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Abstract 

 

Objective 

Guidelines for bicycle infrastructure design tend to consider safety issues but not wider health 

issues. This paper explores the overall health impact of bicycle infrastructure provision, 

including not just road safety impacts, but also the population health impacts stemming from 

physical activity as well as cyclists’ exposure to air pollution.  

 

Data and methods 

We have summarised key publications on how bicycle paths and lanes affect cyclists’ 

exposure to physical activity, air pollution, and road safety. The health impact is modelled 

using all-cause mortality as a metric for a scenario with new bicycle lanes and paths in a 

hypothetical city. 

  

Results 

The outcomes of the study suggest that, based on currently available research, a reduction of 

all-cause mortality is to be expected from building bicycle lanes and paths along busy roads 

with mixed traffic. Increased physical activity through more time spent cycling is the major 

contribution, but is also the most uncertain aspect. Effects related to air pollution and cycling 

safety are likely to reduce mortality but are small. The overall benefits are large enough to 

achieve a high benefit-cost ratio for bicycle infrastructure. 

 

Conclusions 

The introduction of bicycle paths and lanes is likely to be associated with health benefits, 

primarily due to increased physical activity. More research is needed to estimate the absolute 

size of the health benefits. In particular, evaluations of the effects of bicycle infrastructure on 

time spent cycling are limited or of insufficient quality to infer causality. We recommend 

before-after studies measuring the effects of different interventions and in areas representing a 

wide range of base levels of cycling participation. -  

  



 
 

1. Introduction 

Bicycle infrastructure along distributor roads (separated bicycle paths, see Figure 1; and 

marked lanes, see Figure 2) has been suggested as an effective means to encourage cycling 

and thereby improve health at the population level (Handy et al., 2014; Heinen et al., 2014; 

Hoehner et al., 2005; Pooley et al., 2013; Pucher and Buehler, 2010), but the application has 

been debated by adherents to so-called “vehicular cycling”. The term “vehicular cycling” was 

coined by Forester to suggest that "cyclists fare best when they act and are treated as drivers 

of vehicles" (Forester, 2001b, page 557) meaning that they should share the road with other 

vehicles. They have opposed separate facilities such as bicycle paths and lanes for cycling 

because of safety concerns (Alrutz, 2012; Forester, 2001a; Pucher, 2001). On the other hand, 

guidelines in many countries are positive towards bicycle lanes within the carriageway for 

general traffic. For instance, the design guide by UK Department for Transport (2008) advises 

on-road facilities for roads with a large number of side road junctions because it reduces the 

potential for conflict at these locations. Such advice is supported by research suggesting that 

bicycle lanes improve cycling safety (Reynolds et al., 2009) as well as the perception of 

safety, for would-be cyclists (Fishman et al., 2012). Some agencies however caution against 

building physically separated bicycle paths (AASHTO, 1999, 2012; Department for 

Transport, 2008), based on worse road safety outcomes that have been reported in some 

publications (e.g. meta-analysis in the influential ‘Handbook of Road Safety Measures’, Elvik 

et al., 2009). Danish, Dutch and US guidance recommends ‘truncating’ cycle paths 

(converting it to a marked lane) before intersections to improve visibility and avoid conflicts 

(CROW, 2007; Jensen et al., 2000; NACTO, 2011).  

Despite the dominance of cycling safety as an issue in design guidelines, an 

assessment of the overall health impact of bicycle infrastructure (including air pollution and 

physical activity) seems to be missing in the scientific literature. Such knowledge is also 

needed to economically valuate bicycle infrastructure and inform policy makers. The benefits 

of more time spent cycling (by existing and new cyclists) as a result of bicycle infrastructure 

improvements dominate in economic valuations (Cavill et al., 2008). The direct impact of 

bicycle infrastructure on road safety risks and air pollution exposure among all cyclists is 

often mentioned but has not yet quantitatively been included in economic appraisals (Cavill et 

al., 2008; Department for Transport, 2014; Lind et al., 2005; Sælensminde, 2004). Therefore, 

this paper sets out to compare the health impact of bicycle paths and lanes in relation to; 1) 

physical activity, 2) air pollution exposure, and 3) road safety among cyclists. The study 

focusses on the differences between bicycle infrastructure along distributor roads and roads 

without bicycle infrastructure (see Figure 3). 

 

>>>> Insert Figure 1, 2, and 3 about here 

 

Figure 4 depicts the pathways of new bicycle infrastructure to health impacts. The left box 

and middle box in the figure are concerned with the health impact related to increased time 

spent cycling (or walking). Cyclists run a greater risk of road crashes and they inhale more air 

pollution than drivers (Int Panis et al., 2010; Schepers et al., 2013) but the health benefits of 

increased physical activity outweigh those risks (De Hartog et al., 2010; Rojas-Rueda et al., 

2012). Also, there are health gains for the general population (middle of Figure 4). Air 



 
 

pollution and risks of severe collisions are reduced to the extent that new bicycle trips replace 

trips by motor vehicles (Elvik et al., 2009; De Hartog et al., 2010; De Nazelle et al., 2011; 

Schepers et al., 2013). Various studies found the health effects of more cycling related to road 

safety and air pollution are small compared with the effect of increased levels of physical 

activity, even though different methodologies were used (De Hartog et al., Götschi et al., 

2015; Rojas-Rueda et al., 2012; Woodcock et al., 2013). As we do not aim to repeat research 

on the health impact of increased bicycle use, we use the outcomes of the most recent meta-

analysis by Kelly et al. (2014) on the risk of all-cause mortality in relation to time spent 

cycling and walking (active travel). In Figure 4, we included ‘time spent on active travel’ 

instead of cycling to include the possibility of an exchange between cycling and walking (see 

e.g. Fishman et al., 2015).  

The health impact of bicycle paths and lanes will be more extensive than just health 

gains through more time spent cycling. In addition, these infrastructural facilities can alter 

exposure to both air pollution and road traffic injury risk and these effects apply to all 

(existing and new) cyclists (the right hand box in Figure 4). Effects on air pollution exposure 

and road safety risks may occur because these change at the location level due to bicycle 

facilities (Grange et al., 2014; MacNaughton et al., 2014; Thomas and DeRobertis, 2013). 

This is depicted in Figure 4 by an arrow from bicycle infrastructure to air pollution exposure 

and road safety risks. However, there is also an indirect effect via changed route choice 

because of bicycle infrastructure (Pucher et al., 2010), since air pollution concentrations and 

road safety risks differ between different road types (Jarjour et al., 2013; Schepers et al., 

2013). This paper compares the relative size of the health impact of bicycle infrastructure 

among cyclists related to more time spent cycling (or walking), air pollution and road safety, 

the three most important factors for the health impact of cycling (De Hartog et al., 2010; Van 

Kempen et al., 2010). We restrict our analysis to mortality impacts as those related to 

morbidity are not as well understood (Kahlmeier et al., 2014; Kelly et al., 2014; Oja et al., 

2011).  

