
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

U.S. National Park Service Publications and 
Papers National Park Service 

5-22-2018 

Morphological and histological description of small Morphological and histological description of small 

metoposaurids from Petrified Forest National Park, AZ, USA and metoposaurids from Petrified Forest National Park, AZ, USA and 

the taxonomy of Apachesaurus the taxonomy of Apachesaurus 

Bryan M. Gee 
University of Toronto Mississauga & Petrified Forest National Park, bryan.gee@mail.utoronto.ca 

William G. Parker 
Petrified Forest National Park 

Follow this and additional works at: https://digitalcommons.unl.edu/natlpark 

 Part of the Environmental Education Commons, Environmental Policy Commons, Environmental 

Studies Commons, Fire Science and Firefighting Commons, Leisure Studies Commons, Natural Resource 

Economics Commons, Natural Resources Management and Policy Commons, Nature and Society 

Relations Commons, Other Environmental Sciences Commons, Physical and Environmental Geography 

Commons, Public Administration Commons, and the Recreation, Parks and Tourism Administration 

Commons 

Gee, Bryan M. and Parker, William G., "Morphological and histological description of small metoposaurids 
from Petrified Forest National Park, AZ, USA and the taxonomy of Apachesaurus" (2018). U.S. National 
Park Service Publications and Papers. 198. 
https://digitalcommons.unl.edu/natlpark/198 

This Article is brought to you for free and open access by the National Park Service at DigitalCommons@University 
of Nebraska - Lincoln. It has been accepted for inclusion in U.S. National Park Service Publications and Papers by 
an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/natlpark
https://digitalcommons.unl.edu/natlpark
https://digitalcommons.unl.edu/nationalparkservice
https://digitalcommons.unl.edu/natlpark?utm_source=digitalcommons.unl.edu%2Fnatlpark%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1305?utm_source=digitalcommons.unl.edu%2Fnatlpark%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1027?utm_source=digitalcommons.unl.edu%2Fnatlpark%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1333?utm_source=digitalcommons.unl.edu%2Fnatlpark%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1333?utm_source=digitalcommons.unl.edu%2Fnatlpark%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1411?utm_source=digitalcommons.unl.edu%2Fnatlpark%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1197?utm_source=digitalcommons.unl.edu%2Fnatlpark%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/169?utm_source=digitalcommons.unl.edu%2Fnatlpark%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/169?utm_source=digitalcommons.unl.edu%2Fnatlpark%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/170?utm_source=digitalcommons.unl.edu%2Fnatlpark%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/357?utm_source=digitalcommons.unl.edu%2Fnatlpark%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/357?utm_source=digitalcommons.unl.edu%2Fnatlpark%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/173?utm_source=digitalcommons.unl.edu%2Fnatlpark%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/355?utm_source=digitalcommons.unl.edu%2Fnatlpark%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/355?utm_source=digitalcommons.unl.edu%2Fnatlpark%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/398?utm_source=digitalcommons.unl.edu%2Fnatlpark%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1067?utm_source=digitalcommons.unl.edu%2Fnatlpark%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1067?utm_source=digitalcommons.unl.edu%2Fnatlpark%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/natlpark/198?utm_source=digitalcommons.unl.edu%2Fnatlpark%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages


ARTICLE

Morphological and histological description of small metoposaurids from Petrified
Forest National Park, AZ, USA and the taxonomy of Apachesaurus
Bryan M. Gee a,b and William G. Parker b

aDepartment of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada; bDivision of Science and Resource Management, Petrified
Forest National Park, Petrified Forest, Arizona, USA

ABSTRACT
Metoposaurids are Late Triassic temnospondyls that are abundant components of freshwater deposi-
tional settings. Although metoposaurids are represented by hundreds of specimens in collections
around the world, the vast majority pertain to large-bodied, relatively mature individuals, and as a
result, the early stages of ontogeny are still poorly characterised. Small-bodied metoposaurids from
North America have traditionally been assigned to Apachesaurus gregorii, interpreted as a diminutive
taxon, but this interpretation has not been rigorously tested. Here we provide a morphological
description of two new small-bodied metoposaurid specimens from Petrified Forest National Park,
AZ, USA. Both provide various anatomical details that improve our understanding of small-bodied
metoposaurids and their taxonomic placement within Metoposauridae. Furthermore, we perform a
histological analysis on associated intercentra of these specimens, which indicates that these are
relatively immature individuals. These findings support the growing consensus that Apachesaurus is a
juvenile metoposaurid, thereby providing additional data regarding the early stages of metoposaurid
ontogeny and evidence of the persistence of large-bodied forms into the late Norian. Accordingly, these
findings merit a reevaluation of the taxonomic validity and diagnosis of the taxon and of the previous
interpretations of its paleobiology.
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Introduction

Metoposaurids are Late Triassic temnospondyls identified by the
anterior placement of their orbits in contrast to other Mesozoic
stereospondyls (e.g. Hunt (1993); Schoch (2008)). Although
numerous taxa have been named from North America (e.g.
Branson and Mehl 1929), only three are presently recognised as
valid: Koskinonodon perfectus Case (1922), ‘Metoposaurus’ bakeri
Case (1931), and Apachesaurus gregorii Hunt (1993).
Metoposaurids typically reach an adult size in excess of twometers
with the exception of A. gregorii. Although metoposaurids are
commonconstituents ofUpperTriassic deposits, the vastmajority
of specimens belong to large-bodied, presumably mature, indivi-
duals with skull lengths in excess of 30 cm and occasionally
exceeding 60 cm. Relatively complete skulls of these large-bodied
metoposaurids number in the hundreds from mass death assem-
blages alone (e.g. Colbert and Imbrie 1956; Dutuit 1976; Sulej
2007; Lucas et al. 2016). Conversely, only a few dozen skulls that
belong to small-bodied metoposaurids are known (Table 1), and
the vast majority of these are extremely fragmentary. Descriptions
of small-bodied metoposaurids are even rarer. Most of those
specimens, which were assigned to Apachesaurus, are figured or
described in a relatively generic sense (e.g. Hunt 1993; Long and
Murry 1995; Spielmann and Lucas 2012). The handful of more
thorough descriptions are limited to material that is more frag-
mentary or poorly-preserved than that used to diagnose large-
bodied taxa (e.g. TMM 31099-12B, TTUP 9216 [Davidow-Henry
1987, 1989]; MNA V8415 [Zanno et al. 2002]; PEFO 35292 [Gee

and Parker 2017]). As a result, even the general ontogeny of
metoposaurids (let alone that of specific taxa) is poorly con-
strained. Various studies have explored metoposaurid ontogeny
using quantitative (e.g. Colbert and Imbrie 1956; Sulej 2007;
Rinehart et al. 2009; Lucas et al. 2016) and histological (e.g.
Steyer et al. 2004; Konietzko-Meier and Sander 2012; Konietzko-
Meier et al. 2013;Konietzko-Meier andKlein 2013;Gee et al. 2017;
Teschner et al. 2018)methods. However, those studies have either
characterised a limited portion of the ontogenetic trajectory due to
incomplete sample ranges or focused on postcranial material
when current metoposaurid taxonomy rests almost entirely on
cranial features (e.g. Hunt 1993).

The poor understanding of metoposaurid ontogeny in turn
complicates metoposaurid taxonomy. This is particularly salient
with regard to Apachesaurus gregorii, which is interpreted as a
terrestrially inclined, diminutivemetoposaurid with amuch smal-
ler adult body size than all other taxa (e.g. Hunt 1993; Spielmann
and Lucas 2012). Apachesaurus is known primarily from isolated
intercentra and fragmentary skull materials that were first col-
lected from Arizona, NewMexico, and Texas in the early to mid-
20th century (Gregory 1980). The first taxonomic assignment of
this material was to Anaschisma, a large-bodied genus known
from the Popo Agie Formation (late Carnian) of Wyoming, on
the perceived basis of shared shallow otic notches in the holotypes
ofAn. browni (UC 447) andAn. brachygnatha (UC 448) (Gregory
1980). The shallow otic notches of these specimens are, in fact, an
artefact that is exaggerated by plaster reconstruction in this region
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(e.g. Branson andMehl 1929; BMGpers. obs.), a point overlooked
by Gregory. A succession of other workers in the 1980’s discussed
the possibly for Apachesaurus to be a novel species of various
existing genera (summarized by Hunt 1989, p. 296) but did not
formalize it through a taxonomic act. The taxon was finally for-
malized by Hunt (1993); since then, it has been revised only by
Spielmann and Lucas (2012). The elongate intercentra considered
diagnostic for the taxon (Hunt 1993; Milner 1994; Spielmann and
Lucas 2012) are the most commonly recovered and referred
material of Apachesaurus. In general, material of small-bodied
metoposaurids has traditionally been referred to this taxon.
However, this is often in spite of the absence of any preserved
apomorphies that would differentiate it from juveniles of a large-
bodied taxon under the interpretation of Apachesaurus as a
diminutive metoposaurid (e.g. Long and Murry 1995).

Various features of Apachesaurus have been cited as evi-
dence of its identification as a mature yet diminutive taxon
(e.g. posterior position of the pineal foramen, dissimilarity to
juveniles of some other taxa) and as a terrestrial form (e.g.
poorly developed lateral line system) (Hunt 1993, p. 85).
However, many of these interpretations relied on a small
sample size of juveniles of large-bodied taxa, ontogenetic
features of phylogenetically distant temnospondyls, and
highly fragmentary material of Apachesaurus itself. The diag-
nosis of Apachesaurus comprises 13 characters, but most
specimens preserve a minority of the 12 cranial characters
(sensu Spielmann and Lucas 2012), and only the holotype
(UCMP 63845) preserves the entire set. Furthermore,
although Apachesaurus is considered to be an abundant late
Norian taxon, the vast majority of the material that supports

Table 1. Listing of previously described or figured specimens of small metoposaurids. Specimens that were listed in the text without clear description of their
material are not included. As there is no established quantitative metric for determining if a metoposaurid is ‘small,’ we rely primarily on the descriptions of these
specimens by past authors. Because the elongate intercentra are a not a reliable feature for taxonomic differentiation of North American taxa (see Gee et al. 2017),
and material should not be ascribed solely based on size, this list reflects only cranial material even though a much large number of specimens comprising various
postcranial elements exists in collections. In general, a size threshold of a total skull length less than 30 cm characterizes the listed specimens. Page and figure
numbers are provided for publications that describe a large number of specimens and/or taxa except when a specimen is only listed as a referred specimen with no
further description or figuring. Taxonomic assignments reflect those provided by the listed references, although taxa have been updated to account for taxonomic
acts such as synonymy. Specimens that cannot be referred to a particular taxon under an apomorphy-based identification system are marked by an asterisk (*).
Although the holotype of Dictyocephalus elegans (AMNH 5661) is considered too fragmentary to be identified beyond Temnospondyli indet., it is included here as it
has often been referenced in the literature as a small metoposaurid. This list should not be considered exhaustive, particularly because older works are less likely to
have included scale bars or another appropriate reference measurements. Undoubtedly, material of small metoposaurids remains unprepared and undescribed in
many collections. Institutional abbreviations: AMNH, American Museum of Natural History; MNA, Museum of Northern Arizona; MNHN, Museum National d’Histoire
Naturelle; NM, New Mexico; NMMNH, New Mexico Museum of Natural History & Science; PEFO, Petrified Forest National Park; PPHM, Panhandle-Plains Historical
Museum; SMNS, Staatliches Museum fur Naturkunde Stuttgart; TMM, Texas Memorial Musuem; TTU/TTUP, Texas Tech University Paleontology (abbreviation listed as
in original reference); UCMP, University of California Museum of Paleontology; UM, University of Missouri; YPM, Yale Peabody Museum.

Taxon Specimen Locality Reference

Apachesaurus gregorii PEFO 16759 Chinle Fm, Arizona this study
Apachesaurus gregorii *NMMNH P-37069 Redonda Fm, New Mexico Spielmann and Lucas (2012, figure 16A-D)
Apachesaurus gregorii *NMMNH P-16948 Redonda Fm, New Mexico Spielmann and Lucas (2012, figure 16E)

*NMMNH 16948 Redonda Fm, New Mexico Hunt (1993, figure 13C)
Apachesaurus gregorii *TTUP 9126 Dockum Group, Texas Hunt (1993, figure 13F)

Spielmann and Lucas (2012, figure 17B)
*TTU-P09126 Dockum Group, Texas Martz et al. (2013, p. 6, figure 4)

Apachesaurus gregorii *TTUP 9237 Dockum Group, Texas Davidow-Henry (1987, p. 24–27)
Hunt (1993, figure 13D)
Davidow-Henry (1989, p. 280–285)

Apachesaurus gregorii *UCMP 82/39/37 Chinle Fm, Arizona Davidow-Henry (1987, p. 27–30)
Hunt (1993, figure 13H)

*UCMP V82250/171591 Spielmann and Lucas (2012, figure 18)
Apachesaurus gregorii UCMP 63845 Redonda Fm, New Mexico Hunt (1993, p. 84, figure 12–13)

Spielmann and Lucas (2012, p. 15–25, figures 9–12)
Apachesaurus gregorii *UCMP V6148/63852 Redonda Fm, New Mexico Spielmann and Lucas (2012, figures 15A-B)
Apachesaurus gregorii *UCMP V6148/63846 Redonda Fm, New Mexico Spielmann and Lucas (2012, figures 15C,17A)
Apachesaurus gregorii *UCMP V7308/175145 Chinle Fm, Arizona Zanno et al. (2002)
Apachesaurus gregorii *YPM 4201 Redonda Fm, New Mexico Gregory (1980, p. 130, figure 7.2)

Hunt (1993, figure 13E)
Spielmann and Lucas (2012, figure 14A-B)

Apachesaurus gregorii *YPM 4202 Redonda Fm, New Mexico Spielmann and Lucas (2012, figure 14C-D)
‘Dictyocephalus elegans’ *AMNH 5661 Cumnock Fm, North Carolina Leidy (1856)

Colbert and Imbrie (1956, figure 2)
Dutuitosaurus ouazzoui MNHN XIII/12/65 Timezgadouine Fm, Morocco Dutuit (1976, plate 32)
Dutuitosaurus ouazzoui MNHN XIII/38/65 Timezgadouine Fm, Morocco Dutuit (1976, plate 34)
Koskinonodon perfectus UM 517 Popo Agie Fm, Wyoming Branson and Mehl (1929, p. 65–73)
Koskinonodon perfectus *MNA V8415 Chinle Fm, Arizona Zanno et al. (2002)
Koskinonodon perfectus *PEFO 35392 Chinle Fm, Arizona Gee and Parker (2017)
Koskinonodon perfectus PPHM WT 3011 Dockum Group, Texas Lucas et al. (2016, figure 30C-D)
Koskinonodon perfectus TMM 31099-12B Dockum Group, Texas Hunt (1993, figure 8A-B)

Sawin (1945, p. 393, Table 1)
Metoposauridae indet. PEFO 40023 Chinle Fm, Arizona this study
Metoposaurus diagnosticus SMNS 56633 Weser Fm, Germany Sulej (2002, p. 538)

Milner and Schoch (2004, p. 239–240, figure 2)
‘Metoposaurus’ bakeri YPM PU 21742 Wolfville Fm, Nova Scotia Baird (1986, p. 128)

Hunt (1993, p. 77, figure 6)
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that claim consists of isolated, elongate intercentra. However,
it has long been recognized that the large-bodied taxon
Dutuitosaurus from Morocco also possesses elongate inter-
centra (Dutuit 1976; Hunt 1993). Additionally, that feature
was demonstrated to be unreliable for species discrimination
by Gee et al. (2017) who found that elongation is a feature
seen in juvenile individuals of North American metoposaurid
taxa. Material that is referable to Apachesaurus based on the
cranial characters and not on the basis of size is thus rare. The
absence of coeval large-bodied forms, cited by past authors as
evidence for the taxon’s relative maturity (e.g. Hunt 1993),
may reflect ecological partitioning between juveniles and
adults. The latter idea was first proposed by recent workers
(e.g. Rinehart et al. 2009; Lucas et al. 2016) as an explanation
for the paucity of small-bodied, immature metoposaurids in
older horizons. More recently, that hypothesis has also been
explored in support of the alternative interpretation of
Apachesaurus as a juvenile of a typically large-bodied taxon
(e.g. Gee and Parker 2017; Gee et al. 2017). If adults and
juveniles were geographically separated, settings inhabited by
small-bodied metoposaurids could plausibly be preserved in a
biased sample in the same way that mass death assemblages
typically preserve only mature forms.

Here we present a description of partial skulls and
associated postcrania of two small-bodied metoposaurids
(PEFO 16759, PEFO 40023) from the late Norian of
Petrified Forest National Park (PEFO), Arizona. The pri-
mary objective of this study is to further assess the mor-
phology and systematics of small-bodied metoposaurids
and the hypothesized diminutive adult size of
Apachesaurus based on previous findings that contradict
this interpretation. Both new specimens share a number
of morphological features with the holotype of
Apachesaurus. More importantly, histological sampling of
associated intercentra of each specimen indicates that
each individual was relatively immature at the time of
death. Both specimens conform well in this regard to the
general ontogenetic trajectory of intercentra of North
American taxa that was described by Gee et al. (2017).
These findings thus corroborate previous studies (e.g. Gee
et al. 2017) in providing support for interpretations of
Apachesaurus as a juvenile stage of a large-bodied meto-
posaurid. Given the absence of conclusive evidence that
supports the original interpretation of the taxon as a
diminutive metoposaurid, we are confident in designating
Apachesaurus as a juvenile life stage of a taxon for which
material of adults are presently unknown. Based on this
interpretation, we maintain the taxonomic validity of
Apachesaurus but provide a detailed revision of the
diagnosis.

Materials and methods

Specimens

PEFO 16759 – partial skull with partial, articulated left
mandible, nearly complete interclavicle and clavicles, and
nineteen associated intercentra from RAP (Revueltosaurus,
Apachesaurus, Pseudopalatus) Hill (PFV 216).

PEFO 40023 – nearly complete skull with semi-complete,
articulated mandibles, a partial interclavicle and partial clavi-
cles, ten associated to articulated intercentra, and miscella-
neous postcrania (e.g. ribs, partial ilium) from Dinosaur Hill
(PFV 040). Note that this locality is also referred to in the
published literature as the Inadvertent Hills or Lacey Point
Quarry, UCMP V82250 (Parker 2002).

We compared these specimens to published figures and
descriptions of metoposaurids, particularly those of small-
bodied specimens (e.g. Zanno et al. 2002; Spielmann and
Lucas 2012). The holotype of Apachesaurus (UCMP 63845)
has also been examined first-hand.

