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A New Acoustic-Based
Pronunciation Distance Measure
Martijn Bartelds 1*, Caitlin Richter 2, Mark Liberman 2 and Martijn Wieling 1

1Center for Language and Cognition, Faculty of Arts, University of Groningen, Groningen, Netherlands, 2Department of

Linguistics, University of Pennsylvania, Philadelphia, PA, United States

We present an acoustic distance measure for comparing pronunciations, and apply the

measure to assess foreign accent strength in American-English by comparing speech

of non-native American-English speakers to a collection of native American-English

speakers. An acoustic-only measure is valuable as it does not require the time-consuming

and error-prone process of phonetically transcribing speech samples which is necessary

for current edit distance-based approaches. We minimize speaker variability in the

data set by employing speaker-based cepstral mean and variance normalization, and

compute word-based acoustic distances using the dynamic time warping algorithm. Our

results indicate a strong correlation of r = −0.71 (p < 0.0001) between the acoustic

distances and human judgments of native-likeness provided by more than 1,100 native

American-English raters. Therefore, the convenient acoustic measure performs only

slightly lower than the state-of-the-art transcription-based performance of r = −0.77.

We also report the results of several small experiments which show that the acoustic

measure is not only sensitive to segmental differences, but also to intonational differences

and durational differences. However, it is not immune to unwanted differences caused

by using a different recording device.

Keywords: acoustic measure, acoustic features, foreign accent, mel-frequency cepstral coefficients,

pronunciation, spoken language processing, validation

INTRODUCTION

The strength of foreign accent in a second language is mainly caused by the first language
background of non-native speakers, and is influenced by a wide variety of variables with the most
valuable predictor being the age of second-language learning (Asher and García, 1969; Leather,
1983; Flege, 1988; Arslan and Hansen, 1997). Understanding the factors that affect the degree of
foreign accent may be essential for second language teaching, and knowledge about the acoustic
features of foreign-accented speech can improve speech recognition models (Arslan and Hansen,
1996; Piske et al., 2001). Computational methods that investigate foreign accent strength are,
however, scarce.

Studies that investigate and compare different pronunciations often use transcribed speech
(Nerbonne and Heeringa, 1997; Livescu and Glass, 2000; Gooskens and Heeringa, 2004; Heeringa,
2004; Wieling et al., 2011; Chen et al., 2016; Jeszenszky et al., 2017). For example, Kessler (1995)
presented the Levenshtein distance for finding linguistic distances between language varieties.
To calculate the Levenshtein distance, speech samples have to be manually transcribed using a
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phonetic alphabet, but this process is very time consuming
and labor intensive (Hakkani-Tür et al., 2002; Novotney and
Callison-Burch, 2010). Furthermore, transcribing speech is prone
to errors, and interference from transcriber variation might
lead to a sub-optimal distance calculation when differences in
transcribers’ habits cannot be distinguished from differences in
speakers’ productions (Bucholtz, 2007). Another limitation of
this approach is that the set of discrete symbols used in phonetic
transcriptions is unable to capture all the acoustic details that
are relevant for studying accented pronunciations (Cucchiarini,
1996). As Mermelstein (1976) notes, transcribing speech results
in a loss of information whereby perceptually distinct differences
between sounds diminish or largely disappear. For example,
problems may arise when fine-grained pronunciation differences
cannot be represented by the set of transcription symbols
(Duckworth et al., 1990), or when an important dimension of
difference between accents is their use of tone, but no tone
or pitch information is transcribed (Heeringa et al., 2009).
It is therefore potentially useful to develop an acoustic-only
method to study pronunciation differences, such as foreign
accent strength in the speech of non-native speakers. Fine-
grained characteristics of human speech are preserved in the
speech representations, while at the same time a time consuming
and costly process may be omitted.