 

>>>> Insert Figure 4 about here 

  

The remainder of the introduction describes literature related to the health impact of more 

time spent cycling, and exposure to the risks of air pollution and road safety, see Figure 4 for 

paragraph numbers. We use key publications such as review studies and meta-analyses, or 

estimates from single studies if those are not available. After an introduction describing data 

and methods in Section 3, the second part of the paper (Section 3), uses the synthesis of the 

literature as a platform to model the impact of a scenario with new bicycle infrastructure in a 

hypothetical Dutch city with 100,000 inhabitants having characteristics common in the 

Netherlands. The outcomes should be understood as an assessment of the average impact of 

bicycle infrastructure given the currently available evidence. 

 

  



 
 

1.1 Effects of bicycle lanes and paths on mobility 

 

1.1.1 Modal choice  

Several review studies aimed to describe the impact of bicycle infrastructure on bicycle use 

(Heinen et al., 2010; Pucher et al., 2010; Scheepers et al., 2014; FHWA, 2015). These reviews 

reveal a lack of before and after evaluation to test the impact of a specific intervention and 

poor reporting of intervention characteristics that limits our possibilities to describe a dose-

response relationship. The latter is of particular importance for this study, in order to be able 

to link new infrastructure to increased cycling. For instance, a correlational study like the one 

by De Geus et al. (2014) in Belgium shows a positive relationship between availability of 

cycle paths and commuting by bicycle, but the results are not suitable for deriving a dose-

response relationship. Interestingly, a correlational study including over 40 US cities did yield 

a dose-response relationship. The study showed each additional mile of bicycle lane per 

square mile to be associated with an increase of approximately one percentage point bicycle 

modal share (Dill and Carr, 2003; Pucher et al., 2010), i.e. 1.6%/km/km
2
 (as 1 mile equals 

1.6km, the effect in kilometres is 1/(1.6/1.6
2
)). However, correlation studies make it difficult 

to infer causality and assess the effect due to confounding factors such as surrounding land 

use. Evaluation research is extremely rare but is needed to determine the effect of bicycle 

paths on cycling (Pucher et al., 2010).  

Barnes et al. (2006) estimated the effect on modal choice in Minneapolis-St. Paul, 

US, of routes installed with on-street bicycle lanes and standalone bicycle paths (of about an 

equal length) using before and after census data within a one mile buffer each side of the 

routes. The facilities increased bicycle mode share in their buffers by about 0.3 percentage 

points. Given the size of the buffer this would correspond to an increase of bicycle modal 

share of 0.6 percentage points for each additional mile of bike lane per square mile, i.e. 

1%/km/km
2
. The study did not explicitly separate the possible different effects of each type of 

facility, but the effects were slightly greater and more consistent for bicycle lanes.  

We have not found other studies allowing for a description of a dose-response 

relationship for infrastructure interventions. However, knowledge of the results of other 

studies is important to tentatively judge whether the increased bicycle use found in the 

aforementioned studies can be generalized. A controlled natural experimental study by 

Goodman et al. (2013) found a significant increase of the modal share of walking and cycling 

for commuting and decrease of driving for commuting in response to new cycling 

infrastructure and cycle training in eighteen English towns. In a quasi-experimental study on 

the effects of new infrastructure by Heinen et al. (2015 a & b), it was found that high-quality 

infrastructure attracts users and that individuals who are more exposed to this intervention are 

more likely to change their mode of transport. Heinen et al. (2015b) analysed commute travel 

patterns based on a seven-day travel-to-work records of 470 adults collected before (2009) 

and after (2012) the introduction of the Cambridgeshire guided busway with a path for 

walking and cycling (the intervention). Individuals living closer to the busway were more 

likely to increase their share of commute trips involving any active travel by more than 30% 

and more likely to decrease the share of trips made entirely by car by more than 30%. 

Goodman et al. (2014) evaluated a bridge for cyclists and pedestrians over a bay and a trunk 

road. Although the study was not about bicycle paths and lanes, it may be important that there 



 
 

were no signs that the increase in active travel as a result of these facilities was replacing 

other forms of physical activity. A before-after study of the Delft bicycle network in the 

1980s is particularly important because it was conducted in the Netherlands where bicycle 

modal share is much higher than in areas where the aforementioned studies were conducted. 

The intervention included a total of 12 km of new bicycle paths, lanes, and standalone tracks, 

i.e. 0.9km/km
2
 (the built up area of Delft is 13km

2
). The plan also included two bicycle 

tunnels, three bicycle bridges, and authorisation of contraflow cycling (2.3km) to offer more 

direct routes. Bicycle modal share increased from 40% to 43% (Wilmink and Hartman, 1987). 

Comparing the outcomes of the studies by Dill and Carr (2003) and Barnes et al. (2006) 

would suggest an increase of bicycle modal share between 0.9% and 1.5% for an intervention 

of this size. The Delft study is not suitable to estimate the specific impact of bicycle paths and 

lanes, but the outcomes tentatively suggest that the impact of bicycle infrastructure on bicycle 

use is not necessarily smaller in areas where bicycle modal share is already at a high level. 

Another finding of interest to physical activity is that the time spent walking did not decrease 

after implementation of the Delft bicycle network (Katteler et al., 1987). 

Other studies compared average daily cycle traffic on roads before and after building bicycle 

paths and lanes. While this before-after design with data acquired by counting users provides 

a better internal validity than a cross-sectional design, it has been suggested that these studies 

overestimate the modal share impact at an aggregate level. Pucher et al. (2010) refer to several 

before-after counts in North American cities and London but they warn that part of the 

increases that were found may be due to changes in route choice. Interestingly, it was found in 

Copenhagen (also an area with a high bicycle modal share) that average daily cycle traffic on 

streets equipped with bicycle paths increased by around 19%, while motorised traffic 

decreased by 10% (Jensen, 2006). The latter suggests that at least part of the effect is due to 

modal shift. Cycle lanes were associated with a smaller increase of bicycle traffic of some 6% 

and no significant change in volumes of motor vehicles (Jensen, 2006). More research is 

required to draw firm conclusions, but the increased volumes of cycling in response to bicycle 

infrastructure in studies in the Netherlands and Denmark (Jensen, 2006; Wilmink and 

Hartman, 1987) suggest that results found in countries with low volumes of cycling provide a 

first estimation of the impact in countries where volumes are already higher. 

 

1.1.2 Route choice 

Both revealed and stated preference studies suggest that cyclists prefer bicycle infrastructure. 

For instance, in a study by Mulley et al. (2013) in Australia people indicated the following 

options as being equally attractive: 1km on a busy road without bicycle lanes, 2.3km on a 

busy road with bicycle lanes, and 2.9km on a busy road with paths shared with pedestrians. 

However, studies on cyclist route choice (revealed preference research) suggest that distance 

and travel time are the most important factors (Broach et al., 2012; Gommers and Bovy, 1987; 

Menghini et al., 2010). Moreover, cyclists balance their total journey length and route 

directness meaning that cyclists aim to reduce the number of turns (Broach et al., 2012; Hood 

et al., 2011; Raford et al., 2007). Revealed preference studies also report a preference for 

routes along roads with low motor traffic volumes, standalone bicycle tracks, bicycle lanes 

and separated bicycle paths, although their contribution to decision making is less important 

than distance and time (Broach et al., 2012; Gommers and Bovy, 1987; Howard and Burns, 



 
 

2001; Menghini et al., 2010). This means that cyclists detour to use bike lanes or paths 

(Pucher et al., 2010). 

