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h i g h l i g h t s

� Designed-bioactive contaminants
assessed in 5 southeast US NPS-
protected streams.

� 334 unique pesticides and
pharmaceuticals were assessed in
water; 24% were detected.

� 119 sediment pesticides assessed; 5
detected consistently but only in one
stream.

� Common exceedances of effects-
screening threshold raise sub-lethal
effects concerns.

� Importance of up-gradient external
sources suggest increased community
engagement.
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a b s t r a c t

Globally, protected areas offer refugia for a broad range of taxa including threatened and endangered spe-
cies. In the United States (US), the National Park Service (NPS) manages public lands to preserve biodiver-
sity, but increasing park visitation and development of surrounding landscapes increase exposure to and
effects from bioactive contaminants. The risk (exposure and hazard) to NPS protected-stream ecosystems
within the highly urbanized southeast region (SER) from bioactive contaminants was assessed in five sys-
tems based on 334 pesticide and pharmaceutical analytes in water and 119 pesticides in sediment.
Contaminant mixtures were common across all sampled systems, with approximately 24% of the unique
analytes (80/334) detected at least once and 15% (49/334) detected in half of the surface-water samples.
Pharmaceuticals were observed more frequently than pesticides, consistent with riparian buffers and
concomitant spatial separation from non-point pesticide sources in four of the systems. To extrapolate
exposure data to biological effects space, site–specific cumulative exposure-activity ratios (REAR) were
calculated for detected surface-water contaminants with available ToxCast data; common exceedances
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of a 0.001 REAR effects-screening threshold raise concerns for molecular toxicity and possible, sub-lethal
effects to non-target, aquatic vertebrates. The results illustrate the need for continued management of
protected resources to reduce contaminant exposure and preserve habitat quality, including prioritiza-
tion of conservation practices (riparian buffers) near stream corridors and increased engagement with
upstream/up-gradient property owners and municipal wastewater facilities.

Published by Elsevier B.V.

1. Introduction

In the United States (US) and globally, protected areas are
essential biodiversity preserves and environmental-change refer-
ence ecosystems (Foresta, 2013; Gaston et al., 2008; Stein et al.,
2008), but these services are undermined by the impacts (e.g.,
water and sediment contamination, disconnection from external
wildland corridors, invasive species) of increasing visitation and
surrounding-land development (Gaston et al., 2008; Jenkins
et al., 2015; Joppa et al., 2008; Palomo et al., 2013; Radeloff
et al., 2010). In the US, the National Park Service (NPS) has identi-
fied the occurrence and potential adverse effects of anthropogenic
bioactive contaminants on park ecosystems as resource manage-
ment concerns (Landewe 2008) and several recent US Geological
Survey (USGS)-NPS studies have demonstrated that intra-park
human–waste management as well as fluvial and visitation-
mediated contaminant transport into parks from external sources
are challenges for NPS surface-water ecosystems (Battaglin et al.,
2018; Bradley et al., 2017c; Egler et al., 2013; Elliott and
VanderMeulen, 2017; Landers et al., 2008; Landewe 2008; Mast
et al., 2006; Usenko et al., 2007; Weissinger et al., 2018). Notably,
the frequent detection and diversity of bioactive-contaminant mix-
tures in water and sediment at the floodplain-dominated Congaree
National Park near Columbia, SC (Bradley et al., 2017a; Bradley
et al., 2017c) highlighted growing concerns for adverse aquatic-
ecosystem effects from surrounding development (Radeloff et al.,
2005; Radeloff et al., 2010) within the rapidly urbanizing south-
eastern US (Terando et al., 2014; Van Metre et al., 2019).

Pesticides and pharmaceuticals originate on the landscape from
numerous human and agricultural sources, are ubiquitous in sur-
face water, and are engineered to affect biological systems (Dong
et al., 2015; Focazio et al., 2008; Kidd et al., 2014; Kolpin et al.,
2002; Rosi-Marshall et al., 2013). Pesticides (biocides designed
for direct environmental application) are common in aquatic habi-
tats, accumulate in surface-water sediment, and directly threaten
non-target species including, notably, aquatic invertebrates, but
also amphibians (Battaglin et al., 2016; Mann et al., 2009;
Smalling et al., 2015) and fish (Ackerman et al., 2008; Mast et al.,
2006; Mast et al., 2007; Nowell et al., 2009; Nowell et al., 2014;
Ryberg and Gilliom, 2015; Ryberg et al., 2014; Stone et al., 2014;
Usenko et al., 2007). Pharmaceuticals target molecular endpoints
(often endpoints evolutionarily conserved in multiple non-target
species) (Brown et al., 2014; Carter et al., 2015; Gunnarsson
et al., 2008; Gunnarsson et al., 2012; McRobb et al., 2014), have
high aqueous mobility (Daughton and Brooks, 2011; Daughton
and Ternes, 1999) and pH-variable toxicity (Boström and
Berglund, 2015), and typically occur as complex cocktails
(Bradley et al., 2016; Vasquez et al., 2014) with a corresponding
broad range of potential adverse outcomes in aquatic foodwebs
(Brodin et al., 2013; Brönmark and Hansson, 2012; Corcoran
et al., 2010; Giacomini et al., 2016; Hughes et al., 2012; Kidd
et al., 2014; Li, 2014; Monteiro and Boxall, 2010; Painter et al.,
2009; Rosi-Marshall and Royer, 2012; Schultz et al., 2011; Van
Donk et al., 2015). The potential risk (exposure, hazard) (Bradley
et al., 2019; Moretto et al., 2017; Norton et al., 1992; Rodier and