Geological provenance and age

PEFO 40023 was collected from Dinosaur Hill (PFV 040;
Parker 2002), stratigraphically positioned in the Petrified
Forest Member (Norian) of the Chinle Formation, by Adam
Marsh (PEFO) and WGP in 2015. PEFO 16759 was collected
from RAP Hill (PFV 216), also from the Petrified Forest
Member, by Adrian Hunt (then of the Mesalands Dinosaur
Museum) in the late 1990s. Both localities are blue paleosol
horizons interpreted as low-energy abandoned channels and
floodplain ponds by Loughney et al. (2011). Dinosaur Hill is
slightly higher in the Chinle Formation than RAP Hill and is
stratigraphically equivalent to Zuni Well Mound (PFV 215;
Parker and Martz 2011), from which another small metopo-
saurid with associated intercentra (PEFO 35392) was
described and histologically analysed (Gee and Parker 2017)
(Figure 1). Material of Apachesaurus has previously been
reported but never described from RAP Hill (e.g. Hunt and
Wright 1999). Detailed descriptions of the fauna and deposi-
tional settings of these localities can be found in Therrien and
Fastovsky (2000) and Loughney et al. (2011).

Preparation of specimens

Both specimens were prepared by BMG and WGP using a
HW-70 microscribe and pin vises. Acryloid B-72 was used as
an adhesive for reassembling PEFO 16759, and Butvar B-76
was used as a consolidant for both specimens. Specimens
were photographed with a Panasonic Lumix DMC-LX100
digital camera; figures were compiled with Adobe
Photoshop and Illustrator CS6. Comparative specimen mea-
surements of the skulls were made using digital photographs
and are presented in Table 2.

Intercentra measurements

Intercentra were measured using digital calipers (Table 3).
Measurement parameters for the three axes follow those
used by Konietzko-Meier et al. (2013) and Gee et al.
(2017). Width was measured across the anterior articular
surface between the parapophyses for all elements, including
the atlas and axis. Height was measured across the same
surface. Length was measured along the ventral surface
between the articular surfaces. Determination of axial posi-
tion was based primarily on the work of Sulej (2007) on
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Metoposaurus krasiejowensis, which in turn derived from
that of Dutuit (1976) on Dutuitosaurus ouazzoui.

Histological analysis

Because of the general uniformity in size, consistency in
general axial position (e.g. presacral), and lack of precise
axial position (e.g. sixth presacral), intercentra were evaluated
for their overall completeness and condition in selection of
elements for histological sectioning. Two trunk intercentra of
each specimen were sampled (Figures 8(e,f), 9(a-d)). We
interpret those of PEFO 16759 to pertain to the mid-trunk
region. Those of PEFO 40023 are interpreted to pertain to the
anterior trunk region. Following previous studies (e.g.
Konietzko-Meier et al. 2013; Gee et al. 2017), intercentra
were sectioned in both sagittal and transverse profiles.
Histological preparation methods followed those of Gee
et al. (2017, p. 8–9), with preparation of sections conducted
at the Royal Ontario Museum (ROM), Toronto, Canada. Thin
sections were imaged using a Nikon Instruments AZ100
Multizoom microscope fitted with AZ-Plan Apo 0.5 and

AZ-Fluor 5 objective lenses, an AZ-RP rotatable polariser
plate, and a DS-Fi2 digital camera mount and with NIS-
Elements imaging software.

Systematic palaeontology

Temnospondyli Zittel (1888) sensu Schoch (2013)
Stereospondyli Zittel (1888) sensu Yates and Warren (2000)
Metoposauridae Watson (1919)
ApachesaurusHunt (1993) sensu Spielmann and Lucas (2012)
Apachesaurus gregorii Hunt (1993) sensu Spielmann and
Lucas (2012)

Holotype
UCMP 63845, nearly complete skull from the Redonda
Formation, Dockum Group, NM

Referred specimens
PEFO 16759, partial skull with pectoral girdle, mandible,
intercentra; see Appendix 2 of Spielmann and Lucas

Figure 1. Geographic and stratigraphic provenance of PEFO 16759 and PEFO 40023. (A) Map of Petrified Forest National Park, modified from Parker and Irmis (2005);
(B) stratigraphic column of Petrified Forest National Park modified from Martz et al. (2012). Stratigraphy follows Martz and Parker (2010) and Martz et al. (2012).
Radioisotopic dates are from Ramezani et al. (2011).

Table 2. Comparative measurements of the holotype of Apachesaurus gregorii (UCMP 63845) and described skulls of small-bodied metoposaurids from Gee and
Parker (2017) and this study. A ‘greater than’ value is provided for UCMP 63845 because the skull is nearly complete anteroposteriorly, lacking only the premaxillae,
so the total preserved length is a reasonable estimate of its full length.

Measurement UCMP 63845 PEFO 35292 PEFO 16759 PEFO 40023

Total skull length > 18.2 cm - - 21.5 cm
Posterior postparietal – posterior orbit 10.3 cm 15.4 cm 8.4 cm 12.5 cm
Posterior postparietal – posterior pineal 3.9 cm 5.6 cm - -
Greatest width 13.7 cm 25.3 cm 13.4 cm 18.3 cm
Anterior orbit – anterior premaxilla > 4.6 cm - - 5.9 cm

206 B. M. GEE AND W. G. PARKER



(2012, p. 116) for previously referred specimens not person-
ally examined here.

Revised diagnosis
Metoposaurid characterised by the following autapomorphies:
an occiput that does not project posteriorly; narrow cultri-
form process that tapers at the mid-length; reduced lacrimal
excluded from the orbital margin; symmetrical, pentagonal
squamosal with an anterior process that is not greatly trans-
versely deflected; rounded, trapezoidal foramen magnum;
dorsoventrally shorter oblique crest of the pterygoid; minimal
expression of accessory paraquadrate foramen.

Remarks
Because Apachesaurus gregorii cannot be supported as being
synonymous with another described taxon, nor can all 13 of
the autapomorphies of Spielmann and Lucas (2012) be con-
fidently determined to be being ontogenetically influenced,
the taxon is maintained here. However, the revised diagnosis
presented here (seven characters) removes features included
by Spielmann and Lucas (2012) that are shared with other
taxa or that can be reasonably questioned because of con-
founding influences by ontogeny, taphonomy, or intraspecific
variation. Detailed explanations of the rationale for the valid-
ity of each character are provided in Appendix 1. Although
taxonomic diagnoses are typically based on skeletally mature
material in order for phylogenetic analyses to properly

compare morphologies across taxa, such material that could
be referred to Apachesaurus remains unknown.

Institutional abbreviations

MNHN, Muséum National d’Historie Naturelle, Paris, France;
NMMNH, New Mexico Museum of Natural History and
Science, Albuquerque, New Mexico, USA; PEFO, Petrified
Forest National Park, Petrified Forest, Arizona, USA; PPHM
and WT, Panhandle-Plains Historical Museum, Canyon, Texas,
USA; TMM, Texas Vertebrate Paleontology Collections, The
University of Texas at Austin, Austin, Texas, USA; TTUP,
Museum of Texas Tech, Lubbock, Texas, USA; UC, Field
Museum, Chicago, Illinois; UCMP, University of California
Museum of Paleontology, Berkeley, California, USA; UMMP,
University of Michigan Museum of Paleontology, Ann Arbor,
Michigan, USA; YPM, Yale Peabody Museum, New Haven,
Connecticut, USA; YPM VPPU, Yale Peabody Museum,
Princeton Collection, New Haven, Connecticut, USA; ZPAL,
Institute of Paleobiology, Polish Academy of Sciences, Warsaw,
Poland.

Description

PEFO 16759 consists of a partial skull articulated with a partial left
mandible, the interclavicle, and both clavicles. The skull is also
associated with 19 isolated intercentra, mandible fragments, and
various isolated postcrania (e.g. partial ribs); non-metoposaurid

Table 3. Measurement data for intercentra associated with PEFO 16759 and PEFO 40023. Letter subdesignations are created solely for the purpose of this study.
Positions are determined based on Sulej (2007). For PEFO 16759, all sub-letter designations correspond to those in Figure 8 except for specimens J-K; these are the
two intercentra on the interclavicle (see Figure 6). For PEFO 40023, specimens A-H correspond to those in Figure 9; specimens I-K are the three articulated intercentra
seen in Figures 3 and 7.

Specimen Sub-letter Width (mm) Length (mm) Height (mm) W:L Position

PEFO 16759 A 22.93 8.28 11.52 2.77 Atlas
B 20.42 12.67 14.76 1.38 Mid-trunk
C 15.02 11.75 12.88 1.28 Mid-trunk
D 16.64 10.96 12.97 1.51 Mid-trunk
E 16.40 11.03 13.24 1.24 Mid-trunk
F 16.59 12.12 13.38 1.37 Mid-trunk
G 15.28 12.30 12.67 1.24 Presacral
H 15.36 - 11.95 - Presacral
I - 10.33 12.66 - Presacral
J - 12.80 - - Presacral
K - 14.18 - - Presacral
L 17.39 13.06 - 1.33 Presacral
M - 11.93 14.52 - Presacral
N 13.35 12.97 - 1.03 Presacral
O - 11.60 - - ?
P 13.68 - 12.25 - ?
Q 12.70 12.45 - 1.06 Presacral
R 10.81 - - - Presacral
S 16.49 - 15.14 - ?
T 14.39 13.71 - 1.05 Presacral
U - 14.3 - Presacral

PEFO 40023 A 22.33 15.43 20.16 1.45 Anterior trunk
B 21.93 14.22 19.36 1.54 Anterior trunk
C 22.48 15.03 21.10 1.50 Anterior trunk
D 22.19 14.55 20.35 1.52 Anterior trunk
E - 13.93 20.39 - Anterior trunk
F 19.87 12.72 18.91 1.56 Anterior trunk
G - 14.61 20.49 - Perisacral
H 19.61 15.10 18.46 1.30 Caudal
I 23.39 - - - Atlas
J 22.15 9.84 - 2.25 Axis
K 19.56 9.70 - 2.01 3rd
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material (e.g. Revueltosaurus teeth) is also catalogued under the
same number. Most of the intercentra associated with the speci-
men are disarticulated and spread between four small blocks;
none of the blocks articulate with each other. An additional
seven intercentra were found isolated, including an atlas. Based
on their conserved size relative to two intercentra that lie ventral
to the interclavicle in a more confident association with the
cranial material, we consider it reasonable to associate them
with the skull. Even if they belong to another individual, it
would be of a comparable size and presumed ontogenetic matur-
ity, which is the primary consideration for the histological
analysis.

PEFO 40023 consists of a nearly complete skull articulated
with both mandibles, the atlas-axis complex and the third ver-
tebral position, the interclavicle, and both clavicles. The axis and
the third intercentra are articulated with elongate elements that
we interpret as partial ribs. Seven intercentra were found poster-
ior to the third vertebral position and are assigned to the speci-
men on the basis of a comparable size, the relative association,
and their designation as anterior trunk intercentra. The skull has
been variably fractured, often along sutural contacts, in a fashion
such that different regions of the skull are broken off and angled,
often ventromedially. The left side of the skull is more heavily
fragmented, and the characterization of the cranial elements is
derived primarily from the right side. Only the skull roof is
present, exposed in both dorsal and ventral profiles with the
loss of the palate. The right mandible is nearly complete,
although it is broken posteriorly around the end of the tooth
row. The left mandible lacks a large portion of the ventral sur-
face. The three pectoral elements overlie each other, with the
right clavicle being positioned ventral to the interclavicle, which
in turn overlies the left clavicle. All three elements are only
partially complete posteriorly, which is in part due to damage
sustained during collection. Comparative measurements of
these specimens were made with the holotype of Apachesaurus
(Spielmann and Lucas 2012, figure 9) and with another small-
bodiedmetoposaurid from PEFO that was described by Gee and
Parker (2017) (PEFO 35392). These are presented in Table 3.

Skull roof

The metoposaurid skull roof is highly conserved relative to
other temnospondyl clades. The description of the cranial
elements presented here is considered representative of both
specimens (Figure 2–3), with deviations noted where applic-
able; these specimens are also compared to other metopo-
saurid taxa where possible.

The premaxilla is a small element that forms the tip of the
snout. It contacts the maxilla posterolaterally and the nasal
posteromedially to frame the narial opening, which is visible
on the right side of PEFO 40023 (Figure 3). At least four vacant
tooth sockets are exposed ventrally. The left premaxilla is iden-
tified on the basis of the continuous rostral margin when viewed
anteriorly. The premaxilla is a conserved element aside from
minor variation in the relative contribution to the narial mar-
gins. The contribution to the lateral medial margin and the
development of the lateral line on the premaxilla, two features
that differ between Apachesaurus and large-bodiedmetoposaur-
ids, cannot be characterised in PEFO 40023.

Neither specimen preserves the maxillae or the lacrimals.
Fragments of either may be present in PEFO 40023 but
cannot be confidently identified as such.

The prefrontal is a polygonal bone with significant varia-
tion intraspecifically and interspecifically, ranging from cres-
centic to pentagonal; this is best illustrated in descriptions of
mass death assemblages (e.g. Sulej 2007; Lucas et al. 2016). Its
sutural contacts remain consistent insofar as it sutures to the
lacrimal laterally, to the maxilla anterolaterally, to the nasal
anteromedially, to the frontal medially, and to the postfrontal
posteriorly, forming the medial and anterior margin of the
orbit, but the precise nature of these contacts (e.g. straight
versus oblique versus curved sutures) is variable. In PEFO
40023, both prefrontals are defined by their contributions to
the medial orbital margin (Figure 3). They are nearly com-
plete, although the posterior end of the left prefrontal may be
broken near to or at the suture with the postfrontal. In the
case of the latter, the prefrontal’s contribution to the medial
margin would be approximately equal to that of the postfron-
tal. The anterolateral margins are poorly defined or obscured.

The nasal is a rectangular element that sutures to the
premaxilla anteriorly, to the maxilla laterally, to the prefrontal
posterolaterally, and to the frontal posteriorly. The nasals are
lost in PEFO 16759. In PEFO 40023, the right nasal is com-
plete, but it has been dislodged such that it overrides the
anterior portion of the frontals and a portion of the prefron-
tal, resulting in the shape of the naris being slightly altered
(Figure 3). The left nasal is more dislodged, is incomplete
posteriorly, and is obscured anteriorly by various other ele-
ments. Contact of the nasal with the lacrimal is a variable
feature of metoposaurids but cannot be characterised here.

The frontal is an elongate, rectangular element that is
expanded anterolaterally before tapering slightly posteriorly.
It is sutured to the nasal anteriorly, to the prefrontal ante-
rolaterally, to the postfrontal posterolaterally, and to the post-
parietal posteriorly. The frontals are complete in PEFO 40023.
The left frontal is fractured at about the mid-length, with the
posterior fragment slightly uplifted; both frontals are over-
lapped anteriorly by the displaced right nasal (Figure 3). The
posteromedial tapering of the frontals is variable among
metoposaurids. Typically, the element gradually expands pos-
terolaterally to the sutural junction with the pre- and post-
frontal and then tapers. The posterior tapering is most
pronounced in Dutuitosaurus (e.g. MNHN XIII/36/66
[Dutuit 1976, figure 2, plate 6]) and ‘Metoposaurus’ bakeri
(e.g. UMMP 13005 [Case 1931, figure 1]). Spielmann and
Lucas (2012, p. 15) state that the tapering is less pronounced
in Apachesaurus compared to most other metoposaurids save
for Arganasaurus, but their comparative figure (Spielmann
and Lucas 2012, figure 13) does not indicate appreciable
differences between Apachesaurus, Koskinonodon perfectus,
and M. diagnosticus. The posterior tapering of the element
is generally more abrupt in Apachesaurus and ‘M.’ bakeri (e.g.
UMMP 13005 [Case 1932]; UCMP 63845 [Spielmann and
Lucas 2012]), a condition seen in PEFO 40023. However the
degree and nature of tapering also appear to vary intraspeci-
fically in K. perfectus based on the figures of Lucas et al. (2016,
figures 27–34 [compare, for example, WT 3116–1 with PPHM
9). This variation is reduced in M. krasiejowensis, but
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Figure 2. Dorsal profile of PEFO 16759. (A) photograph; (B) outline drawing. Darkest grey represents sediment-infilled areas. Abbreviations: cl, clavicle; d, dentary; eo,
exoccipital; icl, interclavicle; j, jugal; p, parietal; po; postorbital; pof; postfrontal; pp, postparietal; qj, quadratojugal; sq, squamosal; st, supratemporal; t, tabular. Scale
bar equals 5 cm.
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Figure 3. Dorsal profile of PEFO 40023. (A) photograph; (B) outline drawing. Darkest grey represents sediment-infilled areas; black represents holes. Abbreviations: cl,
clavicle; d, dentary; f, frontal; ic, intercentrum; icl, interclavicle; j, jugal; n, nasal; p, parietal; pf, prefrontal; pmx, premaxilla; po; postorbital; pof; postfrontal; pp,
postparietal; qj, quadratojugal; r, rib; sq, squamosal; st, supratemporal; t, tabular. Scale bar equals 5 cm.

210 B. M. GEE AND W. G. PARKER



significant asymmetry between the frontals within an indivi-
dual is also noted (e.g. ZPAL ABIII/358, Sulej 2007, fig-
ure 13).

The postfrontal is an elongate, polygonal element that is
sutured to the frontal medially, to the prefrontal anterolater-
ally, to the postorbital laterally, to the supratemporal poster-
olaterally, and to the parietal postermedially. The postfrontals
are present in both specimens, but those of PEFO 16759 are
represented only a minute sliver sutured posteriorly to the
supratemporal on the right, and by the anteriormost region at
the posterior orbital margin on the left. In PEFO 40023, the
right postfrontal is broken anteriorly, with a small portion,
containing the orbital margin, being slightly dislodged; the
remainder of the element is articulated with the right frontal.
The left postfrontal can only be tentatively identified by the
position of elements relative to the fragmentary orbit and by
comparison with the right side. It is fragmented in several
locations and as with the other left lateral elements, slopes
ventromedially.

The postorbital is an elongate, polygonal element that is
sutured to the jugal laterally, to the squamosal posterolater-
ally, to the supratemporal posteromedially, and to the post-
frontal medially. It gradually expands transversely toward the
posterior region and contributes to the posterior orbital mar-
gin. The postorbitals are present in both specimens but are
represented in PEFO 16759 only by the anterior portion of
the left postorbital at the orbital margin (Figure 2). In PEFO
40023, the right postorbital appears complete, although the
posteriormost region is difficult to characterise because of
dislodging of the elements on this side. The left postorbital
is present but is fractured in several places and identified on
the basis of its relative position and by comparison with the
right side (Figure 3).

