1	Suboptimal Biochemical Riboflavin Status is Associated with Lower Hemoglobin
2	and Higher Rates of Anemia in a Sample of Canadian and Malaysian Women of
3	Reproductive Age
4	
5	Abeer M. Aljaadi ¹ , Ru En How ² , Su Peng Loh ² , Shannon E. Hunt ^{3,4} , Crystal D.
6	Karakochuk ¹ , Susan I. Barr ¹ , Liadhan McAnena ⁵ , Mary Ward ⁵ , Helene McNulty ⁵ , Geok
7	Lin Khor ² , Angela M. Devlin ⁶ , and Tim J. Green (ORCID) ^{1,3,7*}
8	
9	¹ Department of Food, Nutrition, and Health, University of British Columbia, Vancouver,
10	Canada; ² Department of Nutrition and Dietetics, Universiti Putra Malaysia, Selangor,
11	Malaysia; ³ Healthy Mothers, Babies and Children Theme, South Australian Health and
12	Medical Research Institute, Adelaide, Australia; ⁴ School of Agriculture, Food and Wine,
13	Faculty of Sciences, University of Adelaide, Adelaide, South Australia, Australia;
14	⁵ Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, Northern
15	Ireland; ⁶ Department of Pediatrics, University of British Columbia, British Columbia
16	Children's Hospital Research Institute, Vancouver, Canada; ⁷ Discipline of Paediatrics,
17	University of Adelaide, Adelaide, South Australia, Australia.
18	
19	The manuscript contains OSM material.
20	
21	Abbreviations: AGP, α -1 acid glycoprotein; BMI, Body Mass Index; CRP, C-reactive
22	protein; C-Chinese, Canadian Chinese; CHMS, Canadian Health Measures Survey; EAR,
23	estimated average requirement; EGRac, erythrocyte glutathione reductase activity
24	coefficient; FAD, flavin adenine dinucleotide; FMN, flavin mononucleotide; G6PD,

25	glucose 6-phosphatase dehydrogenase; M-Chinese, Malaysian Chinese; MCV, mean
26	corpuscular volume; RBP, retinol binding protein; sTfR, soluble serum transferrin
27	receptor; UK, United Kingdom.
28	
29	Financial support: This research was supported by funding from Dairy Farmers of
30	Canada and Natural Sciences and Engineering Research Council of Canada. AMA is
31	supported by a scholarship from Umm Al-Qura University administered by the Saudi
32	Arabian Cultural Bureau in Canada. AMD is supported by an Investigator Grant from BC
33	Children's Hospital Research Institute.
34	
35	Conflicts of interest: All authors declare no conflicts of interest.
36	
37	*Correspondence: Dr. Tim Green, South Australian Health and Medical Research
38	Institute, 72 King William Road, North Adelaide SA 5006 Australia, PO Box: 11060,
39	Adelaide SA 5001; Email: tim.green@sahmri.com.
40	
41	PubMed indexing: Aljaadi, How, Loh, Hunt, Karakochuk, Barr, McAnena, Ward,
42	McNulty, Khor, Devlin, Green
43	
44	Word count for the full manuscript: 3247
45	
46	Number of manuscript figures: 0
47	

Number of manuscript tables: 4

50	OSM: Supplemental Table 1 and Table 2 are available from the "Supplementary data"
51	link in the online posting of the article and from the same link in the online table of
52	contents at https://academic.oup.com/jn/.
53	
54	Running title: Riboflavin status and Anemia
55	
56	ABSTRACT
57	Background: Riboflavin is required for several redox reactions. Clinical riboflavin
58	deficiency occurs mainly in low-income countries, where it is associated with anemia.
59	The functional significance of suboptimal riboflavin status in different populations and its
60	role in anemia is not well understood.
61	Objectives: We assessed biomarker status of riboflavin and its association with
62	hemoglobin concentration and anemia in women living in Vancouver, Canada and Kuala
63	Lumpur, Malaysia.
64	Methods: Healthy non-pregnant, non-breastfeeding women (19-45 years) were recruited
65	from Canada (n=206) and Malaysia (n=210) via convenience sampling. Fasting blood
66	was collected to assess riboflavin status (erythrocyte glutathione reductase activity
67	coefficient, EGRac), hematological indicators, soluble transferrin receptor (sTfR),
68	ferritin, vitamin A, folate, and vitamin B-12 concentrations. Linear and logistic
69	regression models were used to assess the association of riboflavin status with
70	hemoglobin concentration and anemia.

71	Results: EGRac (mean±SD) values were higher, indicating poorer riboflavin status, in
72	Malaysian versus Canadian women, 1.49±0.17 vs. 1.38±0.11. Likewise, riboflavin
73	biomarker deficiency (EGRac \geq 1.40) was significantly more prevalent among Malaysians
74	than Canadians (71% vs. 40%). More Malaysian than Canadian women were anemic
75	(hemoglobin <120 g/L; 18% vs. 7%). Using linear regression (pooled sample; n=416),
76	EGRac values were negatively associated with hemoglobin concentration (r = -0.18; P
77	<0.001). This relationship remained significant (P =0.029) after adjusting for age, parity,
78	ethnicity, vitamin B-12, folate, sTfR, ferritin, and vitamin A. Women with riboflavin
79	deficiency (EGRac \geq 1.40) were twice as likely to present with anemia (adjusted OR=
80	2.38, 95% CI: 1.08, 5.27) compared to women with EGRac <1.40.
81	Conclusions: Biochemical riboflavin deficiency was observed in Canadian and
82	Malaysian women, with higher rates of deficiency among Malaysian women. Deficient
83	biomarker status of riboflavin was a weak but significant predictor of hemoglobin and
84	anemia suggesting that the correction of riboflavin deficiency may potentially play a
85	small protective role in anemia, but this requires further investigation.
86	
87	Keywords: riboflavin; anemia; women; reproductive age

89 INTRODUCTION

90 Riboflavin, as flavin adenine dinucleotide (FAD) and flavin mononucleotide 91 (FMN), is an important enzymatic cofactor in several redox reactions. It is primarily 92 obtained from dairy products, beef, chicken, fish, and in some countries, fortified wheat 93 flour (1). Severe riboflavin deficiency (intakes of 0.5-0.6 mg/day in adults), which is 94 uncommon in high-income countries, leads to clinical signs of deficiency such as 95 cheilosis, angular stomatitis, and colored-swollen tongue (1). Milder forms of riboflavin 96 deficiency, defined as the presence of biomarker deficiency without overt clinical 97 deficiency symptoms (1), have been associated with anemia (2,3), which is more 98 common in women (4). It is hypothesized that riboflavin deficiency impairs red blood 99 cell synthesis by altering flavin-dependent release of iron from stores, decreasing iron 100 absorption, and increasing the rate of iron loss from the gastrointestinal tract (2,5-7). In 101 addition, riboflavin deficiency could affect hemoglobin production through impaired 102 flavin-dependent synthesis of 5'pyridoxal phosphate that is required for the first step in 103 heme biosynthesis (1,8). Most population studies of riboflavin deficiency and anemia 104 have been conducted in regions with endemic riboflavin deficiency and inadequate 105 intake, such as in rural Gambia, Thailand, and China (3,9-11). Less is known about 106 populations with milder forms of riboflavin deficiency. One exception is the study of 107 Powers et al.(2) in the United Kingdom (UK), which reported that riboflavin 108 supplementation (2 or 4 mg/day) was associated with a median increase of 4.5g/L in 109 hemoglobin concentrations among non-pregnant, non-lactating women in the lowest 110 tertile of riboflavin status at baseline (erythrocyte glutathione reductase activity 111 coefficient, EGRac >1.65) compared to supplemented women in the first and second

