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Abstract
Berrylium-7 elucidates sediment dynamics (i.e., sources, sinks, deposition, and resuspension) in a Connecticut estuary. Average
annual atmospheric deposition of 7Be is 290 mBq cm−2 year−1. Sediment samples from 43 locations within the estuary show that
7Be deposition is spatially complex, but were statistically indistinguishable a year apart. Weekly time series of sediments indicate
that levels are nearly constant on this shorter time scale once radioactive decay is taken into account. 7Be levels in sediments are a
balance between steady losses through radioactive decay and periodic pulse inputs following rainstorms. The water column was
measured intensively during three rain events, showing that 7Be is removed rapidly from the water column, with a rate constant
averaging 1.00 ± 0.12 day−1. A mass balance shows that 7Be is supplied about equally by direct precipitation onto the estuary’s
surface and inflow from the watershed. Losses from the water column are split between net sedimentation (43%) and tidal
flushing (57%). Variations in sedimentary 7Be levels at very short (meters) and longer (km) distances, and changes at time scales
from hours to years, indicate that a large number of samples are required to capture all the variability in these highly dynamic
systems. The current study differs from previous research in that a large number of measurements were conducted on a smaller
system, and a full mass balance was developed.

Keywords Estuary . Beryllium-7 . Mass balance . Pollution . Scavenging . Rivers . Watershed . Sediments . Deposition .

Resuspension

Introduction

The Connecticut shoreline is marked by numerous drowned
stream valleys that now act as estuaries. Sediment behavior in
these estuaries is quite complicated. Sources include both up-
land watersheds and Long Island Sound, and lateral inputs
may be important in some cases. In the estuary, sediment
can go through cycles of deposition and resuspension follow-
ed by either export or redeposition. The long-term pattern
seems to be burial at a rate close to relative sea level rise
(Benoit et al. 1999; Rozan and Benoit 2001) so that the

estuaries are close to steady state in terms of their bathymetry.
Humans interfere with this pattern in many ways, perhaps
most dramatically not only through periodic dredging tomain-
tain navigation channels, but also by changing land use in
upstreamwatersheds, which can lead to variations in sediment
contributions from those sources.

Sediment transport, deposition, resuspension, and buri-
al in estuaries are important for several reasons. The bio-
logical, physical, and chemical processes operating in an
estuary determine the fate of a number of natural and
anthropogenic chemical substances that are delivered to
the estuary from the ocean, atmosphere, and land. For
example, sewage treatment plants and numerous nonpoint
sources are often situated on these systems (Howarth et al.
2002). The biologically rich estuarine environment is im-
portant because it provides soft bottom habitat and nurs-
eries for shellfish and finfish (Roman et al. 2000). Many
salt marshes are also located here and are strongly influ-
enced by sedimentary processes (Vernberg 1993).
Estuaries also provide a number of ecosystem services
(Barbier et al. 2011), including providing sheltered an-
chorages, navigation, contaminant disposal, and recrea-
tion, which are affected by sedimentation. Estuarine
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sediments are also the repository for considerable
amounts of particle-reactive and hydrophobic contami-
nants (Kennish 2002).

Short-lived radionuclides can be useful for studying the
dynamic behavior of sediments in estuaries. They are often
added as discrete pulses during storms and can be followed for
days or weeks until the next pulse input starts a new cycle
(Dibb and Rice 1989a; Olsen et al. 1986). The relatively short
half-lives match the timescale of processes occurring in the
estuaries. The known radioactive decay rates can be used to
provide age and rate information. In this study, we focused on
one such radionuclide, 7Be (53.2 days).

Beryllium-7 as a Sediment Tracer

7Be is a useful tracer for short-term sediment dynamics in
aquatic systems thanks to its short half-life of 53.2 days
(Dominik et al. 1987). 7Be is produced in the atmosphere
by cosmic ray spallation of nitrogen and oxygen (Feng
et al. 1999). Although it is predominantly produced in
the stratosphere, the bulk of the 7Be that is delivered to
the Earth’s surface is generated lower, in the troposphere.
This is because the residence time of beryllium in the
stratosphere is much longer than the life of the radionu-
clide (Dutkiewicz and Husain 1985).