Gommers and Bovy (1987) conducted the only before-after study to evaluate the 

impact on route choice of the above mentioned bicycle network in Delft using a survey of 

bicycle route characteristics with a map of Delft on which respondents could draw their route. 

Table 1 shows the results by the share of kilometres per road category before and after 

implementation of the plan. As the share is 100% for the before and after situation it controls 

for increased bicycle use (Gommers and Bovy, 1987). The right hand column in Table 1 

shows the share of kilometres travelled by bicycle if the share on standalone tracks had 

remained stable. While the length of bicycle paths and lanes along distributor roads 

(‘stadswegen’) increased by less than 3% (6.3km relative to 235km of roads, of which 75km 

were distributor roads), the share of kilometres travelled by bicycle on bicycle paths and lanes 

increased by over 4%. This indicated that cyclists tend to prefer routes on bicycle paths and 

lanes over other road types. 

 

>> Insert Table 1 about here 

 

1.2 Effects of the measures on exposure to air pollution 

There is no general consensus about which indicators best represent the adverse health effects 

of traffic related air pollution (TRAP) (Janssen et al., 2011). In order for pollutants to serve 

our health impact assessment, there should be sufficient evidence about the health effect of 

exposure and the concentration has to be linked to traffic shown by high concentration 

contrasts between background and street locations. The mortality impact of Particulate Matter 

(PM), Black Carbon (BC) and nitrogen dioxide (NO2) is well researched (Hoek et al., 2013). 

However, exposure contrasts related to traffic emissions are usually poorly represented by PM 

(Hoek et et al., 2013). Variation in PM10 and PM2.5 (particles smaller than 10 μm or 2.5 μm) 

between major roads and background locations are smaller than the variations in BC and NO2 

(Boogaard et al., 2011). Ultrafine particulate matter (UFPM) and CO are also suitable 

indicators for TRAP with high contrasts (Grange et al., 2013; Karner et al., 2010), but the 

health effects are not yet as well researched as for BC and NO2. Therefore, BC and NO2 are 

used to compare concentrations between on road cycling and bicycle paths away from the 

carriageway. 

Spatial variations of exposure to TRAP result from where the sources (motor 

vehicles) are concentrated and the recipient’s distance from the sources. Pollutants dilute 

significantly with distance (see for instance Rijnders et al., 2001). MacNaughton et al. (2014) 

found lower exposures to TRAP for those on bicycle paths compared with bicycle lanes (24% 

lower for BC and 25% lower for NO2). Comparing these circumstances, Hatzopoulou et al. 

(2013) found a reduction of 12% for BC. We expect that exposure at distributor roads with 

mixed traffic and with bicycle lanes does not differ because research does not suggest an 

increased overtaking distance at bicycle lanes as compared with roads with mixed traffic 

(Parkin and Meyers, 2010; Stewart and McHale, 2014). It could be that other factors related to 

TRAP exposure like traffic turbulence are affected by building bicycle lanes but to our 

knowledge there is no specific research available. 



 
 

Bicycle paths and lanes will also affect exposure to air pollution by attracting cyclists 

to distributor roads (an effect on route choice) and reducing the use of low-traffic residential 

roads where concentrations are lower (Gommers and Bovy, 1987; Jensen, 2006). Several 

studies compared TRAP in cyclists between low and high volume roads. Jarjour et al. (2013) 

and Strak et al. (2010) found reductions between 15% and 28% for BC on low volume roads. 

Jarjour et al. (2013) defined low volumes as less than 4,000 vehicles per day and indicated 

that many parts of the low-traffic routes in their study were likely to have less than 1,500 

vehicles per day. Traffic counts on high-traffic routes in this Californian study ranged 

between 10,000 and 26,000 vehicles per day. Volumes on low and high volumes roads in the 

Dutch study by Strak et al. (2010) were in the same range, i.e. low volumes were defined as 

less than 4,500 vehicles per day and high volumes as between 10,000 and 30,000 vehicles per 

day. Hatzopoulou et al. (2013) did not explicitly compare high and low-volume roads but they 

did find a significant BC reduction of 15% if the number of trucks and buses on the nearest 

traffic lane decreased by 10 per hour. A 12% reduction for NO2 was found by Hertel et al. 

(2008) along low volume roads as compared with high volume roads. This Danish study did 

not define the range used to define high and low volumes. Given the similarities between the 

Netherlands and Denmark, we expect them to be in the same range as in the Dutch study by 

Strak et al. (2010). 

In summary, the available cycling-specific evidence suggests that the higher the 

volume of motorised traffic, the greater is cyclists’ exposure to air pollutants. Bicycle paths 

that offer lateral separation between the cyclist and the motorised traffic reduce cyclists’ 

exposure to air pollutants. 

 

1.3 Road safety 

Bicycle lanes have been found to reduce injury rate and collision frequency compared with 

roads with mixed traffic (Reynolds et al., 2009). Review studies report injury rate reductions 

for cycle lanes between 9% and 50% (Elvik et al., 2009; Reynolds et al., 2009). Smaller but 

positive effects are also reported for bicycle paths provided that effective intersection 

treatments are employed (Thomas and DeRobertis, 2013). The meta-analysis by Elvik et al. 

(2009) suggests a 7% increase in the number of bicycle-motor vehicle (BMV) crashes after 

bicycle paths are installed, but the authors indicated that most of the studies did not control for 

potentially changed bicycle use on these roads. In their review study Thomas and DeRobertis 

(2013) indicate that a study by Lusk et al. (2011) best meets their quality criteria such as 

control for exposure. This study found a 38% reduction of injury and fatal BMV crashes. 

Bicycle lanes and paths will also affect road safety by attracting cyclists to the 

distributor roads where these facilities are applied (Gommers and Bovy, 1987; Jensen, 2006). 

This change in route choice is important because even after building bicycle paths, cyclists on 

distributor roads still run a higher risk of collisions than cyclists on residential roads (Liu et 

al., 1995; Schepers et al., 2013; Teschke et al., 2012). Attracting more cyclists to distributor 

roads results in more cyclists exposed to the increased risks along distributor roads. Most 

studies on the safety of urban bicycle lanes and paths in the meta-analysis by Elvik et al. 

(2009) did not control for the numbers of cyclists after bicycle paths were built. The result of 

the meta-analysis therefore includes the effect of cyclists diverted to routes along distributor 

roads with elevated risks. However, it also includes the effect of increased overall volumes of 



 
 

cyclists. Therefore, an estimation based on this meta-analysis is likely to result in rather 

conservative expectations of the road safety impact of lanes and paths. The study by Lusk et 

al. (2011) on the other hand did control for exposure. That study is likely to yield rather 

optimistic estimations because the effect of cyclists’ route choice is excluded. Taken together, 

the effect percentages from the above mentioned studies provide a realistic range of overall 

road safety effects of bicycle lanes and paths after accounting for changed route choice. 