To evaluate computational methods of determining accent
differences, validation against reliable data regarding these
differences is necessary, which usually consists of comparing the
automatically obtained ratings to human judgments of accent
strength. Derwing and Munro (2009) stress the importance
of including human judgments, since these provide the most
appropriate method to evaluate these measurement techniques.
Studies that compare human perceptual judgments to a
computational difference measure which is not based on the
alignment of phonetic transcriptions are uncommon, despite
the potential advantages of this approach. This may be due to the
challenges of directly comparing speech samples, as there exists
a considerable amount of variability in the signal. A substantial
amount of variability in the structure of a speech signal is
also dependent on non-linguistic characteristics of the speakers,
which may mask relevant phonetic information in acoustic
measurements (Goslin et al., 2012). For example, Heeringa et al.
(2009) calculated speaker-dependent pronunciation distances for
a set of fifteen speakers from different Norwegian varieties and
for a subset of 11 female speakers. The Manhattan distance
was computed between the frequency values of the first three
formants per vowel in each word. Correlations between their
procedure and human judgments of native-likeness only ranged
from r = 0.36 to r = 0.60 (p < 0.001). Given that they only
obtained amoderate correlationwith the human judgments, their
acoustic-basedmeasure could not serve as a reliable alternative to
transcription-based methods for assessing accent differences.

The primary goal of this study is therefore to develop
an improved acoustic pronunciation distance measure that
computes pronunciation distances without requiring phonetic
transcriptions. To assess whether the acoustic distance measure
is a valid measurement technique to measure accent strength
(compared to native speakers), we compare the acoustic

distances to a collection of human native-likeness judgments
that were collected by Wieling et al. (2014) to evaluate a phonetic
transcription-based method. The core of the acoustic distance
measure is to use dynamic time warping (DTW) to compare
non-native accented American-English to native-accented
American-English speech samples represented as Mel-frequency
cepstral coefficients (MFCCs). In short, our approach consists
of obtaining word-level acoustic differences, which are averaged
to obtain speaker-based acoustic differences. To make the
comparison less dependent on individual speaker characteristics,
we use speaker-based cepstral mean and variance normalization
before calculating the word-level acoustic differences. We
evaluate the method by comparing the acoustic distances to
both transcription-based pronunciation distances and human
perception. To better understand what (desired and less desired)
differences are captured by our acoustic difference measure, we
conduct several small-scale experiments.

MATERIALS AND METHODS

Speech Accent Archive
We use data from the Speech Accent Archive, which contains
over 2000 speech samples from both native and non-native
American-English speakers (Weinberger, 2015). For each
participant an acoustic voice recording of the same standard
69-word-paragraph is present. The paragraph is primarily
composed of common English words, and contains a wide
variety of consonants and vowels that can be found in the
English language. The paragraph is shown in (1).

(1) Please call Stella. Ask her to bring these things with her from
the store: Six spoons of fresh snow peas, five thick slabs of
blue cheese, and maybe a snack for her brother Bob. We
also need a small plastic snake and a big toy frog for the
kids. She can scoop these things into three red bags, and we
will go meet her Wednesday at the train station.

The availability of data from both native and non-native speakers
of American-English enables us to compare the accents of a broad
range of different speakers of English (Weinberger and Kunath,
2011). Speech samples from 280 non-native American-English
speakers make up our target non-native speaker data set, and
115 speech samples from U.S.-born L1 speakers of English serve
as our reference native speaker data set. For each non-native
speaker the goal is to determine how different that speaker’s
pronunciation is on average from the native American-English
speakers in the reference native speaker data set. We do not rely
on choosing a single native American-English reference speaker,
as there is considerable regional variability in the data set. The
native American-English speakers who rated the non-native
speech samples also had different regional backgrounds.

The data we include in this study is similar to the data used
for evaluating a transcription-based measurement in the study
of Wieling et al. (2014). As in some cases a word was produced
twice by a speaker, or two words were merged into one word, we
removed duplicate words from the speech samples by deleting
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one of the repeated words, and merged words were split such that
each speech sample consisted of 69 separate words.

Our data set contains slightly more male speakers (206) than
female speakers (189). The average age of all speakers in our data
set is 32.6 years with a standard deviation of 13.5 years. In the
target non-native speaker data set, the average age of starting to
learn English is 10.5 years with a standard deviation of 6.6 years.
The 280 non-native English speakers have a total of 99 different
native languages. Themost frequent native languages in the target
data set of non-native English speakers are Spanish (N = 17),
French (N = 13), and Arabic (N = 12). A total of 46 languages
is only spoken by a single speaker.