Direct atmospheric deposition has been shown to be the
dominant source of 7Be in estuarine systems studied to date
(Dibb and Rice 1989a; Olsen et al. 1986). Direct atmospheric
deposition is responsible for greater than 90% of the total 7Be
inputs into Chesapeake Bay, while the transport of beryllium
into or out of the Bay is insignificant by comparison (Dibb and
Rice 1989a). The relatively low contribution by watersheds of
7Be to estuaries is a result of beryllium’s adsorption to vege-
tation and soil in the watershed for a period significantly lon-
ger than its half-life and the small ratio of watershed
to estuarine area (Olsen et al. 1986). When 7Be is first depos-
ited from the atmosphere, it is solubilized then quickly
rescavenged by particles (Dibb and Rice 1989a; Olsen et al.
1986). Studies have shown that the distribution coefficient
(Kd) for

7Be in estuarine and coastal waters is relatively large
(approximately 105, Baskaran and Santschi 1993; Dibb and
Rice 1989b). The residence time of 7Be in Hudson River
waters ranges from less than 1 to 13 days, varying seasonally
(Feng et al. 1999). Greater than 80% of the 7Be in Chesapeake
Bay is found in the sediments, while less than 20% of the 7Be
is in the water column (Dibb and Rice 1989a) as expected
from beryllium’s very strong affinity for particles. Also, 74–
86% of the total atmospheric deposition of 7Be during a rain-
fall became associated with particles within 1 h in Galveston
Bay, TX (Baskaran and Santschi 1993). Aggregation and set-
tling of particles resulted in removal of 70% of the 7Be from

the water column in less than 1 day (Baskaran and Santschi
1993; Fitzgerald et al. 2001).

The objective of the current research was to use radionu-
clides as tracers to investigate sediment supply, deposition,
and net accumulation in a typical Connecticut estuary on time
scales ranging from days to manymonths. While some similar
studies have been conducted on larger estuaries and lakes, this
project differs in focusing on short-term sediment dynamics in
small estuaries. Small, in this case, refers to estuaries that are
less than 10 km in length, have average widths between 100
and 200m, and with watersheds under 100 km2. The Branford
estuary has a narrow natural channel flanked by mud flats in
some areas; there are also areas of dredged channels. At least
seventeen estuaries in Connecticut are similar (i.e., Byram
River, Cos Cob Harbor, Norwalk Harbor, Saugatuck River,
Southport Harbor/Mill River, Ash Creek, Gulf Pond, West
River, Mill River, Farm River, East River, Hammonasset
River, Niantic River, Jordan Cove, Mystic River, Pawcatuck
River, and Branford River). Little is known about sediment
dynamics in these small estuaries, which are prevalent in the
northeastern USA and coasts elsewhere. These small systems
can be disproportionally important because they have histori-
cally served as locations for urban population development
and associated pollution sources. One previous study looked
at a small system of similar scale, but it was an inland river
rather than an estuary (Jweda et al. 2008)

Research Design

Sampling Strategy

Our goal was to quantify 7Be in every important environmen-
tal compartment and to evaluate fluxes between them at all
significant time scales. We sought to make enough measure-
ments to characterize variability at all relevant temporal and
spatial scales. Measurements were conducted on rain, sedi-
ments (surficial cores), and estuarine waters to evaluate 7Be
variations in time and space and to construct a mass balance
for a typical small estuary. The study site, the Branford River
estuary is 7.2 km long to the head of the tides, averages 126 m
wide, and has a watershed area of 63 km2 (Fig. 1). A small
dam currently blocks its landward extent, but is at the same
location where rising altitude would have halted tidal flow in
the past. Rain was collected nearby from the roof of Yale’s
Environmental Science Center, 21 Sachem St, New Haven,
CT, about 10 km away. Storm event samples of the water
column (10 L volume) were collected from a site near the S.
Montowese Street bridge, Branford, CT (Fig. 1), approximate-
ly every 12 h (at successive high tides) before, during, and for
a few days after three rain events. High tides were selected as
an endmember that emphasized the role of tidal flushing. This
location is roughly midway along the length of the estuary.

Estuaries and Coasts (2020) 43:831–842832



Two rainstorms were measured in the period from November
15 to 19, 2002 and a third during the period from July 27 to 30,

2004. The watershed contribution of 7Be was assessed via 10-
L samples collected where the river enters the estuary (just

Fig. 1 Map of the Branford River estuary. Surficial sediment samples
were collected along the length of the estuary. The orange line delimits
the area flooded at the highest tides. Water samples were collected at the

location indicated except for those used to characterize input from the
watershed, which were collected near the dam. Lower left corner is 41°
15′ 25″ N, 72° 49′ 35″ W

Estuaries and Coasts (2020) 43:831–842 833



below the dam for Ward’s Millpond; Fig. 1). Our extraction
method (see below) measures total 7Be (both dissolved and
particulate). Sediment samples for 7Be were collected by
using a 5-cm-diameter core liner to subsample the upper
5 cm of material captured with an Eckman dredge. The liner
was inserted into the sediment and capped from below. The
entire upper 5 cm of sediment was extruded into a 100-cm3

aluminum can, homogenized, and sealed in the field. This
method captured all of the 7Be in the sediment profile as tests
of some individual cores revealed none of the radionuclide
below 1.5 cm. Subsampling was carried out only if the
sediment-water interface looked undisturbed in these collec-
tions. For the synoptic spatial distribution study, bottom sed-
iments were collected along the length of the estuary, approx-
imately every 500 m. Two or three stations were collected
across the estuary at most of these sites. Two sets of bottom
samples were collected (July 23, 2003 and June 11, 2004;
Figs. 2 and 3). To evaluate medium-term variation in sedi-
ments, a bottom site near 41° 16′ 32″ N, 72° 48′ 34″ W (be-
tween Indian Neck Ave and S Montowese St) was re-sampled
repeatedly between rainstorms (roughly weekly). In addition,
sets of triplicate or quadruplicate samples were taken nearby
to evaluate variability over short distances (a few m) at a
single location.

