubbery foam and test procedure used, the Poisson index (υ) 

can either be approximately constant as length more than doubles in simple extension or can 

increase considerably with stretch and exceed ½ - as here. Published experimental data and 

experiments done in these MPhil studies also cast doubt on the view that the Poisson index 

(ν) – and therefore υ at very small strains – can reliably be taken to be equal to be 0.33 for a 

rubbery foam. For the normal open-cell natural rubber latex foam (the foam) studied here, it 

was found that ν was close to 0.22.  

 

For the foam it has been confirmed that υ drops substantially at strains of a few percent in 

simple; υ remained below 0.1 until the foam was at less than half its original height. The 

results also indicate that 21 I/WI/W  drops sharply at strains ~1% or less as the foam 

goes into simple compression. Here W is the strain energy density and   and 21 II are the first 

and second principal invariants of the volume neutralised Cauchy-Green deformation tensor. 

 

The tests used by Blatz & Ko (1962) and Storåckers (1986) were not adequate for thorough 

examination of the suitability of the types of constitutive laws they considered for rubbery 

foams. If J is volume ratio, the coverage of  , , 21 JII space was poor: J < 1 was not examined 

and the loci for fixed width extension (FWE) and simple extension were likely to have had 

rather similar   and 21 II values. Also, only one component of stress was measured in FWE. 

 

Theoretical examination of stress tensors for isotropic ideally elastic materials indicated that 

simple shear was a promising mode of test for probing aspects of the validity of constitutive 

laws – especially those using the Poisson index (υ). 

 

Simple shear experiments on the foam were performed in relation to a class of constitutive 

law using υ (generalised Blatz & Ko laws, GBK) and one in which the dependence of W on 

shape changes and its dependence on volume changes are mutually independent (shape-

volume uncoupled). The results indicated that 21 I/WI/W  varied only weakly with 

shear strain (γ). However the results also suggested that neither GBK nor shape-volume 

uncoupled laws were valid. The results should, though, be treated with some caution because 

at small strains it was found that E >> 2(1 + ν)μ. Here μ is the shear modulus, ν the Poisson 

ratio and E the Young modulus in simple extension. However it was found that 

   12 CCE  where νC is the apparent Poisson ratio and EC the apparent Young modulus of 

the foam at approximately 10% simple compression. 

 

More work is needed to determine the behaviour of rubbery foams in more detail so that 

constitutive laws can be fully checked and to prepare the path for development of new ones.  
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APPENDIX I. SMALL STRAIN ELASTICITY (THE FRAMEWORK OF ELASTICITY THEORY AT 

INFINITESIMAL STRAINS FOR ISOTROPIC MATERIALS SOMETIMES CALLED THE 

GENERALISED HOOKEAN FRAMEWORK OR THE LAMÉ FRAMEWORK) 

 

Linear elastic, isotropic solids, are characterised, at infinitesimal strains, by any two of five 

very commonly used elastic constants: E,K,, and  : the 1st Lamé constant, the 2
nd

 Lamé 

constant or shear modulus, the bulk modulus, the Young modulus and the Poisson ratio. 

Equations relating the constants include: 

(a)   12  )(E  ; 
 

(c)    
213
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 
(d)    

32

23











K

K
; 

  
(e)    

21121

2

3

2
















E
K ; 

 ;
KE

(f)      
139




.1) (                                                                                      I
 

(Rees, 1990;  Gould, 2013). 
E, the Young modulus, is given by direct stress divided by the, longitudinal, direct strain in 

simple extension or simple compression - see (a) in figure 2 in the main text or Appendix II.
 

ν, the Poisson ratio, is given by minus the lateral strain divided by the, longitudinal, direct 

strain in simple extension or simple compression – see (a) in figure 2 in the main text or 

Appendix II. 

μ, the second Lamé constant or shear modulus or rigidity modulus is given by the shear stress 

divided by the shear strain in simple shear– see (e) in figure 2 in the main text or Appendix II. 