The parietal is an elongate, rectangular element that is
sutured to the frontal anteriorly, to the postfrontal anterolat-
erally, to the supratemporal laterally, and to the postparietal
posteriorly. The parietals normally frame the pineal foramen
medially in the posterior third of the anteroposterior length,
but this opening is not demarcated in either specimen. In
PEFO 16759, the right parietal is broken at the anteromedial
region, forming a trapezoidal shape with an anterior edge
sloping anterolaterally. The left parietal is similarly preserved
only posteriorly and is almost entirely overlain by the left
supratemporal. In PEFO 40023, the right parietal is mostly
intact, although it is broken at the mid-length with minor
dislodging and rotated away from the posterior margin of the
frontal. The left parietal is angled steeply anteroventrome-
dially and is incomplete anteriorly. The element is conserved
in shape and sutural contacts among metoposaurids.
Illustrations of Arganasaurus (e.g. Spielmann and Lucas
2012, figure 13) indicate that Arganasaurus has a broader
parietal with a more pentagonal profile compared to the
rectangular profile of other taxa. However, photographs of
specimens (e.g. MNHN XIX/3/66 [Dutuit 1976, plates
49–50]) indicate a far less disparate morphology.

The postparietal is a rectangular element, longer antero-
posteriorly than mediolaterally, which contributes to the pos-
teromedial margin of the skull table. It sutures to the tabular
laterally, to the supratemporal anterolaterally, and to the

parietal anteriorly. The postparietals are present in both spe-
cimens, but they are either damaged or partially obscured.
The right postparietal of PEFO 16759 is partially overlain
medially by its counterpart, which in turn is overlain by the
left tabular (Figure 2). The right postparietal of PEFO 40023
is similarly overlain by its counterpart; the left postparietal is
missing an anteromedial region (Figure 3). The morphology
and sutural contacts of the postparietal are conserved among
metoposaurid taxa.

The supratemporal is an elongate, pentagonal element
similar to the squamosal and of a comparable length and
width to the parietal. It is sutured to the postorbital ante-
riorly, to the squamosal laterally, to the tabular, posteriorly, to
the postparietal posteromedially, and to the parietal medially.
In PEFO 16759, both supratemporals are nearly complete,
although each is fractured in several places anteriorly. The
lateral and medial margins are anteroposteriorly oriented.
They taper anteriorly to a point that is medially positioned
and directed (Figure 2). In PEFO 40023, the supratemporals
are identified by their relative position and are more frag-
mentary (Figure 3).

The jugal is an elongate element that is typically sutured to
the maxilla anteriorly and ventrolaterally, to the lacrimal
anteromedially, to the postorbital medially, to the squamosal
posteriorly, and to the quadratojugal posterolaterally; it also
contacts the prefrontal in taxa with a lacrimal excluded from
the orbit, which is unclear in these specimens. In PEFO
16759, the left jugal is partially complete, lacking the poster-
olateral region that would suture to the quadratojugal and the
anteriormost region that forms the anterolateral orbital mar-
gin (Figure 2). In PEFO 40023, the left jugal appears to have
been mostly lost, save for a few isolated fragments along the
lateral margin (Figure 3). The right jugal is fully exposed, but
broken at about the mid-length, with the posterior portion
significantly shifted upward. The anterior portion that com-
prises the lateral orbital margin has been slightly medially
shifted into the orbit and lies at the same level of the tooth
row on the dentary (Figure 3).

The tabular is a small rectangular element, longer medio-
laterally than anteroposteriorly, and contributes to the poster-
omedial margin of the skull table. It sutures to the squamosal
laterally, to the supratemporal anteriorly, and to the postpar-
ietal medially. It also forms the medial margin of the otic
notch. The tabulars are present in both specimens, although
the left tabular of PEFO 16759 is partially obscured by the
overlying squamosal, and the left tabular of PEFO 40023 is
mostly absent. A particularly important feature for metopo-
saurid taxonomy is the tabular horn, found in all large taxa,
but not in Apachesaurus. There is no tabular horn in PEFO
16759, nor is there any evidence of one having been broken
off; however, the more complete right tabular has also been
weathered at the corners. Conversely, a partial tabular horn
lacking the distal-most portion is present in the larger PEFO
40023 (Figure 3). Both the horn and the otic notch of this
specimen are not as developed as in larger metoposaurids, but
they are more pronounced than in Apachesaurus (e.g. UCMP
63845 [Spielmann and Lucas 2012, figures 9–10]) and in
PEFO 16759. The depth of the otic notch is comparable to a
previously described juvenile metoposaurid (PEFO 35392)
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(Gee and Parker 2017). The tabular horn appears relatively
susceptible to taphonomic damage in all large metoposaurid
taxa for which a reasonably large sample size is known and
either sufficiently well-described or figured (e.g.
Dutuitosaurus, Metoposaurus krasiejowensis; Koskinonodon
perfectus) (Dutuit 1976; Sulej 2007; Lucas et al. 2016), so its
absence in any given specimen must be carefully examined
for taphonomic influence.

The squamosal is a large, pentagonal element characterised
by lateral and medial margins that are nearly straight antero-
posteriorly and that taper to an anterior point. It is sutured to the
quadratojugal laterally, to the jugal anterolaterally, to the post-
orbital anteromedially, to the supratemporal laterally, and to the
tabular posteromedially, where it forms the majority of the otic
notch dorsally and laterally. The squamosal is also readily iden-
tifiable by its differential ornamentation, which consists primar-
ily of a pattern of elongate grooves that radiate anteriorly and
laterally from a posteromedial center of smaller pits near the
tabular. In PEFO 16759, the right squamosal is nearly complete,
although the anteriormost region is fragmented; the lateral
margin appears essentially intact and may be broken along the
suture with the absent quadratojugal (Figure 2). The sensory
groove is well-defined along this margin. The left squamosal is
more fragmentary, preserving the posterior region that contri-
butes to the otic notch, some of the medial portions, and the
anterior portion that sutures to the postorbital and the jugal
(Figure 2). In PEFO 40023, the right squamosal is broken into
several pieces but is essentially complete (Figure 3). A ventro-
lateral portion of the element that would have framed the para-
quadrate foramen is also present in occipital view, though the
foramen itself is not preserved. The left squamosal is fractured
into toomany pieces to provide any additional information. The
morphology of the squamosal varies amongmetoposaurids with
regard to a lateral expansion; this can be seen, for example, in

Koskinonodon perfectus (e.g. WT 3114, WT 3011–3 [Lucas et al.
2016, figures 34A, 34E]) in which it is often proportionately
wider, resulting in an expanded temporal lobe. Otherwise, its
sutural contacts are consistent across taxa. Illustrations of
Arganasaurus (e.g. Spielmann and Lucas 2012, figure 13) indi-
cate that Arganasaurus has a more triangular squamosal.
However, specimen photographs (e.g. MNHN XIX/3/66
[Dutuit 1976, plate 49A]) do not support this and instead
indicate a comparable morphology to other taxa. The lack of a
medial deflection of the anterior process is considered diagnos-
tic for Apachesaurus (Spielmann and Lucas 2012). The anterior
tip of the squamosals of PEFO 16759 are not significantly
deflected in either direction. Conversely, the right squamosal
of PEFO 40023 appears moremedially deflected in a comparable
fashion to large metoposaurids (Figures 2 and 3). We note
however that the anterolateral margin in PEFO 40023 is not
well-defined because of the displacement of the posterior por-
tion of the postorbital.

The quadratojugal is a small, elongate element that forms the
posterolateral corner of the skull with both a dorsal and a lateral
exposure and that sutures to the maxilla anterolaterally, to the
jugal anteriorly, and to the squamosal medially. Neither quadra-
tojugal is well-preserved in PEFO 16759. The element appears to
have been sheared off along the suture with the squamosal on the
right side (Figure 2). There is only a small posterolateral portion of
the left quadratojugal that is identifiable in occipital profile. In
PEFO 40023, only the right quadratojugal is confidently identifi-
able. It is slightly dislodged from the skull and rotated into a more
vertical orientation, rendering it difficult to identify the precise
contours (especially because of the displaced squamosal and
jugal). It is readily identifiable in ventral profile (Figure 7) where
the smooth ventral margin is positioned lateral to the mandible.

An additional ornamented cranial fragment is catalogued
under PEFO 16759 (Figure 4). A small portion of a smooth,

Figure 4. Skull fragment of PEFO 16759. (A) photograph in dorsal profile; (B) photograph in ventral profile. Arrow points anteriorly. Abbreviation: nm, narial margin.
Scale bar equals 2 cm.
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curved surface at the margin is likely to be the right narial
opening, with most of the fragment pertaining to the ante-
romedial region of the skull. If this identification is correct,
the elements that are present would include a large portion of
the nasals and possibly portions of the anteromedial lacrimal,
the anterior prefrontal, and the anterior frontal. However, the
element is heavily fractured, with no clear sutures or other
landmark features (e.g. lateral line groove) visible, and a fit
between this fragment and the larger skull roof was not
found. It cannot be excluded that it could pertain to a second
individual.

In neither specimen does the basicranial region appear to
be preserved; that of PEFO 16759 is represented only by the
displaced occipital condyles, which project extremely far pos-
teriorly and were probably pushed out during dorsoventral
compression of the skull. In occipital view, a portion of the
falciform crest and the pars supraquadrata are visible on the
left side ventral to the quadratojugal and the squamosal; other
aspects are obscured. No basicranial elements can be confi-
dently identified in PEFO 40023.

The palatal region of PEFO 16759 cannot be exposed,
either due to overlying postcranial elements or because of
the fragility of the specimen in relation to the encrusting
matrix. The pectoral elements are closely adhered to the
ventral surface of the skull roof, suggesting that the palatal
elements may not be preserved. All of the elements exposed
ventrally in PEFO 40023 pertain to the skull roof or to the
mandible.

The ornamentation of the skull roof is obscured in some
regions of both skulls but is typical for that of metoposaurids.
The vast majority of the skull roof is characterised by small,
circular pits with foramina, although most of these are par-
tially infilled with encrusting matrix. The squamosal, jugal,
and quadratojugal also feature elongate, radiating grooves,
which facilitated the identification of some more fragmentary
or dislodged elements. Lateral line grooves are mostly uni-
dentifiable and may not have been fully developed (as in the
holotype of Apachesaurus).

Mandible

A large fragment of the left mandible has been pressed
against the side of the skull of PEFO 16759, overlapping
the jugal and possibly the other elements of the lateral skull
margin (Figure 5(a)). The jaw is bent medially and features
a prominent dorsoventral kink. The ventral and lateral
elements (e.g. splenial, postsplenial, angular) are markedly
ornamented. The mandibular ornamentation is conserved
among metoposaurids and consists of a small centre of
circular pitting toward the posteroventral margin of the
angular. From this centre, elongate grooves radiate outward
in all directions, being most elongate at the anterior
regions of the jaw. Because of the deformation of the jaw
and the absence of identifiable sutures, we cannot confi-
dently identify the position of this fragment. Based on the
absence of circular pitting save for a few isolated pits, it
appears that the fragment pertains to the mid-length of the
jaw. It would thus preserve portions of the dentary, the
angular, the postsplenial, and possibly the splenial in lateral
profile and the dentary, the postsplenial, and possibly the
splenial in ventral profile. The absence of landmarks, such
as the Meckelian foramen, complicates identification.
Fragments of bone that lie medial to the mandible in
ventral profile may pertain to the medial wall of the adduc-
tor chamber (Figure 6), but it is impossible to confidently
determine. This is in agreement with the predicted position
for a mandible articulated with the skull roof. Tooth posi-
tions are mostly obscured or weathered such that a tooth
count estimate is not feasible. Other tooth-bearing frag-
ments of a temnospondyl mandible are catalogued under
PEFO 16759 (Figure 5(b–c)), but they cannot be confi-
dently associated with the mandible or the skull.

Both mandibles of PEFO 40023 are articulated with the
skull (Figures 3 and 7). The left mandible is missing a large
ventral portion, but both mandibles are essentially complete
along their length. They are fractured in a similar fashion
toward the posterior end such that the two portions form a

Figure 5. Mandibles of PEFO 16759. (A) partial left mandible articulated with skull roof in lateral profile (arrow points anteriorly); (B) mandibular fragment in dorsal
profile; (C) same fragment in lateral profile. Abbreviations: ang, angular; d, dentary; ps, postsplenial. Scale bars equal 1 cm.
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Figure 6. Ventral profile of PEFO 16759. (A) photograph; (B) outline drawing. Darkest grey represents sediment-infilled areas. Arrow points anteriorly. The two
intercentra of the specimen, from left (anterior) to right (posterior) are respectively ‘J’ and ‘K’ of Table 2. Abbreviations: ang, angular; cl, clavicle; ic, intercentrum; icl,
interclavicle; mbf, mass of bone fragments; ps, postsplenial; r, rib; sq, squamosal. Scale bar equals 5 cm.
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dorsally angled kink. The anteriormost portion of the right
mandible is broken off and rotated in position to be roughly
perpendicular to the skull. Identifying precise sutural contacts
is impossible given the damage sustained to various regions
and the presence of overlying elements in some areas. General
identification is thus based on the morphological conserva-
tion of the metoposaurid mandible in the relative position of
elements. The posterior right mandible is relatively well-pre-
served and intact; features such as the retroarticular process
and the chorda tympanic foramen can be tentatively identi-
fied (Figure 7).

Postcrania

Pectoral girdle
A nearly complete interclavicle and both clavicles are present
in association with the skull of PEFO 16759 (Figure 6). The
interclavicle is preserved posteroventral to the skull and with
the ornamented surface facing ventrally in the proper anato-
mical position. Only a small portion of the left anterolateral
region has been lost. The smooth dorsal surface is mostly
exposed, but various elements obscure much of the ventral
surface. A small posterior region features the typical elongate
grooves toward the periphery. The interclavicle of PEFO
40023 (Figure 7) is broken into several pieces but is identified
by its flat morphology (in contrast to the dorsal curvature of
the posterior clavicle), the transition from circular pitting to
elongate grooves, and the relative thickness and contour of
the posterior base. In all regards, the interclavicles described
here are identical to those of other metoposaurids. The only
source of variation pertains to the size of the central region of
circular pitting, but this cannot be exposed in PEFO 16759.
The fragmentation of the interclavicle of PEFO 40023 pre-
vents a confident characterization. The preserved region con-
tains a portion of circular pitting, but its relative extent is
uncertain.

The clavicles of PEFO 16759 are preserved anterior to the
interclavicle and ventral to the skull (Figure 6). The right clavicle
is essentially complete save for minor loss along the posterior
margin and the blade-like dorsal process. It is closely adhered to
the skull roof and underlies a flat plate with elongate grooves
that is probably the anterior portion of the left clavicle. The
posterior left clavicle is adjacent to its counterpart and is simi-
larly closely adhered to the skull roof. It is also relatively com-
plete, but is broken at about the mid-length, with the more
anterior fragment displaced between the interclavicle and the
right clavicle. The clavicles of PEFO 40023 are only complete
posteriorly and lie ventral and slightly posterior to the skull
(Figure 7). The right clavicle is well-exposed where it underlies
the interclavicle; the left clavicle is exposed both ventrally and
dorsally. They feature no differences with those of PEFO 16759
beyond a larger size. The anterior end of the right clavicle of
PEFO 16759 is rounded, which does not appear to be the result
of weathering at the margin. This condition is more comparable
to the clavicles of Metoposaurus krasiejowensis (e.g. Sulej 2007,
figure 43) than to Koskinonodon perfectus (Lucas et al. 2016,
figures 53–61) or to Dutuitosaurus (Dutuit 1976, plate 22). The
ornamentation of the clavicles is also consistent with that of

other metoposaurids in comprising small, circular pits at the
posteroventrolateral base that radiate outward into elongate
grooves.

Vertebral material
Nineteen intercentra are catalogued under PEFO 16759
(Figures 6 and 8; Table 3). Whether they were closely asso-
ciated with the skull during collection is unknown, but they
are of an appropriate and consistent size for the skull. Two
can be more confidently associated with the skull based on
their position ventral to the interclavicle that is also associated
with the skull. Seven of the intercentra, including an atlas, are
isolated. The remainder are divided among five blocks
(including the interclavicle block), none of which could be
pieced back together. Many of the intercentra are weathered,
thereby complicating a determination of their axial position.
They are of the elongate proportions formerly referable to
Apachesaurus (Hunt 1993), being of subequal anteroposterior
length and transverse width. Precise axial determination is
somewhat complicated by the fact that the parapophyses are
less developed than in large metoposaurids (e.g. Sulej 2007).
Changes in the shape and position of the parapophyses along
the column are considered to be informative for axial deter-
mination (Sulej 2007), but little variation is detectable among
the sample here. The convexity (or lack thereof) of the ante-
rior articular surface was also considered informative by Sulej,
but the intercentra of PEFO 16759 are markedly amphicoe-
lous. This may be a marker of relative immaturity since this
morphology is observed in small, histologically immature
intercentra (Gee et al. 2017). The intercentra are tentatively
identified to the presacral region in the absence of any pelvic
material or the more triangular, haemal-arch-bearing caudal
vertebrae. The more complete ones (Figure 8(a–f)) appear
only to have anterior parapophyses and are tentatively iden-
tified as mid-trunk positions.

In PEFO 40023, a total of ten intercentra are associated
with the skull (Figures 3, 7, and 9; Table 2). The first three
(atlas, axis, third position) intercentra are articulated with the
skull (Figures 3 and 7). There is no evidence of the distinct
fourth position, and all subsequent intercentra were found
jumbled posterior to this region prior to being removed
during preparation in order to expose the dorsal surface of
the pectoral elements; accordingly, they are assigned a more
generic axial position. Similar to PEFO 16759, most of the
intercentra pertain to the presacral region. Both the parapo-
physes and the anterior articular surface are more developed
than in PEFO 16759, facilitating their axial determination.
The other two intercentra (Figure 8(g-h)) pertain to the
perisacral and the caudal region. A similar size, state of
preservation, and association with the other elements support
their assignment to the specimen. The intercentra of PEFO
40023 are notably larger than those of PEFO 16759, as with
the skull, and are proportionately shorter anteroposteriorly
than the latter. However, they are still more elongate than
those of large-bodied specimens.