Human Judgments of Native-Likeness
Perceptual data have been widely used to assess the degree
of foreign-accentedness (Koster and Koet, 1993; Munro, 1995;
Magen, 1998; Munro and Derwing, 2001). We therefore use
human judgments of native-likeness that were collected in
the study of Wieling et al. (2014). They created an online
questionnaire in which native speakers of American-English were
asked to rate the accent strength of 50 speech samples extracted
from the Speech Accent Archive. The degree of native-likeness of
the speech samples was judged on a 7-point Likert scale. A score
of 1 was assigned to a speaker that was perceived as very foreign-
sounding, and a score of 7 was assigned to a speaker that was
perceived as having native American-English speaking abilities.
The speech samples presented to the participants were not
duplicated, so each participant rated each sample at most once.
The set of samples available for different participants to judge was
changed several times during the period the questionnaire was
online. To increase the reliability of the ratings, not all speech
samples from the Speech Accent Archive were included in the
questionnaire, so that each speech sample could be judged by
multiple participants. It was also not compulsory to rate all 50
samples, because the participants could decide to rate a subset of
the speech samples.

The questionnaire of Wieling et al. (2014) was distributed by
asking colleagues and friends to forward it to native speakers of
American-English. The questionnaire was also mentioned in a
blog post of Mark Liberman1 which led to a considerable amount
of responses. In total, 1,143 participants provided native-likeness
ratings (57.6%men and 42.4%woman). On average, they rated 41
samples with a standard deviation of 14 samples. The participants
had a mean age of 36.2 years with a standard deviation of 13.9
years, and people most frequently came from California (13.2%),
New York (10.1%), and Massachusetts (5.9%).

Experimental Setup
Segmentation
We obtain acoustic distances comparing speakers from the
target data set to the speakers in the reference data set.
The data sets we use contain recordings of the entire 69
word paragraph (henceforth referred to as the complete
speech sample). These complete speech samples do not

1https://languagelog.ldc.upenn.edu/nll/?p=3967, May 19, 2012, “Rating American

English Accents.”

only contain the 69 word pronunciations, but also speech
disfluencies. Examples of these disfluencies include, but are
not limited to, (filled) pauses, false starts, word order changes,
or mispronunciations.

To only compare corresponding segments of speech, we
segment each complete speech sample into words. While this
segmentation procedure may be performed manually, this is
very time consuming (Goldman, 2011). We therefore employ
the Penn Phonetics Lab Forced Aligner (P2FA) to time-align
the speech samples with a word-level orthographic transcription
(Yuan and Liberman, 2008). The P2FA is an automatic phonetic
alignment toolkit that is based on the Hidden Markov Toolkit
(HTK). Prior to creating the forced alignments, we resample
each of the speech samples to 11,025 Hz (Yuan and Liberman,
2008). The forced alignment approach identifies the word
boundaries in the speech samples, and by using this information
we automatically divide the complete speech samples of the
target and reference data set into separate words. Each word
corresponds to a word from the elicitation paragraph presented
in (1). In this way, we also remove non-speech elements that
exist between these word boundaries, preventing them from
entering the acoustic distance calculation. After the forced
alignment procedure, we have a target data set that for each
of the 280 speakers contains 69 segmented speech samples,
as well as a reference data set of 115 speakers with for each
speaker 69 corresponding segmented speech samples. A detailed
explanation of the theoretical framework behind the forced
alignment procedure is provided in the studies of Young and
Young (1993) and Bailey (2016).

Feature Representation
For each segmented speech sample in both data sets, we
calculate a numerical feature representation based on Mel-
frequency cepstral coefficients (MFCCs). MFCCs have shown
their robustness, as these speech features are widely used
as representations of phonetic content in automatic speech
recognition systems (Davis and Mermelstein, 1980).

We visualize the computation of each MFCC feature
representation in Figure 1. The first, commonly executed,
step in calculating this numerical feature representation is to
compensate for the negative spectral slope of each speech sample
(Sluijter and Van Heuven, 1996). The nature of the glottal
pulses causes voiced segments in the audio signal to contain
more energy at the lower frequencies compared to the higher
frequencies (Vergin and O’Shaughnessy, 1995).We remove some
of these glottal effects from the spectrum of the vocal tract
by applying a filter to the audio signal (see Equation 1). This
filter emphasizes the higher frequencies, and as a result a more
balanced spectrum of the speech sample is obtained. This is
usually referred to as the pre-emphasis step (Muda et al., 2010).