To study the effect of storms, samples were taken before,
during, and after each rain event according to the schedule
shown in Table 1. In order to minimize the effect of diurnal
variations of tidal exchange on 7Be, samples were taken at the
same tidal stage. In this case, all samples were collected within
about an hour of high tide in order to ensure that conditions
remained relatively constant from day to day. At each time
point, a sample core (homogenized, approximately 5 cm in
length and 5.0 cm in diameter) was taken along with a 10-L

sample of estuarine water. However, for the final two samples
of the second storm (November 18, 2002 21:00 and
November 19, 2002 9:00), sample cores were not taken, only
water. A similar sampling scheme was followed to monitor a
storm in July 2004. The total atmospheric deposition of the
storms was monitored based on simultaneous rooftop collec-
tions on the Environmental Science Center (21 Sachem St,
New Haven, CT).

Analytical Methods

7Be in water samples was concentrated by co-precipitation
with Fe(OH)3 after pH adjustment and centrifugation (Olsen
et al. 1986). Stable Be was added as a yield monitor and
measured by ICP-AES. Recoveries exceeded 95% in all cases.
Homogenized sediments for 7Be were sealed in cans and

Fig. 2 Synoptic distribution of 7Be in surficial sediments of the Branford
River estuary. There is a large variation with distance downstream and
sometimes in short distances across the river at a single distance
downstream. Note also that variability is much greater than the
measurement uncertainty. Distances are measured from the head of
tides at the Ward’s Millpond dam

Fig. 3 Contour plot of 7Be in surface sediments of the Branford River
estuary. Adding the transverse dimension and combining both year’s data,
there is a suggestion of a down river decline in 7Be. Confirmation of this
trend would require greater coverage in both space and time. The river has
been straightened by plotting the log of the lateral width as a function of
distance along the thalweg. Distance is measured from the dam onWard’s
Millpond. Black dots represent sampling locations. Down is generally
NW and up is SE. Contouring was carried out by Kriging within
Sigmaplot 11.2, ©2008 Systat Software. Units: mBq cm-2

Table 1 Sampling times compared to local high tides and rain events

High tide Sample Difference
(min)

November/16/2002 Rain begins: 21:00

21:55 20:52 − 63
November/17/2002 7:50 9:06 + 76

22:35 21:33 − 62
November/18/2002 8:35 9:44 + 69

Rain ends: 12:00

21:00 22:13 + 73

November/19/2002 9:00 10:21 + 81

Estuaries and Coasts (2020) 43:831–842834



measured wet with no further pretreatment, so activities are
expressed normalized to area (19.6 cm2, that of the core liner
used) rather than by weight. All samples were analyzed via
gamma spectroscopy on a low-energy, low-background
Canberra® gamma counter with planar geometry, correcting
for self-absorption (Cutshall et al. 1983), which was minimal
for 7Be with its relatively high energy. A 23Na standard was
used for self-absorption tests because it has a similar gamma
ray energy. Previously, counting efficiencies were determined
for our system on the basis of the certified value for the 7Be
standard supplied by the manufacturer (NIDC). Because anal-
yses were often delayed for several days, as measurement of
individual samples can take 24 h or longer each, all 7Be values
were decay corrected to the time of collection via the standard
radioactive decay equation.

Results and Discussion

Atmospheric Deposition

Because 7Be that actually reaches the Earth’s surface is
produced mainly in the troposphere, the depositional flux
is influenced by weather and location (Baskaran 1995;
Renfro et al. 2013). 7Be deposition tends to increase with
latitude and with solar activity (Kaste et al. 2002). Most
7Be is delivered to the Earth’s surface with wet deposi-
tion, so the timing and magnitude of rainstorms has a
strong influence on the amount deposited (Renfro et al.
2013). Total annual fluxes of 7Be vary by as much as a
factor of 7 from one location to another globally, and the
amount delivered by individual storms at a single place
can vary by at least a factor of 10 (Canuel et al. 1990).
This means that most applications of 7Be as a tracer re-
quire direct measurement of the local flux.

