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Abstract
This paper describes a generic autonomic architecture for use in developing systems for managing hardware faults in mobile
robots. The method by which the generic architecture was developed is also described. Using autonomic principles, we
focused on how to detect faults within a mobile robot and how specialized algorithms can be deployed to compensate for
the faults discovered. We design the foundation of a generic architecture using the elements found in the MAPE-K and IMD
architectures. We present case studies that show three different fault scenarios that can occur within the effectors, sensors
and power units of a mobile robot. For each case study, we have developed algorithms for monitoring and analyzing data
stored from previous tasks completed by the robot. We use the results from the case studies to create and refine a generic
autonomic architecture that can be utilized for any general mobile robot setup for fault detection and fault compensation. We
then describe a further case study which exercises the generic autonomic architecture in order to demonstrate its utility. Our
proposal addresses fundamental challenges in operating remote mobile robots with little or no human intervention. If a fault
does occur within the mobile robot during field operations, then having a self-automated strategy as part of its processes may
result in themobile robot continuing to function at a productive level. Our research has provided insights into the shortcomings
of existing robot design which is also discussed.
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1 Introduction

For a mobile robot to complete its tasks, it relies heavily on
the performance of its hardware components. Amobile robot
needs to be aware of the behavior of its components, and they
are functioning within established parameters. Development
of a self-diagnostic system is important, so that the mobile
robot can recognize the condition of each of its components
[1].

Fault detection has been in development for mobile robots
since the 1970s. The field of fault detection and isolation
(FDI) [2] has adapted the use of filter detectors based on
Kalman filtering, to detect inaccuracies inmobile robot func-
tions over time [3]. The use of sensor fusion [4] has also
been adapted to compare expected performance models of
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normal sensor outputs with that of outputs from the actual
mobile robot sensors. Classification and detection of faults
can be established using techniques such as situation analysis
[5]. Recognition of behavioral anomalies can be interpreted
as symptoms of possible faults within the system. Other
techniques such as redundant information statistics [6], look
for subtle changes and deviations from normal execution to
detect failures. Research developed byNASA in [7], explains
how fault handling in (MER) Mars Exploration Rovers was
implemented using (SFP) system fault protection. If faults are
detected, sequence commands are initiated to prevent further
commands being sent to the offending components. At the
system level, autonomous shutdown commands are initiated,
for example, in battery fault detection.

The focus of attention in our work is to develop a generic
architectural framework for fault detection and fault compen-
sation in mobile robots. Fault compensation is particularly
important for robots operating in remote environments such
as outer space, where human intervention to repair faulty
hardware is not an option. Using the foundation of the auto-
nomic computing model [8], the architectural design will
concentrate on self-monitoring and self-analysis to detect
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faults and anomalies. To compensate for any faults detected,
the use of self-adjustment will be employed. We have taken
the autonomic MAPE-K feedback loop concept [8] and the
three-layer IMD model [9] and expanded it to design an
architecture that can handle various fault scenarios. The
final generic autonomic architectural concept (Sect. 7) is a
result of investigations carried out on various hardware com-
ponents experiencing faults within a mobile robot. These
investigations are in three areas within the mobile robot:
(1) differential drive fault, (2) sensor faulting and (3) power
management issues. With each investigation completed, we
built up techniques for: (1) creating an intelligent monitor-
ing process that can flag anomalies for further analysis or
for reporting logs; (2) in-depth analysis processing that can
make decisions on what is required to compensate for the
fault found; and finally (3) we have created a policy algo-
rithm library that can apply compensation to known faults
in order to sustain a level of functionality within the mobile
robot.

The paper is organized as follows: Sect. 2 describes the
autonomic model in reference to the MAPE-K architecture
and IMD architecture. It further examines how the MAPE-K
and IMD architectures are used to develop the AIFH archi-
tecture presented in this paper. Section 3 discusses previous
research that has been conducted on adapting the MAPE-
K autonomic architecture and organic computing in various
fields of study. This section further explores the use of Self-
Adaption and Fault-Tolerant Systems. Section 4 provides
some background on howhardware faults can affect the oper-
ating components within a mobile robot. It further discusses
classificationof faults andhow these faults can impact onhow
the mobile robot can perform its tasks. Section 5 explores
the autonomic knowledge base and its attributes. Section 6
presents the case studies that were used to create and refine
the generic autonomic architecture.Various operational com-
ponents within a mobile robot, such as drive systems, sensors
and power management, are examined under fault condi-
tions. Section 7 presents the generic autonomic architecture
(AIFH), for dealing with hardware faults within a mobile
robot system. It discusses the autonomic health check loop
and how the SystemManager and AutonomicManager work
together to allow health checks to initiate, without over-
whelming the processor operations. It further discusses how
the Autonomic Manager provides Monitoring, Analysis and
Adjustment policies to deal with fault scenarios encountered
by the mobile robot. Section 8 shows how the generic auto-
nomic architecture (AIFH) can be used to deal with other
hardware faults (not explored in Sect. 6), involving a stereo
camera processing fault scenario as an exemplar. Sections 9
and 10 provide a summary and conclusions and discuss some
future directions for this research.
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Fig. 1 MAPE-K architecture proposed by IBM [8]

2 Autonomic model and principles

2.1 MAPE-K and IMD autonomic architectures

Autonomic computing (AC) was initiated in 2001 by IBM;
its aim was to develop computer systems that were capa-
ble of self-management. Computing systems over the last
few years have become increasing complex, and therefore
AC was proposed to take some of the decision making away
from human operators and develop a self-awareness to adapt
to changing conditions. The architecture associated with AC
is known as MAPE (Monitor, Analyze, Plan and Execute).
In self-managing autonomic systems, policies are defined to
dictate the self-managing process. IBM defined four types of
autonomic properties: self-configuration, self-healing, self-
optimization and self-protection [8]. In research presented by
[10], two modes (reactive and proactive) represent the self-
healingprocess.Reactivemode is concernedwith identifying
a fault and, where possible, repairing the fault. The MAPE
architecture was further expanded to MAPE-K: This intro-
duced the concept of Knowledge (K) being shared between
each of the four elements (Monitor, Analyze, Plan and Exe-
cute). The MAPE-K feedback loop is part of the system that
allows for feedback and self-correction (Fig. 1).

IMD (intelligent machine design) is significantly different
from the MAPE architecture, both structurally and behav-
iorally. In this alternative model, behaviors are differentiated
in terms of urgency and responding to changes in the envi-
ronment [9,11]. The IMD architecture closely relates to how
the intelligent biological system works. The IMD architec-
ture proposes three distinct layers: the Reaction layer, the
Routine layer and the Reflection layer. The Reaction layer
(lower layer) is connected to the sensors and effectors. When
it receives sensor information, it reacts relatively faster than
the other two layers. The main reason for this is that its inter-
nal mechanisms are basic, direct and normally hardwired;
therefore, its behavior is an autonomic response to incoming
signals. The Reaction layer takes precedence over all other
layers and can trigger higher layer processing. The Routine
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Fig. 2 Intelligent machine design architecture [9]

Table 1 Comparison of three-tier approaches

IMD Self-managing NASA science mission

Reflection Autonomous Science

Routine Self-aware Mission

Reaction Autonomic Command sequence

layer ismore intelligent and skilled compared to the Reaction
layer. It is expected to access working memory which con-
tains several policy definitions that can be executed based
on knowledge and self-awareness. As a result, it is com-
paratively slower than the Reaction layer. The Routine layer
activities can be activated or inhibited by the Reflection layer
(Fig. 2).

The Reflection layer has the responsibility of develop-
ing new policies, and therefore this layer consumes a larger
number of computer resources. The Reflection layer can deal
with the abnormal situations, using a combination of learning
technologies, specialized algorithms, knowledge databases
and self-awareness. The Reflection layer analyzes current
data or historic data and identifies when to change and selects
a policy to decide what to change.

In research carried out in [12], the IMD architecture
describes ‘Reaction’ as the lowest level where no learning
occurs but has direct contact with sensory systems. The mid-
dle level ‘Routine’ is where evaluation and planning occur.
The highest level ‘Reflection’ is a meta-process where it
deliberates about itself but has no direct contact with sensory
systems. It receives data from the layer below. In Table 1,
the IMD design can compare to other three-tier approaches,
such as those adapted byNASAand in self-managing system.
NASA places human labor in the top science level where the
lowest level is used for command sequences to execute the
mission plan (limited human intervention). Self-managing
systems create a similar hierarchy, where human influence is
stronger at the autonomous level but less so at the autonomic
level [12]. The Autonomic layer is the bottom tier, reacts
immediately to changing situations and is closest to the hard-
ware. The Self-aware layer deals with daily self-managing
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Fig. 3 Developing the AIFH architecture from the MAPE-K [8] and
IMD models [11]

activities, when processing capacity becomes available. The
Autonomous layer is the top tier, system high-level objec-
tives are directed in this layer, and it often includes reflection
[13].

2.2 Developing the AIFH architecture based on
MAPE-K and IMD principles

The AIFH (Autonomic Intelligent Fault Handling) archi-
tecture developed for this research takes elements from the
MAPE-K and IMD architectures. TheMAPE-K architecture
can be modified so that subsets of monitor, analyze, plan
and execute functions can be utilized [8]. The Awareness
layer in AIFH requires the monitor function. The Analysis
layer in AIFH requires the analyze function. The Adjustment
layer requires both plan and execute functions (Fig. 3). The
MAPE-K utilizes a feedback loop. This feedback loop con-
nects the elements within the MAPE-K architecture. In the
AIFH architecture, there are two ‘feedback’ loops. TheReac-
tive loop transfers data between each layer. The Proactive
loop is used to examine sensor data for patterns and anoma-
lies. TheProactive loop provides a higher level ofmonitoring
that is not provided in the MAPE-K architecture. The Proac-
tive loop can provide status reports that can alert the user
to possible impending faults within components. This could
have a direct affect on amission or task’s performance, in that
component faults can be identified at an early stage before
they malfunction during a mission or task.