H(z) = 1 - 0.97 ∗ z-1 (1)

We then divide each speech sample into short frames of time
using a windowing function. These frames of analysis are
important since the characteristics of an audio signal are fairly
stable when a short frame of time is taken into account (Zhu
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FIGURE 1 | Diagram visualizing the features used in our acoustic distance algorithm.

and Alwan, 2000). We create overlapping frames of a 25 ms time
interval using a 10 ms step size. A set of cepstral coefficients is
computed for each of these windowed frames per speech sample.
The Hamming windowing function is used to extract each frame
from the audio signal (Deller et al., 1993).

The Discrete Fourier Transform (DFT) is then taken from
each of these windowed frames to transform the audio signal
from the time domain to the frequency domain (Zheng et al.,
2001). Taking the DFT of the windowed frames is related to
the way sound is perceived by human beings. The oscillation
of the human cochlea depends on the frequency of incoming
sounds, and these oscillations inform the human brain that
certain frequencies are present in the audio signal. With the
application of DFT, the process that occurs within the human
auditory system is simulated (Dave, 2013).

After the DFT is taken from the windowed frames, the Mel
spectrum is computed. The DFT-transformed audio signal is
modified by passing it through a collection of triangular band-
pass filters. These filters are also known as theMel filter bank, and
each processes frequencies that occur within a certain range while
discarding frequencies that are outside that range (Muda et al.,
2010). The Mel filter bank then provides information about the
amount of energy that is present near certain frequency regions
(Rao and Manjunath, 2017). The width of the filter banks is
determined via Mel-scaling. Units on the Mel scale are based
on the way frequencies are perceived by the human auditory
system. These Mel units do not correspond to tone frequencies
in a linear way, as the human auditory system does not perceive
frequencies linearly. Instead, the Mel scale is composed such
that the frequencies below 1,000 Hz are approximately linearly
spaced, and the frequencies above 1,000 Hz are distributed
according to a logarithmic scale (Stevens et al., 1937).

The first filters of the Mel-filter bank are most strict, since the
low frequencies are the most informative in speech perception
(Raut and Shah, 2015). The energy of voiced speech is mostly
concentrated at the lower frequencies (Seltzer et al., 2004). After
the DFT-transformed audio signal goes through the triangular-
shaped band-pass filters, the logarithm is taken of the energies
that are returned by the Mel-filter bank. This procedure is also
in accordance with the human auditory system, since humans do
not perceive the loudness of an incoming audio signal linearly.
The final result of this procedure is a signal that is represented in
the cepstral domain (Oppenheim and Schafer, 2004).

The logarithmically transformed filter bank energy
representations do, however, overlap. To provide a solution
to the overlapping filter banks, the discrete cosine transform
(DCT) is computed from the logarithmically transformed filter
bank output. The result of the DCT is a set of cepstral coefficients.
Following an established standard, we chose to solely include
the first 12 cepstral coefficients and energy in each frame, which
characterize the most relevant information of the speech signal
(Picone, 1993). In addition, we calculate the first-order and
second-order derivatives from each of the cepstral coefficients
and energy features (Furui, 1981). We therefore have 12 first-
order and 12 second-order derivatives that are associated with
the 12 cepstral coefficients, and one first-order and second-order
derivative related to the energy feature. These first-order and
second-order derivatives, or (double) delta coefficients, model
the changes between the frames over time (Muda et al., 2010). A
total of 39 coefficients is computed at each 10 ms step per speech
sample, to represent the most important phonetic information
embedded within each 25 ms windowed frame. The MFCC
feature representation per segmented speech sample is obtained
by concatenating its corresponding vectors of 39 coefficients
computed for each of the windowed frames.

Normalization
Ganapathy et al. (2011) and Shafik et al. (2009) showed that the
quality of the MFCC feature representation is highly influenced
by the presence of noise in the speech samples. To reduce the
effect of noise, cepstral mean and variance normalization is
applied to the feature representations (Auckenthaler et al., 2000).
In addition to the robustness in the presence of noisy input,
cepstral mean and variance normalization reduces the word
error rate in automatic speech recognition implementations,
and improves the generalization across speakers (Haeb-Umbach,
1999; Molau et al., 2003; Tsakalidis and Byrne, 2005). Adank et al.
(2004) showed that cepstral mean and variance normalization
can be used to highlight the linguistic content of the
feature representations.