Based on 267 days of continuous monitoring and extrapo-
lating to an average annual precipitation of 134 cm in
Branford, CT, we estimate that annual 7Be atmospheric depo-
sition is 290 mBq cm−2 year−1 or 0.79 mBq cm−2 day−1. In
order to estimate the total annual deposition, the ratio of aver-
age annual precipitation to precipitation-to-date was multi-
plied by the total amount of atmospheric deposition-to-date.
It should be noted that this value was based on data that were
collected over a 9-month period from October of 2002 to June
of 2003. This was a period of near normal amounts of precip-
itation based on NOAA data from Tweed Airport, approxi-
mately 7 km from our study site. Because precipitation
amount was typical, similar results are obtained whether ex-
trapolation is based on time or rainfall. (7Be and rainfall
amount were correlated at our site, with P = 0.033.) This 7Be
input is adequate to maintain an inventory of 61 mBq cm−2 if
the only loss is through radioactive decay. The average annual
atmospheric deposition rate of 7Be (290 mBq cm−2 year−1) we

found is similar to published values for nearby Stony Brook,
NY (311 mBq cm−2 year−1; Renfro et al. 2013).

Spatial Variability in Estuarine Sediments

Results reveal that there is great variability in 7Be inven-
tories along the length of the estuary and sometimes
across it (Fig. 2). On each of the two sampling dates,
the relative standard deviation for all measurements was
48%. This indicates that scavenging and deposition of 7Be
is uneven in space or that surficial sediments are rapidly
redistributed unevenly in the estuary. In either event, de-
position and perhaps resuspension of tracer-tagged sedi-
ment appear to be complex. Grain size and chemical anal-
ysis were not performed, but all samples appeared to be
similar muds. Similar or greater areal variability of 7Be
was found in the much larger, and geometrically simpler,
basin of Lake Pontchartrain, LA (Flocks et al. 2009).

Information is also provided by depth distributions of 7Be
in sediments. In six cases, we sectioned cores at 0.5 cm inter-
vals to evaluate 7Be. In all cases, no 7Be was found deeper
than 1.0 cm. This both supports the validity of our sampling
method (collecting the upper 5 cm of sediment) and suggests
that vertical redistribution by biological or physical processes
was limited on the timescale of 7Be decay (i.e., months).

The two sets of surficial sediments we collected, totaling 42
samples, showed no simple pattern of 7Be inventories either
along the length of the estuary or between samples collected a
year apar t . Mean values were 54 ± 26 and 41 ±
19.8 mBq cm−2 on the two dates, but results were not signif-
icantly different between the two dates. The data were not
normally distributed, but a Mann-Whitney Rank Sum test re-
vealed that the dissimilarity in the median values (51 and
35 mBq cm−2 year−1) between the two groups is not great
enough to exclude the possibility that the difference is due to
random sampling variability, i.e., there is not a statistically
significant difference between samples collected in the 2 years,
using a 5% probability threshold (p = 0.082). Because of the
short half-life of 7Be, less than 2% of the radionuclide mea-
sured on the first sampling date was still present on the second,
so these are two completely independent measurements.

The two sets of samples collected nearly a year apart
neither were significantly different nor were there simple
systematic changes with only longitudinal distance in ei-
ther set. Still, it should be pointed out that there are sig-
nificant differences among individual samples even if
there is not a clear longitudinal pattern to those variations.
In other words, 7Be is not simply homogenous within
surficial sediments of the Branford River.

Because the 2 years’ data were statistically the same, we
combined them and added transverse distance as a variable
(Fig. 3). The results begin to suggest a down river decline in
7Be and perhaps a concentration near the margins, though
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even greater sample collection than was used in this study
would be required to fully reveal the pattern.

Because of the variations we sometimes observed in sam-
ples taken only several tens of meters apart, we decided to
evaluate spatial variability at even shorter scales. We collected
two sets of triplicate surface sediments and one quadruplicate
set (Fig. 4) from inside an area of roughly 1 m2 for each set,
and the three groups were located within a few meters of each
other. To minimize sampling artifacts, these samples were
taken directly from the bottom in 5-cm-diameter core liners,
without the intermediary of an Eckman dredge. These samples
had a lower variability than did the entire estuary, but even
these replicates showed considerable changeability (Fig. 4) on
an apparently flat and featureless bottom (evaluated by direct
visual observation). Taken together, the 10 samples had a
standard deviation of 28%. The results show that considerable
variability exists even at this very small spatial scale.