All the layers in AIFH utilize the Knowledge function
which includes attributes such as policies, historical data
and real-time data. The AIFH architecture also adapts a sub-
set of the IMD architecture. The IMD architecture uses a
‘layer’ design but only the Routine layer and Reaction can
communicate with the sensors and effectors. Knowledge is
only accessible through theReflection layer. TheAIFHarchi-
tecture also incorporates the ‘layer’ principle, but offers all
AIFH layers access to the Knowledge plane. Real-time sen-
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sor data are available at theAwareness layer.Historical sensor
data are available to all layers in the AIFH architecture. The
Adjustment layer is responsible for sending relevant policy
data to the effectors when functionality changes are required.
Compared to the IMD reflection layer, the AIFH adjustment
layer can communicate with the effector interface directly.
This allows implementation of fault adjustment policies to be
carried out immediately, without further processing in other
layers within the architecture.

The AIFH architecture is encapsulated within the Auto-
nomic Manager. The principle of using autonomic manage-
ment to dealwithmobile robot faults allows for the possibility
of identifying and evaluating the fault and, therefore through
diagnosis, proposes an adaptive quality which allows the
robot to continue to function.

3 Related work

3.1 Autonomic model: MAPE-K and organic
computing

The basic autonomic architecture laid down by IBM acted as
a guide to help us deal with the expanding complex systems
we now find in today’s technology industry. The idea was
to reduce the need for human intervention and to develop
a system that could make its own decisions and become
self-managing [14]. Autonomic components alone are not
enough; there is a requirement to integrate autonomic com-
ponents with current systems. Traditionally in autonomic
computing, the Autonomic Manager dictates the behavior
and performance of the managed components [8]. In Organic
Computing, components are not reliant on central control for
coordination; therefore, the component itself can make deci-
sions based on its observations [15]. Using an architectural
model developed in [16], research carried out in [17] shows
how an hexapod robot can detect a malfunction within its
leg support mechanism. If a malfunction is detected, then
the robot can initiate a leg amputation routine to discard the
faulty leg. The robotwill then performa reconfiguration (self-
adjustment), whichwill enable the hexapod robot to continue
with its mission despite losing a leg.

3.2 Autonomic self-adaption: fault detection

The Autonomic Knowledge source is an area that is capa-
ble of storing configurations, policies and, most importantly,
performance data past and present. This knowledge is then
passed to the Autonomic Manager. Decisions made by the
AutonomicManager canbebasedon the type of data received
from the Knowledge source [18]. Component faults do not
always show themselves as simply being non-functional or
disabled. In this research [19], the authors use Evidence,

Fault and Value nodes to identify hardware faults, by recog-
nizing changes in sensor data over time. Knowledge of how
components perform over time can perform part of the auto-
nomic knowledge base. Comparisons can be made between
current component performance data and the performance
data fromprevious tasks. Fault detection can also be achieved
by comparing the performance of neighboring components
of the same type. In research presented by Khalastchi et al.
[20], the authors perform tests between similar components
to establish if they are correlated to each other. If abnormal
behavior is detected, then this could indicate a possible fault
in one of the components. For this research in autonomic
systems, [21] proposed that the remaining sensors could
collaborate to perform a specific function if another sensor
happens to fail. If a laser range finder sensor should fail on a
remote planetary rover, that is normally used for object nav-
igation, then engaging the camera sensor to detect objects
could be a viable option. In this research [22], they describe
how robotic failure detection, failure recovery and system
reconfiguration can be achieved through their Distributed
Integrated Affect Reflection Cognition (DIARC) architec-
ture. Using an ADE multi-agent framework, they propose a
system that can request information about the states of com-
ponents within the network. If a failure occurs in say the
navigation system, then they can locate a component to take
the place of the failed component—in this case a sonar sensor
array taking over from a laser range sensor.

3.3 Fault tolerance systems

When comparing autonomic methods to fault tolerance
solutions, FT systems are traditionally centered around repli-
cation and exception handling. The developer needs to
identify in advance the critical components and then decide
what fault strategy to implement [23].Research conducted by
[24,25] shows the implementation of FDD (Fault Detection
Diagnosis) in autonomous robotic systems. Three principles
are adapted: Timing checks—watchdogs are incorporated to
systematically check components. Reasonableness checks—
verify test data to check the correctness of the systems
variables to algorithm constraints. Monitoring for diagno-
sis—predicted behavior is computed as a specific model.
This model is then compared with the observed behavior.
The resulting differences, if any, are an indication of a fault.
Autonomic systems are designed to look for subtle changes
in behavior or inconsistent performance data. The Auto-
nomicElement has its ownManager system.However, recent
research [26] shows that systems are now being designed
that incorporate both fault tolerance and autonomic princi-
ples. Research conducted in [27] shows how future NASA
missions can develop evolution strategies to handle hard-
ware faults. Types of failure modes include actuator failure,
communication failure and control failure. When a fault is
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Fig. 4 Knowledge source—how
knowledge is partitioned to
reflect autonomic fault handling
in a mobile robot
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detected, it was proved in simulation that a rover agent adapt-
ing Difference evaluation methods could still maintain an
acceptable performance level. In contrast, rover agents using
System evaluation performed poorly when dealing with a
fault scenario.

4 Hardware faults in mobile robots

Mobile robots are devices that rely on commands that provide
instructions for ‘motion’ and sensor data capture that reports
the physical world around them. Mobile robots can either
operate in a closed environment such as an industrial factory
or hospital, or can operate remotely, such as a pipe inspection
vehicle or as a planetary rover. In the case of robots operat-
ing in remote regions, it may not be convenient or possible to
intervene in order to repair faults. In such circumstances, our
goal is to provide fault tolerance through autonomic inter-
vention and management. Mobile robots like all mechanical
devices eventually succumb to some sort of hardware fault
or hardware defect. The severity of the fault will dictate the
available functionality that the mobile robot can provide.
Typical faults for mobile robots are loss of sensors, motor-
ized faults, damaged wheels or power faults. A fault in a
system is some deviation from the expected behavior of the
system [28]. Faults can be classified as follows: permanent
(which exists until repaired), transient (which disappears on
their own) and intermittent (which repeatedly appears). The
severity of a fault can depend on what components in the
mobile robot are malfunctioning. A major malfunction to
the mobile robot drive systems would have greater impact
than a major malfunction on one of the robot sonar sensors.
If the mobile robot is unable to move because of a major
motor failure, then its ability to carry out tasks is severely
limited if not impossible; however, if a mobile robot has lost
function in a single sonar sensor, it may still function even
with reduced sensor ability.

In the real world, a hardware fault like a damaged wheel
on amobile or planetary robot can disruptmission objectives.

NASA’s JPLCenter reported faults on all six wheels from the
current Curiosity Rover Mission on Mars [29]. Each of the
six rubber wheel casings on the Rover had been punctured by
sharp rock material from the planet’s surface. Consequently,
NASA’s Mission Control was forced to plan alternate routes
for the Curiosity Rover, in order to avoid certain rock types
that had caused the damage to the wheels. In 2006, NASA
reported that the Spirit Rover had suffered a broken wheel
and was beyond repair due to circuit failure [30]. Any further
trips conducted by Spirit meant that Mission Control had to
map out a route that avoided terrain with loose soil.

5 Knowledge source

In IBM’s Autonomic Blueprint [18], the Knowledge source
is described as containing different data types such as symp-
toms, policies, change requests and change plans. This
knowledge can be stored and shared among autonomic man-
agers. For autonomic fault handling, a knowledge base is
important not only to store historical data but also data such
as tolerance values, real-time component data, adjustment
policies and symptoms. In research conducted by [31], the
authors use the Knowledge Base to store Recovery Patterns.
When a component failure occurs, the Autonomic Manager
will then select the appropriate recovery pattern(s) to com-
pensate for the fault.

Figure 4 shows how the knowledge source can be imple-
mented in autonomic fault handling for a mobile robot.
Sensors provide input data to the knowledge source. The
output data are used by the Autonomic Manager (within the
AIFH architecture) and distributed to the Awareness, Analy-
sis andAdjustment layerswhen required.As themobile robot
performs its tasks, all sensor data are recorded so that his-
torical behavior patterns can be analyzed. Tolerance values
can be stored here, so that faults can be identified if toler-
ance limits are exceeded. Policies used to analyze fault data
and adjust for faults can be stored in the knowledge base. As
the robot performs its tasks in real-time, ‘live’ data can be
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recorded here and compared with historical data. If sensor
readings are trending toward tolerance limits, then ‘symp-
toms’ data can be stored here and made available to the User
Interface or Mission Control, to alert of possible impend-
ing faults. Finally, ‘dynamic parameters’ can be stored in the
knowledge source and are available to the Awareness and
Analysis layers.

6 Case studies

The following case studies are presented in the order they
were conducted and used to influence the evolving AIFH
architecture. Using software engineering techniques, these
case studies contribute to engineering of self-managing sys-
tems, where there has been relatively little research, as
identified by Sterritt [32].

6.1 Study one: robot wheel alignment fault

6.1.1 Error detection

This case study centered on investigating the failure in the
effector systems of a mobile robot, centering on wheel align-
ment accuracy [33]. The robot must become aware that there
is a problemwith its differential drive system.When the robot
arrives at its destination, there is a health check procedure to
determine if it has arrived at the expected destination. If the
health check procedure reports that the robot is not at the
expected destination point, then further procedures would be
put in place to analyze and determine the extent of the fault.

Experiments were conducted using a Pioneer P3-DX
mobile robot fitted with an LMS 200 Laser [34]. The first
part of the experiment was performed using wheels that were
in perfect working order. The mobile robot was instructed
to move a fixed distance up and down the laboratory in a
parallel path to a wall. At the start of each run, the mobile
robot would record the laser distance reading (from robot to
wall) and would repeat this when the robot came to the end
of its journey. This was repeated multiple times to give an
average wheel alignment performance reading. This infor-
mation or data are stored for reference later. For the second
part of the experiment, the robot was fitted with a damaged
wheel. The robot was then put through the same testing as
in the first experiment. As the robot performed the tasks,
self-monitoring was initiated to evaluate the data from the
robot. Figure 5 shows how a wheel fault has affected the
robot’s alignment tracking when attempting to drive in a
straight line. The consequences of this fault are that the robot
will not arrive at its expected destination point and this will
inhibit any tasks assigned to the robot.We describe the wheel
alignment fault in three stages: (1) Awareness—the discov-
ery of the wheel alignment fault by using dead reckoning, (2)

Fig. 5 Graph (a) shows the path of the robotwith bothwheels at optimal
performance. Graph (b) shows the path of the robot with one wheel in
a damaged state

a

b

c

A2

Wall 

A1

B2

B1

Fig. 6 The Pioneer P3-DX robot with a damaged wheel—calculating
the value that represents the error angle α

Analysis—allows us to establish the extent of the fault, and
(3) Adjustment—establishes a method that could be used to
compensate for the fault.