112	tertiles (EGRac <1.51 and 1.51-1.65, respectively). EGRac is considered to be the gold-
113	standard measurement of biomarker status of riboflavin. It is a functional indicator of
114	riboflavin status, whereby the activity of erythrocyte glutathione reductase, an FAD-
115	dependent enzyme, is measured in red blood cells before and after the addition of FAD.
116	EGRac is a ratio of enzyme activity after FAD addition to enzymatic activity before FAD
117	addition. A higher EGRac indicates less endogenous FAD available for the enzyme, and
118	poorer riboflavin status. Although EGRac >1.40 generally equates with deficiency,
119	EGRac values between >1.20 and >1.70 have been previously used to define low status
120	(2,9,12–14).
121	Unlike other B vitamins (e.g. folate and vitamin B-12), biomarker status of
122	riboflavin is rarely measured in population studies. However, a report from the National
123	Diet and Nutrition Surveys (NDNS) from the UK reported that 53% of women (aged 19-
124	49 years) had biomarker evidence of riboflavin deficiency (EGRac >1.40) (15) although
125	only 9.3% of the women consumed less than the UK Lower Reference Nutritional Intake
126	for riboflavin of 0.8 mg/day (16). In Canada, where white wheat flour is fortified with
127	riboflavin (17), the prevalence of inadequate riboflavin intake is very low, with less than
128	5% of women of reproductive age consuming less than the estimated average requirement
129	(EAR) of 0.9 mg/day (18,19). However, in our recent small study in Vancouver, we
130	found that 41% of women of reproductive age (n=49) had riboflavin biomarker
131	deficiency (based on EGRac ≥ 1.4) (20).
132	The objectives of this study were to assess riboflavin biomarker status using
133	EGRac and to determine the relationship between EGRac and hemoglobin concentration
134	and anemia prevalence in a sample of women of reproductive age from Metro

135	Vancouver, Canada and Kuala Lumpur, Malaysia. Canada is a high-income country with
136	mandatory riboflavin fortification and adequate riboflavin intake, but there is lack of
137	evidence on the riboflavin status of women of reproductive age in this population;
138	Malaysia is a middle-income country with no mandatory riboflavin fortification (21) and
139	reported inadequate riboflavin intake, as well as low dairy consumption (22-24). To
140	examine ethnic-specific differences in biomarker status, we assessed women of European
141	and Chinese ethnicity in Canada, and women of Malay and Chinese ethnicity in
142	Malaysia.
143	
144	METHODS
145	
146	Participants
147	Convenience samples of women (19-45 years) from Metro Vancouver, Canada,
148	and from Kuala Lumpur, Malaysia, were recruited through posters, e-mails, and
149	advertisement in the social media. Women were eligible if they were healthy, not
150	pregnant or breastfeeding, not taking riboflavin-containing supplements for the past four
151	months, and were of European or Chinese ethnicity (Canada) or Malay or Chinese
152	ethnicity (Malaysia). Women who self-reported having β -thalassemia, untreated
153	hypothyroidism, or glucose 6-phosphate dehydrogenase (G6PD) deficiency were
154	excluded (25–27). To account for the possibility of a significant interaction between
155	ethnicity and EGRac on hemoglobin concentrations, we aimed to recruit n=100 women
156	from each ethnic group from each country based on consultation with a biostatistician
157	using G*Power 3.1 for multiple linear regression (6 independent variables) and an

expected multiple regression coefficient of R² = 0.13 with 80% power and 95%CI. Ethics
approval was obtained from the University of British Columbia Clinical Research Ethics
Board in Canada [H15-00521] and from the Medical Research Ethics Committee of the
Faculty of Medicine and Health Sciences, Universiti Putra Malaysia [FPSK(FR15)P020].
Written informed consent was obtained from all women.

163

164 Data and blood collection

165 Women attended a morning clinic following a 10-hour fast. Health and 166 demographic information was collected using a questionnaire. Body weight, height, and 167 waist circumference were measured in duplicate using standardized techniques (28). 168 Venous blood samples were collected into three evacuated tubes (Becton Dickinson), two 169 with EDTA and one without anticoagulant. A complete blood count was performed on 170 fresh EDTA blood using hematology analyzers (Beckman COULTER® Ac·T diffTM 171 Analyzer in Malaysia and Sysmex XT2000i in Canada) and appropriate quality controls 172 were run daily. Blood samples were spun in a refrigerated (4°C) centrifuge; plasma or 173 serum were removed and divided into aliquots. Erythrocytes from a tube containing 174 EDTA were washed three times with PBS (SIGMA), for the EGRac assay. All samples 175 were shipped on dry ice and stored at -80°C until analyzed.

176

177 Biochemical analyses

EGRac was measured at Ulster University, Coleraine, Northern Ireland, UK,
using established methods on Randox Daytona+ clinical chemistry analyzer (Randox
Laboratories) (9). EGRac was calculated as the ratio of FAD-stimulated to -unstimulated

181	enzyme activity, which indicates the degree of sample saturation with riboflavin (9,29).
182	Quality control was provided by repeated analysis of stored aliquots of pooled and
183	characterized erythrocytes, with known EGRac values corresponding to adequate and
184	deficient status. To adjust for confounding effects of micronutrient deficiencies and
185	inflammation on hematologic status, the following parameters were measured: indicators
186	of iron status, folate, vitamin B-12, vitamin A [retinol binding protein (RBP)], C-reactive
187	protein (CRP), and α -1 acid glycoprotein (AGP). Serum ferritin, soluble transferrin
188	receptor (sTfR), RBP, CRP, and AGP were assessed by sandwich ELISA at the VitMin
189	Laboratory (30). Plasma folate concentrations were quantified by a microbiological assay
190	using 96-microtitre plates and the chloramphenicol-resistant strain of Lactobacillus
191	rhamnosus (ATCC 27773) at the Trace Elements Lab in the University of Otago, New
192	Zealand (31,32). Plasma vitamin B-12 was analyzed by competitive immunoassay using
193	direct chemiluminescent technology at Vancouver General Hospital Chemistry lab
194	(Siemens ADVIA Centaur, Erlangen, Germany).
195	For EGRac analysis, the inter-assay CVs were 2.3% for the high control sample
196	(high riboflavin; mean±SD EGRac: 1.17±0.03) and 2.7% for the low control sample (low
197	riboflavin; mean±SD EGRac: 1.42±0.04). Inter-assay CVs for the folate assay were
198	calculated for the concentration of high, medium, and low control samples and were
199	<15% (12.87%, 6.58%, 9.37%, respectively). For ferritin, sTfR, RBP, CRP, and AGP,
200	inter-assay CVs were 2.25%, 3.59%, 3.61%, 5.84%, and 8.09%, respectively.
201	