The atlas of PEFO 40023 is articulated with the skull roof
but is well-exposed in dorsal profile (Figure 9). That of PEFO
16759 is isolated (Figure 8(a)). In their revised diagnosis of
Koskinonodon perfectus, Lucas et al. (2016) noted differences
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Figure 7. Ventral profile of PEFO 40023. (A) photograph; (B) outline drawing. Darkest grey represents sediment-infilled areas; black represents holes. Abbreviations:
ang, angular; at, atlas; cl, clavicle; d, dentary; icl, interclavicle; pf, prefrontal; pmx, premaxilla; qj, quadratojugal. Scale bar equals 5 cm.
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between the atlases of K. perfectus, M. krasiejowensis (referred
to as M. diagnosticus in the publication), and Dutuitosaurus.
The atlas of K. perfectus (e.g. WT 3144, Lucas et al. 2016,
figure 38) features shallow articular surfaces that are not
separated by a cleft. Conversely, the referred atlas of
Apachesaurus (e.g. NMMNH P-22487, Spielmann and Lucas
2012, figure 22A-D) features a separation between the articu-
lar surfaces; it is not nearly as deep of a cleft as in M.
krasiejowensis (e.g. ZPAL AbIII/1702, Sulej 2007, figure
22B), but the gap is notably larger. In both PEFO 16759 and
PEFO 40023, the atlas is characterised by a very slight contact
of the articular surfaces and without a cleft. The degree of
contact is lesser than in K. perfectus.

Other postcrania
Two ribs are found in articulation with the two intercentra
found on the ventral surface of the interclavicle in PEFO
16759 (Figure 6). Fragmentary rib material is also catalogued
under the same specimen number, but it is too incomplete to
be referable to a temnospondyl. In addition, a large number
of other fragmentary metoposaurid elements were collected

from nearby localities (termed RAP Hill West and RAP Hill
North [PFV 277]). This evidently occurred around the same
time as PEFO 16759 based on their collection numbers (com-
prising a non-continuous range from PEFO 19502 to PEFO
19514). The coloration, quality of preservation, general size of
material, and nature of encrusting minerals is identical to that
of elements recovered from RAP Hill (PFV 216), and the
series of localities probably represents a single depositional
environment. No fits or confident association between this
material and that assigned to PEFO 16759 were found. Some
of the other elements include dentulous cranial and mandib-
ular elements with teeth and ‘tusks’ that would belong to
individuals of a comparable size to PEFO 16759 (Figure 5(b,
c)). Isolated, partial clavicular and interclavicular material and
smaller intercentra are also present.

Isolated postcranial elements are also associated with
PEFO 40023, including fragmentary ribs, a small, partial
clavicle (Figure 10(a,b)), and a partial ilium complete proxi-
mally (Figure 10(c,d)). This material was collected as float in
close proximity to the skull, so it can be reasonably associated
with the individual. A feature shared with ilia referred to

Figure 8. Photographs of intercentra of PEFO 16759 in dorsal and lateral profiles. All subletters correspond to the listings of Table 3. Scale bars equal 1 cm.
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Apachesaurus (e.g. NMMNH P-17040, Spielmann and Lucas
2012, figure 27) is a narrow groove is found at the anterior
margin of the acetabulum adjacent to a shallow ridge that
marks this margin. This is not explicitly reported or figured in

other metoposaurids, but the ilium is also a relatively rare
element. One feature of note is the presence of a protuberance
dorsal to the anterior margin of the acetabulum (Figure 10(c,
d)). This is not seen in the two referred specimens of

Figure 9. Photographs of intercentra of PEFO 40023 in dorsal and lateral profiles. All subletters correspond to the listings of Table 3. Note that specimens ‘J’ and ‘K’
are found in close association with the skull (see Figure 6) and are not figured here. Scale bar equals 1 cm.
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Figure 10. Photographs of postcrania assigned to PEFO 16759 and PEFO 40023. (A) ventral profile of a small partial clavicle (PEFO 16759); (B) dorsal profile of the same
clavicle; (C) lateral profile of a partial ilium (PEFO 40023); (D) medial profile of the same ilium. Abbreviations: ac, acetabulum; asc, ascending crest; at, anterior torus; sg,
sensory groove. Scale bars equal 2 cm.

Figure 11. Microanatomy of intercentra of PEFO 16759 and PEFO 40023 in sagittal sections. (A) PEFO 16759 under plane-polarized light; (B) the same section under
cross-polarized light; (C) PEFO 40023 under plane-polarized light; (D) the same section under cross-polarized light. The boundary between the endochondral and the
periosteal domains is marked by a dashed white line in (A) and (C). Abbreviations: en, endochondral domain; pe, periosteal domain. Scale bars equal 5 mm.
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Apachesaurus (NMMNH P-17040, UCMP 65309 [Spielmann
and Lucas 2012]) or in any other metoposaurid, and whether
it is pathological or a natural condition is unclear.

Intercentra histology

Two trunk intercentra of each specimen were sampled
(Figures 8(e, f), 9(a-d); Table 3). These elements could either
be reasonably associated with the skull (PEFO 40023) or are
more tentatively associated but of identical size and propor-
tions to others associated with the skull (PEFO 16759). The
preservation of the intercentra of PEFO 16759 is relatively
poor but permits a number of broad microanatomical char-
acterizations and identification of some informative histolo-
gical features. As detailed descriptions of metoposaurid
intercentra have been provided by a number of workers
(Konietzko-Meier et al. 2013, 2014; Danto et al. 2016; Gee
et al. 2017), the following description presents only a brief

characterization with an emphasis on ontogenetically relevant
features.

Microanatomy
The metoposaurid intercentrum consists of endochondral
and periosteal domains (Figure 11–12). The periosteal
domain comprises an ordered region of parallel layers in the
ventral region of the intercentrum that also extends up the
lateral surfaces in transverse profile. The endochondral
domain, made of a semi-organized trabecular network,
forms most of the intercentrum. In sagittal profile (along
the midline anteroposteriorly), the periosteal bone is confined
to a sub-triangular region at the ventral portion of the inter-
centrum (Figures 11 and 12). In PEFO 16759, a more pro-
nounced concavity of the ventral margin of the element
results in a more dorsally concave ventral and dorsal contour
(Figure 11(a,b)). This differs from PEFO 40023 in which the
periosteal region narrows to a discrete apex (Figure 11(c,d)).
PEFO 40023 is similar in this regard to similarly sized and

Figure 12. Microanatomy of intercentra of PEFO 16759 and PEFO 40023 in half-transverse sections. (A) PEFO 16759 under plane-polarized light; (B) the same section
under cross-polarized light; (C) PEFO 40023 under plane-polarized light; (D) the same section under cross-polarized light. The boundary between the endochondral
and the periosteal domains is marked by a dashed white line in (C); the damage to the internal trabecular network prevents a confident demarcation in (A).
Abbreviations: en, endochondral domain; pe, periosteal domain. Scale bars equal 5 mm.
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larger intercentra (e.g. Konietzko-Meier et al. 2013; Gee et al.
2017). In transverse profile, the periosteal region is confined
to a small portion along the ventral margin but extends
dorsolaterally along the lateral surfaces of the element
(Figure 12). In both profiles, the boundary between the peri-
osteal and the endochondral domains is clearly demarcated
by obliquely-oriented trabeculae. It is not always continuous,
being particularly damaged toward the geometric centre in
PEFO 16759 (e.g. Figure 12(b)). Other obliquely oriented
trabeculae frame nutrient canals, within the periosteal cortex,
that are connected to the external surface. The quality of
preservation of PEFO 16759 is relatively poor to those of
PEFO 40023 and those previously sampled by Gee et al.
(2017); although all of the major features and organization
are present, there has been significant loss of much of the
endochondral trabecular network; it may be that a

combination of poor ossification and larger intertrabecular
spacing resulted in increased damage from secondary mineral
precipitation. PEFO 40023 is also damaged by secondary
carbonates, but most of this is confined to the periosteal
region, and the microanatomical features remain readily
identifiable.

Histology
Histologically, the metoposaurid intercentrum is formed by
highly trabecular bone. Whereas the periosteal cortex is
formed by an orderly network of parallel-oriented layers,
the endochondral domain is disperse and disorganized. The
trabecular networks are fairly loosely spaced in both speci-
mens (more difficult to characterize in PEFO 16759) (Figures
11 and 12). Only at the articular surfaces does the network
become densely packed. The periosteal cortex is formed by an

Figure 13. Comparison of the external periosteal cortex of PEFO 16759 and PEFO 40023 in transverse section. (A) vascularized external periosteal cortex of PEFO
16759 under plane-polarized light; (B) same section under cross-polarized light; (C) vascularized external cortex of PEFO 40023 under plane-polarized light; (D) the
same section under cross-polarized light; (E) close-up of the cortex of PEFO 16759 in cross-polarized light showing primary lamellar deposition within the vascular
canals; (F) close-up of the cortex of PEFO 40023 showing primary lamellar deposition within the vascular canals. Abbreviations: ec, erosion cavity; nf, nutrient
foramen; vc, vascular canal. Scale bars equal 300 μm (A-D); 100 μm (E-F).
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ordered network of parallel layers with vascular canals
oriented anteroposteriorly. Toward the geometric centre,
there often are large erosion cavities (Figure 13). The trabe-
cular network also becomes more disorganized toward the
centre; this may have contributed to the greater extent of
damage seen in the dorsal region of the periosteal domain
(e.g. Figure 13(b)). The cortex is well-vascularized throughout
in both specimens (Figure 11–13). Primary lamellar deposi-
tion is visible in the vascular canals of the periosteal cortex
and is relatively thin (Figure 13). In neither specimen is a
thickened, poorly vascularized annulus observed, and no lines
of arrested growth (LAGs) were identified.

Calcified cartilage is widespread throughout the ele-
ment, especially at the articular surfaces (Figure 14(e,f))
and near the dorsal margin. In places where remodelling
has begun, the cartilage is greatly reduced in abundance,
but it often remains present between trabeculae (Figure 14
(c,d)). Remodelling is most apparent near the geometric
centre of the element (e.g. Figure 14(c)) and at the bound-
ary separating the endochondral and periosteal domains
(e.g. Figure 14(a,b)). A few sections captured a small
circular (semi-circular in half-transverse section) region
at the centre of both specimens that likely represents the
closure of the notochordal canal. This region is still char-
acterized by an abundance of primary trabeculae and
calcified cartilage, as in previously sampled specimens
(Gee et al. 2017, figure 8(c,d)). The abundance of calcified
cartilage is difficult to assess in PEFO 16759 because much
of the trabecular network has been destroyed by secondary
mineralization. Nonetheless, remodelling, appears more
abundant in PEFO 16759. In PEFO 40023, slight occur-
rences of remodelling are always correspondent with a
greater abundance of cartilage.

Discussion

Taxonomic identity of PEFO 16759 and PEFO 40023

An assignment of PEFO 16759 to Apachesaurus gregorii is
supported by one autapomorphy of the revised diagnosis:
a symmetrical, pentagonal squamosal with an anterior
process that is not transversely deflected. None of the
other anatomical features are incompatible with this taxo-
nomic assignment. The taxonomic assignment of PEFO
40023 is more complicated. The specimen possesses a
squamosal with a medially deflected anterior process,
which is distinct from Apachesaurus under the diagnosis
of the taxon. However, incorporating features that were
considered differential but not formalised as diagnostic by
Spielmann and Lucas (2012) complicates the matter. The
more abrupt posterior tapering of the frontals and the
groove on the anterior margin of the acetabulum are
features suggested to be unique to Apachesaurus.
Elongation of the intercentra is reiterated to be an unin-
formative feature. As a result of the conflicting anatomical
features and a lack of assignable apomorphies, we assign
PEFO 40023 to Metoposauridae indet.

Morphological determination of ontogenetic maturity

The principle challenge in determining the ontogenetic
maturity of specimens based on their morphological features
alone is the low sample size of small-bodied taxa of a reason-
ably good preservation and completeness. In North American
deposits, the potential presence of a diminutive taxon
(Apachesaurus) in co-existence with large-bodied taxa
(Koskinonodon, ‘Metoposaurus’ bakeri) complicates the iden-
tification of small-bodied specimens that would be useful as
morphological reference points. Furthermore, the small sam-
ple of small-bodied taxa from other geographic regions is of
limited utility because of uncertainty regarding the morpho-
logical distinctions between juveniles of given taxa. The
potential for intraspecific variation (and interspecific varia-
tion of intraspecific variation) due to ontogeny, developmen-
tal plasticity, size-based sexual dimorphism, and other
ecological variables (e.g. Steyer 2000) only further complicates
the issue. The high degree of morphological conservation
among metoposaurids and the subsequent challenges of resol-
ving their taxonomy similarly represent ongoing challenges.
Based strictly on a superficial correlation of size and morpho-
logical features (again, semi-unreliable without good con-
straints on variation), the otic notch of small-bodied North
American specimens (PEFO 16759, 35392, 40023) appears to
deepen in larger individuals (Gee and Parker 2017; this
study). Similarly, the temporal lobe, formed primarily by the
squamosal and the quadratojugal, appears to broaden such
that the lateral margins become concave. Comparisons with
closely related taxa offer one means of circumventing the low
sample size of small-bodied metoposaurids, but many trema-
tosauroids are similarly poorly known (but see discussion of
Schoch 2006, for example). However, the unique cranial
morphology of the metoposaurids relative to other tremato-
sauroids (typically with elongate snouts and posteriorly posi-
tioned orbits) presents some complications in inferring
patterns of cranial ontogeny. More metoposaurid specimens
are necessary to confidently characterize developmental
trends, which emphasizes the importance of alternative meth-
ods for ontogenetic determination.

Histological determination of ontogenetic maturity

A number of microanatomical and histological features were
identified by Konietzko-Meier et al. (2013) and corroborated by
Gee et al. (2017) that inform the relativematurity ofmetoposaurid
intercentra. Microanatomical structures include: (1) the sagittal
profile and height of the periosteal region; (2) the density of the
endochondral trabecular network at the articular surfaces; (3) the
vascularization of the periosteal cortex; and (4) the presence of
lines of arrested growth (LAGs) in a thickened annulus (Figures 11
and 12). Histological features include: (1) the relative abundance
of calcified cartilage to secondarily remodelled trabeculae; (2) the
presence of secondary osteons; and (3) the amount of lamellar
deposition with vascular canals of the periosteal cortex.

From the microanatomical perspective, both specimens are
relatively immature. The periosteal cortex remains well-
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vascularized throughout, including at the ventral margin of
the intercentra. There is no disproportionately thickened,
poorly vascularized annulus that records the LAGs in larger
specimens (Konietzko-Meier et al. 2013, figure 4(e,f); Gee
et al. 2017, figure 11(g,h)). The periosteal cortex forms a
triangular cortex in sagittal profile in both specimens, so
they are certainly more mature than the smallest sampled
intercentra from North American taxa (Gee et al. 2017, figure
9). The apex is around the mid-height of the intercentrum in
both specimens, although that of PEFO 16759 is difficult to
confidently identify. The notochordal canal is fully closed,
although there may be some remnants of the closure at the
geometric centre. Based on their size and their microanato-
mical features, both specimens conform favourably to that
general ontogenetic trends of North American taxa identified
by Gee et al. (2017).

The histological perspective is a bit more complicated. PEFO
40023 is straightforward and conforms to the histological pat-
terns identified by Gee et al. (2017). Calcified cartilage is in
extreme abundance in relation to larger intercentra, and remo-
delling is rare. In isolation, the presence or absence of cartilage is
not informative, as it persists late in ontogeny (likely due to
paedomorphism) (Konietzko-Meier et al. 2013, 2014). However,
by comparison to previously sampled specimens whose ontoge-
netic maturity can be identified based on other features, the
relative abundance is informative. For example, PEFO 40023 is
similar to a previously sampled, comparably sized specimen
(PEFO 35392) in this regard (and other histological aspects)
(Gee et al. 2017). It is also notably less histologically mature
than the largest sampled intercentrum of a North American
taxon (PEFO 38726) in which cartilage is rare and remodelling
is abundant. Where remodelling occurs in PEFO 40023 (e.g.

Figure 14. Comparison of remodelling and calcified cartilage in cross-polarized light of PEFO 16759 and PEFO 40023. (A) remodelling at the endochondral-periosteal
domain boundary in PEFO 16759; (B) remodelling and calcified cartilage at the endochondral-periosteal domain boundary in PEFO 40023; (C) calcified cartilage and
slight remodelling near the geometric centre of PEFO 16759; (D) calcified cartilage near the geometric centre of PEFO 40023; (E) calcified cartilage at the articular
surface of PEFO 16759; (F) calcified cartilage at the articular surface of PEFO 40023. Arrows indicate cartilaginous regions (grainy texture). Scale bars equal 100 μm (A-B,
E-F); 300 μm (C-D).
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endochondral-periosteal boundary), it is rare and surrounded
by calcified cartilage. Secondary osteons are not identified.
Conversely, PEFO 16759 is more difficult to characterize, in
part because of the damage to the trabecular network.
Calcified cartilage is present and in greater abundance than
most other previously sampled intercentra of a larger size.
However, it is noticeably less abundant in this specimen than
in PEFO 40023. Remodelling is conversely more abundant,
although it is still less remodelled than most larger intercentra.
This suggests a relatively mature individual, but other aspects of
the histology and microanatomy are in conflict with this inter-
pretation. For example, the well-vascularized cortex contains
only primary lamellar deposition of a relative thinness within
the vascular canals (e.g. Figure 13(e)). As noted above, there is
no evidence of a highly compact and poorly vascularized exter-
nal cortex or LAGs that would similarly be expected in a mature
individual. Secondary osteons are also not identified. A number
of explanations to reconcile these observations may be
suggested.

The first possible explanation is that variability in the
ontogeny of a taxon can contribute to a range of variation
in size such that two individuals of the same size may not be
of the same skeletal maturity (e.g. Brochu 1992; Griffin and
Nesbitt 2016). This could result from a number of factors,
including natural intraspecific variation, sexual dimorphism,
or developmental plasticity. It bears reiterating that these
individuals are definitively time-separated (Figure 1).
Possible sexual dimorphism has been suggested in
Metoposaurus krasiejowensis by Teschner et al. (2018) based
on the identification of two distinct histotypes in humeri of
the taxon. Divergent histotypes ascribed to developmental
plasticity and variable habitat occupation have also been
documented in humeri of the plagiosaurid Gerrothorax by
Sanchez and Schoch (2013). Under this hypothesis, PEFO
16759 could be both slightly more mature than PEFO 40023
and relatively immature in the broader context of sampled
intercentra. This possibility awaits additional work to better
characterize the ontogenetic and intraspecific variability of
the external and histological features of the skeleton within
metoposaurids. The second consideration is that taphonomic
damage to the trabecular network contributed to an exagger-
ated perception of the relative abundance of remodelling and
calcified cartilage. Of the sampled North American intercen-
tra, PEFO 16759 certainly features the most extensive second-
ary mineral precipitation within the intercentra. If calcified
cartilage were less likely to be preserved based on some
structural property, this might explain why it seems sparser
in PEFO 16759. However, this would require additional work
to better characterize taphonomic biases at the histological
level.