6.1.2 Error evaluation

Now that the robot is slewing away from its expected destina-
tion point, we had to find a method of turning the robot back
toward its expected route path. Using the data gathered from
the experiments represented in Fig. 5b, we calculated the dis-
tance the robot traveled and calculated the distance the robot
was from its expected destination point. Figure 6 shows how
we established the angle error value using trigonometry.

6.1.3 Error adjustment

We have established the error angle value α and can use
this value to calculate the angle of turn needed to rotate the
robot back toward its expected path while traveling to its
destination point. The angle of turn calculation is established
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using the values represented in Fig. 7. The R1, R2 and R3
represent the robot’s position during its journey.

When the robot reaches the position I (interval), the robot
is commanded to stop. Angle AE1 represents the angle of
the wheel alignment error calculated in Fig. 6. The AE angle
value is then doubled. The reasoning behind this is that twice
the AE1 values is required to bring the robot back to the
expected path. The AE value is then divided by the number
of intervals at which the robot is required to stop. The angle
AA represents the angle of turn needed to allow the robot to
re-establish the expected journey pathmarked as P. The robot
heading angle is then adjusted; the robot is turned on its axis
according to the angle of turn AA. [Equation (1)]. The robot
continues its journey by moving forward on its new heading
for another interval.

AA = 2AE

I
(1)

The more the intervals (when the robot stops and adjusts
its direction of travel), the more accurate the robot journey
will be in terms of keeping to the original path, but this is
traded off against speed. In Eq. (2), the interval distance is
represented by ID and total distance is represented by TD.
The interval distance is calculated as follows:

ID = TD

I
(2)

The compensation method described in Fig. 7 reflects
the ability of the robot to self-adjust. This autonomic self-
adjustment allows the robot to arrive close to the expected
destination point, even with a damaged wheel. With the
calculations for the wheel alignment error established, an
algorithm was developed (Algorithm 1) and tested with the
Pioneer P3-DX robot.

As a result of implementing Algorithm 1, Fig. 8 shows
how the compensation method improves the robot’s ability
to track close to its intended path. The greater the number
of intervals employed results in a decrease in the error off-
set value. The severity of the wheel alignment error will
influence how the robot will perform over long distances.
If the wheel alignment error is considerable, then the num-

Algorithm 1: Robot Wheel Alignment Fault Compen-
sation
Input: offsetValue = how far the robot is from expected

destination point.
toleranceRange = if this value is exceeded, then an error
has occurred
ni = number of required intervals
dis = distance for robot to travel

Output: The angle of adjustment required
(AngleO f Ad justment) to turn the robot when an
interval.

cd = current distance traveled by robot
iv = dis/ni
if (of f setV alue > toleranceRange) then

Alignment Error Angle (ae) =
sinθ(Right Angle − equation);
Angleof Ad justment (aa) = 2 ∗ ae/ni ;

end
while cd <dis do

Adjust the robot direction at interval setting (iv);
if (dis mod iv = 0) then

StopRobot();
RotateRobot(aa);
MoveRobot();

end
cd = updateCurrentDistanceTravelled();

end

Fig. 8 Using the compensation algorithm, the robot journey accuracy
is increased when the number of intervals is also increased. a Robot
journey using one interval. b Robot journey using two intervals

ber of intervals required for the robot to stop and adjust itself
will increase; this could have an impact on resources such as
power consumption and task time.
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6.1.4 Developing the architecture: Part 1

The autonomic architecture for the fault handling model
is constructed using three layers: Awareness, Analysis and
Adjustment. The Autonomic Manager manages the commu-
nication between each layer and how the knowledge base
is shared. In the MAPE-K architecture [18], the Autonomic
Manager implements an intelligent control loop that is made
up of four parts. Each part communicates and collaborates
with one another and shares appropriate data (knowledge).
For theAIFH (Autonomic Intelligent Fault Handling)model,
two separate control loops are required—Reactive loop and
Proactive loop.

• Reactive loop this control loop is concerned with mak-
ing decisions based on the current component state. The
Reactive Loop passes through each layer within the fault
handling architecture. This control loop is responsible for
passing fault data between each layer.

• Proactive loop this control loop is concerned with pro-
cessing historical data with current data. The Proactive
loop can make decisions based on performance trends
from sensors and effectors. This control loop is based in
the Awareness layer and reports unusual readings to the
User Interface.

In this case study, the basic autonomic architecture for
the wheel alignment fault is presented. Figure 9 shows the
Autonomic Manager which contains the three-layer AIFH
functionality.Within each functional layer, theReactiveCon-
trol loop controls the flow of the wheel alignment fault data.
The fault data are first collected within the Awareness layer.
In this layer, a decision is made to whether a fault has
occurred. The Proactive Control loop will check for unusual
readings from historical and current data that are provided
by the knowledge base. The fault data are then passed to the
Analysis layer to calculate the extent of the fault. The Analy-
sis layer uses the knowledge base to select the relevant policy
to analyze the fault data. Fault calculations provided by the
Analysis layer are then passed to the Adjustment layer. The
Adjustment layer will select a relevant policy with the knowl-
edge base and use the fault calculations from the Analysis
layer to perform the necessary fault adjustment.

6.1.5 Summary

In this case study, we discovered that awareness/analysis
of past performances enabled us to establish the extent of
the wheel alignment fault. A basic autonomic architectural
model is introduced to handle the wheel alignment fault. The
importance of knowledge is keywhen determining (1) if there
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Fig. 9 Basic autonomic model showing how the wheel alignment fault
is handled by the AIFH architecture

is a fault (awareness), (2) the extent of the fault (analysis) and
(3) what is required to compensate for the fault (adjustment).

6.2 Study two: robot sonar sensor faults

In this case study, we examined the effects of losing one or
more sonar sensors in a mobile robot [35]. The experiments
were carried out using a Pioneer P3-DX robot fitted with a
sonar sensor array (Fig. 10). The autonomic self-adaptive
approach to handling fault scenarios assumes that even with
reduced sensor capability, it is still possible to carry out mis-
sion objectives. Faults in sonar sensors can manifest in two
ways: (1) The sonar sensor stops reporting data (the sensor
has been damaged or there is an electronic failure). (2) The
sonar sensor is reporting data, but these data are unreliable
(due to minor malfunction or minor physical damage).When
a sonar sensor becomes faulty, then it will affect the ability
of the robot to detect objects in its path. The loss of one sonar
sensor has limited impact, but the loss of several sensors will
severely reduce the robot’s ability to detect objects.

As shown in the previous case study (Study one), we
consider the fault process asAwareness,Analysis andAdjust-
ment. Through monitoring and knowledge gained from
previous tasks, the robot can become aware that there is a
possible fault with the sonar sensors. In the Awareness pro-
cess, faults can be detected through unusual sensor readings
or by a reactive process where the sensor sends out a ‘dead’
signal. If a fault is flagged, then the robot system process-
ing can do in-depth analysis to establish the extent of the
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1
2 3 4

5
6

Fig. 10 The sonar sensors on the Pioneer P3-DX robot are arranged as
an array 1–6

fault. It can then use data gathered from the analysis proce-
dure to determine what possible Adjustment can be made to
compensate for the fault.

For this experiment, we were only concerned with sensors
(1–6); these are the ‘forward’ facing sensors. See Fig. 10. The
failure states for the sonar sensors on the Pioneer P3-DX are
classified as follows:

Sonar Sensor Failure States:

• IsNormal—all sonar sensors are working as expected.
• IsMinor—one or two sonar sensors are either disabled or
reporting erroneous data

• IsMajor—a loss of three or more (but not all) sonar sen-
sors. Provides only limited sensing ability.

• IsCatatrophic—all forward-facing sonar sensors are dis-
abled. No ability to detect objects.

6.2.1 IsNormal state

In Fig. 11a, we tested all the sonar sensors under normal con-
ditions. This IsNormal state proved that each of the sensors
was able to detect an object correctly. An object was placed in
front of the P3-DX robot. Measurements were taken between
the object and each sonar sensor usingmeasuring tape. These
values were then compared to the values being reported by
the sonar sensors to establish if the sensors were operating
as expected.

6.2.2 IsMinor state

In Fig. 11b, if a sonar sensor has become faulty (due to impact
or electrical fault), then it signals a default reading to the Sys-
tem Manager program as ‘5000.’ The Autonomic Manager
(Awareness) process uses the knowledgebase to establish that
this is a sensor fault. The sensor fault data are then passed
to the Analysis layer for processing. Faulty sonar sensors
can also be detected using a proactive feedback loop. In this
experiment, we compare the values reported by neighbor-
ing sonar sensors. If a sonar sensor is reporting significantly
different data (within a tolerance range) to its neighboring

Fig. 11 Failure states for the sonar sensors on the P3-DX mobile robot

sensors, then we can establish that this sensor’s data cannot
be relied upon; this sensor is thenmarked as being ‘disabled.’
Algorithm 2 shows how readings from neighboring sonar
sensors are used to test if a sensor is reporting correct object
detection data.

6.2.3 IsMajor state

In Fig. 11c, when two or more sonar sensors become faulty,
the robot’s ability to detect objects in its path is greatly
reduced. If the robot loses 50 percent of its sonar sensors,
it can be completely blind on one side. Monitoring of the
sensor data would indicate that there was a fault in several of
the sonar sensors in the ‘array.’ However, the P3-DX is also
equipped with a ‘bumper’ sensor. If the ‘bumper’ sensor is
triggered, then the robot automatically comes to a stop.When
this occurs, the autonomic analysis procedure is employed to
identify what sonar sensors are faulty.