We implement cepstral mean and variance normalization by
applying a linear transformation to the coefficients of the MFCC
feature representations (Lu et al., 2009). The MFCC feature
representations are standardized per speaker by removing the
speaker’s mean, and scaling to unit variance. The equation that
we use to calculate the cepstral mean and variance normalized
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feature representations is shown in Equation (2).

ĉ(i, t) =
c(i, t)− c̄(i, t)

σ (i)
(2)

In this equation, the i-th cepstral coefficient at time index
t is represented by c(i, t). The mean value of each feature
representation, and the corresponding standard deviation are
given by c̄(i, t) and σ (i), respectively. In Equations (3) and (4), we
show how themean value and standard deviation are obtained. In
these equations, N corresponds to the number of windows used
in processing the speech sample.

c̄(i, t) =
1

N
∗

N
∑

t=1

c(i, t) (3)

σ (i) =

√

√

√

√

1

N
∗

N
∑

t=1

(c(i, t)− c̄(i, t))2 (4)

Dynamic Time Warping
The acoustic word distances are computed using the dynamic
time warping (DTW) algorithm. This algorithm compares two
MFCC feature representations, and returns their degree of
similarity as a distance score (Galbally and Galbally, 2015).
DTW has already been widely used in the domain of speech
recognition, and is also used for sequence comparison in many
other research domains, such as computer vision and protein
structure matching (Sakoe et al., 1990; Bahlmann and Burkhardt,
2004; Efrat et al., 2007).

To compare a target pronunciation with a reference
pronunciation, theDTWalgorithm uses the corresponding target
and reference MFCC feature representations. These are shown in
Equations (5) and (6).

target = (x1, x2, ..., xn) (5)

reference = (y1, y2, ..., ym) (6)

An m ∗ n cost matrix is created to align the target MFCC feature
representation with the reference MFCC feature representation
(Muda et al., 2010). This cost matrix is filled with the Euclidean
distances between every pair of points (frames) in both the target
and reference MFCC feature representations (Danielsson, 1980).
For example, element (i, j) of the costmatrix contains the distance
d that is given by Equation (7).

d(targeti, referencej) = (targeti − referencej)
2 (7)

The optimal alignment between the MFCC feature
representations corresponds to the shortest path through
the cost matrix, and is therefore to some extent comparable to
the edit distance. The DTW algorithm computes the shortest
path using an iterative method that calculates the minimum
cumulative distance γ (i, j) (Keogh and Pazzani, 2001). The
cumulative distance is composed of the distance in the current
cell d(targeti, referencej) and the minimum of the cumulative
distance found in the adjacent cells (shown in Equation 8).

γ (i, j) = d(targeti, referencej)

+min
(

γ (i− 1, j− 1), γ (i− 1, j), γ (i, j− 1)
)

(8)

After the cumulative distance is computed, it is divided
by the length of the target feature representation and the
reference feature representation (n + m). It is important to
normalize the computed distances, since the speech samples we
work with do not necessarily have the same length. Without
normalization applied to DTW, longer alignment paths (from
longer recordings) would have higher distances than shorter
alignments, because they have more frames to accumulate cost
(Giorgino et al., 2009).

The final speaker pronunciation distances are obtained by
first calculating the acoustic distance for each of the 69 words
pronounced by a non-native speaker of American-English and
a single native speaker of American-English in the reference
data set. We subsequently average these word-based distances to
measure the between-speaker acoustic distance. The difference
between the pronunciation of a non-native speaker and native
American-English in general, is determined by calculating the
between-speaker acoustic distances compared to all 115 native
American-English speakers, and subsequently averaging these.
We compute these acoustic distances for all foreign-accented
speech samples by applying this same procedure to each of the
280 non-native speakers of American-English in the target data
set. To evaluate our measure, the correlation between the native-
likeness ratings and the acoustic distances is computed. We
evaluate the impact of the (size of the) set of reference speakers,
by calculating the correlation for successively smaller subsets of
reference speakers.

Understanding the Acoustic Distance
Measure
In addition to the main experiment, we perform a variety of other
analyses to obtain a more complete understanding of the acoustic
details captured by the acoustic distance measure.

First we use a multiple linear regression model to predict
the human native-likeness ratings on the basis of our acoustic
distance measure, but also using the transcription-based
distances reported by Wieling et al. (2014), and the (manually
counted) number of mispronunciations a speaker made, as these
might be important for native-likeness ratings (Flege, 1981), but
are not included in either of the two other measures.