Konietzko-Meier et al. (2013) erected histological ontoge-
netic stage (HOS) designations for the intercentra of
Metoposaurus krasiejowensis that were applied in the study
by Gee et al. (2017). We repeat this approach here and
designate both specimens as HOS 2 based on the presence
of a well-vascularized periosteal cortex. This is the same
conclusion that we arrived at based on a more general com-
parison of histological features with previously sampled
North American metoposaurid intercentra (Gee et al. 2017).

It is not possible to fully reconcile the anomalous proportions
of calcified cartilage and remodelling in PEFO 16759 without
additional sampling to test the various hypotheses proposed
above. However, we emphasize that the specimen is certainly
not mature, either in absolute terms of the presence/absence
of features (e.g. LAGs) or by comparison of the relative
development to previously sampled specimens (e.g. the
degree of remodelling in PEFO 38726 [Gee et al. 2017, fig-
ure 12(e,f)]). The other features of the histology and the
microanatomy are in agreement with similarly sized intercen-
tra. Similarly, aspects of the external anatomy, such as the
amphicoelous articular surfaces and poorly developed para-
pophyses, further suggest relative immaturity.

These specimens are now the second and third to be identified
as juvenile individuals on the basis of histology when they would
traditionally have been referred to Apachesaurus under the origi-
nal interpretation as a diminutive metoposaurid on the basis of
either size or a few morphological features (e.g. shallow otic
notch). This highlights the importance of a multi-faceted
approach to determining the ontogenetic maturity of specimens
in order to avoid circular logic (e.g. recognizing morphological
changes in specimens inferred to be juvenile through their mor-
phology). Several considerations bear reiterating for future work.
The absence of articulated vertebral columns for most metopo-
saurid taxa creates challenges in defining the precise axial position
for isolated material. In general, it is easy to identify general
positions (e.g. anterior trunk, caudal), but more precise determi-
nation that would allow for more direct control in histological
studies remains challenging. This is particularly salient for small-
bodied metoposaurids, regardless of the interpretation of ontoge-
netic maturity, because the current characterization of the varia-
bility along the axial column is derived from the large-bodied
Dutuitosaurus. The identifications made for PEFO 16759 in par-
ticular (Table 3) are more tentative because the parapophyses, a
key criterion used by Sulej (2007) to identify the axial positions in
Metoposaurus krasiejowensis, are underdeveloped. The amphi-
coelous nature of small metoposaurid intercentra, a remnant of
the early closure of the notochordal canal, prevents the use of the
anterior articular surface to differentiate positions. The intercen-
tra of PEFO 40023 are of a more comparable development to
large-bodied metoposaurids in these regards.

Additionally, histological work on temnospondyl intercentra
is relatively recent and thus limited. Some studies have extensive
taxonomic coverage in sampling and have established a strong
baseline for comparison of a large number of taxa (e.g.
Konietzko-Meier et al. 2014; Danto et al. 2016). However,
most of these studies are limited in the ontogenetic information
that can be derived for a given taxon because they lack a wide
intra-taxon sampling of variably sized (and presumably variably
mature) specimens. Thus, even conclusions about intraspecific
ontogenetic patterns remain somewhat unresolved, let along
interspecific comparisons. Various histological differences
between the North American and the European metoposaurid
intercentra were noted by Gee et al. (2017). The relative elonga-
tion seen only in the North American taxa suggests that there
may be proportionately greater expansion of the periosteal
domain to result in a proportionately anteroposteriorly short
intercentrum in more mature individuals. Such differences
likely indicate differences in various aspects of ontogeny (e.g.
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growth rate) that could in turn reflect different environmental
conditions, for example. However, this requires further work
with tight controls for axial position and size to better charac-
terize differences in the developmental trajectories of the axial
column among the various metoposaurid taxa. This would also
improve the understanding of how the HOS designations that
were created for M. krasiejowensis apply to North American
metoposaurids. A final area that requires additional work is
the proposal that the general histological immaturity of stereo-
spondyls may reflect paedomorphism (e.g. Konietzko-Meier
et al. 2013; Danto et al. 2016). This is particularly important
for considering the interpretation of calcified cartilage, which
persists in some amount late into ontogeny (e.g. Konietzko-
Meier et al. 2013; Danto et al. 2016).

Implications for metoposaurid ontogeny

The PEFO specimens described here contribute to increased
resolution of the earliest stages of ontogeny in large-bodied
metoposaurids. PEFO 16759, referable to Apachesaurus, is
slightly smaller than the holotype (UCMP 63845) (Table 2).
PEFO 40023 is larger than the latter but smaller than the
specimen described by Gee and Parker (2017), PEFO 35292
(Table 2). Because PEFO 40023 is larger, more histologically
mature, and possesses features more typical of large metopo-
saurids, there is no reason to assume that it is a distinct taxon
from PEFO 16759. However, it cannot be referred to A.
gregorii under either the original or the amended diagnosis.
The clear ontogenetic influence on some aspects of the skull
(e.g. medial deflection of the anterior process of the squamo-
sal) and the intercentra illustrates the challenges associated
with diagnosing unambiguous juvenile forms. The demon-
strated immaturity of these specimens, in conjunction with
that previously reported by Gee and Parker (2017), indicates
that some features previously considered to be autapomor-
phies of Apachesaurus (e.g. shallow otic notch, poorly devel-
oped tabular horn) may be markers of ontogenetic
immaturity. For example, a comparison of the two specimens
presented here with PEFO 35292 (larger than PEFO 16759
and PEFO 40023) shows that a deepening of the otic notch is
correlated with increased skull size. Already, elongation in
small intercentra has been demonstrated to be a feature
associated with immaturity in North American taxa (Gee
et al. 2017), findings that are further corroborated by this
study. Evidently these features may vary in their ontogenetic
trajectories between metoposaurid taxa. For example, a juve-
nile of Koskinonodon perfectus (TMM 31099-12B) that was
figured by Hunt (1993, figure 8(a,b)) and the juvenile of
‘Metoposaurus’ bakeri (YPM VPPU 021742 [Sues and Olsen
2015, figure 12]) are within a comparable size range to the
specimens described here and to those referred to
Apachesaurus but feature well-defined otic notches and tabu-
lar horns typical of large-bodied forms. The possibility of
interspecific variation in this regard conforms to the observa-
tions of Konietzko-Meier et al. (2013), who attributed histo-
logical differences in the long bones of the European M.
krasiejowensis and the Moroccan Dutuitosaurus to distinct
environments and subsequent paleobiological differences.
This may also, for example, explain the difference between

the elongation of small intercentra that is seen in North
American taxa. This is suggestive of a taxonomically infor-
mative morphological distinction, but whether ontogenetic
trajectories could also vary in the timing of major events is
unclear given the poor resolution of metoposaurid early
ontogeny. It is likely that there is some degree of develop-
mental plasticity that could also produce intraspecific varia-
tion in ontogenetic trajectories. Accordingly, two specimens
of the same size and taxonomic affinity may not show the
exact same development of some ontogenetically linked fea-
tures (e.g. Brochu 1992; Griffin and Nesbitt 2016). It bears
reiterating that it has not been extensively explored whether
at least some of the distinct sutural patterns that diagnose
Apachesaurus are the product of ontogeny. Many of the
original and revised characters are qualitative in nature and
can easily result from changes in proportions and morphol-
ogy throughout ontogeny (among other factors). Accordingly,
we exercise caution in suggesting changes in the sutural
patterns associated with early ontogeny. This is particularly
important because sutures are not well-defined in many
small, fragmentary metoposaurid specimens.

The findings of this study, which reinforce previous work
by the authors on small-bodied metoposaurids (Gee and
Parker 2017; Gee et al. 2017), provide further evidence that
Apachesaurus and other small-bodied metoposaurids from
the late Norian are juveniles of a large-bodied taxon.
Original arguments presented by Hunt (1993, p. 85) in sup-
port of a mature ontogenetic stage are as follows: (1)
Apachesaurus does not resemble known juveniles of other
species (e.g. Koskinonodon perfectus, Dutuitosaurus ouaz-
zoui); (2) the elongate intercentra occur in horizons with
intercentra of similar diameters but reduced elongation; (3)
collections of the NMMNH (at the time) contained no ele-
ments of large metoposaurids; and (4) a posterior positioning
of the pineal foramen on the parietals. All of these are limited
or problematic in their own regard.

Firstly, the sample size of confidently identified juveniles is
much sparser than that suggested by Hunt (1993), who noted
or figured only four specimens of juvenile metoposaurids, one
of Koskinonodon perfectus from the Dockum Group (TMM
31099-12B), the only specimen of ‘Metoposaurus’ bakeri from
Nova Scotia (YPM VPPU 021742), and two of Dutuitosaurus
(Dutuit 1976, plates 34 and 35). At present, only a few
juveniles have been described in detail (e.g. Davidow-Henry
1989; Zanno et al. 2002; Gee and Parker 2017). The majority
of others are only figured or briefly described as part of a
broader description (e.g. TMM 31099-12B [Hunt 1993;
Morales 1993]; PEFO 31194, PEFO 33977 [Parker and Irmis
2005]; NMMNH P-37069, UCMP 171591 [Spielmann and
Lucas 2012]). We agree with Hunt (1993) that the few
known specimens of juvenile K. perfectus (e.g. TMM 31099-
12B) and the single juvenile of ‘M.’ bakeri (YPM VPPU
021742) are dissimilar to the holotype of A. gregorii and to
PEFO 16759. However, an important consideration is that
small metoposaurids of the latest Triassic, such as those
found in the Petrified Forest Member, may be juveniles of
neither species, but rather of a presently unrecognised large
metoposaurid. It bears noting that diagnostic cranial material
of small metoposaurids is mostly known from horizons of the
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upper part of the Chinle Formation and their correlates in the
Dockum Group (Bull Canyon and Redonda formations) of
New Mexico. The few exceptions include the two specimens
described by Zanno et al. (2002) (MNA V8145, UCMP
175145) from the Blue Mesa Member of the Chinle
Formation (in which large metoposaurids are extremely
abundant) and the now-lost specimen described by
Davidow-Henry (1989) (TTU-P09126) from the lower part
of the Cooper Canyon Formation (Dockum Group). These
specimens are Adamanian in age (Zanno et al. 2002; Martz
et al. 2013) in contrast to the Revueltian and Apachean ages
of the upper Chinle, Bull Canyon, and Redonda specimens.
Based strictly on the known temporal ranges of other stereo-
spondyls, it seems unlikely that K. perfectus is the only large-
bodied metoposaurid found throughout the Chinle
Formation because its species lifespan would exceed 10 mil-
lion years. Metoposaurid succession occurs in Europe,
Morocco, and Texas and is thus plausible in the Chinle
Formation (Hunt 1993; Milner and Schoch 2004).

Secondly, Hunt (1993) cited the co-occurrence of proportio-
nately short intercentra of a similar size in horizons bearing the
elongate intercentra considered diagnostic ofApachesaurus. It is
important to reiterate that recent histological work has cast
doubt on the utility of the elongate intercentra for species dis-
crimination (Gee et al. 2017). Poor constraints on the early
ontogeny of metoposaurid postcrania and variation along the
axial column that result from a lack of articulated small speci-
mens present additional challenges. For example, the third ver-
tebral position is significantly shorter than the mid-trunk
intercentra in PEFO 40023. It is also important to consider
that size is not necessarily strongly correlated with ontogenetic
maturity at the level of comparing specimens of a nearly iden-
tical size. Variables such as developmental plasticity and intras-
pecific variation can confound interpretations of these
observations. A third consideration is that although metopo-
saurids are the only large-bodied temnospondyls of the Late
Triassic of the southwest region of North America, there are
several small-bodied, lesser-known stereospondyls from the
Late Triassic whose postcrania could plausibly overlap in size
with Apachesaurus. This includes Latiscopus disjunctus Wilson
(1948) from the Dockum Group (considered by some to be a
nomen dubium), Almasaurus habbazi Dutuit (1976) from
Morocco, Rileymillerus cosgriffi Bolt and Chatterjee (2000),
also from the Dockum Group, and Chinlestegophis jenkinsi
Pardo et al. (2017) from the Chinle Formation of Utah. Only
postcrania of Almasaurus is confidently known; that tentatively
associated with Rileymillerus is more uncertain. The postcrania
ofChinlestegophis does not include the intercentra. The presence
of these taxa is at least indicative of the presence of possibly
coeval, small-bodied non-metoposaurid stereospondyls.

Thirdly, the lack of material of co-occurring large meto-
posaurids in the Redonda Formation may be associated with
a taphonomic bias. Hunt (1993) cited a skew of small to large
metoposaurid elements (thousands to none) in the NMMNH
collections as evidence for the diminution of body size in
Apachesaurus. However, the skew is considerably reduced
when limiting the comparison to material that can be prop-
erly referred to the taxon on the basis of the formal diagnosis
of Spielmann and Lucas (2012) and without the discarded

intercentra character: the few skulls. That list is further
reduced under our amended diagnosis. The absence of
large-bodied forms does not necessarily imply that the exist-
ing small-bodied forms are small adult metoposaurids. It can
only be concluded that the former are not found in the same
environments that frequently preserve the latter. At PEFO,
blue paleosol localities with abundant material of small meto-
posaurids only preserve extremely rare and fragmentary
material of large metoposaurids (Parker 2006; Loughney
et al. 2011). The presence of articulated specimens and rare
taxa (e.g. Revueltosaurus) and various sedimentological fea-
tures indicate a low-energy system with minimal transport. If
immature metoposaurids’ occupied these environments as an
ecological strategy to avoid conspecific predation by larger
individuals in high-energy systems that form more typical
preservational environments, it would be expected for large
metoposaurids to be extremely rare. Taphonomic biases cer-
tainly play a role in metoposaurid-bearing horizons consider-
ing that juveniles of the various large-bodied taxa are so
exceedingly rare, including in the mass death assemblages
that comprise dozens of individuals (e.g. Dutuit 1976; Sulej
2007; Lucas et al. 2010, 2016; Brusatte et al. 2015). Biases
associated with ecological separation may also have played a
role if niche partitioning between life stages was a utilised
strategy, which has been previously suggested by various
authors (e.g. Rinehart et al. 2009; Lucas et al. 2016; Gee and
Parker 2017). Furthermore, although large metoposaurids are
extremely rare in the upper portions of the Chinle Formation,
they are not entirely absent. Partial material of an indetermi-
nate large metoposaurid taxon is reported from the Petrified
Forest Member (Long and Murry 1995; Gee and Parker 2018)
and from the Owl Rock Member (Kirby 1989). Thus, material
of small-bodied metoposaurids cannot be assumed to pertain
to Apachesaurus based on size alone.

Lastly, Hunt (1993) made an argument for the utility of the
position of the pineal foramen for ontogenetic determination
based on the study of Benthosuchus sushkini (Bystrow and
Efremov 1940). This claim was first made by Davidow-Henry
(1987, 1989) on the same basis and primarily based on TTU
P-9216, a specimen from the Post Quarry, Texas. It was later
reiterated by Zanno et al. (2002, p. 124), who additionally cited
the work of Schoch (1995) and Kathe (1999). However, this
argument has been propagated primarily on the basis of
Benthosuchus, which is an Early Triassic trematosaurid from
Russia that is phylogenetically and temporally distinct from
metoposaurids. It has not been demonstrably proven that the
pineal is a useful feature for determining the relative maturity
of metoposaurid specimens. Equally distant taxa were studied
in the works cited by Zanno et al. (2002). Schoch (1995) and
Kathe (1999) focused primarily on Paleozoic rhachitomous
forms, with no sampling of basal stereospondyls, let alone
derived forms such as metoposaurids. Furthermore, the juve-
nile specimen of ‘M.’ bakeri from Nova Scotia (Baird 1986) and
a small specimen of M. diagnosticus (Milner and Schoch 2004,
p. 239–240, figure 2) possess a pineal foramen located in the
posterior half of the parietals. Apachesaurus is restricted to the
southwest of North America, and there is no reason to pre-
sume that these specimens are previously unidentified diminu-
tive individuals. Both preserve various features that readily
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distinguish them from Apachesaurus (e.g. asymmetrical squa-
mosal with curved lateral margin). This does not necessarily
imply that the pineal is not a useful feature, but rather that a
mid-length position of the foramen may only be useful for
identifying the most immature of specimens. If so, the timing
of a shift in position must be better constrained through
additional recovery of small-bodied specimens.

A total of three small-bodied metoposaurids (PEFO 16759,
PEFO 35292, PEFO 40023) of a comparable size to the holotype
of Apachesaurus (UCMP 63845) have now been sampled and
unequivocally demonstrated to be juvenile forms. Conversely,
previous arguments and lines of evidence in favour of a notable
diminution in adult body size in metoposaurids are here
demonstrated to be questionable. Previous histological work
(Gee et al. 2017) has demonstrated the presence of a large-
bodied metoposaurid in the late Norian based on the relative
immaturity of intercentra sampled from this member, irrespec-
tive of the validity and status of Apachesaurus. This was then
directly confirmed by the report of a mandible of a typically
large-bodied metoposaurid from Zuni Well Mound (late
Norian) (Gee and Parker 2018). It is not a coincidence that
small-bodied specimens come from blue paleosol localities
(Zuni Well Mound, Dinosaur Hill, RAP Hill) interpreted as
lower-energy attritional settings (Therrien and Fastovsky 2000;
Loughney et al. 2011). In addition to small metoposaurids,
material of otherwise rare taxa (e.g. Vancleavea campi,
Postosuchus kirkpatrickorum, Coelophysis sp., Revueltosaurus
callenderi) also occurs at these sites (Padian 1986; Long and
Murry 1995; Parker and Barton 2008), sometimes with a high
degree of articulation (Loughney et al. 2011). This is suggestive
of a possibility that environments with large metoposaurids are
simply not as likely to be preserved. Some counterevidence
exists in the form of the aquatic phytosaurs, which typically
co-occur with metoposaurids throughout the Late Triassic,
including in the blue paleosol localities. However, phytosaurs
are extremely rare in these paleosols, and it bears emphasizing
that phytosaurs were certainly mobile on land, even if they
preferred aquatic environments. The ability for terrestrial loco-
motion of metoposaurids has been briefly addressed by a num-
ber of workers, without much consensus, as part of a broader
discussion of metoposaurid dispersal (e.g. Hunt 1993, p. 92;
Sulej 2007, p. 120). However, the underdevelopment of the
pectoral and pelvic girdles and the lack of well-ossified carpals
and tarsals, in comparison to fully terrestrial temnospondyls,
suggests that adults in particular were not very efficient at
terrestrial locomotion. The proposed partitioning of metopo-
saurid life stages (e.g. Rinehart et al. 2009) suggests that a certain
degree of periodic terrestriality would be necessary in immature
individuals to facilitate the dispersal from the environments
inhabited primarily by juveniles into those occupied by adults.
However, the morphological similarities between small-bodied
and large-bodied forms indicates that it remains likely that
juveniles spent the majority of the time in the water, as with
adults. Additionally, the finite element analysis (FEA) of
Fortuny et al. (2017) led to the conclusion that the same feeding
strategies were being utilized between the large-bodied
Metoposaurus krasiejowensis and the small-bodied

Apachesaurus. Accordingly, phytosaurs were probably less con-
strained than metoposaurids by the reduction in large, perma-
nent bodies of water. Theymay thus have faced less of a selective
pressure to actively migrate to lower latitudes during periods of
aridification. Probably a better proxy taxon would be any of the
various fishes that co-occur with tetrapods in the Chinle
Formation, but these are often only represented by isolated
dental elements (e.g, Heckert 2004; Kligman et al. 2017).