6.2.4 IsCatastrophic state

Figure 11d shows that this state reports that all sonar sen-
sors are disabled. When all sonar sensors are reported as
disabled, the robot is automatically stopped; this is to pre-
vent any unnecessary damage to the body of the robot.

6.2.5 Sonar sensor fault compensation

Within the Adjustment layer, a Compensation Policy is initi-
ated to deal with any failure found in the six forward-facing
sonar sensors. To compensate for a faulty sonar sensor, we
employ a ‘stop’ and ‘rotate’ strategy. The remaining fully
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Algorithm 2: Highlight Disparate Readings Between
Adjacent Sonar Sensors
Input: sonarReadings sr[] = readings from 1–6 sonar sensors

toleranceRange tr = tolerance value allowed between
adjacent sensors
sonarPosition sp = position of specific sonar sensor
Rotation Angle ra = 20◦

Output: di f f erenceValue = is greater than the tolerance
range, then that particular sonar sensor is marked as
disabled.

for (each sonar(sn) in sonar array ) do
if (sn == 1) then

reading1 = sr[sn];
RotateRobot(−ra);
reading2 = sr[sn+1];
di f f erenceValue = (reading2 − reading1);

end
if (sn == 6) then

reading1 = sr[sn];
RotateRobot(ra);
reading2 = sr[sn-1];
di f f erenceValue = (reading2 − reading1);

end
if (sn > 1 and sn < 6) then

reading1 = sr[sn];
RotateRobot(ra−);
reading2 = sr[sn+1];
RotateRobot(ra + ra);
reading3 = sr[sn-1];
di f f erenceValue =
(reading1 − (reading2 + reading3/2));

end
if (di f f erenceValue > tr) then

sn = disabled;
end

end

functional sonar sensors are used as substitutes for any
faulty sensor. The more the sonar sensors that are faulty,
the more ‘stop’ and ‘rotation’ commands will be required to
detect objects. Using the six sonar sensors in the array, there
are sixty-four possible combinations using binary notation.
Combination 1 = 000000 (this indicates all sonar sensors are
working correctly and no action is needed). Combination 64
= 111111 (this indicates all sonar sensors are disabled); no
compensation can be deployed when the robot is in this state.
This leaves sixty-two fault combinations that can be compen-
sated for. The mobile robot will need to rotate (clockwise or
anticlockwise), in order to compensate for loss of some of
the sonar sensors. The position of each sonar sensors on the
array is indicated as 1–6 (Fig. 12). The angle between each
of the sonar sensors is 20◦; therefore, all rotations are done in
single or in multiples of 20◦ values (Fig. 12). A single sonar
sensor fault will only require one rotation of themobile robot.

If there are multiple sonar sensor faults, then the num-
ber of rotations will increase. Table 2 shows the sonar fault
scenarios ‘tests’ and the number of rotations required to com-

6 5 4 3 2 1

-50°

-30°
-10° 10°

30°

50°
6

5
4 3

2
1

Sonar Sensor Array

Fig. 12 The sonar sensors are arranged 1–6 on the array with a 20◦
angle between them

Algorithm 3: Compensation for Disabled Sonar Sen-
sors (Part 1)
Input: sonarArray[] = enabled/disabled sonar sensor positions

disabledArray[] = disabled sonar ‘angle’ position values
enabledArray[] = enabled sonar ‘angle’ position values
lsa = -50 (lowest sonar sensor angle)
hsa = 50 (highest sonar sensor angle)
ia = 20 (incremental angle value)
av = 0 (angle value initialized for each sonar sensor)

Output: The combinationArray[] = di f f erence value required
for an ‘enabled’ sonar array to take the place of a
‘disabled’ sonar array.

i = 0
for (av = lsa; av < hsa + 1; av = av + ia) do

if (sonarArray[i] == ‘disabled’) then
disabled Array[i] = av;

end
if (sonarArray[i] == ‘enabled’) then

enabled Array[i] = av;
end
i = i + 1

end
ii = 0 (inner index)
oi = 0 (outer index)
av = 0 (reset angle value)
for (dv < disabledArray count) do

for (av = ia; av < hsa + 1; av = av + ia) do
if (enabledArray[ii] == (disabledArray[oi] + (-av)))
then

combinationArray[i i] = av;
end
if (enabledArray[ii] == (disabledArray[oi] + (av)))
then

combinationArray[i i] = -av;
end
ii = ii + 1

end
oi = oi + 1

end

pensate for the disabled sensors. Utilizing the autonomic
Monitor and Analysis processes, the ‘disabled’ sonar sen-
sors are identified. This information is then passed to the
Adjustment process.

The Adjustment process engages a policy that can utilize
the autonomic self-adjustment algorithm. TheCompensation
for Disabled Sonar Sensors algorithm is presented in Algo-
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Table 2 Sonar sensor fault scenarios

‘Enabled’ sonar sensors positions,
used to compensate for fault

Angle of ‘Enabled’ sonar
sensor on the array

‘Disabled’ sonar posi-
tion (angle on the array)

Robot rotation(s)
required (+ or −)

Scenario 1—sensor 3 has become disabled

2 30◦ 3 (10◦) −20◦

Scenario 2—the sonar sensors 3 and 2 have become disabled

4 −10◦ 3 (10◦) +20◦

1 50◦ 2(30◦) −20◦

Scenario 3—sensors 2, 4, 5 and 6 have become disabled

1, 3 10◦, 50◦ 2(30◦), 4(−10◦) −20◦

3 10◦ 5(−30◦) −40◦

3 10◦ 6(−50◦) −60◦

Scenario 4—sensors 1, 2 and 3 have become disabled

4, 5, 6 −10◦, −30◦, −50◦ 3(10◦), 2(30◦), 1(50◦) +60◦

Fig. 13 The increase in the number of sonar sensor faults will also
increase the number of rotations required to compensate for the fault

rithm 3 and Algorithm 4. Algorithm 3 is used to work
out the position of the disabled sonar sensors; it then calcu-
lates howmuch rotation is required for the remaining enabled
sonar sensors to take the place of the disabled sonar sensors.
Algorithm 4 is used to work out the minimum number of
robot rotations required to compensate for the faulty sonar
sensors. Finally, all rotation values are stored in a program
array, so that they can be fed to the robot’s System Man-
ager (via the Compensation Policy), to execute the physical
rotations required to compensate for the faulty sonar sensors.

In Fig. 13, a selection of possible fault combinations is
displayed (showing and average 31 alternate combinations
of the possible 62 combinations). The greater the number of
‘disabled’ sonar sensors on the array, the greater the number
of robot rotations required to compensate for the faulty sen-
sors. This ultimately will have an impact on task time and
power required.

Algorithm 4: Compensation for Disabled Sonar Sen-
sors (Part 2)
Input: calcArray[] = the ‘sorted’ angle values needed for

compensation.
combinationArray[] pre-populated (See Algorithm 3).

Output: rotateArray[] = this array will contain the rotation
values the robot needs to perform to compensate for
the sonar sensor fault

var nearestValue = 0; (find the nearest position value)
var sonarResultCount = combinationArray.Count;
for (int index = 0; index < sonarResultCount; index++) do

nearest = ca.Order By(x =>

math.abs(long)x − 0)).First();
combinationArray.Remove(nearestV alue);
calcArray.Add(nearestV alue);

end

int eSi = 0; (enabled array index);
foreach ( int calc in calcArray) do

foreach ( string enabledSonar in enabledArray) do
if (disabledArray.Contains
((int32.Parse(enabledArray[eSi].ToString()) +
(calc)).ToString()))) then

disabled Array.Remove
((I nt32.Parse(enabled Array[eSi].ToString())+
(calc).ToString());
if (!rotateArray.Contains(calc)) then

rotateArray.Add(calc);
end

end
eSi++;

end
eSi = 0;

end

6.2.6 Refining the AIFH architecture

In the previous case study (wheel alignment fault), the basic
autonomic architecture for fault handling was presented.
Using this case study (sonar sensor fault management), we
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Fig. 14 Awareness and Analysis
layers—part of the AIFH
architecture, showing how the
sonar sensor faults are handled

EFFECTORS

Iden�fy all enabled/disabled 
sonar sensors.

SENSORS

System 
Manager

Initiate 
Feedback 

Loop 

Reporting

Sonar Sensor 
Readings

Robot Drive 
Commands

User 
Interface

Tolerance 
Values

Historical
Data

Real-�me 
Data

Policies

Symptoms

Dynamic 
Parameters

Kn
ow

le
dg

e 
Ba

se

Process Readings

Sonar Senor Error Detected

Evaluate Sonar Senor Data

Evaluate data between 
sonar sensors

Unusual Readings 
Iden�fied ?

Yes

Fault

When the disabled Sonar  
sensor(s)  have been 

iden�fied, then run the 
Compensa�on Policy

Reac�ve Loop

Proac�ve Loop

Knowledge Input

Knowledge Output

No Fault

Au
to

no
m

ic
 M

an
ag

er

ADJUSTMENT LAYER

ANALYSIS LAYER

AWARENESS 
LAYER

Oversensi�ve

Adjust Tolerance 
Value

P3-DX Robot

will focus on the Awareness and Analysis layers of the AIFH
architecture (Fig. 14).

Task data from the sonar sensors are processed and
updated to the knowledge base. As each task is performed
by the mobile robot (P3-DX), the sensor data are recorded.
These records will then collate to form the historical data
within the knowledge base. The Reactive Control loop eval-
uates the current sonar data and uses the tolerance values
stored in the knowledge base, to establish if any of the sen-
sors are showing any unusual behavior. The knowledge base
real-time sonar data are compared to the stored Dynamic
Parameters, which will, in turn, identify if any sonar sensors
are disabled.

TheReactiveControl loop then passes the sensor fault data
to the Analysis layer for processing. The Proactive Control
loop processes the sonar data and establishes if any of the
sonar sensors are reporting unusual readings. Sonar sensors
are flagged if the distance-to-object readings between neigh-
boring sensors are greater than the expected tolerance values.
The Proactive Control loop will then pass those sonar sen-
sors marked as ‘unverified’ to the Analysis layer for further
investigation. If the Analysis layer identifies a fault within a

sonar sensor, the knowledge base is updated and the sensor
is marked as disabled.