Second, to assess whether our acoustic distance measure
adequately captures fine-grained segmental differences, we
compute acoustic differences between 10 repetitions of hVd
words (e.g., [hId]) pronounced by a single speaker. We
subsequently correlate these differences with differences based
on the first and second formant measured at the mid-point of
the vowel of the recordings. We follow Wieling et al. (2012)
in Bark-scaling the formant-based distances. We use a total of
12 Dutch monophthongs in the vowel context (a, A, E, e, ø,

I, i, O, u, o, Y, y). We visualize the differences (both the
formant-based distances, and the acoustic-based distances) using
multidimensional scaling (Torgerson, 1952).

Third and finally, to assess whether non-segmental variability
is also captured by our acoustic method, we compute acoustic
distances between four series of recordings (10 repetitions) of the
word “living”. The first and second series consisted of a normal
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FIGURE 2 | Native-likeness ratings as a function of the computed acoustic distances (r = −0.71).

TABLE 1 | Pearson correlation coefficients r between the acoustic distances and

human judgments of native-likeness depending on the size of the reference data

set.

Amount of reference speakers r

10 −0.68

25 −0.71

50 −0.70

75 −0.72

All correlations are significant at the p < 0.0001 level.

pronunciation (“living”), but recorded with two recording
devices (the built-in microphone of a laptop, and the built-in
microphone of a smartphone), the third series consisted of a
pronunciation in which the intonation was changed (“living?”),
and the fourth series consisted of a pronunciation in which the
relative duration of the syllables was changed (“li_ving”).

RESULTS

The correlation between the native-likeness ratings and the
acoustic distances computed using our acoustic method is r
= −0.71 (p < 0.0001), and therefore accounts for about half
of the variance in the native-likeness ratings (r2 = 0.50).
Figure 2 visualizes this correlation in a scatter plot. The acoustic
distance measure tends to underestimate the native-likeness
(overestimate distances) when the speech samples are rated as
being very native-like.

Compared to the transcription-based method of Wieling
et al. (2014), who used the Levenshtein distance incorporating
automatically determined linguistically-sensible segment
distances, and reported a correlation of r = −0.77, the
performance of our measure is significantly lower (using the
modified z-statistic of Steiger (1980): z = 2.10, p < 0.05).

TABLE 2 | Pearson correlation coefficients r of acoustic distances compared to

human judgments of native-likeness, using different methods to compute the

acoustic distances.

Model r

Baseline 1 (only segmentation) −0.27

Baseline 2 (only normalization) −0.63

Acoustic measure (segmentation and normalization) −0.71

All correlations are significant at the p < 0.0001 level.

Impact of Reference Speakers
As the set of reference speakers might affect the correlation, we
evaluated the impact of reducing the set of reference speakers.
The results are shown in Table 1 and show that the correlation
remains comparable, irrespective of the (size of the) reference set
(i.e., −0.68 ≤ r ≤ −0.72). To assess whether language variation
within the set of reference speakers might be important, we
computed the acoustic distances using as our reference set (N =

14) only the native American-English speakers who originated
from the western half of the U.S. and the English-speaking part
of Canada. These areas are characterized by less dialect variation
compared to the eastern half of the U.S. (Boberg, 2010). Again,
this did not substantially affect the correlation, as it remained
similar (r = −0.70).

Impact of Segmentation and Normalization
Two simplified (baseline) measures, each missing a single
component of our acoustic measure, were created to assess how
segmentation and cepstral mean and variance normalization of
the speech samples contribute to acoustic distances that are more
similar to human judgments of native-likeness. The results of
this experiment is shown in Table 2. It is clear that not using
the normalization approach is much more detrimental than not
segmenting, but that the best results are obtained when doing
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both. The modified z-statistic of Steiger (1980) indicates that
our acoustic method significantly outperforms either of the two
simpler methods (z = 4.11, p < 0.0001).

Understanding the Acoustic Distance
Measure
We fitted a multiple linear regression model to determine
whether the acoustic distance measure and the transcription-
based distance measure captured distinctive aspects of
pronunciation. We also assessed the influence of the number of
mispronunciations. The coefficients and associated statistics of
the predictors used are shown in Table 3. The results show that
the transcription-based distances and acoustic distances both
contribute significantly to the model fit (p < 0.05). This is not
the case for the amount of mispronunciations per speaker in the

TABLE 3 | Coefficients of a multiple regression model predicting human

judgments of native-likeness.