Implications for the taxonomy of Apachesaurus

Independent of this study’s findings, the diagnosis of
Apachesaurus sensu Spielmann and Lucas (2012) and the
basis for referral of many specimens is already problematic
(Appendix 1). Elongation of the intercentra, the sole postcra-
nial character, has been demonstrated as a hallmark of early
ontogeny by Gee et al. (2017). The absence of a posteriorly
projecting occiput is considered diagnostic, yet this is seen in
two previously referred specimens (Spielmann and Lucas
2012, figures 16A–D and 17B). Spielmann and Lucas (2012,
p. 15) claim that the second specimen (TTU P-9216) does not
feature a posteriorly projecting occiput, but their photograph
of this specimen and figures from other authors (e.g.
Davidow-Henry 1989, figure 1) clearly indicate a occiput
that projects posteriorly beyond the posterior skull margin
in dorsal profile in a fashion identical to that of large meto-
posaurids. The arching of the tabulars is seen in
Koskinonodon perfectus (Case 1922), and the curvature of
the dorsal margin may be a taphonomic artifact or intraspe-
cifically variable based on Metoposaurus krasiejowensis (Sulej
2007). Some features, such as the contribution of the post-
frontal to the medial orbital margin, are qualitative and some-
what subjective, not to mention that they vary within
individuals and intraspecifically. Lastly, the recovery of
small-bodied metoposaurids with intercentra that demon-
strate marked immaturity raises further questions concerning
the status of Apachesaurus. A detailed appraisal of the pre-
vious diagnosis of Apachesaurus is presented in Appendix 1.

This study’s findings that support an interpretation of
Apachesaurus as a juvenile metoposaurid merit further eva-
luation of its taxonomy. It is fortunate that the best record of
juvenile metoposaurid specimens pertains to those of the
North American Koskinonodon perfectus and ‘Metoposaurus’
bakeri. Based on comparisons to the few specimens of these
taxa, Apachesaurus can be readily separated from both at the
species level. At the genus level, Apachesaurus, which features
a lacrimal excluded from the orbital margin cannot be syno-
nymised with Koskinonodon, which features a lacrimal enter-
ing the orbit. The absence of any documented ontogenetic
influence on the lacrimal morphology or position further
supports this stance. ‘Metoposaurus’ bakeri shares a lacrimal
excluded from the orbit with Apachesaurus, but their syno-
nymy is unsupported because ‘M.’ bakeri is characterised by
several features that are contrary to those of Apachesaurus
(e.g. asymmetrical squamosal). It should also be noted that
the ‘M.’ bakeri occurs only in the late Carnian (Case 1931,
1932; Lucas 1998) and is thus markedly temporally separated
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from Apachesaurus. Affinities with a non-North American
taxon seem equally unlikely. Metoposaurid taxa are highly
endemic, a pattern that would likely have been enhanced
throughout the Late Triassic by the rifting of Pangea and
that would have separated the North American taxa from
the African and European populations. Accordingly, we
maintain the taxon but amend the taxonomic diagnosis, as
in the systematic palaeontology. The updated diagnosis
reflects its status as a juvenile metoposaurid, with the removal
of features that can be considered unreliable based on the
current understanding of metoposaurid morphology, taxon-
omy, and ontogeny (e.g. elongation of the intercentra). We
reiterate that this diagnosis is unstable given the paucity of
juvenile specimens, a poor understanding of metoposaurid
ontogeny, and the lack of a known mature end member of
the taxon. Some retained features may be ontogenetically
influenced (e.g. constriction of the cultriform process), and
the diagnosis will likely require additional revision pending
further discovery and study of small-bodied metoposaurids.
This approach creates complications for the alpha taxonomy
of the Metoposauridae, particularly because Apachesaurus
differs far more morphologically from all other metoposaur-
ids than any other taxon and is only known from specimens
that represent immature individuals. It thereby exerts signifi-
cant influence on the determination of plesiomorphic char-
acters, which has historically been problematic for
metoposaurids (Schoch, 2008). Therefore, Apachesaurus
should be excluded from phylogenetic analyses, both at the
family level and in broader temnospondyl analyses, until
skeletally mature specimens of the taxon are recovered and
characterised.

Conclusions

Here we have presented new morphological and histological
data from small-bodied metoposaurids from PEFO that pro-
vide important insights into early ontogeny of metoposaurids
and the taxonomy of Apachesaurus. The most important
result of this study is the determination that these specimens
belong to immature individuals based on their intercentra
histology. Thus, slight morphological differences, such as the
development of the otic notch, can be correlated with both
increased size and relative maturity. Both the presence of
highly immature small-bodied metoposaurids that would tra-
ditionally be referred to Apachesaurus and the noted mor-
phological changes in turn challenge the traditional
interpretation of Apachesaurus as a diminutive taxon. A
large foundation of histological data from the elongate inter-
centra now exists through indirect evidence of the presence of
large-bodied metoposaurids in the late Norian and dispels the
notion that Apachesaurus is a mature yet diminutive taxon.
The persistent paucity of actual specimens of large-bodied
taxa can be plausibly explained by the same ecologically
influenced taphonomic bias that results from niche partition-
ing. This likely contributes to the paucity of juvenile speci-
mens in older strata. It should not be excluded that sampling
bias may also contribute to the perceived paucity in part; the
abundance of metoposaurid specimens often results in more
fragmentary material being overlooked and uncollected.

The relative abundance of metoposaurids, obligately aqua-
tic temnospondyls, in the Late Triassic of western North
America has also led them to be utilised for interpretations
of the paleoenvironment. Previous workers (e.g. Parker and
Martz 2011) have postulated that faunal turnover within the
vertebrate assemblage, including from Koskinonodon to
Apachesaurus, may be evidence of ecological responses to
noted climate change in the Chinle basin during the late
Norian (Atchley et al. 2013; Nordt et al. 2015; Baranyi et al.
2017). The findings of this study suggest that while there is
likely to be a faunal turnover of metoposaurids, it is charac-
terised by a typical succession of one large-bodied taxon by
another, rather than by a trend toward smaller body size.
There may also be a greater shift in the preservation of
different depositional environments rather than a major
shift in vertebrate assemblage. The possibility that the turn-
over between two large-bodied taxa could be partially induced
by climatic change remains viable. However, the hypothesis
that the clade followed an evolutionary trend of marked size
diminution or of increased terrestriality late in its existence
should be discarded.
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Appendix 1: Evaluation of the diagnosis of
Apachesaurus gregorii sensu Spielmann and Lucas
(2012)

Evaluation of taxonomic diagnosis

The original diagnosis of Apachesaurus gregorii provided by Hunt (1993,
p. 81) lists five autapomorphies for the genus and species: (1) lacrimal
flexure of the supraorbital canal separated from the lacrimal; (2) a
shallow otic notch; (3) an occiput that does not project posteriorly; (4)
a narrow cultriform process; (5) elongate intercentra. An additional eight
autapomorphies were listed by Spielmann and Lucas (2012, p. 13): (6) a
significantly reduced lacrimal; (7) a reduced contribution of the post-
frontal to the medial orbital margin; (8) a symmetrical squamosal with-
out significant deflection of the anterior process and with
anteroposteriorly-oriented medial and lateral margins; (9) a rounded,
trapezoidal foramen magnum (in contrast to a ‘keyhole-shaped’ foramen
in other metoposaurids; (10) moderate arching of the tabulars, resulting
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in a curved dorsal margin in occipital profile (shared with Metoposaurus
krasiejowensis, which is referred to as M. diagnosticus in the publication);
(11) a less extensive oblique crest of the pterygoid; (12) smaller and more
laterally positioned paraquadrate foramen; (13) minimal expression of
the accessory paraquadrate foramen. A detailed appraisal of these char-
acters is presented here. Conclusions regarding their validity are
reflected in the amended diagnosis.

(1) Lacrimal flexure of supraorbital canal separated from lacrimal: The
supraorbital lateral line canal of Apachesaurus does not contact the
lacrimal in any way. However, the comparative figure of Spielmann
and Lucas (2012, figure 19) illustrates Koskinonodon perfectus as
either having only a very slight contact with the lacrimal or as
being cleanly separated from the element (also seen in Case 1922,
figure 1); this is suggestive of intraspecific variation. Furthermore,
the trajectory of the canal in Apachesaurus is not particularly
different from large metoposaurids in which the canal is consistent
in originating at the anteromedial portion of the premaxilla, cur-
ving posterolaterally around the medial narial margin, and then
curving posteromedially around the medial orbital margin. The
premaxilla of Apachesaurus is only known from one specimen,
which is presently represented only by a cast, so whether the
supraorbital canal originates on the element is unclear. In general,
the antorbital region is known only from a few specimens, some of
which may not be properly referable to the taxon. The only other
difference that may be noted is the precise contour of the lateral
curvature of this canal; this is both interspecifically and intraspe-
cifically variable (e.g. Lucas et al. 2016, figure 28) and likely influ-
enced by minor changes to the snout proportions.
The condition of Apachesaurus that was identified by Hunt (1993)
is thus valid, but it is also complicated by a new character added by
Spielmann and Lucas (2012): a reduced lacrimal. The lateral line
canal’s separation from the lacrimal is not due to a significant
deviation in its trajectory but rather due to the reduced size and
posterolateral shift in position of the element. Based on illustra-
tions of the holotype (Spielmann and Lucas 2012, figures 10, 19), it
becomes apparent that if the lacrimal were of a comparable size
and position to large metoposaurids, the canal would more closely
approach and perhaps contact the lacrimal. In this regard, these
characters are redundant. It seems more parsimonious to maintain
the reduced size and altered position of the lacrimal, which does
differ significantly from other metoposaurids, rather than the mor-
phology of the canal, which is not different at least in the regard of
its lateral extent at the longitudinal point at which it contacts the
lacrimal in other taxa. This is different than if the canal’s trajectory
was significantly altered such that it would not contact the lacrimal
if mapped onto a typical large-bodied taxon. Maintaining both
characters would be akin to adding an additional (equally redun-
dant) character that the lacrimal does not contact the nasal in
Apachesaurus, which is also a byproduct of the reduction and the
migration of the former. Accordingly, this character should be
considered invalid.

(2) Shallow otic notch: A shallow otic notch is a feature that requires
careful identification to determine the relative influences of onto-
geny, taphonomy, and taxonomy. A deep otic notch with a well-
defined tabular horn is present in some small specimens, such as a
juvenile ‘Metoposaurus’ bakeri, YPM PU 21742 (Hunt 1993, fig-
ure 6), and a juvenile Koskinonodon perfectus, TMM 31099-12B
(Hunt 1993, figure 8A–B). However, it cannot be excluded that the
element could be broken off in other small-bodied specimens due
to its small, flat morphology and protruding angle, or that the
broken margin could be more susceptible to weathering. This can
be seen in various specimens of large metoposaurids, such as M.
krasiejowensis (Sulej 2007, figures 4A, 12A, 15A), Koskinonodon
perfectus (Lucas et al. 2016, figures 28E, 28G, 30C, 30G), M.
algarvensis (Brusatte et al. 2015, figure 3), ‘M.’ bakeri (Case 1931,
plate 1.1), and Dutuitosaurus ouazzoui (Dutuit 1976, plates 31A,
44). This can often reduce the perceived depth of the otic notch. In

large metoposaurids, the notch may only appear to remain rela-
tively deep when the tabular horn is broken because of the greater
depth achieved in mature forms.
When comparing the three small-bodied specimens from PEFO
(PEFO 16759, PEFO 35292, PEFO 40023), increased size and
histological maturity are correlated with a development of the
otic notch and the tabular horn. Similar ontogenetic trajectories
can be seen in various rhachitomous forms (e.g. Schoch 2002),
capitosaurids (e.g. Warren and Hutchinson 1988; Steyer 2003)
and the stereospondylomorphs Sclerocephalus (Schoch and
Witzmann 2009) and Archegosaurus (Witzmann 2005). The histo-
logical data suggest a continuous growth series as represented by
these specimens, rather than distinct lineages. Accordingly the
shallow otic notch may only be useful for identifying very imma-
ture individuals. Additional work is required to characterize
changes to the otic notch throughout ontogeny in metoposaurids
and timing of these changes across different taxa, but there is
sufficient evidence at present to cast doubt on the utility of this
feature for taxonomy.

(3) Occiput that does not project posteriorly: An occiput that does not
project posteriorly was already a conflicting character because it
does project beyond the posterior margin of the postparietals in
two of the previously referred specimens via the occipital condyles,
NMMNH P-37069 (Spielmann and Lucas 2012, figure 16A–B) and
TTUP 9216 (Davidow-Henry 1989, figure 1; Spielmann and Lucas
2012, figure 17B; Martz et al. 2013, figure 4). In neither specimen
does the posterior skull margin appear to be weathered in any
fashion that would have unnaturally exposed the occiput. These
specimens are otherwise identical to the holotype and suggest that
the development of more projected condyles may be ontongenetic
and intraspecifically variable. It should also be noted that the
occipital condyles are very slightly visible in dorsal profile in the
holotype (Spielmann and Lucas 2012, figure 9A), although this is
typically omitted in line drawings of the specimen. The larger
PEFO 40023 features more prominently projecting condyles,
though not to the degree of large specimens, which further suggests
an ontogenetic influence. The character is maintained here because
there is not a clear ontogenetic trajectory in metoposaurids when
comparing the smaller TTUP 9216, with markedly projecting con-
dyles, with the holotype of Apachesaurus, with barely projecting
condyles (if at all).

(4) Narrow cultriform process: The relative width of the cultriform
process is one of the more robust characters insofar as a morphol-
ogy comparable to that of Apachesaurus has never been identified
in any large metoposaurid taxon. An ontogenetic influence cannot
be excluded, particularly if the width of the process significantly
influenced some functional aspect of the interpterygoid vacuities,
whether in feeding or in respiration. Differences between a semi-
terrestrial Apachesaurus and all other, fully aquatic taxa would not
be unexpected. The broad proportions of the process were consid-
ered to be autapomorphic by Hunt (1993), although
Chinlestegophis and some brachyopoids also feature a broad pro-
cess (Warren and Marsicano 2000; Pardo et al. 2017). Finite ele-
ment analyses of Apachesaurus and Metoposaurus krasiejowensis by
Fortuny et al. (2017) suggested that the broad width of the cultri-
form process in metoposaurids may be an adaptation to accom-
modate stress given the large interpterygoid vacuities and the
relatively thin palatal bones, and that Apachesaurus may have
possessed a narrower process as a result of its smaller skull size.
However, additional specimens with well-preserved palates (absent
in both specimens described here) would be necessary to assess
this. An ontogenetic transition toward a more constricted cultri-
form process is seen in some temnospondyls, such as the masto-
donsaurid Xenotosuchus (Damiani 2008). Whether this transition is
phylogenetically informative on a broader scale is unclear and
requires additional sampling of ontogenetic trajectories.

(5) Elongate intercentra: Elongation of the intercentra is framed as a
apomorphy of Apachesaurus despite the fact that Hunt (1993)
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noted that similarly elongate intercentra occur in the large-bodied
Dutuitosaurus from Morocco. The character originally included a
metric of a diameter-to-length ratio less than 0.8 to define ‘elon-
gate,’ but no data or statistical justification have ever been provided
to support this. This metric does not appear in the revised diag-
nosis of Spielmann and Lucas (2012) but reappears briefly in an
informal discussion of the taxon in Lucas et al. (2016, p. 14).
Recent histological work by Gee et al. (2017) has shown that
elongation of small intercentra of metoposaurids from the Chinle
Formation is associated with relative immaturity, findings that are
supported by this study’s results. Even under the interpretation of
Apachesaurus as a taxonomically distinct, diminutive metoposaurid
characterized by elongate intercentra, the feature is not informative
for species discrimination because of a lack of features that would
distinguish it from the elongate intercentra of very juvenile indivi-
duals of large-bodied taxa.

(6) Reduced lacrimal excluded from orbit: The lacrimal has remained a
contentious element with regard to metoposaurid taxonomy due to
debate over the phylogenetic significance of its position. Earlier
workers (e.g. Romer 1947; Colbert and Imbrie 1956) argued that
the lacrimal did not enter the orbital margin in Metoposaurus
diagnosticus (at the time, the genus was monospecific). This was
in apparent contrast to the condition in Koskinonodon, represent-
ing one of the few identifiable differences and the only feature in
the original diagnosis of Koskinonodon. However, Sulej (2002)
reexamined the holotype of M. diagnosticus, found a lacrimal that
entered the orbit, and subsequently identified the same relationship
in the vast majority of specimens of M. krasiejowensis (Sulej 2007).
Although this has been disputed on several occasions (e.g. Lucas
et al. 2007, 2016), there is greater consensus supporting a lacrimal
contribution to the orbital margin that is shared between
Metoposaurus and Koskinonodon. The observations of Sulej
(2002) were reaffirmed by Brusatte et al. (2015), who further
validated the point in their description of M. algarvensis.
Phylogenetic codings of the genera (e.g. Schoch 2013) also reflect
this characterization. The feature is thus of more limited utility in
distinguishing the two genera than previously argued, although it
can differentiate these metoposaurids from other taxa, such as
‘Metoposaurus’ bakeri, whose taxonomic affinities have accordingly
remained convoluted as it genuinely has a lacrimal excluded from
the orbit. Regarding Apachesaurus, a reduced lacrimal is an auta-
pomorphy of the taxon. This results from an increase in the
posterior extent of the medial incision of the maxilla at its anterior
end and a lateral expansion of the prefrontal that relegates the
lacrimal to a position nearly fully lateral to the orbit. Subsequently,
the lacrimal does not contact the nasal, as in all other metoposaur-
ids, and does not contribute to either the narial or orbital margin.
The latter condition is shared with ‘Metoposaurus’ bakeri. The
strength of the character is primarily tied to the absence of sig-
nificant interspecific or ontogenetic variation in the lacrimal
among large metoposaurids.
It should be noted that a previously referred specimen, UCMP
V82250/171591, features a proportionately larger lacrimal that is
approximately half of the distance between the naris and the orbit.
This is greater than that of the holotype and of a comparable
degree to large-bodied metoposaurids. Additionally, it is very nar-
rowly separated from the orbit by a minute fragment. Neither the
jugal nor the prefrontal is known to narrowly divide the orbit and
the lacrimal in any metoposaurid, and it seems most likely that it is
in fact a broken fragment of the lacrimal that would thus indicate a
contribution of the element to the orbital margin.