One common cause of differences in metal levels in sedi-
ments is the amount of fines and/or iron or organic matter. We
did not quantify these variables, but qualitatively, all samples
at the intensively sampled site were similar fine muds; signif-
icant amounts of sand were absent, and color was invariant.
Over this small area (~ 10 m radius), where sediment charac-
teristics were uniform, 7Be inventories varied by 28%. This
suggests that at least this much variation can be explained by
factors such as hydrodynamics and bioturbation rather than
sediment composition. For the 42 samples, we collected
throughout the rest of the estuary, variation in 7Be inventories
rises to 48%. (Note that both of these numbers are large com-
pared to our measurement uncertainty of 5–10%.) A variation
of even 48% (factor of 2) is small compared to the range of
sedimentological variables documented to occur among dif-
ferent estuaries, where they can differ by orders of magnitude.
Our own work on a similar small nearby estuary (Jordan
Cove, CT; Benoit et al. 1999) and that of others (Barnegat

Bay, NJ; Taghon et al. 2017) suggest that sediment composi-
tion tends to vary only a small amount with location or depth.
In contrast, for an estuary whose watershed is undergoing
rapid change (Corsica R estuary, MD), changes with depth
can be great (Palinkas 2013). 7Be throughout the estuary
was not significantly different on the two sampling dates,
but it was not identical within the measurement uncertainty
(5–10%) or the variation caused locally by physical factors
(28% due to hydrodynamics or bioturbation). The remaining
differences could be the result of sediment compositional dif-
ferences, but the effect appears to be small in this estuary.

7Be Cycling during Storm Events

The Water Column

The third part of the research was to monitor 7Be as it
cycled through the Branford River watershed and estuary
during storm events. 7Be added to the estuary from the
atmosphere and watershed is either already associated with
particles or is quickly scavenged by them (Saari et al.
2010). Residence time of 7Be in the water column of lakes
and estuaries studied elsewhere usually falls in the range
from 1 day to 2 weeks (Kaste and Baskaran 2011). This is
the most complex part of the 7Be cycle; the radionuclide is
added directly to the estuary’s surface or can flow in from
the watershed. Thereafter, it is scavenged to bottom sedi-
ment or is removed by tidal flushing, and simultaneous
resuspension is also possible. Understanding all of these
processes requires measuring 7Be in both estuarine water
and sediment relatively frequently over time.

The results of the time-series sampling during the storms
for the water column are shown in Figs.5, 6, and 7 along
with discharge data available from the USGS for the adja-
cent Mill River in Hamden, Connecticut (USGS 01196620).
These flow data were used because it is the nearest gauging
station (instrument is 16 km distant), and the Mill River is
similar to the Branford River in land use, size, soils, plant
communities, level of development, topography, and other
characteristics, and the weather experienced at both loca-
tions during the storm is likely to be very similar. This is
especially true since the storm in November was of the fron-
tal type, which varies little over broad areas.

The November storms had two distinct peaks roughly
24 h apart, as indicated by the discharge data and rainfall
record (Fig. 5). Note that this bimodality applied to water
flow, not necessarily 7Be input, which is only approxi-
mately proportional to rainfall amount. Rain for these
two storms contained 1.63 mBq g−1 (of water) and accu-
mulated to a total depth of 4.1 cm (rainfall amount).
Direct a tmospheric deposi t ion thus contr ibuted
6.6 mBq cm−2 of 7Be to the surface of the estuary in these
two storms. By comparison, based on the water column

Fig. 4 Variability of 7Be inventories for sets of replicates taken near each
other between Indian Neck Ave and SMontowese St. Cores with symbols
of a single shape were taken within 1 m of each other, and all three sets
were taken less than 10 m apart

Estuaries and Coasts (2020) 43:831–842836



measurements, the two storms increased 7Be in the estu-
a ry by 8 .2 and 3 . 3 mBq cm − 2 fo r a t o t a l o f
11.5 mBq cm−2, significantly greater than that coming
directly from the atmosphere. This increase occurred even
though both scavenging/sedimentation and tidal flushing
should have decreased 7Be inventories, so the net rise
suggests that inflow from the watershed contributed a sig-
nificant amount of the radionuclide. (On the timescale of
the storm, radioactive decay of 7Be is small.)

The third storm showed a similar pattern (Fig. 7), with
exponential decline in water column 7Be over at least the first
48 h. Adding inputs from precipitation and the watershed to
7Be pre-existing in the water column produced a good match
with exponential removal during and after the storm. Taken
together, the three storms had e-fold (e−1 = 0.37) removal rate
constants of 1.00 ± 0.12 day−1. Clearly, scavenging and sedi-
mentation are rapid in this system. This removal reflects the
combination of scavenging of any dissolved 7Be and subse-
quent net sedimentation, as well as removal by other processes
(like tidal flushing). It is worth noting that tidal flushing

Fig. 5 7Be in the water column
during two storms (filled circles).
Rain amounts are vertical bars.
Vertical lines represent times of
high tides. NB: The small open
circles are discharge for the
nearby Mill River; they are not a
fit to the 7Be data. To facilitate
comparison of water column and
sediment data, water
concentrations have been
integrated over the average water
depth of 2 m