202 Statistical analyses

203	Results are presented as frequencies (%) for categorical variables, mean \pm SD for
204	normally distributed continuous variables, and median (IQR) for non-normally
205	distributed continuous variables. Country- and ethnic-specific differences were
206	determined by independent sample T-tests (for parametric) and Wilcoxon-rank sum tests
207	(for non-parametric) to compare concentrations of biomarkers (continuous variables) and
208	Fischer's exact tests were used to compare prevalence rates across groups. Ferritin and
209	RBP concentrations were corrected for inflammation using the inflammation biomarkers,
210	CRP and AGP (33,34).
211	Riboflavin status was classified as deficient (EGRac \geq 1.4), suboptimal (1.3 \leq
212	EGRac <1.4), and adequate (EGRac <1.3) (13,29,35). Anemia was defined as
213	hemoglobin <120 g/L (36). Depleted iron stores were defined as ferritin <15 μ g/L, and
214	tissue iron deficiency was defined as $sTfR > 8.3 mg/L$ (36). Acute inflammation was
215	defined as CRP >5 mg/L and chronic inflammation as AGP >1 g/L (33). Plasma folate
216	status was categorized as deficient (<6.8 nmol/L), possible deficiency (6.8-13.4 nmol/L),
217	normal (13.5-45.3 nmol/L), and high (>45.3 nmol/L) (37). Vitamin B-12 status was
218	classified into adequate (>220 pmol/L), marginal (148-220 pmol/L), and deficient (<148
219	pmol/L) categories (38,39).
220	Linear regression was used to assess the association between hemoglobin
221	concentration and multiple independent variables. We included interaction terms for
222	EGRac by country and by ethnicity in the models in order to explore whether country or
223	ethnicity modified the relationship between EGRac and hemoglobin concentrations.
224	There were no significant interactions ($P > 0.05$) between EGRac and country or EGRac
225	and ethnicity on hemoglobin concentrations. We decided a priori, regardless of an

226	interaction, to examine each country separately. Variables were included in the model if
227	they had a bivariate correlation of $P \ge 0.2$ with hemoglobin or if they are known to be
228	associated with anemia. Age, ferritin, RBP, sTfR, vitamin B-12, and folate were analyzed
229	as continuous variables and parity (\geq 1 child born, yes/no) and ethnicity as categorical
230	variables in the regression models. Logistic regression models were used to determine the
231	association between anemia (binary outcome) and EGRac (continuous variable) or
232	riboflavin deficiency (categorical variable). A maximum of 5 independent variables were
233	included in the logistic regression models as anemia cases in the total sample were $n=53$
234	(40). Significance was indicated by two-sided P values of <0.05. Data were analyzed
235	using Stata software version SE/14.2 for Mac (Stata Corp, College Station, Texas).
236	
237	RESULTS
238	We recruited n=110 women of European ethnicity and n=96 women of Chinese
239	ethnicity living in Metro Vancouver, Canada, and n=105 women of Malay ethnicity and
240	n=105 of Chinese ethnicity living in Kuala Lumpur, Malaysia. Demographic and
241	anthropometric characteristics are presented by country and ethnicity in Table 1. Women
242	from both countries were comparable in age, smoking status, education level, and
243	prevalence of acute (CRP >5mg/L) and chronic (AGP >1g/L) inflammation. More
244	Malaysian women had children and the prevalence of overweight/obesity (BMI \geq 25
245	kg/m ²) was higher among Malaysian than Canadian women. In Canada, women of
246	Chinese ethnicity were younger and had a lower prevalence of overweight/obesity than
247	women of European ethnicity. In Malaysia, women of Chinese ethnicity were younger,

were less likely to have children, and had lower prevalences of overweight/obesity andacute inflammation than women of Malay ethnicity.

250 Mean hemoglobin concentrations were not different between Canadian and 251 Malaysian women (Table 2). In Malaysia, women of Chinese ethnicity had higher 252 hemoglobin concentrations than Malay women. The prevalence of anemia (hemoglobin 253 <120g/L) was higher in Malaysian women compared to Canadian women. Compared to 254 Canadian women, EGRac values were higher and riboflavin biomarker deficiency 255 $(EGRac \ge 1.4)$ was more prevalent in Malaysian women. 256 Although serum ferritin and the prevalence of depleted iron stores (ferritin <15 257 µg/L) did not differ between Canadian and Malaysian women, more Malaysian women 258 had tissue iron deficiency (sTfR > 8.3 mg/L) than Canadian women. There was no 259 biochemical evidence of vitamin A deficiency (RBP <0.7µmol/L), plasma folate 260 deficiency (<6.8 nmol/L), or macrocytic anemia (hemoglobin <120 g/L and mean 261 corpuscular volume (MCV) >98 fL). Less than 1% of women had vitamin B-12 262 deficiency (<148 pmol/L) in both countries. However, more Canadian women had 263 marginal vitamin B-12 status and high plasma folate concentration (>45.3 nmol/L) than 264 Malaysian women. 265 Few ethnic-specific differences in micronutrient status in women from each

country were observed (**Table 2**). In Canada, European women had higher EGRac values

and were less likely to be classified as adequate; they also had lower median plasma

- vitamin B-12 concentrations and higher serum RBP compared to Chinese women. In
- 269 Malaysia, Malay women had higher mean EGRac values, lower median plasma folate

concentrations, and higher median plasma vitamin B-12 concentrations compared to
Chinese women (Table 2).

272 An inverse relationship between hemoglobin concentrations and EGRac was 273 observed in the entire population of women (r= -0.18; P <0.001). Further, multivariable 274 linear regression analyses found that a 1-SD increase in EGRac was associated with a 275 0.10-SD decrease in hemoglobin concentrations (Table 3). EGRac contributed 1% of the 276 variance in hemoglobin concentrations in the multivariable linear regression model. RBP, 277 ferritin, and sTfR were all predictors of hemoglobin. There was no significant interaction 278 between country and EGRac (P = 0.75) on hemoglobin concentrations. Models for each 279 country are shown separately (Supplemental Tables 1 and 2). When analyses were 280 conducted by country, EGRac was negatively associated with hemoglobin concentrations 281 in Canada, but was not a significant predictor of hemoglobin concentrations in Malaysia. 282 Ethnicity, sTfR, and RBP were significant predictors of hemoglobin concentrations in 283 Malaysia, whereas EGRac and sTfR remined significant predictors of hemoglobin 284 concentrations in Canada. We further analyzed the relationship between riboflavin status 285 and the prevalence of anemia by logistic regression. EGRac was not associated with 286 anemia in the adjusted model (Table 4). However, deficient riboflavin status (EGRac 287 \geq 1.4) was positively associated with a greater risk of anemia as shown in **Table 4**.