(7) Reduced contribution of postfrontal to medial orbital margin: The
contribution of the postfrontal to the medial orbital margin appears to
be variable within the holotype of Apachesaurus itself; the right post-
frontal extends to approximately the mid-length of the orbit, whereas
that of the left counterpart (with a slightly deformed orbit) is definitively
reduced in extent (Spielmann and Lucas 2012, figure 10A). A similar
variability is seen in the Rotten Hill population of Koskinonodon per-
fectus. For example, specimens such as WT 3055 (Lucas et al. 2016,
figure 30A) feature a comparable contribution to that of the left

postfrontal of the holotype of Apachesaurus, whereas most other speci-
mens feature a more typical contribution to that of large metoposaurids
and to the right postfrontal. One specimen, WT 3166–1 (Lucas et al.
2016, figure 28A) features an asymmetry similar to the holotype of
Apachesaurus, with a small contribution of the left postfrontal and a
much greater contribution of the right postfrontal. The pattern is pre-
sent in the holotype of Metoposaurus algarvensis (Brusatte et al. 2015,
figure 2B) but with the greater contribution on the left side. Any
differences in the relative contribution are highly qualitative and rela-
tively minor, lacking any precise threshold. Given the documented
variation at all scales, we consider this character to be questionable
until more specimens of Apachesaurus are recovered.

(8) Symmetrical squamosal with no significant deflection of anterior
process and anteroposteriorly oriented lateral and medial margins:
This character is considered in the same vein as the cultriform
process (character 4) – this morphology has not been identified in
large-bodied taxa, and although an ontogenetic influence can be
hypothesized, none is evident at present. The primary source of
interspecific variation is in the lateral portion of the element, where
in large metoposaurids, the margin is convex. This could be asso-
ciated with an ontogenetic shift toward a transversely expanded
posterior skull table that is seen in large-bodied forms with a
brachycephalic contour via a lateral expansion of the quadratojugal
and the squamosal. This would remove the symmetry of the latter
and give the anterior process an appearance of having been
deflected medially. A comparison of sub-adult and adult specimens
of Koskinonodon perfectus (Lucas et al. 2016, figure 30) indicates
that such an expansion may characterize the taxon. It should also
be noted that there is a weak correlation between increased size
and squamosal symmetry across PEFO 16759, PEFO 35292, and
PEFO 40023. However, as with the cultriform process, the paucity
of small-bodied metoposaurids with clearly defined squamosals
limits any broader interpretations.

(9) Rounded, trapezoidal foramen magnum: The significance of the
morphology of the foramen magnum is tied to the potential
taphonomic influence on the shape of the tabular and the convexity
of the posteromedial skull roof in occipital profile (character 10). If
the postparietals have been downshifted in any way, they may have
altered the upper expansion of the foramen. An extreme case of
this is seen in one specimen of Koskinonodon maleriensis (Sengupta
2002, figure 5) in which the postparietals have clearly downshifted
into the opening such that only the circular ventral portion is
exposed. A slightly less deformed foramen magnum is seen in a
specimen of Dutuitosaurus (Dutuit 1976, plate 47C) in which the
opening lacks the bifurcated dorsal expansion and forms a diag-
onally skewed oval. The foramen magnum of Apachesaurus is
asymmetrical, and it is noteworthy that the left margin is markedly
curved (Spielmann and Lucas 2012, figure 11A–B), a feature seen
in other metoposaurids that precedes the dorsal expansion that
results in the keyhole-shaped contour. The asymmetry is one line
of evidence that some degree of taphonomic deformation has
occurred. For example, some variation in the dorsal expansion of
the foramen can be seen in Metoposaurus krasiejowensis (Sulej
2007, figure 16). This can be correlated with slight damage and
deformation to the posteromedial skull roof. The character is
maintained here because of the lack of clear evidence for a bifur-
cated dorsal portion, but caution should be exercised in utilizing
this as a diagnostic feature with even slightly deformed specimens.

(10) Moderate arching of the tabular, resulting in a curved profile in
occipital view: Based simply on the small sample size of specimens
of Apachesaurus with a complete tabular, it is difficult to be certain
that the convexity created by a slight ventromedial depression of
the postparietals and the concavity of the tabulars is not at least
partially taphonomic. Spielmann and Lucas (2012) considered this
to be similar to the condition of Metoposaurus krasiejowensis
(referred to as M. diagnosticus). However, photographs of multiple
specimens of M. krasiejowensis in occipital view (Sulej 2007, figure
16) display a range of curvature of the dorsal margin that appears
to be correlated with the quality of preservation. What appears to
be the best-preserved specimen (Sulej 2007, figure 16A) displays an
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essentially flat margin. The generalized reconstruction of the skull
of the taxon (Sulej 2007, figure 1D) mirrors this specimen.
Conversely, the more poorly-preserved specimens (Sulej 2007, fig-
ure 16C–D) feature a prominently concave margin. Figures of the
holotype of Apachesaurus indicate that it was subject to minor
deformation in various regions of the skull, including the occipital
region, which is slightly asymmetrical (e.g. Spielmann and Lucas
2012, figure 9). In addition, the postparietals may be slightly down-
shifted into the foramen magnum while the tabulars remained
articulated. Thus, the former may be slightly angled ventrome-
dially, exaggerating the concavity of the margin. Arched tabulars
and a concave dorsal margin are present in the holotype of
Koskinonodon perfectus (Case 1922, figure 1C), and variation in
the arching of the tabulars, from minor curvature to a flat margin
is seen in ‘M.’ bakeri (Case 1932, figures 8–9).

(11) Less extensive oblique crest of the pterygoid: This character is
considered in the same vein as the reduction of the lacrimal:
justifiable insofar as it is not currently known to be particularly
variable intraspecifically or throughout ontogeny. It should be
noted that the crest of Dutuitosaurus (Dutuit 1976; plate 16F;
Spielmann and Lucas 2012, figure 11C) is more dorsally oriented
than in Apachesaurus, but does not appear to significantly differ in
size, as is the case with Metoposaurus krasiejowensis.

(12) Smaller,more laterally positioned paraquadrate foramina: The variation
between the holotype (Spielmann and Lucas 2012, figures 9, 11A–B), in
which the foramen is both shorter and narrower than other taxa, and of
the previously referred NMMNHP-37069 (Spielmann and Lucas 2012,
figure 16C–D), in which it is narrower but far more elongate than in the
holotype, is indicative of either intraspecific variation or taphonomic
damage to at least one specimen. It also bears noting that the foramina
of the holotype of Koskinonodon perfectus (Case 1922, figure 1) are of a
similar size and proportion to those of the holotype of Apachesaurus.
Conversely, those of ‘Metoposaurus’ bakeri (Case 1932, figures 8–10)
and Koskinonodon maleriensis (Sengupta 2002, figure 5B) are compar-
able to those of the referred specimen ofApachesaurus. It is also unclear
how the foramina of Apachesaurus are the most laterally positioned
when those of Dutuitosaurus, although quite distinct in morphology,
terminate at about the same point or a bit closer to the lateral skull
margin than the former in occipital view (Spielmann and Lucas 2012,
figure 11). The documented variation is sufficient to question the utility
of this feature for taxonomic differentiation, and the character should be
excluded until this can be better resolved.

(13) Minimal expression of accessory paraquadrate foramina: The pri-
mary issue with the accessory paraquadrate foramina (also referred
to as the paraquadrate accessory foramina) is that they were not
identified in metoposaurids until the description of Metoposaurus
krasiejowensis by Sulej (2007). Since then, only one additional
metoposaurid taxon, M. algarvensis, has been described, and the
posterolateral portions of the occipital region are not preserved in
any specimen. The wall separating the primary foramina from the
accessory ones is extremely thin (see Sulej 2007, figure 1D). It is
thus likely susceptible to taphonomic damage or loss during pre-
paration that would render it impossible to confidently determine
its presence or absence. Sulej (2007, p. 41) noted that there were no
accessory foramina (or no apparent separation) in nearly as many
specimens in which the accessory foramina were identified. Where
it is identifiable, it is always much smaller than the primary fora-
men, and it should not be considered a reliable feature considering
its recent discovery and a presumed high susceptibility of the thin
dividing wall between the foramina to loss during preservation.
Furthermore, it is unclear if the feature identified as the accessory
foramina in the holotype of Apachesaurus (Spielmann and Lucas
2012, figure 11A–B), the only specimen in which they are identi-
fied, is actually the same feature as those described by Sulej (2007).
In the former, the foramina are identified as a shallow depression
at the ventral margin of the main paraquadrate foramina, which is
more of a fossa than a continuous foramen. Quite possibly, the
accessory foramina may have been of a more typical size to
Metoposaurus krasiejowensis, with the dividing wall having been
lost. The character is maintained because it cannot be

demonstrably proven to simply be taphonomic, but restudy of
existing taxa will be necessary to further characterize this feature
and its utility. The foramina may, for example, be preserved but
unidentified in a specimen of Dutuitosaurus (Dutuit 1976, plate
16F).

The descriptive cranial osteology of Spielmann and Lucas (2012, p.
15–25) notes two features that differ in Apachesaurus compared to other
metoposaurids but that are not formally included in the diagnosis. These
include: (1) reduced premaxilla; (2) minimal dorsal exposure of the
quadratojugal.

(1) Reduced premaxilla: A reduced premaxilla is only described in one
specimen (TTUP 9216), which is now only known from a cast because
of the loss of the original specimen. This condition was suggested to be
the result of a more medial position of the nares (Spielmann and Lucas
2012). The same possibility was noted by those authors for a small
specimen (MNA V8415) referred to Koskinonodon perfectus by Zanno
et al. (2002) on the basis of a lacrimal entering the orbital margin. Under
previous diagnoses (Hunt 1993; Spielmann and Lucas 2012) and the
revised diagnosis presented here, this specimen cannot be referred to
the taxon because it features prominently projecting occipital condyles.

(2) Minimal dorsal exposure of the quadratojugal: The reduced dorsal expo-
sure of the quadratojugal may be correlated with the formal squamosal
character and the considerations raised above with respect to a possible
ontogenetic shift toward a transversely broadenedposterior skull table via
lateral expansion of the quadratojugal and the squamosal. This is seen, for
example, in a small specimen of the Rotten Hill population of
Koskinonodon perfectus (Lucas et al. 2016, figure 30C–D). By compar-
ison, the larger specimens from this locality feature proportionatelywider
quadratojugals (e.g. Lucas et al. 2016, figure 30A–B). It is also possible
that relatively broad quadratojugals can be taphonomically influenced.
The element typically curves ventrolaterally, but dorsoventral compres-
sion could flatten the skull and cause the lateral margin to be artificially
flared laterally.

Evaluation of possible autapomorphies

The descriptive postcranial osteology of Spielmann and Lucas (2012, p.
25–30) also notes various features that are suggested to be autapomorphies
of Apachesaurus. These include: (1) slightly curved anterior margin of the
clavicle; (2) shallow, ridge-forming groove on the anterior margin of the
acetabulum. These are addressed below, but it should be noted that there is
no supported basis for referral of postcranial material to Apachesaurus
because there are no postcranial autapormophies of the taxon beyond the
now-discarded elongation of the intercentra and no apparent association of
any referred postcranial specimens with cranial material.

(1) Slightly curved anterior margin of the clavicle: Sulej (2007,
figure 43) noted variability in this margin in Metoposaurus
krasiejowensis but did not explicitly comment on this.
Spielmann and Lucas (2012) considered the absence of com-
mentary on intraspecific variation, which is frequently com-
mented on for other elements in Sulej’s description,
regarding this specific feature, to be indicative of a tapho-
nomic influence. Some variation is also apparent in
Dutuitosaurus. The majority of illustrated and photographed
specimens have a straight margin, but some specimens fea-
ture a curved margin that does not appear to be taphonomi-
cally altered (e.g. Dutuit 1976, plate 31). The same is true of
‘M.’ bakeri (e.g. Case 1932, plate 6.2).

(2) Shallow, ridge-forming groove on the anterior margin of the
acetabulum: The ilium is an uncommon element in metopo-
saurids, being best-known from Koskinonodon perfectus
(Lucas et al. 2016) and Metoposaurus krasiejowensis (Sulej
2007). This particular aspect of the ilium is not seen in any
other metoposaurid beyond Apachesaurus, but ilia of defini-
tively juvenile individuals are unknown, so any potential
ontogenetic influence remains undefined.
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Appendix 1: Evaluation of the diagnosis of Apachesaurus gregorii 

sensu Spielmann and Lucas (2012) 

 

Evaluation of taxonomic diagnosis 

The original diagnosis of Apachesaurus gregorii provided by Hunt (1993, p. 81) lists five 

autapomorphies for the genus and species: (1) lacrimal flexure of the supraorbital canal separated 

from the lacrimal; (2) a shallow otic notch; (3) an occiput that does not project posteriorly; (4) a 

narrow cultriform process; (5) elongate intercentra. An additional eight autapomorphies were 

listed by Spielmann and Lucas (2012, p. 13): (6) a significantly reduced lacrimal; (7) a reduced 

contribution of the postfrontal to the medial orbital margin; (8) a symmetrical squamosal without 

significant deflection of the anterior process and with anteroposteriorly-oriented medial and 

lateral margins; (9) a rounded, trapezoidal foramen magnum (in contrast to a ‘keyhole-shaped’ 

foramen in other metoposaurids; (10) moderate arching of the tabulars, resulting in a curved 

dorsal margin in occipital profile (shared with Metoposaurus krasiejowensis, which is referred to 

as M. diagnosticus in the publication); (11) a less extensive oblique crest of the pterygoid; (12) 

smaller and more laterally positioned paraquadrate foramen; (13) minimal expression of the 

accessory paraquadrate foramen. A detailed appraisal of these characters is presented here. 

Conclusions regarding their validity are reflected in the amended diagnosis. 

 

1. Lacrimal flexure of supraorbital canal separated from lacrimal: The supraorbital lateral 

line canal of Apachesaurus does not contact the lacrimal in any way. However, the 

comparative figure of Spielmann and Lucas (2012, figure 19) illustrates Koskinonodon 

perfectus as either having only a very slight contact with the lacrimal or as being cleanly 
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separated from the element (also seen in Case 1922, figure 1); this is suggestive of 

intraspecific variation. Furthermore, the trajectory of the canal in Apachesaurus is not 

particularly different from large metoposaurids in which the canal is consistent in 

originating at the anteromedial portion of the premaxilla, curving posterolaterally around 

the medial narial margin, and then curving posteromedially around the medial orbital 

margin. The premaxilla of Apachesaurus is only known from one specimen, which is 

presently represented only by a cast, so whether the supraorbital canal originates on the 

element is unclear. In general, the antorbital region is known only from a few specimens, 

some of which may not be properly referable to the taxon. The only other difference that 

may be noted is the precise contour of the lateral curvature of this canal; this is both 

interspecifically and intraspecifically variable (e.g., Lucas et al. 2016, figure 28) and 

likely influenced by minor changes to the snout proportions.  

The condition of Apachesaurus that was identified by Hunt (1993) is thus valid, 

but it is also complicated by a new character added by Spielmann and Lucas (2012): a 

reduced lacrimal. The lateral line canal’s separation from the lacrimal is not due to a 

significant deviation in its trajectory but rather due to the reduced size and posterolateral 

shift in position of the element. Based on illustrations of the holotype (Spielmann and 

Lucas 2012, figures 10, 19), it becomes apparent that if the lacrimal were of a 

comparable size and position to large metoposaurids, the canal would more closely 

approach and perhaps contact the lacrimal. In this regard, these characters are redundant. 

It seems more parsimonious to maintain the reduced size and altered position of the 

lacrimal, which does differ significantly from other metoposaurids, rather than the 

morphology of the canal, which is not different at least in the regard of its lateral extent 
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at the longitudinal point at which it contacts the lacrimal in other taxa. This is different 

than if the canal’s trajectory was significantly altered such that it would not contact the 

lacrimal if mapped onto a typical large-bodied taxon. Maintaining both characters would 

be akin to adding an additional (equally redundant) character that the lacrimal does not 

contact the nasal in Apachesaurus, which is also a byproduct of the reduction and the 

migration of the former. Accordingly, this character should be considered invalid.  

2. Shallow otic notch: A shallow otic notch is a feature that requires careful identification 

to determine the relative influences of ontogeny, taphonomy, and taxonomy. A deep otic 

notch with a well-defined tabular horn is present in some small specimens, such as a 

juvenile “Metoposaurus” bakeri, YPM PU 21742 (Hunt 1993, figure 6), and a juvenile 

Koskinonodon perfectus, TMM 31099-12B (Hunt, 1993, figure 8A–B). However, it 

cannot be excluded that the element could be broken off in other small-bodied specimens 

due to its small, flat morphology and protruding angle, or that the broken margin could 

be more susceptible to weathering. This can be seen in various specimens of large 

metoposaurids, such as M. krasiejowensis (Sulej 2007, figures 4A, 12A, 15A), 

Koskinonodon perfectus (Lucas et al. 2016, figures 28E, 28G, 30C, 30G), M. algarvensis 

(Brusatte et al. 2015, figure 3), “M.” bakeri (Case 1931, plate 1.1), and Dutuitosaurus 

ouazzoui (Dutuit 1976, plates 31A, 44). This can often reduce the perceived depth of the 

otic notch. In large metoposaurids, the notch may only appear to remain relatively deep 

when the tabular horn is broken because of the greater depth achieved in mature forms.   

When comparing the three small-bodied specimens from PEFO (PEFO 16759, 

PEFO 35392, PEFO 40023), increased size and histological maturity are correlated with 

a development of the otic notch and the tabular horn. Similar ontogenetic trajectories can 
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be seen in various rhachitomous forms (e.g., Schoch 2002), capitosaurids (e.g., Warren 

and Hutchinson 1988; Steyer 2003) and the stereospondylomorphs Sclerocephalus 

(Schoch and Witzmann 2009) and Archegosaurus (Witzmann 2005). The histological 

data suggest a continuous growth series as represented by these specimens, rather than 

distinct lineages. Accordingly the shallow otic notch may only be useful for identifying 

very immature individuals. Additional work is required to characterize changes to the 

otic notch throughout ontogeny in metoposaurids and timing of these changes across 

different taxa, but there is sufficient evidence at present to cast doubt on the utility of 

this feature for taxonomy. 