Fig. 6 Exponential loss of 7Be from the water column for two November
storms

Fig. 7 Removal of 7Be from the water column of the Branford River
estuary during a storm in July 2004. The point labeled “Prestorm” is
depth-integrated 7Be in the water column before the start of rainfall.
“Rain” is 7Be measured in rainfall. “Watershed” is the product of radio-
nuclide concentration (Bq m−3) and discharge (m3 day−1) measured at the
USGS gaging station on theMill River scaled to the full drainage basin of
the Branford River and normalized to estuary area (cm2). The solid line is
a regression of 7Be measured in the water column; the inventory de-
creases much faster than the rate of radioactive decay (approximately
5% over 4 days), which is shown for comparison
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cannot be 100% efficient, or 7Be might be expected to drop
nearly to zero after a single tidal cycle (~ 0.5 day), as the tidal
range in the Branford River estuary (≈ 2 m) is similar to the
average water depth (< 3 m). Considering the rapid rate of
scavenging when 7Be is high, the continued presence of mea-
surable radionuclide in the water column between storms sug-
gests that it is being restored by some process(es) when levels
are lower. These might be resuspension of bottom sediments
or exchange with Long Island Sound.

7Be in Sediment Cores

We also monitored 7Be in sediments during the November
storms, with the expectation of documenting accumulation
of a pulse input that might be deposited to the bottom from
radionuclide added via direct deposition or inflow from the
watershed. The results were inconclusive. As the storm began,
the total beryllium found in sediment samples was very low in
the upper 5 cm. (In fact, no 7Be was measured in any sample
below 1.0 cm.) Then, near the start of the storm, a relatively
large amount was detected at the surface (37 ± 2.3 mBq g−1

between 0 and 0.5 cm deep; Fig. 8.) As the storm progressed,
more 7Be was delivered from the atmosphere (6.6 mBq cm−2)
to the Branford River. The 7Be rapidly adsorbed to particles,
which were quickly removed from the water column by sed-
imentation. This is evident as the 7Be activity in the sediments
increased in a sample taken after the start of the storm (49 ±
2.8 mBq g−1 in the upper half-centimeter of sediment and 20
± 1.8 mBq g−1 in the 0.5–1.0 cm sample). This suggests the

rapid removal of 7Be-rich sediment from the water column.
But there was a rapid decrease in sedimentary 7Be activity
following the conclusion of the storm. The most likely expla-
nation for this disappearance is that most of the 7Be was re-
suspended and lost to other sediment locations. This is con-
sistent with the lack of 7Be at this location at the outset of the
storm, suggesting that it is not a site of long-term sediment
accumulation.

Medium Term Water Column Cycling

To better understand medium-term variability of 7Be invento-
ries in sediments, we collected surface samples repeatedly
between rainstorms for a period of 3 months (Fig. 9). Within
measurement uncertainty, sedimentary 7Be could be explained
by loss through radioactive decay and gain from deposition of
atmospheric 7Be. Additional loss from bottom sediments, per-
haps associated with high winds causing above normal sedi-
ment resuspension and export, may have occurred around day
36 of the sample series, but this apparent deficiency again may
be the result of spatial variability of sediment inventories. The
generally good prediction shown in Fig. 9 supports the idea
that inventories in sediments reflect a balance between net
deposition (rain/scavenging/settling minus any resuspension)
and loss through decay.

7Be Mass Balance for the Estuary

All of our measurements can be integrated in a mass balance
that compares relative magnitudes of various reservoirs and
fluxes. In calculating a 7Bemass balance for the entire estuary,

Fig. 8 7Be in surficial sediment cores during the November 2003 storm.
Rainfall started near 18:00 on November 16. Horizontal bars are
measurement uncertainty. Vertical bars reflect sampling depth intervals
rather than uncertainties, which are less than 0.1 cm.

Fig. 9 Comparison of 7Be inventory in bottom sediment to loss by
radioactive decay and gain from atmospheric input. Slanting dotted
lines parallel the rate of radioactive decay. Bars are average daily wind
speeds (right axis). Rain events are marked by vertical dashed lines and
corresponding vertical arrows are measured 7Be inputs. Over the medium
term, 7Be in sediments seems to be nearly in steady state between these
gain and loss terms
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it is important to keep in mind several concepts and numbers.
First, most measurements are made on a small areal basis and
need to be scaled up to the entire estuarine area. The conver-
sion is that 1.0 mBq cm−2 translates to 9.1MBq over the entire
estuarine surface. Second, the half-life of 7Be is short, so sig-
nificant changes caused by radioactive decay might occur on
the time scale of ecosystemwide events (return time of storms,
inflow from the watershed, and synodic tidal cycles). For
these reasons, it is best to think of the mass balance normal-
ized for a period shorter than the half-life (53 days) or mean
life (77 days) of 7Be, and to realize the results can only be
average values, as many processes are episodic rather than
continuous. We chose to normalize results to a 1-day period,
though other similar time steps would produce like results.