 

1.4 Health impact in terms of mortality 

This section describes how changes in active transport, inhaled air pollution and involvement 

in crashes are related to all-cause mortality. Mortality serves as a suitable common metric as 

its link with all three exposures is well established in scientific literature (De Hartog et al., 

2010). Especially for physical activity associated with walking and cycling, the current 

cycling and walking-specific evidence for morbidity is more limited than that for mortality 

(Kelly et al., 2014; Oja et al., 2011), which is why it has not yet been included in the World 

Health Organisation’s (WHO) Health Economic Assessment Tool (HEAT) (Kahlmeier et al., 

2013).  

 

1.4.1 Increased physical activity resulting from active transport 

Cycling has been recognized as an important means to prevent the risk of sedentary lifestyles 

and promote health (Fishman et al., 2015; Lopez et al., 2006; Oja et al., 2011). Based on a 

meta-analysis, the first one focused on cycling, Kelly et al. (2014) suggest a relative mortality 

risk of 0.90 (95% CI = 0.87 to 0.94) for 100 minutes of cycling per week. This implies that 

with an increase of 100 minutes cycling per week the risk reduction for all-cause mortality is 

10% as compared with non-cyclists. For walking the meta-analysis outcomes indicated a 

relative risk of 0.89 (95% CI = 0.83 to 0.96) for 168 minutes of walking per week. The 100 

and 168 minutes of cycling and walking per week correspond to 11 Metabolic Equivalent of 

Task (MET) hours (Kelly et al., 2014).  

To circumvent the lack of cycling and walking-specific evidence for morbidity, some 

researchers estimate the morbidity impact using research on moderate physical activity in 

general (e.g. Woodcock et al., 2013). The amount of cycling and walking are translated into 

MET hours. The health benefits of MET hours of cycling and walking are assumed to be 

equal to those of moderate physical activity in general. This approach is valuable for 

estimating the absolute size of the health impact of an intervention because this requires the 

inclusion of morbidity. However, this approach is not yet sufficiently reliable to compare the 

health impact of more time spent cycling to other health impacts like air pollution. A meta-

analysis found 11 MET hours of moderate physical activity was associated with a relative risk 

of 0.81 (95% CI = 0.76 to 0.85) (Woodcock et al., 2011), i.e. an almost two-fold greater 

reduction of the odds of dying per MET hour than for walking and cycling. This suggests that 

cycling, and walking specific estimates like the meta-analyses by Kelly et al. (2014), are 

needed to estimate the health benefits of cycling and walking. These are not yet available for 

morbidity (Oja et al., 2011). 

A dose-response relationship is needed to estimate the health benefits of a given 

increase of the amount of cycling or walking. WHO (2013) estimated that the differences in 

model fit between different models was not substantial. However, the general literature on 



 
 

non-vigorous physical activity suggests that the longevity benefits level off at higher levels 

(Woodcock et al., 2011). Kelly et al. (2014) distinguished three categories and also found the 

greatest rate of reduction due to cycling for an exposure between 0 and 11.25 MET hours per 

week, corresponding to a base rate of maximally 100 minutes of cycling. 

 

1.4.2 Inhaled air pollution 

A review by Hoek et al. (2013) shows that the relative risk of all-cause mortality for an 

increase of long term exposure to BC is 1.061 per 1 μg/m
3
 (95% confidence interval [95% CI] 

= 1.049 to 1.073) and for an increase of NO2 1.055 per 10 μg/m
3
 (95% CI = 1.031 to 1.080). 

In traffic, the exposure is not only dependent on the concentration but also on the ventilation 

rate of road users. Total daily doses of pollutants (the product of ventilation rate, duration of 

exposure, and concentration) have to be estimated to take the increased respiratory rate in 

cyclists into account (De Hartog et al., 2010; Int Panis et al., 2010). The change of the inhaled 

dose of pollutants for a scenario is the basis for estimating an ‘equivalent’ change in 

concentration to which the relative risks of the Hoek et al. (2013) study would then apply. 

 

1.4.3 Traffic safety 

Changes in numbers of fatalities are estimated in road safety research by applying effect 

percentages to a group of casualties affected by an intervention (e.g. cyclist casualties affected 

by a new bicycle path). The relative risk of all-cause mortality associated with the 

intervention is derived using the following equation: (ACM + CF) / ACM (in which ACM 

stands for the all-cause mortality rate and CF for the change in the number of fatalities due to 

the intervention (De Hartog et al., 2010).  

 

2. Data and Method 

We explored the impact on mortality of bicycle infrastructure associated with increased 

cycling, and the risks of air pollution and road safety among cyclists. We examined the 

relative size of these three impacts. We focused on mortality rather than morbidity as a 

common metric because the effects of the three exposures on mortality are more reliably 

researched than for morbidity (Kahlmeier et al., 2013). A shift from driving to cycling has 

additional health benefits, i.e. reduced risk posed to other road users and decreased air 

pollution emissions and noise (Rydin et al., 2012; Schepers and Heinen, 2013), but these 

issues are excluded because of their small mortality impact (De Hartog et al., 2010). 

 

2.1 Scenario 

We modelled the impact of a scenario with 3.3 km of new bicycle lanes and 3 km of bicycle 

paths in a hypothetical city having 100,000 inhabitants with the volumes of cycling and levels 

of air pollution and cycling safety that can be expected in an average Dutch city (average 

bicycle modal share is 26% to 27% according to Harms et al., 2014 and the Ministry of 

Transport, Public Works, and Water Management, 2009.). These measures resembled the 

intervention of new bicycle paths and lanes in the Dutch city of Delft in the 1980s, also a city 

with some 100,000 inhabitants. Consistent with Delft, we assumed an increase of bicycle 

lanes and paths of 0.5km/km
2
. Expressed as share of the length of the distributor road 



 
 

network, the length of bicycle lanes increases by 4.4%, while the length of bicycle paths 

increases by 4.0%.  

 

2.2 Data 

Data on Dutch volumes of cycling and road safety between 2010 and 2013 were retrieved 

from Statistics Netherlands and SWOV Institute for Road Safety (Statistics Netherlands, 

2015; SWOV, 2015). Average concentrations of relevant air pollutants at background and 

street locations were used from studies by Keuken and Ten Brink (2010) and Hoogerbrugge et 

al. (2012). 

 

2.3 Method 

Dutch population and hazard rates were entered in the open-access life-table calculations, 

IOMLIFET, to estimate the gain in life years in response to the reduced risk of mortality per 

age group (Miller, 2013). We have estimated the effects on this population for a lifetime. As 

the level of cycling participation among people above 90 years of age is minimal (and 

therefore the available data is less reliable) we excluded this age group for all impacts. No 

impact of physical activity was assumed for those under 20 years as the meta-analysis by 

Kelly et al. (2014) on the impact of physical activity related to cycling included studies with 

an age range between 20 and 93 years. In line with what is conventional in health impact 

assessments of air pollution, we assumed no impact of air pollution on mortality among 

people younger than 30 years of age. Road safety effects were included for all age groups 

except those above 90 year of age. 