3. Occiput that does not project posteriorly: An occiput that does not project posteriorly 

was already a conflicting character because it does project beyond the posterior margin 

of the postparietals in two of the previously referred specimens via the occipital 

condyles, NMMNH P-37069 (Spielmann and Lucas 2012, figure 16A–B) and TTUP 

9216 (Davidow-Henry 1989, figure 1; Spielmann and Lucas 2012, figure 17B; Martz et 

al. 2013, figure 4). In neither specimen does the posterior skull margin appear to be 

weathered in any fashion that would have unnaturally exposed the occiput. These 

specimens are otherwise identical to the holotype and suggest that the development of 

more projected condyles may be ontongenetic and intraspecifically variable. It should 

also be noted that the occipital condyles are very slightly visible in dorsal profile in the 

holotype (Spielmann and Lucas 2012, figure 9A), although this is typically omitted in 

line drawings of the specimen. The larger PEFO 40023 features more prominently 

projecting condyles, though not to the degree of large specimens, which further suggests 

an ontogenetic influence. The character is maintained here because there is not a clear 
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ontogenetic trajectory in metoposaurids when comparing the smaller TTUP 9216, with 

markedly projecting condyles, with the holotype of Apachesaurus, with barely projecting 

condyles (if at all). 

4. Narrow cultriform process: The relative width of the cultriform process is one of the 

more robust characters insofar as a morphology comparable to that of Apachesaurus has 

never been identified in any large metoposaurid taxon. An ontogenetic influence cannot 

be excluded, particularly if the width of the process significantly influenced some 

functional aspect of the interpterygoid vacuities, whether in feeding or in respiration. 

Differences between a semi-terrestrial Apachesaurus and all other, fully aquatic taxa 

would not be unexpected. The broad proportions of the process were considered to be 

autapomorphic by Hunt (1993), although Chinlestegophis and some brachyopoids also 

feature a broad process (Warren and Marsicano 2000; Pardo et al. 2017). Finite element 

analyses of Apachesaurus and Metoposaurus krasiejowensis by Fortuny et al. (2017) 

suggested that the broad width of the cultriform process in metoposaurids may be an 

adaptation to accommodate stress given the large interpterygoid vacuities and the 

relatively thin palatal bones, and that Apachesaurus may have possessed a narrower 

process as a result of its smaller skull size. However, additional specimens with well-

preserved palates (absent in both specimens described here) would be necessary to assess 

this. An ontogenetic transition toward a more constricted cultriform process is seen in 

some temnospondyls, such as the mastodonsaurid Xenotosuchus (Damiani 2008). 

Whether this transition is phylogenetically informative on a broader scale is unclear and 

requires additional sampling of ontogenetic trajectories. 
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5. Elongate intercentra: Elongation of the intercentra is framed as a apomorphy of 

Apachesaurus despite the fact that Hunt (1993) noted that similarly elongate intercentra 

occur in the large-bodied Dutuitosaurus from Morocco. The character originally 

included a metric of a diameter-to-length ratio less than 0.8 to define ‘elongate,’ but no 

data or statistical justification have ever been provided to support this. This metric does 

not appear in the revised diagnosis of Spielmann and Lucas (2012) but reappears briefly 

in an informal discussion of the taxon in Lucas et al. (2016, p. 14). Recent histological 

work by Gee et al. (2017) has shown that elongation of small intercentra of 

metoposaurids from the Chinle Formation is associated with relative immaturity, 

findings that are supported by this study’s results. Even under the interpretation of 

Apachesaurus as a taxonomically distinct, diminutive metoposaurid characterized by 

elongate intercentra, the feature is not informative for species discrimination because of 

a lack of features that would distinguish it from the elongate intercentra of very juvenile 

individuals of large-bodied taxa.  

6. Reduced lacrimal excluded from orbit: The lacrimal has remained a contentious element 

with regard to metoposaurid taxonomy due to debate over the phylogenetic significance 

of its position. Earlier workers (e.g., Romer 1947; Colbert and Imbrie 1956) argued that 

the lacrimal did not enter the orbital margin in Metoposaurus diagnosticus (at the time, 

the genus was monospecific). This was in apparent contrast to the condition in 

Koskinonodon, representing one of the few identifiable differences and the only feature 

in the original diagnosis of Koskinonodon. However, Sulej (2002) reexamined the 

holotype of M. diagnosticus, found a lacrimal that entered the orbit, and subsequently 

identified the same relationship in the vast majority of specimens of M. krasiejowensis 
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(Sulej 2007). Although this has been disputed on several occasions (e.g., Lucas et al. 

2007, 2016), there is greater consensus supporting a lacrimal contribution to the orbital 

margin that is shared between Metoposaurus and Koskinonodon. The observations of 

Sulej (2002) were reaffirmed by Brusatte et al. (2015), who further validated the point in 

their description of M. algarvensis. Phylogenetic codings of the genera (e.g., Schoch 

2013) also reflect this characterization. The feature is thus of more limited utility in 

distinguishing the two genera than previously argued, although it can differentiate these 

metoposaurids from other taxa, such as “Metoposaurus” bakeri, whose taxonomic 

affinities have accordingly remained convoluted as it genuinely has a lacrimal excluded 

from the orbit. Regarding Apachesaurus, a reduced lacrimal is an autapomorphy of the 

taxon. This results from an increase in the posterior extent of the medial incision of the 

maxilla at its anterior end and a lateral expansion of the prefrontal that relegates the 

lacrimal to a position nearly fully lateral to the orbit. Subsequently, the lacrimal does not 

contact the nasal, as in all other metoposaurids, and does not contribute to either the 

narial or orbital margin. The latter condition is shared with “Metoposaurus” bakeri. The 

strength of the character is primarily tied to the absence of significant interspecific or 

ontogenetic variation in the lacrimal among large metoposaurids.  

It should be noted that a previously referred specimen, UCMP V82250/171591, 

features a proportionately larger lacrimal that is approximately half of the distance 

between the naris and the orbit. This is greater than that of the holotype and of a 

comparable degree to large-bodied metoposaurids. Additionally, it is very narrowly 

separated from the orbit by a minute fragment. Neither the jugal nor the prefrontal is 

known to narrowly divide the orbit and the lacrimal in any metoposaurid, and it seems 
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most likely that it is in fact a broken fragment of the lacrimal that would thus indicate a 

contribution of the element to the orbital margin. 

7. Reduced contribution of postfrontal to medial orbital margin: The contribution of the 

postfrontal to the medial orbital margin appears to be variable within the holotype of 

Apachesaurus itself; the right postfrontal extends to approximately the mid-length of the 

orbit, whereas that of the left counterpart (with a slightly deformed orbit) is definitively 

reduced in extent (Spielmann and Lucas 2012, figure 10A). A similar variability is seen 

in the Rotten Hill population of Koskinonodon perfectus. For example, specimens such 

as WT 3055 (Lucas et al. 2016, figure 30A) feature a comparable contribution to that of 

the left postfrontal of the holotype of Apachesaurus, whereas most other specimens 

feature a more typical contribution to that of large metoposaurids and to the right 

postfrontal. One specimen, WT 3166-1 (Lucas et al. 2016, figure 28A) features an 

asymmetry similar to the holotype of Apachesaurus, with a small contribution of the left 

postfrontal and a much greater contribution of the right postfrontal. The pattern is 

present in the holotype of Metoposaurus algarvensis (Brusatte et al. 2015, figure 2B) but 

with the greater contribution on the left side. Any differences in the relative contribution 

are highly qualitative and relatively minor, lacking any precise threshold. Given the 

documented variation at all scales, we consider this character to be questionable until 

more specimens of Apachesaurus are recovered.  

8. Symmetrical squamosal with no significant deflection of anterior process and 

anteroposteriorly oriented lateral and medial margins: This character is considered in the 

same vein as the cultriform process (character 4) – this morphology has not been 

identified in large-bodied taxa, and although an ontogenetic influence can be 
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hypothesized, none is evident at present. The primary source of interspecific variation is 

in the lateral portion of the element, where in large metoposaurids, the margin is convex. 

This could be associated with an ontogenetic shift toward a transversely expanded 

posterior skull table that is seen in large-bodied forms with a brachycephalic contour via 

a lateral expansion of the quadratojugal and the squamosal. This would remove the 

symmetry of the latter and give the anterior process an appearance of having been 

deflected medially. A comparison of sub-adult and adult specimens of Koskinonodon 

perfectus (Lucas et al. 2016, figure 30) indicates that such an expansion may 

characterize the taxon. It should also be noted that there is a weak correlation between 

increased size and squamosal symmetry across PEFO 16759, PEFO 35392, and PEFO 

40023. However, as with the cultriform process, the paucity of small-bodied 

metoposaurids with clearly defined squamosals limits any broader interpretations. 

9. Rounded, trapezoidal foramen magnum: The significance of the morphology of the 

foramen magnum is tied to the potential taphonomic influence on the shape of the 

tabular and the convexity of the posteromedial skull roof in occipital profile (character 

10). If the postparietals have been downshifted in any way, they may have altered the 

upper expansion of the foramen. An extreme case of this is seen in one specimen of 

Koskinonodon maleriensis (Sengupta 2002, figure 5) in which the postparietals have 

clearly downshifted into the opening such that only the circular ventral portion is 

exposed. A slightly less deformed foramen magnum is seen in a specimen of 

Dutuitosaurus (Dutuit 1976, plate 47C) in which the opening lacks the bifurcated dorsal 

expansion and forms a diagonally skewed oval. The foramen magnum of Apachesaurus 

is asymmetrical, and it is noteworthy that the left margin is markedly curved (Spielmann 
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and Lucas 2012, figure 11A–B), a feature seen in other metoposaurids that precedes the 

dorsal expansion that results in the keyhole-shaped contour. The asymmetry is one line 

of evidence that some degree of taphonomic deformation has occurred. For example, 

some variation in the dorsal expansion of the foramen can be seen in Metoposaurus 

krasiejowensis (Sulej 2007, figure 16). This can be correlated with slight damage and 

deformation to the posteromedial skull roof. The character is maintained here because of 

the lack of clear evidence for a bifurcated dorsal portion, but caution should be exercised 

in utilizing this as a diagnostic feature with even slightly deformed specimens. 

10. Moderate arching of the tabular, resulting in a curved profile in occipital view: Based 

simply on the small sample size of specimens of Apachesaurus with a complete tabular, 

it is difficult to be certain that the convexity created by a slight ventromedial depression 

of the postparietals and the concavity of the tabulars is not at least partially taphonomic. 

Spielmann and Lucas (2012) considered this to be similar to the condition of 

Metoposaurus krasiejowensis (referred to as M. diagnosticus). However, photographs of 

multiple specimens of M. krasiejowensis in occipital view (Sulej 2007, figure 16) display 

a range of curvature of the dorsal margin that appears to be correlated with the quality of 

preservation. What appears to be the best-preserved specimen (Sulej 2007, figure 16A) 

displays an essentially flat margin. The generalized reconstruction of the skull of the 

taxon (Sulej 2007, figure 1D) mirrors this specimen. Conversely, the more poorly-

preserved specimens (Sulej 2007, figure 16C–D) feature a prominently concave margin. 

Figures of the holotype of Apachesaurus indicate that it was subject to minor 

deformation in various regions of the skull, including the occipital region, which is 

slightly asymmetrical (e.g., Spielmann and Lucas 2012, figure 9). In addition, the 
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postparietals may be slightly downshifted into the foramen magnum while the tabulars 

remained articulated. Thus, the former may be slightly angled ventromedially, 

exaggerating the concavity of the margin. Arched tabulars and a concave dorsal margin 

are present in the holotype of Koskinonodon perfectus (Case 1922, figure 1C), and 

variation in the arching of the tabulars, from minor curvature to a flat margin is seen in 

“M.” bakeri (Case 1932, figures 8–9). 

11. Less extensive oblique crest of the pterygoid: This character is considered in the same 

vein as the reduction of the lacrimal: justifiable insofar as it is not currently known to be 

particularly variable intraspecifically or throughout ontogeny. It should be noted that the 

crest of Dutuitosaurus (Dutuit 1976, plate 16F; Spielmann and Lucas 2012, figure 11C) 

is more dorsally oriented than in Apachesaurus, but does not appear to significantly 

differ in size, as is the case with Metoposaurus krasiejowensis.  

12. Smaller, more laterally positioned paraquadrate foramina: The variation between the 

holotype (Spielmann and Lucas 2012, figures 9, 11A–B), in which the foramen is both 

shorter and narrower than other taxa, and of the previously referred NMMNH P-37069 

(Spielmann and Lucas 2012, figure 16C–D), in which it is narrower but far more 

elongate than in the holotype, is indicative of either intraspecific variation or taphonomic 

damage to at least one specimen. It also bears noting that the foramina of the holotype of 

Koskinonodon perfectus (Case 1922, figure 1) are of a similar size and proportion to 

those of the holotype of Apachesaurus. Conversely, those of “Metoposaurus” bakeri 

(Case 1932, figures 8–10) and Koskinonodon maleriensis (Sengupta 2002, figure 5B) are 

comparable to those of the referred specimen of Apachesaurus. It is also unclear how the 

foramina of Apachesaurus are the most laterally positioned when those of 
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Dutuitosaurus, although quite distinct in morphology, terminate at about the same point 

or a bit closer to the lateral skull margin than the former in occipital view (Spielmann 

and Lucas 2012, figure 11). The documented variation is sufficient to question the utility 

of this feature for taxonomic differentiation, and the character should be excluded until 

this can be better resolved. 

13. Minimal expression of accessory paraquadrate foramina: The primary issue with the 

accessory paraquadrate foramina (also referred to as the paraquadrate accessory 

foramina) is that they were not identified in metoposaurids until the description of 

Metoposaurus krasiejowensis by Sulej (2007). Since then, only one additional 

metoposaurid taxon, M. algarvensis, has been described, and the posterolateral portions 

of the occipital region are not preserved in any specimen. The wall separating the 

primary foramina from the accessory ones is extremely thin (see Sulej 2007, figure 1D). 

It is thus likely susceptible to taphonomic damage or loss during preparation that would 

render it impossible to confidently determine its presence or absence. Sulej (2007, p. 41) 

noted that there were no accessory foramina (or no apparent separation) in nearly as 

many specimens in which the accessory foramina were identified. Where it is 

identifiable, it is always much smaller than the primary foramen, and it should not be 

considered a reliable feature considering its recent discovery and a presumed high 

susceptibility of the thin dividing wall between the foramina to loss during preservation.  

Furthermore, it is unclear if the feature identified as the accessory foramina in the 

holotype of Apachesaurus (Spielmann and Lucas 2012, figure 11A–B), the only 

specimen in which they are identified, is actually the same feature as those described by 

Sulej (2007). In the former, the foramina are identified as a shallow depression at the 
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ventral margin of the main paraquadrate foramina, which is more of a fossa than a 

continuous foramen. Quite possibly, the accessory foramina may have been of a more 

typical size to Metoposaurus krasiejowensis, with the dividing wall having been lost. 

The character is maintained because it cannot be demonstrably proven to simply be 

taphonomic, but restudy of existing taxa will be necessary to further characterize this 

feature and its utility. The foramina may, for example, be preserved but unidentified in a 

specimen of Dutuitosaurus (Dutuit 1976, plate 16F). 

 

The descriptive cranial osteology of Spielmann and Lucas (2012, p. 15–25) notes two features 

that differ in Apachesaurus compared to other metoposaurids but that are not formally included 

in the diagnosis. These include: (1) reduced premaxilla; (2) minimal dorsal exposure of the 

quadratojugal. 

1. Reduced premaxilla: A reduced premaxilla is only described in one specimen (TTUP 

9216), which is now only known from a cast because of the loss of the original specimen. 

This condition was suggested to be the result of a more medial position of the nares 

(Spielmann and Lucas 2012). The same possibility was noted by those authors for a small 

specimen (MNA V8415) referred to Koskinonodon perfectus by Zanno et al. (2002) on 

the basis of a lacrimal entering the orbital margin. Under previous diagnoses (Hunt 1993; 

Spielmann and Lucas 2012) and the revised diagnosis presented here, this specimen 

cannot be referred to the taxon because it features prominently projecting occipital 

condyles.  

2. Minimal dorsal exposure of the quadratojugal: The reduced dorsal exposure of the 

quadratojugal may be correlated with the formal squamosal character and the 
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considerations raised above with respect to a possible ontogenetic shift toward a 

transversely broadened posterior skull table via lateral expansion of the quadratojugal and 

the squamosal. This is seen, for example, in a small specimen of the Rotten Hill 

population of Koskinonodon perfectus (Lucas et al. 2016, figure 30C–D). By comparison, 

the larger specimens from this locality feature proportionately wider quadratojugals (e.g., 

Lucas et al. 2016, figure 30A–B). It is also possible that relatively broad quadratojugals 

can be taphonomically influenced. The element typically curves ventrolaterally, but 

dorsoventral compression could flatten the skull and cause the lateral margin to be 

artificially flared laterally. 

Evaluation of possible autapomorphies 

The descriptive postcranial osteology of Spielmann and Lucas (2012, p. 25–30) also notes 

various features that are suggested to be autapomorphies of Apachesaurus. These include: (1) 

slightly curved anterior margin of the clavicle; (2) shallow, ridge-forming groove on the anterior 

margin of the acetabulum. These are addressed below, but it should be noted that there is no 

supported basis for referral of postcranial material to Apachesaurus because there are no 

postcranial autapormophies of the taxon beyond the now-discarded elongation of the intercentra 

and no apparent association of any referred postcranial specimens with cranial material.  

1. Slightly curved anterior margin of the clavicle: Sulej (2007, figure 43) noted variability in 

this margin in Metoposaurus krasiejowensis but did not explicitly comment on this. 

Spielmann and Lucas (2012) considered the absence of commentary on intraspecific 

variation, which is frequently commented on for other elements in Sulej’s description, 

regarding this specific feature, to be indicative of a taphonomic influence. Some variation 

is also apparent in Dutuitosaurus. The majority of illustrated and photographed 
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specimens have a straight margin, but some specimens feature a curved margin that does 

not appear to be taphonomically altered (e.g., Dutuit 1976, plate 31). The same is true of 

“M.” bakeri (e.g., Case 1932, plate 6.2). 

2. Shallow, ridge-forming groove on the anterior margin of the acetabulum: The ilium is an 

uncommon element in metoposaurids, being best-known from Koskinonodon perfectus 

(Lucas et al. 2016) and Metoposaurus krasiejowensis (Sulej 2007). This particular aspect 

of the ilium is not seen in any other metoposaurid beyond Apachesaurus, but ilia of 

definitively juvenile individuals are unknown, so any potential ontogenetic influence 

remains undefined.    
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