For the mass balance (Fig. 10), we directly measured inputs
from the (A) Atmosphere and (B) Watershed and the standing
stock in (C) Sediments. Measurement of (A) was based on
many analyses over most of a year, whereas (B) was based
on measurements on just three storms. The amount of 7Be in
reservoir (C) was based on a total of 53 measurements taken
on two occasions nearly a year apart and showed relatively
little variation between the two averages. From (C), it is easy
and reliable to calculate loss via radioactive (D) Decay, and
lacking other source or sink terms for Sediments, this must be
equal to average net sediment (E) Deposition in the long term.
(We use Deposition to mean net settling less any resuspension.
The latter cannot be large or levels in the water column would
need to be much greater than we measured.) The standing
stock and decay loss in the (F) Estuary’s water column was
directly measured but is highly variable on short time scales
(hours to days). Although the uncertainty is large, this term is
small in the total budget. Finally, exchange with Long Island
Sound (G) is calculated by difference between sources
(Watershed and Atmosphere) and sinks (net Deposition and
water column decay). In this mass balance, we assume the

amount of 7Be in the water column (F) is constant, which must
be true, on average, over longer periods of time because there
is no secular trend. But both (F) and (G) will fluctuate signif-
icantly depending on when it rains and which tidal cycle is
measured. Because the tidal term was calculated by difference
and not directly measured, it is impossible to test for closure of
the mass balance.We have begun direct measurements of tidal
flushing and 7Be for the nearby West River to remedy this
shortcoming (manuscript in preparation).

(A) Atmosphere The average atmospheric flux directly to the
sur f ace o f the es tua ry was 7 .2 × 106 Bq day− 1

(7.2 MBq day−1). As described earlier, this was based on
267 days of analyses and is very similar to other nearby mea-
surements (Renfro et al. 2013).

(B) Watershed Upstream from the dam that forms Ward’s
Millpond, the watershed has an area of 57 km2, with an
additional 6 km2 of watershed area between there and
Long Island Sound. The estuary itself has a surface area
of 0.91 km2. Based on measurements of 7Be in Branford
River water and USGS gauging data for the adjacent Mill
River, we calculated a riverine flux of 6.4 MBq day−1

scaled to the entire watershed area. This relatively large
contribution from the watershed (compared to other estu-
arine studies) probably reflects the large ratio of water-
shed to estuary areas (69:1). Still, the riverine flux repre-
sents only 1.4% of the 7Be landing on the watershed, a
small fraction consistent with previous findings elsewhere
(Dibb and Rice 1989a; Olsen et al. 1986). The 7Be that is
transported by the river is a combination of direct depo-
sition to the water’s surface and erosion of soil particles
that received atmospheric 7Be in the past few months.
Several investigators have used 7Be as a tracer of eroded
soils and have compared sources from different depths in
the soil profile by using atmospherically deposited radio-
nuclides of differing half-lives (Bonniwell et al. 1999;
Matisoff et al. 2002; Wallbrink and Murray 1993;
Wallbrink and Murray 1996).

The pond itself is very shallow (z̅ < 2 m) and small
(2 ha). Based on the size of the watershed, the volume
of the pond, and typical runoff amount (50%), water res-
idence time in the pond for a 2-cm storm lasting 12 h is
less than 1 h. We expect that it captures an insignificant
portion of 7Be delivered from the watershed, but have no
data. Nevertheless, our measurements are from below the
dam, so the pond’s influence is taken into account in our
analysis. Still, our result for delivery of 7Be from the
watershed downstream may be an underestimate if sub-
stantial amounts are trapped behind the dam.

(C) Sediment The total inventory in sediments during the
period of the mass balance was 431 MBq. Radioactive

Fig. 10 Mass balance of 7Be in the Branford River estuary normalized to
a 1-day period. Boxes represent reservoirs, and arrows are fluxes. For (F)
Estuary, the upper number is the typical standing stock and the lower
number is the decay loss. The (G) Tides and (E) Deposition fluxes are
net amounts, which include tidal inflow and resuspension, respectively,
which were not measured independently, but are believed to be small
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decay of this standing stock of 7Be over 1 day amounts to
the “(D) Decay” flux in the mass balance. Coincidentally,
this is close to the deposition flux from the atmosphere to
the estuary’s surface. One way this could occur would be
if 7Be supplied by precipitation were nearly quantitatively
captured in sediments (no losses to Long Island Sound),
and there were no other sources to the estuary. As ex-
plained earlier, the significant contribution from the wa-
tershed shows that this is not the case. Because decay
must be matched by net deposition for the sediment in-
ventory to remain constant in the long run, as has been
documented by our measurements, average net (E)
Deposition (i.e., deposition less resuspension loss) can
be calculated to be 5.6 MBq day−1 based on the inventory
in sediments and the 7Be mean life.