6.2.7 Summary

By introducing a compensation policy to handle sonar sen-
sors faults, the Pioneer P3-DX robot can still detect objects.
However, the more the sonar sensors that are at fault, the
greater impact it will have on the operational efficiency of
the robot.

When a fault occurs in the sonar sensor array, then a
sonar failure mode is engaged. Figure 15 shows how the
robot is instructed to stop at every 200-mm interval. The
robot will then rotate (using the compensation policy), so
that the sonar sensors that are still functioning will be able to
detect any objects within the robot’s path. In this case study,
we also investigated the role of the Awareness layer within
the Autonomic Manager (Fig. 14). The Reactive and Proac-
tive Control loops play key roles in establishing sonar sensor
faults by using the shared knowledge base data. The Proac-
tive Control loop can make adjustments to tolerance levels
during the Analysis process, depending on the position of the
sonar array to the object being detected.
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Fig. 15 When a sonar fault is detected, the robot is stopped at selected
intervals. The robot is rotated to check for possible objects

6.3 Study three: robot battery degradation fault

In this case study, we examined the effects lead–acid battery
degradation [36] has on the power resource management on
a simulated Pioneer P3-DX robot [37]. Although this type
of failure is evident in all lead–acid batteries, we decided to
use a simulated battery setup for this experiment as battery
degradation is very difficult to recreate in laboratory condi-
tions using a real battery.

6.3.1 What is battery degradation?

Battery degradation is unavoidable in lead–acid batteries;
however, the rate of degradation can be predicted depend-
ing on how the battery is managed during its lifetime. The
life of a battery can be described as the number of charge
cycles it can produce before being discarded. The number of
‘charge’ cycles available greatly depends on how the battery
is charged/discharged during its lifetime [36]. DOD (Depth
of Discharge) is used to describe how deeply a battery is
discharged. The less a battery is discharged, the greater the
number of ‘charge’ cycles you will get from the battery over
its lifetime. Figure 16 shows the DOD characteristics of the
lead–acid battery used in the Pioneer P3-DX [38].

The Pioneer P3-DX robot contains components that
require a certain level of power input. The lead–acid batteries
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Fig. 16 The DOD (Depth of Discharge) characteristics for the lead–
acid battery used in the Pioneer P3-DX [38]

Table 3 Power requirements for each component in the Pioneer P3-DX
robot

Component Power (W) Percentage (%)

Motion 2.8–10.6 12–44.6

Sensing (sonar) 0.58–0.82 1.9–5.1

Microcontroller 4.6 14.8–28.8

Embedded computer 8–15 33.3–65.3
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Fig. 17 Research in [39] shows the power (W) required for the ‘Motion’
component in the P3-DX when driven at various speeds

containedwithin the robot supply the necessary power for the
components. Research conducted in [39] shows the relative
power required for each of the Pioneer P3-DX components
(Table 3).

6.3.2 Experiments: battery degradation effects

For this experiment, we investigated how battery degradation
can affect howmuch power is available for the ‘Motion’ com-
ponent during different stages of the lifetime of the battery.
Figure 17 showshow the research conducted in [39] describes
the amount of power needed for the robots ‘Motion’ compo-
nent when driven at various speeds.
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Table 4 Robot task: setup values for robot running @ battery cycle 0

Parameters Values

RS Robot speed (mm/s) 600

PR Power required (W) 8

DIS Distance to travel (M) 5000

T Time (h) 2.31

WHU Watt-hours used 18.48

WC Watt-hour capacity 25.2

BC Battery cycle 0

The architectural design for the power management of the
robot involved a System Manager and a Autonomic Man-
ager [37]. The System Manager accepts input from the User
Interface and translates this into commands which will pro-
vide direction and speed for the Pioneer P3-DX robot. The
Autonomic Manager monitors and analyzes tasks performed
by the robot. The Autonomic Manager considers the current
battery ‘cycle’ value and the current power (W) utilized by
the robot for the ‘Motion’ component. If the threshold limits
of the battery in its present state are being exceeded, then the
Autonomic Manager will make the necessary adjustments to
the power (W) level that is provided to the ’Motion’ compo-
nent.

6.3.3 Initial task setup

Using data collected by research conducted in [36], the bat-
tery data from Fig. 16 and the user input values, we can
construct parameter and test values (Table 4).

The battery in the Pioneer P3-DX provides 84 watt-hours
of power capacity [40]. When the battery is at cycle 0, the
battery capacity is 100%. The battery rating is 7000mAh
offering 12 volts [38]. We can therefore use Eq. (3), to cal-
culate the watt-hour value for the battery (E = Energy, Q =
milliamp hours and V = Voltage). This will give 84 watt-
hours as described in [40].

E(wh) = Q(mAh) x
V (v)

1000
. (3)

Using the values in Table 4, we can establish the value of
the ‘Motion’ component in terms of watt-hours used.

WHU = PR x T . (4)

To prolong the life of the battery, we employed a DOD
rate of 30% (Fig. 16). When adopting a 30% DOD rate, this
means that the battery is never allowed to fall below 70%
charge capacity. The battery at 100% charge gives 84 watt-
hours of power; however, if we use 30% DOD rate, then
we have 25.2 watt-hours available for the Pioneer robot at

Table 5 Robot task: setup values for robot running @ battery cycle
1100

Parameters Values

RS Robot speed (mm/s) 800

PR Power required (W) 8

DIS Distance to travel (M) 5000

T Time (h) 2.31

WHU Watt-hours used 18.48

WC Watt-hour capacity 22.68

BC Battery cycle 1100

battery cycle 0—see Eq. (5) for how watt-hour capacityWC
is calculated at the DOD rate. Using the WHU value from
Eq. (4), we can then calculate the percentage capacity (PC)
required for the robot to complete robot task (Table 4).

WC = E(wh)

100
x DOD (5)

PC = WHU

WC
x 100. (6)

The PC value is calculated using Eq. (5). For this experi-
ment, the acceptable threshold value for how much capacity
a robot task uses is set to 80% (AT). If the PC value is below
the AT threshold value, then the task can complete success-
fully. If the PC value is above the AT threshold value, then
task is under threat as it is using full power resource from the
battery at the present DOD rate.

The robot task (Table 4) requires a battery charge capacity
PC of 73.33%, when employing Eq. (6). The PC value of
73.33% is below the threshold value (80%), and therefore no
adjustment from the Autonomic Manager is required.

6.3.4 Executing a robot task with battery degradation

Toward the end of a battery’s lifetime, the amount of capacity
is reduced. The next evaluation shows how a robot task per-
formed using the same values as in Table 4 will be affected
by using a battery in a later ‘cycle’ state. The robot task is
run using cycle 1100 (Table 5), which results in capacity
dropping from 100 to 90% (Fig. 16). We need to re-calculate
the (Ewh) value using Eq. (3). This results in battery capac-
ity being reduced from 84 watt-hours to 75.6 watt-hours.
Using the DOD rate of 30%, we now have 22.68 watt-hours
available for the task. If we apply Eq. (6), then the task will
require 81.48% of battery capacity PC, which is above the
acceptable threshold AT value of 80%.
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Algorithm 5: Check that the battery ‘Percentage
Capacity’ is within tolerance range
Input: DOD = selectChargeRatingForBattery()

batteryCycleCount = getCurrentBatteryCycleCount()
batteryCyclePercentageValue =
getCurrentBatteryCyclePercentage(batteryCycleCount,
DOD)
upperCycleValue = getUpperCycleValue(DOD).

Output: thresholdExceeded = if this value is set to true, then
the ad justment Batter yCompensation() algorithm
needs to be engaged.

if (batter yCycleCount > upperCycleValue) then
batter yExpired = true;

end
if (batter yExpired = f alse) then

double RS = robot Speed Input();
int PR = power Required Input();
double DI S = distanceToTravel I nput();
//Calculate the travel time for task;
double T = DI S/(RS/1000);
//Calculate the watt-hours used for task;
double WHU = T ∗ PR;
//Energy available from battery at cycle count position;
double Q(mAh) =
7ah ∗ batter yCyclePercentageValue;
double E = Q(mAh) ∗ voltage/1000;
//Use the DOD rate, calculate the working battery capacity;
double W A = DOD ∗ E/100;
//Calculate the percentage capacity required by the robot
task;
double PC = WHA/W A ∗ 100;
//Calculate the percentage of battery capacity required for
task does not exceed threshold value;
if (PC > 80%) then

thresholdExceeded = true;
end
//If threshold value is exceeded then call the battery
adjustment algorithm;
if (thresholdExceeded = true) then

ad justment Batter yCompensation();
end

end

6.3.5 Applying compensation during battery degradation

To bring the task performed by the robot at cycle 1100 below
the battery usage threshold value of 80%, we need to reduce
the speed and power of the robot. If we use the adjusted
values from Table 6, the WHU value is now at 18.00 using
Eq. (4). We can then calculate the PC value using Eq. (6).
The resultingPC value of 79.66% is now below the threshold
AT value of 80%, and therefore the robot can safely complete
the task.

Algorithm 5 shows how task input and analysis per-
formed by the Autonomic Manager can establish if the PC
value is within tolerance values. If the PC value is above the
acceptable threshold limit, then Algorithm 6 is initiated. The
Compensation Algorithm 6 will be periodically run until the
PC value is above the threshold limit value.