K is the bulk modulus: the fractional increase in volume (J-1) divided by the increase in 

applied spherical stress (“hydrostatic” component of stress, e.g. decrease in applied pressure) 

– see (f) in figure 2 or Appendix II. 

Other elastic constants are sometimes used. The plane modulus (M) is an example (Mott & 

Roland, 2009): 

.2) (                                                                                       
3

4
I KM  

M is given by the direct stress divided by direct strain obtained when a piece of material 

undergoes (homogeneous) compression or extension at fixed cross section. – see (c) in figure 

2 in the main text or Appendix II. 

Now, 
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So, if there is plane stress σ33 = 0: 
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APPENDIX II  DESCRIPTION OF TESTING METHODS

  

The following are commonly used modes of test for rubbery materials. In each of (a) to (e) 

the displacements of the ends of the gauge length and/or of the whole test piece are recorded 

and the force is recorded. 

 

a. Simple extension test: a relatively long, thin specimen is secured at each end in a tensile or 

universal test machine and loaded in tension.  

b. Fixed width or planar extension test: a wide thin piece of material is gripped in a universal 

test machine. The width should be much greater than the length to minimise end effects. The 

width should in turn be much greater than the thickness. 

c. Constant cross section or plane compression test: a relatively long and wide but thin piece 

of material is bonded between rigid plates to form the test piece. The test piece loaded in a 

compression or universal test machine. 

d. General biaxial extension test: a square sheet of material is loaded in two axis directions 

simultaneously. The faces in the positive and negative third axis directions are stress free. For 

this, specialist apparatus is required to allow each edge to be securely held so that load can be 

applied whilst allowing the edges to extend during the test. This can be achieved using a 

series of fixing points along each edge connected by long cables to an actuator or using 

another suitable mechanism. If the strains are equal for the two axes, there is equibiaxial 

extension. 

e. Simple shear: a relatively thin piece of material is bonded between plates and so that one 

plate is displaced linearly relative to the other but the distance between the plates (t) remains 

constant. This test can be conducted in a universal or compression test machine or using 

specialist apparatus.  

f. Pure volume decrease: a piece of material is tested in a pressure chamber. The increase in 

pressure and the decrease in volume of the piece of material are carefully measured. 
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( w >> l > t  to minimise end effect) 

 

c. Constant cross section or plane compression 

  (l & w >>t and bonded to rigid plates) 

 

d. General biaxial extension 

e. Simple shear 

(l & w >> t and bonded to plates - see (c)) 

l 

l 

a. Simple extension 

   ( l >> w;   l >> t ) 

w 

l 

b. Fixed width or planar extension  

t 

w 

w 

f. Pure volume decrease 

Figure II.I. Modes of test for material properties 

(schematic)  
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APPENDIX III MEASURES OF DEFORMATION FOR FINITE DEFORMATION  

 

The starting point for many measures of finite deformation is the deformation gradient F also 

sometimes written g. 

The deformation gradient tensor is written 
X

x
F




   or 

j

i

ij
X

x
F




  in component form.  

For simple pure homogeneous strain, the F matrix is a diagonal matrix of the principal 

extension ratios (or stretches) λi. For simple shear F is not symmetrical.  

B, sometimes written b, is the Cauchy tensor or left Cauchy-Green deformation tensor.  B = 

FF
T
.   

The matrices for B and also B
-1

 are symmetrical for simple shear;  

C, sometimes written G, is the Green tensor or right Cauchy-Green deformation tensor. 

C = F
T
F.     

The volume neutralised deformation tensors do not change if just the volume changes: 

.   ; ; 3/23/23/1
CCBBFF

  JJJ   J is the volume ratio. 

321 ,, III are the principal scalar “invariants” of B or C. And I3 = J
2
. 

 
2

3

2

2

2

1 ,,  , the squares of the principal extension ratios, are the eigenvalues of B or C. 