288

289 **DISCUSSION**

In this sample of healthy women of reproductive age, we found that 40% of
Canadian women and 70% of Malaysian women had EGRac values ≥1.40, indicating
riboflavin biomarker deficiency. We also report that EGRac was inversely correlated with

293	hemoglobin concentrations and that the odds of anemia were 2-fold greater in women
294	with riboflavin biomarker deficiency (EGRac ≥ 1.40) than women with EGRac < 1.40 .
295	The high rate of riboflavin biomarker deficiency in Canadian women was
296	unexpected given that white wheat flour is fortified with riboflavin and the prevalence of
297	dietary inadequacy is very low (18). Riboflavin is naturally found in grain products in
298	small quantities, but the milling and processing of cereal grains cause the loss of many
299	nutrients, including riboflavin. Canada has required the addition of 0.40 mg of riboflavin
300	to each 100 g (equivalent to 4 ppm) of white flour and all foods made from white flour
301	since 2009 (17). Our findings are consistent with Whitfield et al. (20), who reported 41%
302	of female university students living in Vancouver (n=49, mean age= 26.3 ± 4.6 years)
303	had deficient (EGRac \geq 1.40) and 29% had suboptimal (1.30 \leq EGRac <1.40) riboflavin
304	status (20). In contrast, the finding of higher rates of riboflavin biomarker deficiency in
305	Kuala Lumpur compared to Metro Vancouver were expected because of the assumed
306	lower intake of riboflavin due to low dairy consumption and lack of mandatory food
307	enrichment or fortification (21-23). Given that less than 5% of women of reproductive
308	age in Canada had riboflavin intakes less than the EAR for riboflavin (18), the high
309	prevalence of EGRac \geq 1.4 raises the question as to whether it is the current cutoff or the
310	EAR is set too low.
211	We also EGD as sutoffs that are widely used to defining ribeflavin deficiency

We chose EGRac cutoffs that are widely used to defining riboflavin deficiency and suboptimal status (13,20,35,41,42), but there remains controversy around which EGRac cutoff is optimal. An EGRac of 1.20 suggests 20% stimulation of the enzyme and EGRac >1.20 has been considered an indication for inadequate riboflavin intake by many researchers (43–46). However, Tillotson and Baker suggested that EGRac values up to

316 1.30 are considered normal based on their riboflavin depletion-repletion trial conducted

on n=6 adult men (47). Sadowski set an upper limit for adequate riboflavin status of 1.34

318 based on the mean EGRac +2 SD of a group of healthy older adult men and women (aged

 \geq 60 years; n=927) from the Boston Nutritional Status Survey (48). Accordingly, many

320 have considered EGRac >1.40 (2,14,49) and \geq 1.40 (13,20,29,35,42) as a cutoff point for

deficiency, but even higher cutoffs have been also used (12,50).

322 The prevalence of anemia (hemoglobin <120 g/L) in women (20-49 y) was lower

in the Canadian Health Measures Survey 2009-2011 (CHMS) than our study, 3.7%

324 compared with 7.3%, respectively (51). Likewise, the prevalence of iron deficiency,

based on a low serum ferritin (<15 μ g/L), was lower in the CHMS (9.1%) than our study

326 (14.6%). Based on national data, 22.8% of Malaysian non-pregnant women (15-49 y)

327 were anemic (hemoglobin <120 g/L) in 2015 (52), which is similar to our sample at

328 18.1%. Mirroring our findings, rates of anemia are higher among ethnic Malays

329 compared to Chinese Malay (53). There are no national data on iron deficiency in

330 Malaysian non-pregnant women, but a study in Kuala Lumpur reported that 24.1% of

331 women (18-40 y; n=135 Malays and n=130 Chinese) had depleted iron stores (serum

ferritin $<15 \ \mu g/L$) which is comparable to our 20.8% (54).

In the current study, EGRac was inversely and independently associated with hemoglobin concentrations. The relationship was significant but weak, explaining about 1% of the variance, and was the third most important modifiable predictor of hemoglobin after iron indicators (ferritin and sTfR) and vitamin A (RBP concentrations). There is little published data available for comparison. A prospective survey carried out in China (2002-2007) reported a positive association between inadequate riboflavin intake (<

339	Chinese EAR) (55); assessed by 3-day weighed food record) and anemia (hemoglobin
340	<120 g/L) in women at baseline (11). Those with anemia but with riboflavin intake in the
341	highest quartile at baseline (1.3 mg/d) were less likely to have anemia at the 5-year
342	follow up [RR=0.52 (95%CI: 0.28, 0.98)]. However, no biochemical indicators of
343	riboflavin status were measured in this survey. A study conducted in the UK in n=123
344	women (aged 19-25 years), all of whom had baseline EGRac >1.40, reported a negative
345	correlation between hemoglobin and EGRac (n=117; r = -0.22, P = 0.016) (2). The study
346	also showed a significant improvement in riboflavin status (decreased EGRac values)
347	after 8 weeks of riboflavin supplementation (2 or 4 mg/day) with a dose-dependent
348	response. This improvement in riboflavin status was associated with an increase in
349	hemoglobin concentrations, but this was observed only among women with the poorest
350	riboflavin status at baseline (EGRac >1.65) (2). We found 1.5% and 14.8% of women
351	above this cutoff in Canada and Malaysia, respectively.
352	Our study had a number of strengths, including the use of a robust functional
353	marker of riboflavin status, EGRac, and including women of different ethnicities from
354	different countries. Moreover, we were able to adjust for a number of important
355	nutritional and non-nutritional confounders. However, we did not measure biomarkers of
356	vitamin B-6, vitamin C, and zinc, which have been shown to be associated with anemia
357	(56–58). Our use of convenience samples makes it difficult to generalize findings of this
358	study to non-pregnant women living in Metro Vancouver and Kuala Lumpur. For
359	example, the women were of higher education than the general population. Over 60% of
360	our sample had obtained a bachelor's degree or higher, compared with 39% of women
361	aged 25-64 y in Metro Vancouver (59) and 18% of women aged 20-44 y in Selangor

362	state, Malaysia (60). Therefore, studies on representative samples of Canadian and
363	Malaysian women are needed. There were very few cases of anemia (n=53) to draw
364	definitive conclusions. Exploring the relationship between riboflavin status and anemia in
365	populations with higher rates of anemia is warranted.
366	In conclusion, we found high rates of suboptimal and deficient riboflavin
367	biomarker status (EGRac \geq 1.30) in women from both Canada and Malaysia with higher
368	rates observed in Malaysian women. The findings in Canada were surprising given
369	riboflavin fortification and the low rate of dietary riboflavin inadequacy. The unexpected
370	higher rates of riboflavin biomarker deficiency in European than Chinese women in
371	Canada require further research. Riboflavin status was found to be a predictor for
372	hemoglobin concentrations, albeit to a lesser extent than iron or vitamin A. Although
373	EGRac is widely recognized as the gold standard biomarker for assessing riboflavin
374	status, standardized protocols and cutoffs are required to allow for valid comparisons
375	between different populations.
376	