Algorithm 6: Battery Compensation Algorithm
1: procedureadjustmentBatteryCompensation()Adjust speed

of the robot Input: robotMotorSpeedValue =UserInputValueFor-
MotorSpeed

2: //Use built in Microsoft Drive functions to update the motor
speed value

3: Drive.Set DrivePower Request request = new
Drive.Set DrivePower Request()

4: request .Le f tWheel Power = (double)OnMoveLe f t ∗
robotMotor SpeedValue;

5: request .RightWheel Power = (double)OnMoveRight ∗
robotMotor SpeedValue;
end

Table 6 Robot task: compensation—reduce speed @ battery cycle
1100

Parameters Values

RS Robot speed (mm/s) 500

PR Power required (W) 6.5

DIS Distance to travel (M) 5000

T Time (h) 2.77

WHU Watt-hours used 18.00

WC Watt-hour capacity 22.68

BC Battery cycle 1100

6.3.6 Refining the AIFH architecture

In the previous two case studies, we introduced the outline
design for the generic autonomic architecture. Case Study
One explained how the three layers of the AIFH architecture
would be integrated with the knowledge base. Case Study
Two showed how the autonomic feedback loop was imple-
mented within the Awareness and Analysis layers and its
interaction with knowledge base inputs and outputs. In this
architectural refinement section, we focus on the Analysis
layer and the Adjustment layer. In this case study scenario,
the Awareness layer is constantly checking the ‘cycle’ count
and the DOD value. The knowledge base ‘dynamic param-
eters’ are constantly updated to reflect the ‘cycle’ count of
the battery. Tolerance values stored in the knowledge base
allow the Awareness layer to know when battery degradation
has begun. When this occurs, the Reactive Control loop will
pass data to the Analysis layer to check if the robot task can
be completed using the current battery capacity. Figure 18
shows how the Analysis layer uses the knowledge base poli-
cies in order to test if the battery capacity is within expected
tolerance ranges. The tolerance values are also stored within
the knowledge base. If tolerances are not exceeded, then
the Reactive Control loop will report back to the Awareness
layer that the battery status is stable. However, if tolerances
are exceeded, then the Reactive Control loop passes data to
the Adjustment layer. Within the Adjustment layer, policies
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Fig. 18 Architectural
development for battery
degradation fault. How
knowledge base is implemented
in the analysis and adjustment
layers
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stored in the knowledge base are implemented to adjust the
speed of the robot and therefore reduce battery consumption.
The Reactive Control loopwill then return control to the Sys-
temManager, where it will re-engage theAwareness layer, so
that the cycle can begin again when the Autonomic Manager
re-initiates a fault health check.

In this version of the refined AIFH architecture, the Auto-
nomicManager makes use of the dynamic parameters stored
in the knowledge base. The SystemManager updates the bat-
tery ‘cycle’ count to the dynamic parameters store within the
knowledge base. The Analysis layer then can use the toler-
ance value check process although with the battery ‘cycle’
count to establish if the battery has entered into its degrada-
tion phase.

6.3.7 Summary

In this case study, we examined how battery degradation can
affect the performance of a mobile robot over time. This type
of fault scenario is predictable compared to theWheel Align-
ment Fault and the Sonar Sensor fault case studies, where a
fault can occur at any time during amission. Battery degrada-
tion is an unavoidable process, and therefore the Autonomic

Manager must adapt its policies to handle this type of dis-
ability. The ‘Awareness’ process in this case study is knowing
when thebattery degradationhas begun.This relies onknowl-
edge regarding the DOD that is being adapted (Fig. 16) and
checking the cycle count of the lead–acid battery in the robot.
The ‘Analysis’ process can cross reference the cycle count
with the percentage of charge available in the battery. The
data from the ‘Analysis’ process are then made available
to the ‘Adjustment’ process. The ‘Adjustment’ policies can
then calculate what power reduction in certain components
is required, therefore reducing battery consumption.

7 Generic autonomic architecture for fault
detection (AIFH)

With the case study investigations completed in Sect. 6, we
were able to combine all the knowledge and lessons learned
in the tests and development, to design a generic autonomic
architecture for fault management. The aim of the generic
autonomic architectural design is to handle various types of
component faults which include fault detection, fault anal-
ysis and fault recovery. The generic autonomic architecture
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or AIFH is a triple-layer model consisting of an Awareness
layer, Analysis layer and Adjustment layer. These three lay-
ers are controlled by an Autonomic Manager. The System
Manager controls the flow of data from the robot’s sensors
and effectors. The System Manager also handles tasks per-
formed by the robot and initiate the heath check autonomic
control loops. The overall architecture is presented later in
Fig. 21. The following text is used to explain the roles and
responsibilities of a number of components prior to seeing
them within the overall architectural diagram (Fig. 21).

7.1 SystemManager

The System Manager is responsible for controlling the sen-
sors and effectors of the mobile robot. A Task Modulewithin
the SystemManager is used to contain the task data and task
commands. The Task Module initiates the sensors and sends
command operations to the effectors. Data from the sensors
are then processed using the Sensor Processing Module. The
Sensor Processing Module is then responsible for updating
the knowledge base with all the sensor’s readings accumu-
lated during the task operation. As each task is performed,
the System Manager initiates the Autonomic Control Loop
using theHealth Check Module. This operation is performed
at intervals during the task or mission. The Autonomic Man-
ager takes control of the processing to check that all sensors
and effectors are performingwithin tolerance limits. TheSys-
tem Manager also contains an Output Module which is used
to relay data to Users or Mission Control, regarding fault
diagnosis, symptoms of possible impending faults and fault
recovery information.

7.2 Autonomic Manager

The Autonomic Manager is focused on the administration
of software systems and therefore handles the complex
tasks that would normally be handled by the System Man-
ager. When the System Manager initiates the Health Check
Module, the Autonomic Manager takes control of the task
processing. In the AIFH architecture, we employ two con-
trol loops—Reactive and Proactive. Research developed in
[41] shows that coordinated parallel control loops can be used
to carry out separate operations as long as each control loop
does not violate the objective of another controller. TheReac-
tive Control loop passes data between each of the three layers
(Awareness, Analysis and Adjustment). The Proactive Con-
trol loop operates within the Awareness and Analysis layers.
The knowledge base module is available to all three layers
within the Autonomic Manager.
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Fig. 19 Representation showing how the attributes within the knowl-
edge base are used by each layer within the AIFH architecture

7.2.1 Knowledge Base Module

The Knowledge Base Module provides each layer in the
AIFH architecture with historical task data, tolerance values,
policies, real-time data, symptoms and dynamic parameters.
The Knowledge Base Module is dynamic and is constantly
updated with sensor data supplied by the executing task. Fig-
ure 19 shows how each attribute within the Knowledge Base
Module is used by each layer within the AIFH architecture.

Tolerance values within the Knowledge Base Module can
be read by both the Awareness layer and the Analysis layer.
TheAwareness layer can also update tolerances if a particular
tolerance value is too sensitive. For example, there is a tol-
erance value used to check if two sonar sensors are showing
the correct distance reading when detecting an object. As the
sonar array on the robot is octadecagon, this tolerance value
may need to change depending on the angle of the robot to the
object. The Policy Selector process is used by all three lay-
ers in the AIFH architecture. Some policies are used to check
if sensors are operating within tolerance limits. Other poli-
cies involve analyzing data to establish the extent of a fault.
Policies are also available that can adjust the behavior of the
robot to compensate for a fault. Historical data are constantly
updated by the Autonomic and System Managers. Histori-
cal data are important in order to track behavioral changes
within the robot’s components. Dynamic parameters are used
to aid analysis when checking values against real-time data.
For example, the battery cycle count is a dynamic parameter
that is updated every time the robot’s battery is charged. The
Knowledge Base—Symptoms records unusual readings from
selected components. Symptoms are only recorded if they are

123



M. Doran et al.

within tolerance limits but are showing a behavioral pattern
that may suggest a future impending fault.

7.2.2 Building the AIFH architecture

InSect. 6, the case studies providedmethods for detecting and
analyzing faults. There were also methods to adjust for those
faults. These experiments provided a foundation to develop
the AIFH architecture. Figure 21 shows the integration of
the System Manager, Autonomic Manager and knowledge
base, as a fully formed generic autonomic architecture. The
System Manager controls the timing of the Health Check
monitoring, and the Autonomic Manager orchestrates how
the feedback loops traverse each layer Awareness, Analysis
and Adjustment. The knowledge base is shared by each of
the AIFH layers to provide sensor, historical, tolerance and
parameter data in order to detect/adjust for component faults.

7.2.3 Awareness layer

As the mobile robot executes its allotted task, the autonomic
managerwill periodically check on the health and functional-
ity of the hardware components. We define Awareness as the
ability to detect that the data being processed and monitored
may be indicating a possible fault. The reactive control loop
initiates a health check on all components that are be used
for the current robot task. This can involve detection sensors,
cameras, motor differential drive and power supply. Toler-
ance values held in the Knowledge Base Module are used to
indicate if there is a possible issue with a component. If tol-
erance values are exceeded, then this can indicate a possible
fault. If for example a sensor unit is reporting a disabled state,
then the Reactive Control loop will relay this information to
theAnalysis later for further processing. TheAwareness layer
can also process historical data and compare this with real-
time data reported by the current task. The Proactive Control
loop checks these data for patterns that might indicate a pos-
sible future fault. For example, if the robot completes a task
that involves traveling from destination A to destination B,
when doing a self-check, it finds that it is not exactly at point
B but is still within tolerance limits. However, if this trend
continues in further tasks, then it might be an indication that
a wheel fault is about to occur. The Proactive Control loop is
responsible for reporting unusual data readings to the User
Interface or Mission Control via the SystemManager. These
reports are vital and could prevent future tasks being com-
promised.

7.2.4 Analysis layer

Through analysis, we can establish the extent of a fault
indicated in the Awareness layer. Depending on the type of
component identified, the relevant analysis policy is selected

from the Knowledge Base Module. The analysis policy will
then determine the extent of the fault. Calculations are per-
formed using the analysis policy, which are then passed to
the Adjustment layer. For example, if a sonar fault has been
identified in the Awareness layer, then an analysis policy can
determine howmany of the sonar sensors on the array are dis-
abled. Specialized policies can determine if the sonar sensor
is reporting the correct distance data by comparing results
with adjacent sonar sensors. Other examples include wheel
alignment policies. If theAwareness layer determines there is
an alignment fault, then a policy canbeused to determine how
much the robot’s alignment is from the expected true align-
ment. The value returnedwould be labeled as the offset value.
The offset value can then be passed to the Adjustment layer.

Another property of the Analysis layer is the ability to
determine if current tolerance values are too sensitive. If a
tolerance value is set too ‘high,’ then this can result in the
Awareness layer reporting a fault during the next autonomic
feedback loop process. The Analysis layer can make the nec-
essary adjustment to the tolerance values if required. For
example, if a wheel alignment tolerance value is set in the
knowledge base as 10m, then this might need to change if
the terrain the robot is operating in prevents the robot arriv-
ing at a destination with any significant accuracy. The wheel
alignment tolerance value could then be adjusted to 20m.