(F) Estuary 7Be levels in the water column before, during, and
after the storm studied in July 2004 fell in the range from 10 to
84 MBq, with highest levels occurring towards the end of
rainfall, and lower levels before and after. We use the calcu-
lated average of 45MBq for the standing stock, corresponding
to a radioactive decay loss flux of 0.6 MBq day−1. (Particle
settling is captured separately in term (E)). Although radioac-
tive decay loss has a large relative uncertainty, it is a small
number in the budget.

(G) Tides Direct measurement of the net 7Be tidal flux
would be extremely difficult because of the large varia-
tions with each cycle. By difference between inputs from
rain and the watershed (7.2 + 6.4 MBq day−1) and loss to
sediment deposition and decay in the water column (5.6 +
0.6 MBq day−1), the net exchange with Long Island
Sound can be calculated as a loss of 7.4 MBq day−1 for
an average 1-day period. The overall budget thus indicates
roughly equal inputs from the atmosphere and the water-
shed, along with slightly greater loss to tidal flushing
compared to deposition within the estuary; the estuary is
a very leaky trap for 7Be and probably other particle-
reactive substances as well.

Uncertainty Analysis We calculated uncertainties for each
term in the mass balance (Table 2) in an effort to assess
the error in our calculation of the tidal exchange term (G).
The measurement uncertainties for 7Be are a function of
the number of decays recorded (viz. (counts)−1/2) and
were always less than the real natural variability of the
terms being measured. On this basis, measurement errors
were considered negligible and were disregarded in this
analysis. Instead, we calculated the standard errors of the
means and combined them in quadrature to apply to the
calculated Tidal term, as is appropriate for independent
random errors like those in this case (Taylor 1982). In
doing this analysis, we combined precipitation data,

aggregating short-term measurements we did during storm
sampling. Thus, we went from 14 measurements with du-
rations ranging from 1 to 43 days to 8 binned results with
periods from 18 to 44 days. The results of the assessment
suggest that the tidal term has an uncertainty of about
21% of the calculated average value.

Conclusion from the Mass Balance It may be possible to
generalize from the Branford River estuary to similar sys-
tems elsewhere. If the watershed to estuary area is high,
and timescales of important biogeochemical processes are
not long compared to the 7Be half-life (flushing rates,
storm frequencies), then inflow from land may be an im-
portant term, unlike what has been observed for larger
systems where these conditions do not hold. Water col-
umn concentrations are likely to change rapidly, and tidal
flushing will only be important if the water residence time
in the estuary is short. A second key finding is that
particle-reactive contaminants (trace metals, hydrophobic
organics) are likely to be captured only partially in such
estuaries, and that a substantial fraction will be rapidly
lost to tidal flushing.

Conclusions

& Roughly half of 7Be enters the Branford estuary from its
watershed and half via direct deposition from the atmo-
sphere on its surface.

Table 2 Analysis of uncertainty for the 7Be mass balance. Standard
errors of the mean were calculated for each term based on individual
values and the total number of measurements. Numbers in parentheses
reflect values derived directly from other measurements (e.g., E is a direct
consequence of C). The tidal exchange term was calculated by difference:
G = A + B − E − F, and its uncertainty was calculated as described in
“Uncertainty Analysis”. The two values in italics (term G) were derived
by combination of the other terms as described in the text

Number Value Uncertainly
(SEM)

(MBq) (MBq day−1) (%)

Sources

(A) Atmospheric
deposition

8 7.2 15

(B) Watershed 10 6.4 16

Sinks

(E) Net sedimentation (53) 5.6 (8)

(G) Tides – 7.4 (21)

(F) Water column
decay

(16) 0.6 (17)

Reservoirs

(F) Water column
inventory

16 45 17

Sediments 53 431 8
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& Roughly 40% of added 7Be is deposited in sediments
within the estuary and 60% is lost to Long Island Sound
via tidal flushing.

& The average annual atmospheric deposition of 7Be in New
Haven, CT, is 290 mBq cm−2 year−1.

& 7Be is rapidly removed from the water column with a
rate coefficient close to 1.0 day−1 for all processes
combined.

& The Branford River is a “leaky trap” for contami-
nants that behave like Be. It is probable that other
particle-reactive substances—including toxic metals
and hydrophobic organics (like PCBs and pesti-
cides)—will be rapidly removed from the water col-
umn (within a day or two) and about 40% will be
trapped in sediments. The remainder will be flushed
into Long Island Sound.

& A large number of samples are needed to characterize the
variability of a system even as small as the Branford River
estuary, and this unevenness is true in terms of both space
and time.
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