377 ACKNOWLEDGEMENTS

378 We thank our biostatistician, Dr. Arianne Albert, British Columbia Children and

379 Women's Health Research Institute, for statistical support. We thank Juergen Erhardt,

380 The Human Nutrition Laboratory, Willstaett, Germany, for conducting the serum

381 biomarker analyses. We thank Sharen Chong for assistance with subject recruitment and

382 data collection in Malaysia. The authors' responsibilities were as follows: AMA, SIB and

383 TJG designed the research and overall research plan; AMA drafted the research protocol;

384 TJG and AMD reviewed and edited the final protocol; AMA conducted the research,

- analyzed the data, and drafted the research manuscript. SPL and GLK provided essential
- 386 logistic support for the study execution in Malaysia; REH and SEH helped with data
- 387 collection in Malaysia. LM, MW, and HM developed the method and measured EGRac;
- 388 CDK and SIB contributed to data analyses. AMA, AMD, SIB and TJG contributed to the
- 389 data interpretation and to the review and editing of the manuscript to its final stage.
- 390 AMA, AMD and TJG had primary responsibility for final content. All authors read and
- 391 approved the final manuscript.

REFERENCE LIST:

392	1.	Institute of Medicine. Dietary reference intakes for thiamin, riboflavin, niacin,
393		vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline.
394		Washington: National Academy of Sciences; 1998.
395	2.	Powers HJ, Hill MH, Mushtaq S, Dainty JR, Majsak-Newman G, Williams EA.
396		Correcting a marginal riboflavin deficiency improves hematologic status in young
397		women in the United Kingdom (RIBOFEM). Am J Clin Nutr. 2011;93:1274-84.
398	3.	Powers HJ, Bates CJ, Lamb WH. Haematological response to supplements of iron
399		and riboflavin to pregnant and lactating women in rural Gambia. Hum Nutr Clin
400		Nutr. 1985;39:117–29.
401	4.	World Health Organization. The global prevalence of anaemia in 2011. WHO.
402		Geneva: World Health Organization; 2015.
403	5.	Powers HJ, Weaver LT, Austin S, Wright AJ, Fairweather-Tait SJ. Riboflavin
404		deficiency in the rat: effects on iron utilization and loss. Br J Nutr. 1991;65:487-
405		96.
406	6.	Powers HJ, Wright AJ, Fairweather-Tait SJ. The effect of riboflavin deficiency in
407		rats on the absorption and distribution of iron. Br J Nutr. 1988;59:381–7.
408	7.	Ulvik RJ. Reduction of exogenous flavins and mobilization of iron from ferritin by
409		isolated mitochondria. J Bioenerg Biomembr. 1983;15:151-60.
410	8.	Coomes MW. Heme biosynthesis. In: Devlin TM, editor. Textbook of
411		biochemistry: with clinical correlations. 7th ed. Hoboken, NJ: John Wiley & Sons;
412		2011. p. 791.
413	9.	Powers HJ, Bates CJ, Prentice AM, Lamb WH, Jepson M, Bowman H. The

414		relative effectiveness of iron and iron with riboflavin in correcting a microcytic
415		anaemia in men and children in rural Gambia. Hum Nutr Clin Nutr. 1983;37:413-
416		25.
417	10.	Charoenlarp P, Pholpothi T, Chatpunyaporn P, Schelp FP. The effect of riboflavin
418		on the hematologic changes in iron supplementation of schoolchildren. Southeast
419		Asian J Trop Med Public Health. 1980;11:97–103.
420	11.	Shi Z, Zhen S, Wittert GA, Yuan B, Zuo H, Taylor AW. Inadequate riboflavin
421		intake and anemia risk in a Chinese population: five-year follow up of the Jiangsu
422		Nutrition Study. PLoS One. 2014;9:e88862.
423	12.	Blanck HM, Bowman BA, Serdula MK, Khan LK, Kohn W, Woodruff BA.
424		Angular stomatitis and riboflavin status among adolescent Bhutanese refugees
425		living in southeastern Nepal. Am J Clin Nutr. 2002;76:430-5.
426	13.	Wilson CP, McNulty H, Ward M, Strain JJ, Trouton TG, Hoeft BA, Weber P,
427		Roos FF, Horigan G, McAnena L, et al. Blood pressure in treated hypertensive
428		individuals with the MTHFR 677TT genotype is responsive to intervention with
429		riboflavin: findings of a targeted randomized trial. Hypertension. 2013;61:1302-8.
430	14.	Mataix J, Aranda P, Sánchez C, Montellano MA, Planells E, Llopis J. Assessment
431		of thiamin (vitamin B1) and riboflavin (vitamin B2) status in an adult
432		Mediterranean population. Br J Nutr. 2003;90:661–6.
433	15.	Ruston D, Hoare J, Henderson L, Gregory J, Bates CJ, Prentice A, Birch M, Swan
434		G, Farron M. The National Diet & Nutrition Survey: adults aged 19 to 64 years.
435		Volume 4: Nutritional status (anthropometry and blood analytes), blood pressure
436		and physical activity. Office of the Population Censuses and Surveys. London;

437 2004.

438	16.	Henderson L, Irving K, Gregory J, Bates CJ, Prentice A, Perks J, Swan G, Farron
439		M. The National Diet & Nutrition Survey : adults aged 19 to 64 years. Volume 3:
440		Vitamin and mineral intake and urinary analytes. Office of the Population
441		Censuses and Surveys. London; 2003.
442	17.	Canadian Food Inspection Agency. Prohibition against the sale of unenriched
443		white flour and products containing unenriched flour [Internet]. Food and Drug
444		Regulations. 2009. p. Section B.13.001. Available from:
445		http://www.inspection.gc.ca/food/labelling/food-labelling-for-industry/grain-and-
446		bakery-products/unenriched-flour/eng/1415915977878/1415915979471
447	18.	Health Canada. Canadian Community Health Survey, Cycle 2.2, Nutrition.
448		Ottawa: Statistics Canada; 2004.
449	19.	Forster-Coull L, Milne RL, Barr SI. British Columbia Nutrition Survey: Report on
450		energy and nutrient intakes [Internet]. 2004 [cited 2015 Feb 24]. p. 94-5.
451		Available from:
452		http://www.health.gov.bc.ca/library/publications/year/2004/nutrientsreport.pdf
453	20.	Whitfield KC, Karakochuk CD, Liu Y, McCann A, Talukder A, Kroeun H, Ward
454		M, McNulty H, Lynd LD, Kitts DD, et al. Poor thiamin and riboflavin status is
455		common among women of childbearing age in rural and urban Cambodia. J Nutr.
456		2015;145:628–33.
457	21.	Isabelle M, Chan P, Wijaya SY. International Life Sciences Institute (ILSI) report
458		of regulatory status of micronutrient fortification in Southeast Asia. Singapore;
459		2011.