The Dutch standard value of a statistical life (VSL) is used to monetise the number 

of deaths per year prevented by cycling participation (Kahlmeier et al., 2013). The Dutch VSL 

amounts to €2.8 million per death at the 2013 price level (De Blaeij, 2003; Statistics 

Netherlands, 2015). We applied the standard 5.5% discount rate and use 30 years as a time 

horizon, which is prescribed in the Netherlands for cost-benefit analysis of infrastructure 

projects (Ministry of Finance, 2007; Wesemann and Devillers, 2003). 

The Netherlands has high levels of cycling participation and is one of the safest 

countries in the world for cyclists (Pucher and Buehler, 2008; Schepers et al., 2015). This 

raises the question of whether the outcomes are transferable to countries with lower volumes 

of cycling. We will explore the sensitivity of our outcomes for the base level of cycling 

assuming a two-fold lower baseline bicycle modal share (as compared with the Netherlands) 

and a level of cycling safety that can be expected in a country with a lower level of cycling.  

 

3. Estimating the health impact 

Sections 3.1 up to 3.3 describe how the relative risks of mortality are estimated for our 

scenario. As depicted in Figure 4, the changed time spent cycling in the scenario directly 

feeds into an estimation of risk of all-cause mortality (Section 3.1). The estimation of the 

impact related to air pollution is more complicated. The scenario has a direct impact on the air 

pollution concentration per road type. Additionally, because of changed route choice (derived 

from the evaluation of the Delft bicycle network, see Table 1) the time spent per road type 

changes. Together these two changes affect air pollution exposure and thereby the risk of all-

cause mortality (Section 3.2). The same line of reasoning applies to road safety, but the 



 
 

available research does not allow us to explicitly distinguish between effects related to route 

choice and road safety risks at the location level due to bicycle infrastructure (Section 3.3). 

Section 3.4 describes the impact on life expectancy. Section 3.5 briefly discusses sensitivity 

of the calculations. Section 3.6 describes an economic valuation of the benefits and costs to 

put the benefits in perspective. 

 

3.1 The health impact of cycling related to physical activity 

We modelled the impact on bicycle modal share via the density of bicycle lanes and paths. 

Proximity to bicycle infrastructure would be an alternative to operationalize different degrees 

of intervention exposure (Goodman et al., 2014; Heinen et al, 2015a&b), but we use density 

as most published research was based on this exposure measure. The studies by Barnes et al. 

(2006) and Dill and Carr (2003) suggest between 1.0 and 1.6 percentage points of bicycle 

modal share per km of bicycle lanes and paths per square kilometre, yielding an estimated 

increase between 0.5 and 0.8 percentage points of bicycle modal share for our scenario in 

which the density increased by 0.5km/km
2
. Using these figures the following steps are taken 

to estimate the reduction of the risk of all-cause mortality: 

 To relate the change in bicycle modal share to time spent cycling we need to know the 

relationship between these two variables. We regressed bicycle modal share on the time 

spent cycling per capita in all 66 Dutch municipalities having a population over 50,000, 

using the National Travel Survey in 2010-2013 (Statistics Netherlands, 2015). The results 

of linear regression without a constant suggest that time spent cycling is proportional to 

bicycle modal share (Beta=0.99, p<0.001, R
2
=0.98). The time spent cycling per capita per 

week among Dutch people above 20 years is 74 minutes; the bicycle modal share is 26% 

(Statistics Netherlands 2015), yielding 2.85 minutes per percentage point of bicycle modal 

share. With these outcomes we can estimate that the bicycle modal share increase between 

0.5 and 0.8 percentage points corresponds to between 1.4 and 2.3 minutes per week.  

This modelling approach assumes the absolute increase of bicycle modal share is 

independent of the base level of cycling and that the relative increase becomes smaller as 

the baseline level of cycling increases. Applying a constant relative increase would yield a 

much greater absolute increase where the baseline level of cycling is already higher (such 

as in our hypothetical scenario city). We consider this unrealistic for our scenario in the 

Netherlands as the cycling market is likely to get saturated more quickly given the higher 

Dutch levels of cycling.  

 According to Kelly et al. (2014) 100 minutes of cycling per week reduces the risk of all-

cause mortality by 10%, assuming a linear dose-response relationship. With a base level 

of 74 minutes per week, between 1.4 and 2.3 additional minutes per week yields a risk 

reduction for all-cause mortality between 1.5 and 2.5 per thousand (1-(1-0.90) * (minafter 

/100)) / (1-(1-0.90) * (minbefore /100)) (Kahlmeier et al., 2014). 

 The aforementioned reduction of all-cause mortality is an overestimation if cycling 

displaces walking. However, we do not consider reduced levels of walking or other forms 

of physical activity because such reductions have not been found in evaluation studies of 

bicycle infrastructure (Goodman et al., 2013; Goodman et al., 2014; Katteler et al., 1987). 

The results are not likely to be very different if we would assume a non-linear dose-response 

relationship. The base level of cycling in the Netherlands is somewhat under 11.5 MET hours. 



 
 

For those at lower base levels of cycling the aforementioned mortality risk reduction is 

conservative while it is optimistic for those at a higher base levels (Kelly et al., 2015). These 

differences can be expected to cancel each other out. 

 

3.2 Air pollution 

To examine the health impact of exposure to air pollution, a daily inhaled dose was estimated 

for the current situation and scenario. The change was translated into an equivalent change in 

BC and NO2 concentration. The inhaled dose is the product of the concentration, the duration 

of exposure to this concentration, and the ventilation rate. We defined a range for both 

ventilation rate and street concentration to examine the impact on all-cause mortality. The 

following steps were used to obtain the inhaled doses: 

 Street concentrations: average street concentrations, 4 μg/m
3
 for BC and 45 μg/m

3
 for NO2 

(Hoogerbrugge et al., 2012; Keuken and Ten Brink, 2010), were proportionally scaled to 

represent the differences between road types described in the literature (see Section 2.2). 

We assume cyclists are exposed to these street concentrations while travelling, with the 

highest concentrations on distributor roads with mixed traffic and bicycle lanes. Pollution 

exposure during the rest of the day (while not travelling) was assumed to be at the 

background level of 2.2 μg/m
3
 for BC and 20 μg/m

3
 for NO2 (Hoogerbrugge et al., 2012; 

Keuken and Ten Brink, 2010). The background level may be lower indoors (Dons et al., 

2011). Choosing a lower level hardly affects the outcomes as the background level is 

unaffected by the scenario. 

 Scaling street concentrations: reductions in the range 12% and 24% for BC and a 

reduction of 25% for NO2 (Hatzopoulou et al., 2013; MacNaughton et al., 2014) were 

used for estimating concentrations on physically separated bicycle paths as compared with 

bicycle lanes and roads with mixed traffic. Reductions in the range 15% and 28% for BC 

and 12% for NO2 (Hatzopoulou et al., 2013; Hertel et al., 2008) were applied to the 

concentration on low volume roads as compared with high volume roads. The volumes on 

low and high volume roads in the underlying studies (Hertel et al., 2008; Jarjour et al., 

2013; Strak et al., 2010) are comparable to volumes on Dutch access and distrbutor roads 

respectively. For roads carrying more than 4,000 to 5,000 vehicles per day (the upper level 

being defined as the upper limit for a low volume road in the aforementioned studies), the 

Dutch Design Manual for Bicycle Traffic (CROW, 2007) advises building bicycle paths 

or lanes. The upper level of the effect range for BC was estimated by taking the greatest 

difference of distributor roads with paths versus lanes (24%) and the smallest difference of 

low volume roads versus distributor roads (15%). 