If tolerance adjustment is required, the Reactive Con-
trol loop will redirect back to the Awareness layer for
re-evaluation. Once the fault calculations are made in the
Analysis layer, then the fault parameter data are passed to
the Adjustment layer.

7.2.5 Adjustment layer

Using the fault parameter data supplied by the Analysis
layer, theAdjustment layer will select the appropriate adjust-
ment policy from the knowledge base module. Calculations
are then performed so that a compensation strategy can be
employed to handle the component fault. Adjustment cal-
culations may determine if there can be no resolution to the
current fault. For example, if all sonar sensors are reported as
being disabled, then the sonar sensor array cannot be used to
detect objects along the robot’s path. In this case, a message
is sent to the System Manager (output module) to report that
no compensation can bemade to the reported fault. However,
an adjustment calculation can be made, i.e., if there is at least
one sonar sensor still operable, then a adjustment policy can
be deployed.

When the adjustment policy is deployed, the Reactive
Control loop will send the compensation parameters to the
System Manager (Task Module). The Task Module will then
direct the effectors/sensors to operate using the new adjust-
ment policy. To test the compensation strategy is successful,
the Health Check Module will then re-initiate the control
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Fig. 20 UML sequence diagram showing the relationships within the
AIFH adjustment layer

loops in the Autonomic Manager (Awareness layer). The
Component Health Check in the Awareness layer will check
the component against current tolerance limits. If the adjust-
ment policy is successful, the Reactive Control loop will
redirect back to theHealthCheckModule in the SystemMan-
ager to report that no faults are pending. Figure 20 shows an

UML Sequence representation of the modules and process
routes within the Adjustment layer.

7.2.6 AIFH autonomic architecture summary

The AIFH architecture was initially developed using prin-
ciples found in the MAPE-K and IMD architectural models
[8] [9]. Further development of the AIFH architecture was
achieved by using the research carried out in the case studies
performed in Sect. 6. Figure 21 shows how the Autonomic
Manager (containing the three layers, awareness, analysis
and adjustment) is integrated with the System Manager. The
System Manager is responsible for executing commands to
the mobile robot via the effectors and sensors. The System
Manager is also responsible for running task procedures and
health check monitoring. The Autonomic Manager provides
amechanism for detecting faults, analyzing faults andprovid-
ing policies that can compensate for faults. The ‘autonomic
intelligence’ in the awareness layer not only flags component
faults but also provides a means of monitoring sensor data
and reporting to the User/Mission Control, if certain compo-
nent behaviors may indicate an impending fault. Within the
Analysis layer, there are policies that can adjust tolerance
thresholds. These policies are important as an over-sensitive
tolerance value may lead to faults being reported continu-
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Fig. 21 AIFH autonomic architecture for fault handling in mobile robots

123



M. Doran et al.

Fig. 22 The PCI nDepth stereo vision camera

ously within the Reaction loop (between the Awareness and
Analysis layers), therefore creating an infinite fault state.

This architecture attempts to integrate the autonomic
principles of self-healing, self-analyzing, self-aware, self-
optimizing, as described in research by [18,42,43]. The goal
of the generic AIFH architecture is to provide an autonomic
solution that can be implemented for any mobile robot type
that provides component fault handling without human inter-
vention.

In Sect. 8, we employ another case study (stereo vision
camera) and apply the AIFH architectural model to that
study. The purpose is to further demonstrate that the AIFH
autonomic architecture can apply to other component fault
scenarios that can occur within a mobile robot.

8 Experimental validation and analysis
(applying the generic autonomic
architecture—AIFH)

8.1 Stereo vision camera fault—case study

To evaluate the design of the AIFH architecture (Fig. 21), we
have applied it to a further case study centered on hardware
faulting within a stereo vision camera sensor. The overall
objective was to demonstrate the utility of the generic archi-
tecture to a new scenario. The aim was to use all the layers
within the Autonomic Manager (Awareness, Analysis and
Adjustment), to establish if a fault was occurring and, if
possible, make policy changes and self-adapt the system to
compensate for the fault.

8.1.1 Stereo vision camera—properties

The stereo camera can be used to identify obstacles and eval-
uate their distance from the robot. Figure 22 shows a PCI
nDepthT M stereo vision camera. This stereo vision camera
and processing PCB board provide depth measurements by
using a pair of sensors and a technology called computational
stereo vision.

P(x,y,z)

SSL R

X X

f

B
L

Z

Stereo Camera

(a) (b)

l r

Fig. 23 a The PCI nDepth stereo camera mounted on a P3-DX mobile
robot. b Triangulation method for finding point P

The stereo camera provides real-time 3D depth data for
mobile robot navigation. Evaluating distances is achieved as
follows:

8.1.2 Triangulation

Figure 23a shows a PCI nDepthT M stereo vision camera
mounted on top of a Pioneer P3-DX. The basis of the tech-
nology is that a single physical point in three-dimensional
space projects unique images when observed by two sepa-
rated cameras. Figure 23b shows a position P in 3D space
and its projection to a unique location SL in the left image
and SR in the right image. If it is possible to locate these cor-
responding points in the camera sensor images, the location
of point P can then be established using Triangulation. The
value BL represents the baseline distance between the two
sensors (in this case 6 cm) and f represents the focal length
of the sensors.

8.1.3 Disparity

This is achieved by observing an object from slightly differ-
ent perspectives. The position of an object in one image will
be shifted in the other image by a value that is inversely pro-
portional to the object and the stereo camera baseline [44].

8.1.4 Awareness (finding a potential fault)

To calculate the distance between the camera and a known
object, triangulation stereo vision method can be imple-
mented [45]. The stereo image pair consists of two images
(left and right), and both images are combined to establish
the disparity values and from that a Z distance value can be
calculated from a selected object. However, this calculation
can be affected by faults with the stereo camera sensor. Fig-
ure 24 shows the possible faults that can occur for a sensor in
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Fig. 24 Stereo vision camera faults. a Sensor shutdown, b impact
(pitch/yaw) and c defocus blur

a stereo vision camera setup. If the stereo camerawere to lose
both sensors, then this could be picked up as either, no data
being received from the camera or the robot ‘bumper’ sensor
being triggered by hitting an unseen obstacle, for example.

In the AIFH architecture (Fig. 21), Awareness initi-
ates monitoring and knowledge-based evaluation in order
to establish if there is a potential fault with a hardware
component. In Fig. 24a, sensor 2 on the stereo camera is
electronically disabled and cannot produce images for depth
calculations. In this instance, we simply pass the status of
sensor 2 to the Analysis process, where it will be labeled as
disabled. InFig. 24b, the stereo camerahas suffered an impact
in the field; this has resulted in sensor 2 losing pitch/yaw
relative to the stereo camera plane. Applying equations cal-
culated by research developed in [46], we can establish that
there is a depth error occurring in sensor 2. This is character-
ized by the size of the yaw angle between the two cameras.
The greater the yaw angle, the greater the depth error. These
error data are then sent to the Analysis process. Figure 24c

shows how defocus blur can potentially influence the qual-
ity of the disparity estimate. Research conducted by [47]
explains how defocus can lead to objects appearing blurry in
the image. Therefore, we can apply equations calculated in
[47], to establish if a sensor in the stereo camera is exhibiting
defocus error characteristics. If this is the case, we can send
the error data to Analysis for processing. In the real world,
fault scenarios shown in Fig. 24b, c will not indicate what
sensor has failed. To establish what sensor has failed will
require in-depth analysis.

8.1.5 Analyzing (establishing what sensor is faulty)

From the Awareness process carried out in Sect. 8.1.3, we
need to establish the extent of the fault that has been discov-
ered. The AIFH architecture (Fig. 21) shows how component
analysis is carried out using information gathered from the
Awareness process. The Analysis process has specialized
algorithms which can be used to identify the extent of the
component fault.

For the fault indicated in Fig. 24a, there is only a require-
ment to set the state of the faulty sensor to disabled and then
send this information to theAdjustment process. For the faults
discovered in Fig. 24b, c, we need to carry out a calibration
process to establish what sensor on the stereo vision camera
is faulty. To carry out the calibration, we need to establish the
actual distance between the stereo camera and the object. As
faults can happen in the field, we need to use themobile robot
to establish this distance value. We can achieve this by using
the Bumper sensor mounted on the front of the mobile robot.
To establish the distance value, we drive the robot toward
the object. We record the distance covered by the robot as it
moves (using wheel encoder values). When the object meets
with the Bumper sensor, the robot will automatically stop.
Figure 25 shows how the Pioneer P3-DX robot can be used
to measure the distance between the stereo camera and the
object.

1. ed—wheel encoder distance (recorded as the robot drives
toward the object).

2. bb—bumper baseline (the distance between the differen-
tial drive base line and the bumper baseline).

3. sb—stereo camera baseline (the distance between the dif-
ferential drive base line and the stereo camera baseline).

4. d—distance to object fromstereo camera sensor baseline.

Using Eq. (7), we can calculate distance d.

d = (ed + bb) − sb. (7)

Now, we have established the distance between the stereo
camera and the object, and we need to determine what sensor
on the camera is faulty. There are several scenarios (Table 7).
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Fig. 25 The Pioneer P3-DX Bumper can be used to calculate the dis-
tance between the stereo camera and the object

From the fault scenario established in Fig. 24b, c, we
can assume that both camera sensors are providing data.
Therefore, for this experiment we can concentrate on test-
ing scenarios 6–8, in Table 7 only.

To test scenarios (6–8) in Table 7, we must evaluate each
camera’s sensor individually. The Analyzing procedure car-
ried out by the AutonomicManager in Fig. 26 involves using
a specialized policy to test each individual camera sensor.
The procedure involves taking a picture with camera sensor
SL (Fig. 25) and then storing these data. We then move the
robot so that sensor SL is in the exact position where sensor
SR should be. We then take another picture (current image).
We then apply the triangulation stereo vision method from
[45] using the stored image and the current image to establish
the distance value to the object.