460	22.	Chee SJ, Zawiah H, Ismail M, Ng K. Anthropometry, dietary patterns and nutrient
461		intakes of Malaysian estate workers. Malays J Nutr. 1996;2:112-26.
462	23.	Gan WY, Mohd NM, Zalilah MS, Hazizi AS. Differences in eating behaviours,
463		dietary intake and body weight status between male and female Malaysian
464		University students. Malays J Nutr. 2011;17:213–28.
465	24.	Khor GL, Duraisamy G, Loh SP, Green T. Dietary and blood folate status of
466		Malaysian women of childbearing age. Asia Pac J Clin Nutr. 2006;15:341–9.
467	25.	Prentice AM, Bates CJ, Prentice A, Welch SG, Williams K, McGregor IA. The
468		influence of G-6-PD activity on the response of erythrocyte glutathione reductase
469		to riboflavin deficiency. Int J Vitam Nutr Res. 1981;51:211–5.
470	26.	Anderson BB, Clements JE, Perry GM, Studds C, Vullo C, Salsini G. Glutathione
471		reductase activity and its relationship to pyridoxine phosphate activity in G6PD
472		deficiency. Eur J Haematol. 1987;38:12–20.
473	27.	Becker K, Krebs B, Schirmer RH. Protein-chemical standardization of the
474		erythrocyte glutathione reductase activation test (EGRAC test). Application to
475		hypothyroidism. Int J Vitam Nutr Res. 1991;61:180–7.
476	28.	World Health Organization. STEPS Manual: Section 5: Collecting Step 2 data:
477		Physical Measurements [Internet]. WHO. World Health Organization; 2017 [cited
478		2018 Apr 19]. p. 2–4. Available from:
479		https://www.who.int/ncds/surveillance/steps/Part3_Section5.pdf
480	29.	Wilson CP, Ward M, McNulty H, Strain JJ, Trouton TG, Horigan G, Purvis J,
481		Scott JM. Riboflavin offers a targeted strategy for managing hypertension in
482		patients with the MTHFR 677TT genotype: a 4-y follow-up. Am J Clin Nutr.

483 2012;95:766–72.

484	30.	Erhardt JG, Estes JE, Pfeiffer CM, Biesalski HK, Craft NE. Combined
485		measurement of ferritin, soluble transferrin receptor, retinol binding protein, and
486		C-reactive protein by an inexpensive, sensitive, and simple sandwich enzyme-
487		linked immunosorbent assay technique. J Nutr. 2004;134:3127-32.
488	31.	Molloy AM, Scott JM. Microbiological assay for serum, plasma, and red cell
489		folate using cryopreserved, microtiter plate method. In: McCormick DB, Suttie
490		JW, Wagner C, editors. Methods in enzymology. New York: Academic Press;
491		1997. p. 43–53.
492	32.	O'Broin S, Kelleher B. Microbiological assay on microtitre plates of folate in
493		serum and red cells. J Clin Pathol. 1992;45:344–7.
494	33.	Thurnham DI, McCabe LD, Haldar S, Wieringa FT, Northrop-Clewes CA,
495		McCabe GP. Adjusting plasma ferritin concentrations to remove the effects of
496		subclinical inflammation in the assessment of iron deficiency: a meta-analysis. Am
497		J Clin Nutr. 2010;92:546–55.
498	34.	Thurnham DI, McCabe GP, Northrop-Clewes CA, Nestel P. Effects of subclinical
499		infection on plasma retinol concentrations and assessment of prevalence of vitamin
500		a deficiency: meta-analysis. Lancet. 2003;362:2052-8.
501	35.	Horigan G, McNulty H, Ward M, Strain JJ, Purvis J, Scott JM. Riboflavin lowers
502		blood pressure in cardiovascular disease patients homozygous for the 677C>T
503		polymorphism in MTHFR. J Hypertens. 2010;28:478–86.
504	36.	Joint World Health Organization/Centers for Disease Control and Prevention.
505		Assessing the iron status of populations : including literature reviews : report of a

- 506 Joint World Health Organization/Centers for Disease Control and Prevention
- 507 technical consultation on the assessment of iron satus at the population level.
- 508 WHO. Geneva: World Health Organization; 2007.
- World Health Organization. Serum and red blood cell folate concentrations for
 assessing folate status in populations. Vitamin and Mineral Nutrition Information
- 511 System. Geneva; 2015.
- MacFarlane AJ, Greene-Finestone LS, Shi Y. Vitamin B-12 and homocysteine
 status in a folate-replete population: results from the Canadian Health Measures
 Survey. Am J Clin Nutr. 2011;94:1079–87.
- 515 39. Pfeiffer CM, Caudill SP, Gunter EW, Osterloh J, Sampson EJ. Biochemical
- 516 indicators of B vitamin status in the US population after folic acid fortification:
- 517 Results from the National Health and Nutrition Examination Survey 1999-2000.
- 518 Am J Clin Nutr. 2005;82:442–50.
- 40. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of
 the number of events per variable in logistic regression analysis. J Clin Epidemiol.
 1996;49:1373–9.
- 522 41. EFSA NDA Panel (EFSA Panel on Dietetic Products N and A, Turck D, Bresson
- 523 J, Burlingame B, Dean T, Fairweather-Tait S, Heinonen M, Hirsch-Ernst KI,
- 524 Mangelsdorf I, McArdle HJ, et al. Scientific opinion on Dietary Reference Values
 525 for riboflavin. EFSA J. 2017;15:17–9.
- 526 42. Garcia-Minguillan CJ, Fernandez-Ballart JD, Ceruelo S, Rios L, Bueno O,
- 527 Berrocal-Zaragoza MI, Molloy AM, Ueland PM, Meyer K, Murphy MM.
- 528 Riboflavin status modifies the effects of methylenetetrahydrofolate reductase

529		(MTHFR) and methionine synthase reductase (MTRR) polymorphisms on
530		homocysteine. Genes Nutr. 2014;9:435.
531	43.	Glatzle D, Korner WF, Christeller S, Wiss O. Method for the detection of a
532		biochemical riboflavin deficiency. Stimulation of NADPH2-dependent glutathione
533		reductase from human erythrocytes by FAD in vitro. Investigations on the vitamin
534		B2 status in healthly people and geriatric patients. Int J Vitam Res. 1970;40:166-
535		83.
536	44.	Benton D, Haller J, Fordy J. The vitamin status of young British adults. Int J
537		Vitam Nutr Res. 1997;67:34–40.
538	45.	Szczuko M, Seidler T, Mierzwa M, Stachowska E, Chlubek D. Effect of riboflavin
539		supply on student body's provision in north-western Poland with riboflavin
540		measured by activity of glutathione reductase considering daily intake of other
541		nutrients. Int J Food Sci Nutr. 2011;62:431-8.
542	46.	Sauberlich HE, H. JJJ, Nichoalds GE, Broquist HP, Darby WJ. Application of the
543		erythrocyte glutathione reductase assay in evaluating riboflavin nutritional status
544		in a high school student population. Am J Clin Nutr. 1972;25:756-62.
545	47.	Tillotson JA, Baker EM. An enzymatic measurement of the riboflavin status in
546		man. Am J Clin Nutr. 1972;25:425–31.
547	48.	Sadowski JA. Riboflavin. In: Hartz SC, Rosenberg IH, Russell RM, editors.
548		Nutrition in the elderly: the Boston nutritional status survey. London: Smith-
549		Gordon; 1992. p. 119–25.
550	49.	McCormick DB. Riboflavin. In: Shils ME, Olson JA, Shike M, editors. Modern
551		nutrition in health and disease. Philadelphia: Lea & Febiger; 1994. p. 366–375.