Norton, 1992) from designed-bioactive contaminants in surface-
water dominated NPS units within the heavily populated south-
eastern US is unknown and a critical management data gap, in light
of the well-documented potential for adverse impacts of pesticides
and pharmaceuticals in aquatic ecosystems (Dong et al., 2015;
Focazio et al., 2008; Kidd et al., 2014; Kolpin et al., 2002; Rosi-
Marshall et al., 2013), the extensive and variable contaminant mix-
tures reported in southeastern US streams (Bradley et al., 2019;
Bradley et al., 2016), and the growing evidence for pesticide and
pharmaceutical contaminants in diverse NPS parks and stream set-
tings, including remote backcountry locations (Battaglin et al.,
2018; Bradley et al., 2017c; Elliott and VanderMeulen, 2017;
Landers et al., 2008; Landewe 2008; Mast et al., 2006; Smalling
et al., 2013; Usenko et al., 2007; Weissinger et al., 2018).

Many park units within the NPS are dominated by streams and
riparian ecosystems and are administered by the NPS under multi-
ple (e.g., National Preserve, National Recreation Area, National
River, Wild and Scenic River) management categories. The risk of
pesticide and pharmaceutical contaminant impacts in these sys-
tems is magnified by their unique ecological characteristics and
management mandates (e.g., ‘‘to preserve natural resources unim-
paired for future generations”), proximity to existing urban areas,
and susceptibility to disconnection from external wildland corri-
dors due to their tendency to attract surrounding development
(Radeloff et al., 2005; Radeloff et al., 2010). Herein, we assess the
potential aquatic-ecosystem risk (exposure and hazard) (Moretto
et al., 2017; Norton et al., 1992; Rodier and Norton, 1992) of mixed
pesticide and pharmaceutical contamination in five NPS-managed
stream systems in the southeastern US. Results for stream-water
samples collected during 2015–2017 were aggregated, as
described (Bradley et al., 2019), to estimate maximum and median
surface-water exposure conditions within a contaminant space of
334 unique analytes. Sediment pesticide (119 unique analytes)
concentrations were also assessed once (2017) in select locations.
Two lines of evidence were employed to assess the potential for
cumulative contaminant effects (hazard) to in-stream biota: 1)
occurrence and cumulative concentrations of designed-bioactives,
and 2) cumulative Exposure Activity Ratios (

P
EAR) (Blackwell

et al., 2017; Bradley et al., 2019; Bradley et al., 2018b) based on
high-throughput screening data in Toxicity Forecaster (ToxCastTM,
U.S. Environmental Protection Agency, 2019).Table 1

2. Material and methods

2.1. Sample locations and chemical analyses

Water samples were collected during 2015–17 from 3 to 4 sites,
including eponymous streams and primary tributaries, in five
southeast region NPS-managed stream systems (Figures 1 and
S1; Tables 1 and S1) selected to provide broad geographic cover
within the southeast region and a range of management categories
(Recreation Area, Wild and Scenic River, Preserve). Sites are identi-
fied, herein, by system abbreviations (OBRI, Obed Wild and Scenic
River; BISO, Big South Fork National River and Recreation Area;
LIRI, Little River Canyon National Preserve; CHAT, Chattahoochee
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River National Recreation Area; WEKI, Wekiva Wild and Scenic
River System) and a sequential number indicating the relative
downstream order of the main-stem sample locations and of the
confluence with sampled tributaries. At each site, surface water
was collected in a new sterile polypropylene syringe (triple rinsed
with site water) and 10-mL samples were syringe filtered (25 mm
diameter, 0.7 lm pore size glass-fiber; pre-rinsed with 10 mL site
water) into separate 20-mL baked (500 �C) amber glass vials and
capped. All samples were shipped on ice overnight to the USGS
National Water Quality Laboratory (NWQL) in Denver, Colorado
for analysis of 113 human-use pharmaceuticals, pharmaceutical
metabolites, and polar organic compounds (Furlong et al., 2014)
and 224 pesticides and pesticide metabolites (Sandstrom et al.,
2016) by direct aqueous injection (DAI) liquid chromatography
tandem mass spectrometry (LC-MS/MS). Surface-water extracts
(solid phase extraction [SPE] into methanol) were screened for
estrogenic, androgenic and glucogenic activity (Bradley et al.,
2018b; Conley et al., 2017). Sediment grab samples were collected
from select water sample locations in 125–mL combusted (500� C),
amber glass jars, as described previously (Weissinger et al., 2018),
extracted using an accelerated solvent extraction (ASE) system
followed by SPE to reduce matrix interferences, and analyzed for
119 pesticides by gas chromatography mass spectrometry
(GC–MS), as described in detail (Hladik and McWayne, 2012). Site,
sample collection, analytical method, quality assurance, and sam-
ple data are provided in Supplemental Data Tables S1- S5 and
available for download from the USGS National Water Information
System (U.S. Geological Survey, 2019) and from (Romanok and
Bradley, 2019).