Volume neutralised extension ratios 3/1/ Jii    
2

3

2

2

2

1 ,,   (squares of the volume neutralised principal extension ratios) are the eigenvalues 

 or   of CB . 

Principal invariants 21  and II are the principal scalar invariants of  or  CB . 
34

22

32

11  ; // J/IIJ/II   
2

3

2

2

2

11  I indicates the amount of shape change in direct form. 
2

3

2

2

2

12   I  indicates the amount of shape change in inverse form. 

J = λ1 λ2 λ3 indicates the amount of volume change.  

In combination, 21  and II can be used to distinguish between different types of shape change. 

In simple shear 3 2

21  II . 

At small strain there is no distinction between 21  and II . 

Rivlin (1992) explains why I1, I2, I3 are sufficient to give a strain energy density function W 

that is completely general for an isotropic, elastic continuum. Use of I1, I2, I3 or especially of 

21  , II and J, mainstream in large strain FEA, enables relatively easy calculation of 

complicated cases such as simple shear.  

The Hencky principal strains are sometimes used to represent finite deformation: 

iie ln . At infinitesimal strains, ei = λi -1 = εi the engineering strain. 
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APPENDIX IV STRESS AT FINITE DEFORMATION 

 

Calculating stress from derivatives of the strain energy density 

 

 

Bower (2009) gives the following formula for Cauchy stress in component form: 
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(IV.I) 

Here Bij is the left Cauchy Green tensor B in component form and δij is the Kronecker delta.  

δij  = 1 if i = j and is zero otherwise, so δij is I in component form. 

Now the Finger tensor is related to the volume neutralised left Cauchy Green deformation 

tensor by:  
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The above equation, one of many used to find stress from derivatives of the strain energy 

density W,  is widely used in this dissertation. See also Chagnon (2003).
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APPENDIX V   STRESS PREDICTIONS FOR A GENERALISED BLATZ & KO (GBK) AND 

OTHER FORMS 

 

V.1 Cases of pure homogeneous strain for a generalised Blatz & Ko (GBK) and other 

materials  

 

Three particular cases of plane stress general biaxial deformation will now be considered: 

simple extension/compression (SE/C), equibiaxial extension/compression (EBE/C) and fixed 

width extension/compression (FWE/C).  Please refer to Figure 2 in the main text or to 

Appendix II for diagrams of test modes. 

 

V.1.1 Simple extension/compression (SE/C) 
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The Cauchy stress for a GBK material can be written: 
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Now we substitute V.1.1.1 to V.1.1.9 into V.1.1.10. Term by term we get the following. 

 IB rJ
J


2

Term1  

 



78 

 


















































100

010

001

00

00

00

2
)1(

3

2
 

)1(
3

2
 

)1(
3

2
 

)1(
3

4

21








 







  

 




































)1(
3

2
 )1(

3

2
 

)1(
3

2
 )1(

3

2
 

)1(
3

2
 )1(

3

4

21

00

00

00

2














  

 


























000

000

00

2

3

2263

3

4463 



 

 


























000

000

00

2

3

45

3

101 



 

 

  IBB 2

2

1

2
Term2 IJI

J

r   



















































































)1(
3

4
 

)1(
3

4
 

)1(
3

8

)1(
3

2
 

)1(
3

2
 

)1(
3

4

)1(
3

2
 )1(

3

4

21

00

00

00

00

00

00

]2[2



























  




































)1(
3

2
)1(

3

4
 )1(

3

2

)1(
3

2
)1(

3

4
 )1(

3

2

)1(
3

2
)1(

3

4
 )1(

3

2

21

200

020

002

2














  

















 

33

22

11

21

00

00

00

2 term2Putting

a

a

a
  

 

)1(
3

2
)1(

3

4
 )1(

3

2
)1(

3

8
)1(

3

2
 )1(

3

8

11 22





a  

 



79 

 

)1(
3

2
)1(

3

4
 )1(

3

2
 )1(

3

4
 )1(

3

4
 )1(

3

2

3322 22





 aa  

 




