552	50.	Boisvert WA, Castaneda C, Mendoza I, Langeloh G, Solomons NW, Gershoff SN,
553		Russell RM. Prevalence of riboflavin deficiency among Guatemalan elderly people
554		and its relationship to milk intake. Am J Clin Nutr. 1993;58:85-90.
555	51.	Cooper M, Greene-Finestone L, Lowell H, Levesque J, Robinson S. Iron
556		sufficiency of Canadians. Health Rep. 2012;23:3-10.
557	52.	National Coordinating Committee on Food and Nutrition [NCCFN]. The Third
558		National Plan of Action for Nutrition of Malaysia (NPANM III) 2016-2025
559		[Internet]. Putrajaya; 2016 [cited 2019 May 7]. p. 76. Available from:
560		http://nutrition.moh.gov.my/wp-content/uploads/2016/12/NPANM_III.pdf
561	53.	Institute for Public Health (IPH). National Health and Morbidity Survey 2015
562		(NHMS 2015). Vol. II: Non-Communicable Diseases, Risk Factors & Other
563		Health Problems. Kuala Lumpur; 2015.
564	54.	Loh S, Khor G. Iron intake and iron deficiency anaemia among young women in
565		Kuala Lumpur. Malaysian J Med Heal Sci. 2010;6:63–70.
566	55.	Chinese Nutrition Association. Chinese Dietary Reference Intakes. Beijing; 2000.
567	56.	Hisano M, Suzuki R, Sago H, Murashima A, Yamaguchi K. Vitamin B6
568		deficiency and anemia in pregnancy. Eur J Clin Nutr. 2010;64:221-3.
569	57.	Ajayi OA, Nnaji UR. Effect of ascorbic acid supplementation on haematological
570		response and ascorbic acid status of young female adults. Ann Nutr Metab.
571		1990;34:32–6.
572	58.	Houghton LA, Parnell WR, Thomson CD, Green TJ, Gibson RS. Serum zinc is a
573		major predictor of anemia and mediates the effect of selenium on hemoglobin in
574		school-aged children in a nationally representative survey in New Zealand. J Nutr.

575 2016;146:1670–6.

576	59.	Statistics Canada. Vancouver [Census metropolitan area], British Columbia and
577		British Columbia [Province] (table). Census Profile. [Internet]. 2016 Census.
578		Statistics Canada Catalogue no. 98-316-X2016001. Ottawa; 2017 [cited 2019 May
579		14]. Available from: https://www12.statcan.gc.ca/census-recensement/2016/dp-
580		pd/prof/details/page.cfm?Lang=E&Geo1=CMACA&Code1=933&Geo2=PR&Cod
581		e2=59&Data=Count&SearchText=vancouver&SearchType=Begins&SearchPR=0
582		1&B1=Education&TABID=1
583	60.	Department of Statistic Malaysia. Educational and social characteristic of the
584		population 2010 [Internet]. The 2010 Population and Housing Census of Malaysia.
585		2013 [cited 2019 May 24]. p. 341. Available from:
586		https://www.mycensus.gov.my/banci/www/index.php?&id=3&page_id=40&filena
587		me=penerbitan&aid=9
588		

	Vancouver, Canada				•	Р			
	All (n=206)	European (n=110)	Chinese (n=96)	Р	All (n=210)	Malay (n=105)	Chinese (n=105)	Р	Canada vs. Malaysia
Age, years	27.6 ± 6.4	28.7 ± 6.0	26.2 ± 6.6	0.004	27.3 ± 5.3	28.3 ± 5.4	26.3 ± 5.1	0.006	0.72
Parity (≥1 child born)	14 (6.8)	8 (7.3)	6 (6.3)	1.00	31 (14.8)	24 (23.1)	7 (6.7)	0.001	0.011
Smokers	2 (<1)	2 (1.8)	0	0.50	2 (0.96)	0	2 (1.9)	0.24	1.00
Education				< 0.001				0.34	0.43
Secondary or less	28 (13.6)	5 (4.6)	23 (24.0)		29 (13.9)	18 (17.5)	11 (10.5)		
Some post-Secondary	45 (21.8)	19 (17.3)	26 (27.1)		35 (16.8)	17 (16.5)	18 (17.1)		
Bachelor's or higher	133 (64.6)	86 (78.2)	47 (49.0)		144 (69.2)	68 (66.0)	76 (72.4)		
BMI, kg/m ²	22.5 ± 3.9	23.1 ± 4.1	21.7 ± 3.6	0.008	23.6 ± 5.0	25.1 ± 6.0	22.1 ± 3.3	< 0.001	0.021
Overweight/obesity ≥25	41 (20.0)	26 (23.6)	15 (15.6)	0.17	58 (27.8)	43 (41.4)	15 (14.3)	< 0.001	0.039
Waist circumference, cm	73.0 ± 9.8	74.4 ± 10.5	71.4 ± 8.6	0.026	74.7 ± 11.2	77.0 ± 13.3	72.5 ± 8.0	0.004	0.10
Waist circumference ≥80 cm	34 (16.6)	19 (17.3)	15 (16.8)	0.85	50 (23.9)	35 (33.7)	15 (14.3)	0.001	0.07
Inflammation									
Acute, CRP >5 mg/L	11 (5.3)	8 (7.3)	3 (3.1)	0.23	17 (8.1)	15 (14.3)	2 (1.9)	0.002	0.33
Chronic, AGP >1 g/L	4 (1.9)	4 (3.6)	0	0.13	5 (2.4)	4 (3.8)	1 (<1.0)	0.37	1.00

TABLE 1 Characteristics of women aged 19-45 years in Vancouver, Canada, and Kuala Lumpur, Malaysia¹

¹Values are presented as means \pm SDs or n (%). Data are analyzed by Fisher's exact test (proportion) or two-sample t-test (continuous). AGP, α -1 acid glycoprotein; BMI, body mass index; CRP, C-reactive protein