 Duration of cycling per road type: the duration of time spent cycling was split amongst 

road types according to the share of kilometres travelled per road type for the intervention 

in Delft, see Table 1. This accounts for changes in route choice. Table 2 is based on 74 

minutes of cycling per week (0.176 h/day), the average of Dutch citizens above 20 years 

of age (Statistics Netherlands, 2015). 

 In accordance with De Hartog et al. (2010) we assumed a ventilation rate of 5 l/min during 

sleep and 10 l/min during rest while a range between 21 and 50 l/min is assumed for 

cycling (Bernmark et al., 2006; Int Panis et al., 2010; van Wijnen et al., 1995; Zuurbier et 



 
 

al., 2009) with 1 l/min equalling 0.03 m
3
/h. We applied the highest value for the upper 

level of the effect range, and vice versa for the lowest. 

Table 2 presents the steps in the calculation and outcomes. The effects on mortality are small 

(indicated by risk reductions for all-cause mortality between 0.00 and 0.06 per thousand). 

Relative risks of all-mortality based on BC and NO2 are generally in the same range.  

 

>> Table 2 about here 

  

3.3 Road safety 

We used a range of 9% to 50% for bicycle lanes and -7% to 38% for bicycle paths for the 

reduction of the number of bicycle-motor vehicle crashes on distributor roads (Elvik et al., 

2009; Lusk et al., 2011; Reynolds et al., 2009). Effects through route choice are included in 

this range of effect figures. The following steps were applied to estimate the impact on all-

cause mortality:  

 In the scenario, the length of distributor roads with bicycle lanes and paths represents 

4.4% and 4.0% of the total length of distributor roads respectively. Therefore, the 

group of fatalities affected by building bicycle lanes and paths was estimated at 4.4% 

and 4.0% respectively, of the annual number of 58 cyclist fatalities in BMV crashes 

on distributor roads within urban areas in the Netherlands between 2010 and 2013, i.e. 

2.6 and 2.3 cyclist fatalities per year (SWOV, 2015).  

 The effect size percentages were applied to the numbers of cyclist fatalities estimated 

in the previous step: 

o Lower level effect range: reduction of the number of cyclist fatalities by 0.1 

(9% x 2.6 - 7% x 2.3) 

o Upper level effect range: reduction of the number of cyclist fatalities by 2.2 

(50% x 2.6 + 38% x 2.3) 

 This was combined with the current mortality rate to estimate the risk reductions for 

all-cause mortality using the formula described in Section 2.4.3. The total number of 

fatalities is 138,000 per year (Statistics Netherlands, 2015). The risk reduction for all-

cause mortality is between 0.00 and 0.02 per thousand: 

o Lower level effect range: 1000*(1 - (138,000 – 0.1)/ 138,000 

o Upper level effect range: 1000*(1 - (138,000 – 2.2)/ 138,000  

The impact on all-cause mortality is small, even if the largest effect estimates are assumed. 

 

3.4 Life expectancy and comparison of health effects 

As a rule of thumb, a 1% reduction of all-cause mortality risk in the adult population 

increased life expectancy by about 30 days (Miller and Hurley, 2006), i.e. 1 per thousand 

corresponds to 3 days. For instance for the lower level of the all-cause morality risk reduction 

due to more time spent cycling of 1.5 per thousand, the expected increase in life expectancy is 

4.5 days. The change of the relative risk of mortality is almost proportional to life years 

(Miller and Hurley, 2006). This suggests that the health impact related to more time spent 

cycling (primarily due to more physical activity) is dominant in the overall health impact and 

much larger than the health impact related to road safety and air pollution. 

 



 
 

3.5 The sensitivity of the calculation for the base level of cycling 

To aquire a more reliable estimate, all of the calculations described in Sections 3.1, 3.2, and 

3.3 were repeated per age group with bicycle use, population, and mortality rates of a 

hypothetical city having 100,000 inhabitants with characteristics of the Dutch population in 

2010-2013 (Statistics Netherlands, 2015; SWOV, 2015), see Table 3. Life table calculations 

were undertaken using the IOMLIFET spreadsheet (Miller, 2013) to estimate the number of 

life years gained with the mortality risk reductions in Table 3. Even the most conservative 

estimate for the effect of physical activity on mortality (4.1 life days gained per person) is 

substantially greater than the most optimistic estimates for reduced exposure to air pollution 

(0.1 life days gained per person) and road safety (0.1 life days gained per person). The 

outcomes suggest that a more detailed calculation distinguishing age groups does not change 

the outcome. The detailed calculation yields a slightly lower life expectancy gain than the 

rough estimation presented in Section 3.4, e.g. the most conservative estimate for the effect of 

more time spent cycling was 4.5 life days gained in Section 3.4 versus 4.1 according to the 

detailed calculation described above. 

 

>> Table 3 about here 

 

Half the base level of cycling was assumed for a sensitivity analysis, i.e. a 13% bicycle modal 

share and 37 minutes of cycling per person per week. As our modelling approach assumes the 

absolute increase of bicycle modal share is independent of the base level of cycling, the same 

applies to the absolute increase of the time spent cycling. In other words, in response to the 

same amount of new bicycle infrastructure, the same increased time spent cycling is assumed 

for a jurisdiction with a lower bicycle modal share. Therefore, the outcomes for the health 

benefits associated with more time spent cycling would be almost similar to those described 

in Section 4.1. However, the study by Kelly et al. (2014) suggests that the health benefits are 

larger at lower base levels of cycling. We lack sufficiently reliable dose-response functions to 

estimate more accurately by how much the health benefits would vary according to the base 

level of cycling. The mortality impact related to air pollution is proportional to the change of 

the inhaled dose of pollutants which is proportional to the time spent cycling. Halving the 

latter is associated with a half as low inhaled dose of pollutants and mortality impact. The 

road safety impact is proportional to the number of fatalities in BMV crashes on distributor 

roads. Road safety research suggests that reduced volumes of cycling are associated with a 

less than proportional decrease of the number of BMV crashes (Elvik, 2009). Jurisdictions 

with lower volumes of cycling have higher risks of BMV crashes (Van Hout, 2007). This 

means that the road safety impact is reduced but by less than a factor of two. The results of 

this brief sensitivity analysis confirm that, also at a lower base level, of cycling, the greatest 

health benefits are due to physical activity. The benefits of reduced exposure to the risks of air 

pollution and road safety remain small. 

 

3.6 Estimation of the health economic benefits 

The number of deaths prevented per year was estimated for economic appraisal (see Table 4). 