Steps required for sensor evaluation (Fig. 26)

1. Take a picture of the object with one camera only (a) or
(b) (Fig. 26) and then store image data.

1)

2)

3)

4)

(b)

1)

2)

3)

4)

(a)

Le� Camera Analysis (SL) Right Camera Analysis (SR)

Fig. 26 Representation showing how each camera sensor can be tested
by evaluating two images taken by the same camera sensor from its
original position and from the position of the opposing camera

2. Rotate the robot 90◦ or −90◦ depending on what camera
sensor is being evaluated (Fig. 26a or b).

3. Move the robot forward a distance equivalent to the stereo
camera Base Line value between sensor SL and sensor
SR (Fig. 25).

4. Rotate the robot 90◦ or −90◦ depending on what camera
sensor is being evaluated (Fig. 26 (a)) or (b)). Take a
picture of the object with the same camera used in (1).

We can then compare the distance-to-object result of each
camera sensor with that of the known distance value estab-
lished using the bumper sensor [Eq. (7)]. If one of the camera
sensor distance-to-object results is not within expected tol-
erances, then we assume this sensor is faulty. If none of the
camera sensor distance-to-object results are within expected
tolerances, then the stereo camera vision device will be

Table 7 Fault scenarios

No. Camera sensor (left) Camera sensor (right) Comments

1 Disabled Disabled Both camera sensors are reporting no data

2 Disabled Data (good) Left camera is disabled, right camera is providing reliable data

3 Data (good) Disabled Left camera is providing reliable data, right camera is disabled

4 Disabled Data (bad) Left camera is disabled, right camera data are unreliable

5 Data (bad) Disabled Left camera data are unreliable, right camera is disabled

6 Data (bad) Data (bad) Both cameras are providing data that are unreliable

7 Data (good) Data (bad) Left camera is providing reliable data, right camera data are unreliable

8 Data (bad) Data (good) Left camera data are unreliable, right camera is providing reliable data right
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declared as fully disabled and not capable of detecting objects
within its path. No adjustment can be made for this scenario.

8.1.6 Adjustment (using one camera sensor as stereo vision
camera)

If during the Analysis evaluation, it is established that there
is at least one working camera sensor, we can implement a
policy to compensate for the other faulty sensor (Algorithm
7). The compensation strategy is like the strategy employed to
discover what stereo camera sensor was operating correctly
during the analysis stage (Fig. 26).

Algorithm 7: Stereo Vision Camera Fault Adjustment
Input: Enter the identity of the working camera sensor SL (left

camera) or SR (right camera), enter the baseline value of
stereo camera.

Output: Using the one camera, process stored image with
current image to establish the distance value of an
object = ObjectDistance

if (cameraEnabled = SL) then
takeImageCameraSensor(SL);
storeImageDataForCamera(SL);
rotateRobotCommand(-90);
moveRobotCommandDistance(BaselineValue);
rotateRobotCommand(90);
takeImageCameraSensor(SL);
ObjectDistance = performImageProcessing(currentImage,
storedImage);

end
if (cameraEnabled = SR) then

takeImageCameraSensor(SR);
storeImageDataForCamera(SR);
rotateRobotCommand(90);
moveRobotCommandDistance(BaselineValue);
rotateRobotCommand(-90);
takeImageCameraSensor(SR);
ObjectDistance = performImageProcessing(currentImage,
storedImage);

end

This case study shows that even with one damaged stereo
camera sensor, it is still possible to locate an object using
stereovisionprocessingwith the assistanceof suitable adjust-
ments via the AIFH architecture. The AIFH architecture can
be employed to evaluate mobile robot hardware components
if there are specialized policies available to the Autonomic
Manager. The Awareness process can be used to establish
if there is a possible fault within the stereo camera compo-
nent. We can then utilize the Analysis procedure to evaluate
the extent of the fault. Finally, if there is one fully functional
camera sensor available, we can then use anAdjustment algo-
rithm to compensate for the fault.

As with any compensation procedure, there will be an
effect on how well the mobile robot performs its task.
With the stereo vision camera fault adjustment algorithm,

detecting an object will take a greater amount of time and
processing. For short-term tasks, this may not be an issue,
but for longer scheduled tasks, this could affect resources
like power management.

9 Summary

When operating mobile robots in remote locations, the
importance of self-managed systems cannot be underesti-
mated, especially when dealing with component failures.
With the lack of human intervention available, integrating
the autonomic self* properties [8] can allow a mobile robot
to continue to function even while experiencing degrees of
hardware failure.

In this paper, we have proposed a generic autonomic
architecture (AIFH) for fault management within a mobile
robot. We designed a generic architecture by using the data
and experiences collected from investigations carried out on
individual component failures onmobile robots.Aswe inves-
tigated each case study, we identified common patterns that
were required to handle each fault scenario. We adapted the
autonomic MAPE-K feedback loop model [8] and the IMD
architecture [9], as a foundation, and expanded the design to
integrate both the robot SystemManager and the Autonomic
Manager (Fig. 21). Using the data from previous tasks per-
formed by the robot (i.e., the knowledge base), we employed
intelligent monitoring to look for subtle changes in perfor-
mance and thereby identify possible impending faults. There
was also a need to revise tolerance values so that the ‘aware-
ness’ levels were not over-sensitive. We investigated how
in-depth analysis can categorize the severity of a fault and
therefore take the appropriate action regarding what ‘analy-
sis’ policy will best suit the situation. With a ‘fault’ on the
robot identified and analyzed, we then implemented a strat-
egy to compensate for the fault and therefore re-establish a
level functionality back into the offending component.When
the compensation policies were applied to the fault, we ana-
lyzed the results and made any necessary adjustments.

Our approach to building an autonomic architecture cen-
tered on Awareness, Analysis and Adjustment.

9.1 Awareness

Using current and historical data, we can establish if there
is a possible fault within a component. In our research, we
discovered various levels of ‘awareness’, from detecting a
fault in a sonar sensor, discovering wheel alignment issues
through dead reckoning and predicted faulting due to battery
degradation.
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9.2 Analysis

When discovering a fault, it is important to establish what
extent the fault is affecting the component. In our case study
research, analysis on sonar sensor faulting allowed us to
establish what sensors were disabled/enabled and how this
information affected the ability of the robot to detect objects.
Our case study research also revealed the importance of
the knowledge base ’dynamic parameters’ in providing the
Analysis process with current data from components. The
Analysis process also provided a means of adjusting tol-
erance values, so that the ‘fault’ reporting did not become
over-sensitive within the Awareness layer.

9.3 Adjustment

Amajor part of the autonomic model is the ability to adapt to
changing circumstances. In our research, we created special-
ized dynamic algorithms that can adapt to various degrees
of faulting within a component. In sonar sensor faults, this
could either be a simple adjustment for losing one sensor or
a complex adjustment were possibly three or more sensors
become disabled.

To evaluate the utility of the generic autonomic archi-
tecture, we introduced a further case study (Sect. 7). This
case study proposed that with the integration of a hardware
sensor into the mobile robot, the Autonomic Manager can
adapt to handle any possible faults and adjustments that may
be required. Each hardware component on the mobile robot
requires ‘specialized’ policies for self-adaption, but the over-
all system is designed to handle and process any ‘fault’
situation regardless of the component type. In most cases,
the performance of the robot is still impaired (for example,
it may take longer to carry out tasks), but the point is that the
robot can keep working at a level.

9.4 Why use AIFH?

Why would a developer/researcher consider using the AIFH
architecture rather than MAPE-K or IMD?

In this work, we researched the MAPE-K (autonomic
computing) and IMD (robotics) models to adopt key fea-
tures from those architectures, to formulate a hybrid generic
architecture (‘AutonomicRobotics’) that specifically focuses
on mobile robot fault handling. The MAPE-K design offers
a single feedback loop that monitors for faults, whereas the
AIFH offers a dual feedback loop (reactive and proactive)—
this allows not only to react quickly to fault situations but
also to investigate sensor data and look for downward trends
in component behaviors. The IMD model can react quickly
to a fault, but it lacks the knowledge over time, to establish
if a component is underperforming. The MAPE-K feedback
loop is one-way (Analysis leads to Plan, Plan to Execute,

etc.); the AIFH (two-way feedback loop) can make a deci-
sionwithin theAnalysis layer to return back to theAwareness
layer (during its fault analysis) and alert the Awareness layer
that its fault detection process is over-sensitive and needs
re-adjusting. In the MAPE-K, the Execute process simply
carries out the policies from the Plan process without ques-
tion; however, in theAIFHmodel, theAdjustment layer takes
the place of both MAPE-K (Plan and Execute), in regard to
decision making and execution of compensation policies. In
comparison with the IMD model, the Adjustment layer has
a direct route to the effectors, to implement policy changes.
If the IMD (Reflection layer) is used to formulate a policy,
it must traverse three layers before it can communicate with
the effectors.

10 Conclusions and future work

The generic autonomic architecture can also be employed in
the development of autonomic systems for new robot com-
ponents. Our work on the generic autonomic architecture
has also helped us to better understand how suitable design
of future robotic components could greatly facilitate their
eventual management within an autonomic framework. We
have found in our investigations that certain characteristics in
components could be improved to allow flexibility in chang-
ing their parameter settings when faced with hardware fault
issues, for example, the lack of flexibility in changing indi-
vidual motor ‘drive’ parameters when dealing with ‘wheel
alignment’ issues. Robotic engineers should consider adopt-
ing an autonomic approach when designing components and
sensors for future mobile robots to make components more
adaptable. The AIFH architecture provides a reusable soft-
ware engineering design, where other developers can reuse.

Future work will concentrate on adapting the generic
architecture into a fully implemented system. Further work
is required in trying to balance the processing time for
both the System Manager and the Autonomic Manager. We
would also like to investigate proactive approaches to fault
detection, that is, trying to discover early stages of compo-
nent degradation and therefore alerting the robots System
Manager to possible pending faults. This would then allow
Users/Mission Control to take appropriate action.

In this journal, we concentrated on handling specific
faults, which occurred independently of each other. In future
research, handling faults that occur simultaneously would
require significant work as a fault within a component may
influence how Autonomic Manager can compensate for a
fault within a different component. Faults may also occur
within the Autonomic Manager itself, but these types of dis-
creet faults are beyond the scope of this journal but may be
addressed in future work.
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