000

000

00

2Term2

1
3

4
 1

3

2

21

)()( 





  


























000

000

00

2

3

4643

3

2623 



 

 


























000

000

00

2

3

27

3

81 



 

Adding the terms gives: 

 

(V.1.1.11)                        

000

000

00

2

000

000

00

2
2

3

27

3

81

1

3

45

3

101

I

W

I

W






















































 



σ
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Making use of the foregoing: 
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The Cauchy stress for a GBK material can be written: 
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Now we substitute V.1.2.5 to V.1.2.11into V.1.1.12. Term by term we get the following. 
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V.1.3 Fixed width extension/compression (FWE/C) 

 

Consider extension in the 1 direction with dimensions in the 2 direction fixed 
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Unlike SE/C and EBE/C for FWE/C there is not symmetry in i so we cannot go straight to 

F  in the same way. (For FWE/C 1 also , and 22132   despite λ2 being equal to1.)  

Here, the deformation gradient  
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(V.1.3.8)  

 

Next, two simple cases of triaxial deformation will be considered: extension/compression 

with constant cross-section as illustrated in Figure 2 of the main text and in Appendix II. 
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V.1.4 Constant cross-section extension/compression 
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So the volume neutralised deformation gradient is 
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Now for a GBK material we have once more 
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Substitution into equation 4.1.4.6 gives 
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    (V.1.4.7) 

 

 

Now recall the infinitesimal stress-strain relationships for deformations aligned with the 

principal axes (see, for example, Hall, 1968, p100): 
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Where  is the shear modulus and the second Lamé constant
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For fixed cross-section extension/compression we have 032    
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Now compare with the large strain result, by putting  1 : 
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Expanding for small  gives: 
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i.e.  (V.1.4.11)                                           
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The two expressions are the same, as required. This is a useful check on the large strain 

result. 

 

Now we consider the stresses in fixed cross-section compression for a shape-volume 

uncoupled form of strain energy density i.e. 

  (V.1.4.12)                                                                                          )(, 21 JWIIWW S   

The general formula for Cauchy stress is 
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As above we have the following. 
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So the volume neutralised deformation gradient is 
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(V.1.4.19)                                                                                              2 3/23/4     

 

Substituting into V.1.4.13 we get 

 

 

  

(V.1.4.15)                                             
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Furthermore, 

if, in the infinitesimal strain limit, 
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So, for infinitesimal strains, the relationships for the uncoupled form gives 
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 - as required, this is once more in agreement with the result from small strain theory. 

 

V.1.5. Pure volume change 

 

For pure volume change, material point coordinates in the current and reference 

configurations are related:  

3

31

32

31

21

31

1   XJx;XJx;XJx ///    (V.1.5.1)  

 

It follows that  
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So, for a GBK material: 
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For a shape-volume uncoupled material we have, trivially: 
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V.2 Simple shear 

 

Finally simple shear will be considered. 

 

 

 

 

 

 

 

 

 

 

 

Figure V.1 A piece of material in simple shear.  

 

Material coordinates in the current and reference configurations are related by: 
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- as Lai et al (2010 page 325). So 
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Now, for a GBK material 
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Noting again that in simple shear J = 1, so that barred quantities can be unbarred, and 

substituting in 32
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Now we consider the stresses in simple shear for a shape-volume uncoupled form of strain 

energy density i.e. 

  (V.2.9)                                                                                  21 )J(WI,IWW S   

The general formula for Cauchy stress is 
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As above we have the following. 
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Putting J = 1, noting that ∂W/∂J = 0 at J = 1 for a shape-volume uncoupled form and 

substituting equations V.2.11 to V.2.13 into V.2.10 we get: 
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Finally, in the completely general case of an isotropic hyperelastic material for which 

  (V.2.16)                                                                                                      21 J,I,IWW 
 ∂W/∂J  can no longer be assumed to be zero at J = 1. So we have 
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