The annual benefits of more time spent cycling are between €2.2 million and €3.6 million. We 

took the lowest value of €2.2 million for a conservative estimate. A €2.8 million value of a 



 
 

statistical life, 5.5% discount rate, and 30-year time horizon yield total benefits of €32 

million. According to CROW, the standard costs for reconstructing a road with mixed traffic 

to provide bicycle paths along both sides is around €2 million/km, including all costs such as 

buying land and reconstructing intersections. Maintenance requires around €4,000 per year 

(CROW, 2007). About 1% of those investments are needed for bicycle lanes provided that the 

road does not require widening (CROW, 2001). The total costs of 3 km of bicycle paths and 

3.3 km of bicycle lanes can be estimated at an investment of €6.1 million plus €12,000 per 

year for maintenance, accumulating to a total of €6.3 million within the time horizon (future 

costs are discounted in the same way as future benefits). This suggests a benefit-cost ratio 

around 5 based on the health benefits of reduced mortality as a result of more time spent 

cycling (i.e. every €1 invested in bicycle infrastructure returns about €5 in health benefit). The 

benefits are likely to be greater if other benefits such as reduced morbidity are included as 

well. 

 

4. Discussion 

 

4.1 Principal findings 

We have estimated the health benefits of bicycle lanes and paths, assuming a scenario with 

0.5km/km
2
 of new bicycle lanes and paths (about an equal share of both facilities) in a 

hypothetical Dutch city with a population of 100,000. Modelling the currently available 

research on mortality related to time spent cycling, air pollution risks and cycling safety, 

suggested that bicycle lanes and paths are associated with health benefits, primarily due to 

increased cycling (and consequent physical activity). However, the impact on time spent 

cycling is also subject to the greatest uncertainty due to a lack of causal evidence. Only few 

high-quality quasi-experimental research (with a before-after design) is available. Reduced 

exposure to the risks of air pollution and road safety may have additional health benefits 

among all cyclists. However, their effect size is relatively small. A lower base level of cycling 

– under the assumptions of this paper – does not substantially change these conclusions.  

 

4.2 Strength and weaknesses 

A major strength of this study is the quantitative comparison of different health aspects 

associated with bicycle infrastructure. However, the study has a number of weaknesses. The 

mobility effects are still uncertain. There are only a few high quality before-after studies 

(Scheepers et al., 2014) and those that are available are mainly from countries with lower base 

levels of cycling (Barnes et al., 2006; Pucher et al., 2010). We therefore recommend to 

evaluate a variety of bicycle infrastructure facilities in areas representing a wide range of base 

levels of cycling participation. This will assist in developing improved estimates of causal 

relationship between bicycle infrastructure and cycling. Although only true experiments (with 

random assignment of participants to an experimental and control group) enable testing causal 

hypotheses, evaluations using a quasi-experimental design can substantially improve internal 

validity (Heiman, 2002) compared with correlational research. Information about intervention 

characteristics needed to inform ex-ante evaluations is often lacking and the debate about how 

to operationalize different degrees of intervention exposure is ongoing (Goodman et al., 2014; 

Scheepers et al., 2014). This information is needed to describe dose-response relationships. 



 
 

Increasing the evidence base of the impact of bicycle infrastructure on mobility is most 

important to improve the quality of health impact assessments. Evaluations should include 

modal choice, duration, and route choice because these are needed for health impact 

assessment of bicycle infrastructure. 

Our study only included health benefits that concerned cyclists. There are 

additional benefits for other road users who are less exposed to air pollution and road safety 

risks, as well as people living along busy roads who are less exposed to air pollution and 

noise. These impacts are likely to be smaller than the health benefits of increased physical 

activity due to cycling (De Hartog et al., 2010; Van Kempen et al., 2010), but including them 

would more accurately estimate the expected total health benefits of bicycle infrastructure. 

This study was restricted to mortality because the evidence for mortality is more 

conclusive than for morbidity (Kahlmeier et al., 2014). This raises the question of whether a 

health impact assessment including morbidity would yield different results. A commonly used 

measure for the total disease burden is the number of Disability Adjusted Life Years 

(DALYs) which combines the years of life lost (mortality) and years of life lived with 

disability (morbidity) (Polinder et al., 2015). Some 60% of the total number of DALYs related 

to physical inactivity in the Netherlands has been estimated to result from morbidity (De 

Hollander et al., 2006). The risks of air pollution are primarily related to cardiovascular and 

respiratory diseases (Hoek et al., 2013), of which about half of the disease burden results from 

morbidity (RIVM, 2012). The road safety effects of bicycle lanes and paths is limited to 

bicycle-motor vehicle crashes (Reynolds et al., 2009; Thomas and DeRobertis, 2013), of 

which between 50% and 60% of the disease burden is related to morbidity (Dhondt et al., 

2013; Polinder et al., 2015; Weijermars et al., 2014). Non-motor vehicle crashes are excluded. 

These results suggest that it is important to include morbidity to assess the absolute size of the 

health benefits of bicycle infrastructure. The shares of morbidity in the disease burdens of the 

three health aspects included in our study do not strongly differ. This means that the relative 

sizes are unlikely to change if we would include the whole disease burden. However, more 

research on the morbidity impact of more people cycling, and those who already cycle cycling 

longer, as well as air pollution risks would be needed to draw firm conclusions.  

 

4.3 Policy implications 

This study suggests that, based on currently available research, the health benefits of bicycle 

infrastructure due to increased time spent cycling are significant. The dominant benefit comes 

in the form of increased physical activity, with lesser contributions from enhanced road safety 

and lower air pollution exposure. The outcomes of a health impact assessment of bicycle 

infrastructure are most sensitive to the effect on time spent cycling but the empirical evidence 

of this effect is still weak. Evaluation research is therefore paramount. However, transport 

policy decisions are taken every day, hopefully supported by guidance and/or impact 

assessments. This warrants an approach based on the best available evidence. Current 

knowledge suggests that, in order to support decisions that improve public health, design 

guidelines should be based on a more integral approach including not only road safety, but 

also effects on bicycle use and air pollution exposure. Obviously, decisions about new bicycle 

infrastructure should also account for practical realities like available space and the speed at 

which a complete bicycle network can be achieved. 



 
 

 

4.4 Summary and conclusions 

Based on currently available research, we conclude that the introduction of bicycle paths and 

lanes is likely to be associated with health benefits, primarily due to increased physical 

activity. However a firm conclusion can only be reached if stronger causal evidence becomes 

available on the mobility effects of bicycle infrastructure.  
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Tables 

 

Table 1 Share of bicycle kilometres per road category in Delft 

Road category Distribution of bicycle km 

  

before 

 

after 

after with the same percentage 

along standalone tracks as 

before
a
 

Distributor, mixed traffic 8.5 5.8 5.9 

Distributor, bicycle lane 25.5 25.5 26.1 

Distributor, bicycle path 21.7 24.8 25.3 

Access road 36.8 34.3 35.0 

Standalone bicycle track 7.6 9.6 7.6 

Other 0.4 0.4 0.4 

Total 100 100 100 
a The percentage of kilometres travelled along standalone bicycle tracks is kept at the 7.6% of the before period 

to indicate how route choice would have evolved without an increased length of standalone bicycle paths  



 
 

 