	Vancouver, Canada				Kuala Lumpur, Malaysia				
									Canada
	All	European	Chinese	D	All	Malay	Chinese	D	VS.
	(n=206)	(n=110)	(n=96)	P	(n=210)	(n=105)	(n=105)	P	Malaysia
Hemoglobin, g/L ²	130.9 ± 8.4	131.4 ± 9.2	130.2 ± 7.5	0.29	129.4 ± 12.2	127.2 ± 12.3	131.5 ± 11.8	0.011	0.15
Anemia (hemoglobin <120 g/L) ³	15 (7.3)	7 (6.4)	8 (8.3)	0.60	38 (18.1)	24 (22.9)	14 (13.3)	0.11	0.001
Microcytic anemia (hemoglobin <120 g/L and MCV <80 fL) ³	7 (3.4)	2 (1.8)	5 (5.2)	0.26	26 (12.5)	17 (16.5)	9 (8.6)	0.096	0.001
EGRac, ratio ²	1.38 ± 0.11	1.40 ± 0.10	1.36 ± 0.13	0.022	1.49 ± 0.17	1.52 ± 0.17	1.46 ± 0.15	0.005	< 0.001
Adequate, EGRac <1.3 ³	58 (28.2)	17 (15.5)	41 (42.7)	< 0.001	20 (9.5)	8 (7.6)	12 (11.4)	0.021	< 0.001
Suboptimal, 1.3≤ EGRac <1.4 ³	66 (32.0)	44 (40.0)	22 (22.9)		40 (19.0)	13 (12.4)	27 (25.8)		
Deficient, EGRac $\geq 1.4^3$	82 (39.8)	49 (44.5)	33 (34.4)		150 (71.4)	84 (80.0)	66 (62.9)		
Serum ferritin, µg/L ⁴	36.9 (38.9)	34.1 (32.1)	38.9 (50.9)	0.31	38.4 (49.4)	40.4 (52.2)	37.1 (44.1)	0.22	0.73
Ferritin <15 µg/L ³	30 (14.6)	14 (12.7)	16 (16.7)	0.44	43 (20.5)	18 (17.1)	25 (23.8)	0.31	0.12
Serum sTfR, mg/L ⁴	4.43 (1.42)	4.35 (1.29)	4.58 (1.55)	0.19	5.08 (1.99)	5.09 (1.98)	4.89 (1.97)	0.34	< 0.001
sTfR >8.3 mg/L ³	8 (3.9)	2 (1.8)	6 (6.3)	0.15	19 (9.1)	9 (8.6)	10 (9.5)	1.00	0.045
Plasma vitamin B-12, pmol/L ⁴	307.5 (147.0)	254.0 (137)	352.0 (135.5)	< 0.001	360.0 (152.0)	372.0 (167.0)	336.0 (128.0)	0.017	< 0.001
Deficiency, <148 pmol/L ³	2 (<1)	2 (1.8)	0 (0)	0.50	1 (<1)	0 (0)	1 (<1.0)	1.00	0.620
Marginal, 148-220 pmol/L ³	41 (19.9)	36 (32.7)	5 (5.2)	< 0.001	7 (3.3)	1 (1.0)	6 (5.7)	0.07	< 0.001
Plasma folate, nmol/L ⁴	31.5 (15.5)	31.5 (17.6)	31.6 (14.8)	0.73	13.7 (8.4)	11.8 (6.5)	16.6 (9.8)	< 0.001	< 0.001
Folate >45.3 nmo/ L^3	38 (18.5)	20 (18.2)	18 (18.8)	1.00	2 (1.0)	1 (1.0)	1 (1.0)	1.00	< 0.001
Serum RBP, µmol/L ²	1.8 ± 0.5	1.9 ± 0.5	1.6 ± 0.4	< 0.001	1.4 ± 0.3	1.4 ± 0.3	1.3 ± 0.3	0.30	< 0.001
RBP <7 μmol/L ³	0.00	0.00	0.00	1.00	1 (<1)	1 (<1)	0.00	1.00	1.00

TABLE 2 Anemia and micronutrients status of women aged 19-45 years in Malaysia and Canada¹

¹Data are analyzed by two-sample t-test or Wilcoxon rank-sum test (continuous) and Fisher's exact test (proportions). MCV, mean corpuscular

volume; EGRac, erythrocyte glutathione reductase activity coefficient; sTfR, soluble transferrin receptor, RBP, retinol binding protein. ²Values are means±SDs. ³Values are n (%). ⁴Values are medians (IQRs).

⁵Ferritin and RBP were adjusted for levels of subclinical inflammation by using AGP and CRP biomarkers (33,34)

	B (95% CI)	Standardized coefficient β	Р
EGRac	-7.02 (-13.30, -0.74)	-0.10	0.029
Age (y)	-0.12 (-0.30, 0.06)	-0.07	0.20
Parity (Yes versus No)	-0.32 (-3.82, 3.18)	-0.01	0.86
Ethnicity			
European	Reference		
C-Chinese	-0.57 (-3.31, 2.18)	-0.02	0.69
Malay	0.47 (-2.97, 3.91)	0.02	0.79
M-Chinese	4.47 (1.35, 7.58)	0.18	0.005
Folate (nmol/L)	0.03 (-0.05, 0.11)	-0.04	0.51
Vitamin B-12 (pmol/L)	0.01 (0.00, 0.01)	0.08	0.09
Ferritin $(\mu g/L)^2$	0.03 (0.00, 0.06)	0.09	0.035
sTfR (mg/L)	-1.60 (-1.94, -1.27)	-0.42	< 0.001
RBP $(\mu mol/L)^2$	5.03 (2.73, 7.34)	0.22	< 0.001

TABLE 3 Association between hemoglobin concentrations and riboflavin status (EGRac)¹

¹Multiple linear regression was used with hemoglobin concentrations (g/L) as a dependent variable; n=415. Model R^2 = 0.29 and adjusted R^2 = 0.27; EGRac contributed to 1% of the variance in hemoglobin concentrations; the correlation matrix and variance inflation factors showed no signs of multicollinearity between variables included in the model. EGRac, erythrocyte glutathione reductase activity coefficient; C-Chinese, Canadian Chinese; M-Chinese, Malaysian Chinese; sTfR, soluble transferrin receptor; RBP, retinol binding protein.

²Ferritin and RBP were adjusted for levels of subclinical inflammation by using AGP and CRP biomarkers (33,34)

TABLE 4 Association between anemia and riboflavin status (EGRac) and deficiency¹

Anemia	OR	SÈ	Z	P	95% CI
Model 1: EGRac ²	6.03	6.37	1.70	0.09	(0.76, 47.86)
Model 2: Riboflavin deficiency ³	2.38	0.96	2.14	0.032	(1.08, 5.27)

¹Logistic regression was used with anemia (yes/no) as an outcome variable and both models were adjusted for concentrations of folate, vitamin B-12, sTfR, and RBP; n=416. EGRac, erythrocyte glutathione reductase activity coefficient.

²EGRac was added to the model as a continuous variable; Model Pseudo R^2 = 0.27; An OR of 6.03 indicates that the odds of being anemic are 6.03 times higher with one-unit increase in EGRac after holding vitamin B-12, folate, sTfR, and RBP concentrations at fixed values.

³Riboflavin deficiency (EGRac \geq 1.4) was added to the model as a categorical variable and EGRac <1.4 was the reference category; Model Pseudo R²= 0.27. An OR=2.38 indicates that the odds of anemia in women with riboflavin deficiency (EGRac \geq 1.4) is 2.38 times that of women with EGRac <1.4 after holding vitamin B-12, folate, sTfR, and RBP concentrations at fixed values.