Estimate Std. Error t-value p-value

Intercept 24.19 2.68 9.04 < 0.001

Transcription-based distances −379.30 34.26 −11.07 < 0.001

Acoustic-based distances −2.79 0.44 −6.35 < 0.001

Amount of mispronunciations 0.01 0.03 0.26 0.795

TABLE 4 | Averaged acoustic distances and standard errors of four variants of the

word “living”.

Compared to normal pronunciation

Normal pronunciation 4.35 (0.50)

Normal pronunciation

(different recording device)

6.94 (0.15)

Rising intonation 7.12 (0.13)

Lengthened first syllable 6.65 (0.13)

target data set (p > 0.05). The presented model accounts for
65% of the variation in the human judgments of native-likeness
(r2 = 0.65). Only using the transcription-based distance measure
accounted for 60% of the variation. Consequently, our acoustic
measure also seems to capture information which is not present
in phonetic transcriptions.

The results in Table 4, show that our acoustic measure can
capture both intonation and timing differences as these lead to
larger distances than comparing individual repetitions of the
same word pronounced by the same speaker. However, it also
shows that when recording the normal pronunciation by two
microphones simultaneously, the acoustic distances between the
two simultaneous recordings are higher than zero, whereas the
pronunciation is in fact identical. Note that the acoustic distance
when comparing the 10 normal pronunciations is also not zero,
due to small deviations in the pronunciations.

Another indication of how well our acoustic measure captures
segmental information is shown by the significant positive
correlation of r = 0.68 (p < 0.0001) between the formant-based
acoustic vowel differences and the computed acoustic differences
between the hVd-words. Figure 3 shows these relative vowel
distances by using a multidimensional scaling visualization of
the formant-based vowel differences (visualizing all variation)
and the DTW-based vowel differences (visualizing 47% of the
variation in the original differences).

DISCUSSION

We have created an acoustic-only approach for calculating
pronunciation distances between utterances of the same word
by different speakers. We have evaluated the measure by
calculating how different the speech of non-native speakers of
American-English is from native American-English speakers,
and by comparing our computed results to human judgments
of native-likeness. While our method is somewhat outperformed
(r = −0.71 vs. r = −0.77) by the transcription-based

FIGURE 3 | MDS plots visualizing the acoustic vowel distances (left) and the formant-based vowel distances (right). Individual pronunciations are shown in light gray,

whereas the averages per vowel are shown in black.
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method introduced by Wieling et al. (2014), our measure
does not require phonetic transcriptions, whose production
is time consuming and prone to errors. Given that our
method is fully automatic, the trade-off in performance may
be worthwhile.

Word segmentation and especially speaker-based cepstral
mean and variance normalization of the MFCC speech
representations were important in creating an adequate acoustic-
based distance measure. These results show the importance of
pre-processing continuous speech samples, as the comparison of
pronunciations in speech samples is most reliable when it is based
on comparable and normalized segments of speech that we obtain
from word-level forced alignment.

The multiple regression model showed that the acoustic
distance measure explained variance not accounted for by the
transcription-based distance measure. Particularly, our further
experiments showed that our measure is both sensitive to
timing and intonation differences. However, the measure is also
sensitive to different recording devices, which is undesirable
and may partly explain why the method is outperformed
by the transcription-based method. While the MFCC feature
representation with cepstral mean and variance normalization
attempts to minimize non-linguistic confounds, it is only partly
successful, as a computational representation of general phonetic
information remains a difficult issue in speech processing
technology (Gemmeke et al., 2011).

Consequently, future work should investigate whether other
acoustic (pre-processing) techniques may improve our acoustic
measure. For example, contextual acoustic encoding techniques
related to word embeddings like wav2vec and vq-wav2vec may
highlight acoustic details that are linguistically relevant (Baevski
et al., 2019; Schneider et al., 2019). Additionally, generating

a shared phonetic space through which two speech samples
may be compared (Ryant and Liberman, 2016) may be useful.
Nevertheless, our work serves as a useful and promising
starting point for a fully automatic acoustic pronunciation
distance measure.
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