Table 2 Estimated mortality impact of air pollution  

 Concentration Duration Ventila- Inhaled dose current Inhaled dose scenario 

 

Upper level effect range 

BC 

(μg/m
3
) 

NO2 

(μg/m
3
) 

current 

(h) 

Scena-

rio (h) 

tion rate 

(m
3
/h) 

BC 

(μg/day) 

NO2 

(μg/day) 

BC 

(μg/day) 

NO2 

(μg/day) 

Sleep 2.2 20.0 8.0 8.0 0.3 5.28 48.0 5.28 48.0 

Rest 2.2 20.0 15.8 15.8 0.6 20.89 189.9 20.89 189.9 

Distributor, mixed traffic 4.0 45.0 0.015 0.011 3.0 0.18 2.0 0.12 1.4 

Distributor, bicycle lanes 4.0 45.0 0.045 0.046 3.0 0.54 6.1 0.55 6.2 

Distributor, bicycle paths 3.1 33.8 0.038 0.045 3.0 0.35 3.9 0.41 4.5 

Access road
a
 3.1 35.7 0.065 0.062 3.0 0.60 6.9 0.58 6.6 

Time weighted mean 

concentration (μg/m
3
) 

2.21 20.13        

Total   24 24  27.84 256.8 27.83 256.7 

Equivalent change in mean 

concentration (μg/m
3
)

b
 

       -0.0008 -0.0103 

Risk reduction for all-cause 

mortality (per thousand)
c
 

       0.05 0.06 

Lower level effect range          

Sleep 2.2 20.0   0.3 5.28 48.0 5.28 48.0 

Rest 2.2 20.0   0.6 20.89 189.9 20.89 189.9 

Distributor, mixed traffic 4.0 45.0   1.3 0.07 0.8 0.05 0.6 

Distributor, bicycle lanes 4.0 45.0   1.3 0.23 2.6 0.23 2.6 

Distributor, bicycle paths 3.1 33.8   1.3 0.17 1.6 0.20 1.9 

Access road
a
 3.1 35.7   1.3 0.22 2.9 0.21 2.8 

Time weighted mean 

concentration (μg/m
3
) 

2.21 20.13        

Total      26.86 245.8 26.86 245.8 

Equivalent change in mean 

concentration (μg/m
3
)

b
 

       0.0001 -0.0045 

Risk reduction for all-cause 

mortality (per thousand)
c
 

       0.00 0.02 

a Along access roads includes standalone bicycle tracks 

b Equivalent change in mean concentration: time weighted mean concentration reference * (inhaled dose after / 

inhaled dose before) - time weighted mean concentration reference (De Hartog et al., 2010) 

c Risk reductions for all-cause mortality: EXP(ln(1.061)*Equivalent change in BC) -1 or EXP(ln(1.055)* 

(Equivalent change in NO2/10)) -1, only the lowest and highest are shown to present the range of effects
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 Input data hypothetical city Change of the risk of all-cause 

mortality (per thousand) 

Deaths prevented per 100,000 

pop. (10
-3

)
b
 

Age 

group 

Min. 

cycling 

per 

person 

per 

week 

Popula-

tion 

Mor

-

talit

y 

rate 

BMV 

crash 

fatalities 

(10
-3

)
a
 

More 

cycling 

Air 

pollut

ion in 

cyclis

ts 

Cycling 

safety 

More 

cycling 

Air pollution 

in cyclists 

Cyc

ling 

safe

ty 

0-12 87 13.706 5.3 9.0   0.00 to -

0.06 

  0.0 

to 

0.3 

12-15 217 3.587 0.4 17.9   -0.06 to 

-1.87 

  0.0 

to 

0.7 

15-20 153 5.987 1.2 20.9   -0.02 to 

-0.67 

  0.0 

to 

0.8 

20-30 

73 

12.312 3.9 22.4 -1.50 to -

2.44 

 -0.01 to 

-0.22 

5.8 to 9.4 0.0 to 0.0 0.0 

to 

0.8 

30-40 

69 

12.483 6.6 9.0 -1.40 to -

2.29 

0.00 to 

-0.05 

0.00 to -

0.05 

9.3 to 15.1 0.0 to 0.3 0.0 

to 

0.3 

40-50 

69 

15.394 20.8 25.4 -1.40 to -

2.28 

0.00 to 

-0.05 

0.00 to -

0.05 

29.1 to 47.5 -0.1 to 1.1 0.0 

to 

0.9 

50-60 

79 

13.878 54.1 32.9 -1.61 to -

2.62 

0.00 to 

-0.06 

0.00 to -

0.02 

87.0 to 

142.0 

-0.2 to 3.2 0.0 

to 

1.2 

60-65 

89 

6.405 48.5 20.9 -1.87 to -

3.05 

0.00 to 

-0.07 

0.00 to -

0.02 

90.8 to 

148.1 

-0.2 to 3.3 0.0 

to 

0.8 

65-70 

94 

5.215 64.2 22.4 -1.95 to -

3.18 

0.00 to 

-0.07 

0.00 to -

0.01 

125.2 to 

204.2 

-0.3 to 4.5 0.0 

to 

0.8 

70-75 

88 

3.901 76.6 34.4 -1.81 to -

2.96 

0.00 to 

-0.07 

0.00 to -

0.02 

138.9 to 

226.7 

-0.3 to 5.0 0.0 

to 

1.3 

75-80 

73 

3.035 103.

9 

70.3 -1.41 to -

2.30 

0.00 to 

-0.05 

0.00 to -

0.03 

146.4 to 

238.8 

-0.4 to 5.5 0.1 

to 

2.6 

80-85 

36 

2.205 139.

5 

35.9 -0.67 to -

1.09 

0.00 to 

-0.03 

0.00 to -

0.01 

93.2 to 

152.0 

-0.2 to 3.7 0.0 

to 

1.3 

85-90 

24 

1.290 150.

4 

20.9 -0.44 to -

0.72 

0.00 to 

-0.02 

0.00 to -

0.01 

66.3 to 

108.1 

-0.2 to 2.7 0.0 

to 

0.8 

>90 6 601 153.

0 

3.4       

Total  100,000 828.

3 

348.4    416.8 to 

833.5 

-1.9 to 29.4 0.4 

to 

12.7 

Life days 

gained 

per 

person
c
 

 

 

  4.1 to 6.7 0.0 to 

0.1 

0.0 to 

0.1 

   

Annual        €2.2 to €3.6  -€0.0 to €0.1  €0.0 
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Table 3 Annual health impact assessment based on time spent cycling and mortality rates of 1 

the Dutch population in 2010-2013 for a hypothetical Dutch city of 100,000 inhabitants 2 

a BMV crash fatalities refers to fatalities due to Bicycle-Motor Vehicle crashes 3 
b The product of the mortality rate reduction (1 minus relative risk) and mortality rate 4 

 c Based on lifetable calculations using IOMLIFET with Dutch population data and mortality rates 5 
between 2010 and 2013 6 

d The product of the number of deaths multiplied by the standard value of a statistical life year (VSL) of 7 
2.8 million euro 8 
 9 

 10 

 11 

benefits 

(million 

euros) 
d
 

to 

€0.0 