2.2. Quality assurance quality control (QAQC)

Four water blanks for pesticides and pharmaceuticals were pre-
pared in the field (BISO4, CHAT1, CHAT2, LIRI3), as described above
for samples, with Pesticide/Volatile Organic Chemical grade water;
no analytes were detected in water field blanks (Table S3a). Two
sediment blanks (coarse sand combusted at 500 �C for 24 h and
transferred to sample bottles under field conditions) were pre-
pared in 2015 for application to this and the Congaree National
Park study (Bradley et al., 2017a; Bradley et al., 2017c); no pesti-
cide analytes were detected in sediment field blanks (Bradley
et al., 2017a; Bradley et al., 2017c). LC-MS/MS pharmaceutical
and pesticide water analyses included addition of 20 and 21
stable-isotope surrogate standards, respectively, to field-filtered

samples to evaluate whole-method recovery (pharmaceuticals
median: 102%, interquartile range [IQR]: 96–110%, range: 2–
270%; pesticides median: 101%, IQR: 95–105%, range: 34–135%)
(Table S4).

2.3. Data handling, statistics, and
P

EAR analysis

The reporting limits for water and sediment analytes were
determined using DQCALC software (RLDQC)(ASTM International,
2018) or based on the long-term method-detection level (MDL)
(Childress et al., 1999; U.S. Environmental Protection Agency,
2005), respectively (Table S2). Laboratory-estimated water concen-
trations below the RLDQC (positive detections with reduced quan-
titative certainty) were used as is (Tables S3a-S3c). Results for all
analytes detected in water were aggregated into summary data
matrices to estimate maximum (maximum concentration) and
central-tendency (median concentration) exposure scenarios
within this study’s 334–compound contaminant space. Table S3b
includes the maximum detected concentrations of all analytes
detected at least once in this study by compound and site.
Table S3c contains median concentrations (all samples) by com-
pound and site and only includes target analytes that were
detected in at least half of the samples at one or more sites. Inte-
grated effects of detected pesticide and pharmaceutical contami-
nants in water were estimated using the toxEval R-program (De
Cicco et al., 2018) to sum (concentration addition (CA) model
(Altenburger et al., 2013; Altenburger et al., 2012; Cedergreen
et al., 2008; Ermler et al., 2011; Kortenkamp et al., 2009; Thrupp
et al., 2018)) individual EAR (ratio of detected maximum or median
concentration to activity concentration at cutoff (ACC) from Toxic-
ity ForeCaster (ToxCastTM; U.S. Environmental Protection Agency,
2019) high-throughput screening data (U.S. Environmental
Protection Agency, 2018a, 2018b) to provide site-specific cumula-
tive EAR (

P
EAR)(Becker et al., 2015; Blackwell et al., 2017; Li et al.,

2017; Schroeder et al., 2016). EAR � 1 indicate exposures demon-
strated to modulate molecular targets in vitro, whereas EAR � 1
suggest proportionately lower probability of biological activity. A
recent cross-examination of surface-water contaminants, for
which both ToxCast and aquatic-toxicity benchmark data were
available, indicated correspondence between the commonly
employed 0.1 benchmark-based Toxicity Quotient threshold of
concern and EAR = 0.001 (Corsi et al., 2019). Non-specific-
endpoint, baseline, and unreliable response-curve assays were
excluded (as described in Becker et al., 2015; Blackwell et al.,

Table 1
Site name, unit code (Fig. 1), site type, latitude, longitude, and drainage area (km2) of stream sample locations in OBRI (Obed Wild & Scenic River), BISO (Big South Fork National
River & Recreation Area), LIRI (Little River Canyon National Preserve) CHAT (Chattahoochee River National Recreation Area), WEKI (Wekiva Wild and Scenic River System). Unit
code numbers increase in downstream order.

Site Code Type Latitude Longitude Drainage

Obed River (Potter’s Ford) OBRI-1 Main 36.07285 �84.90273 278.2
Daddys Creek OBRI-2 Trib 36.05841 �84.79300 450.1
Clear Creek OBRI-3 Trib 36.10313 �84.71828 440.3
Obed River (above Emery R) OBRI-4 Main 36.07591 �84.64994 1346.8
New River BISO-1 Main 36.38552 �84.55472 989.4
Clear Fork BISO-2 Trib 36.38829 �84.63019 704.5
South Fork Cumberland River (Leatherwood) BISO-3 Main 36.47738 �84.66937 2087.5
South Fork Cumberland River (Stearns) BISO-4 Main 36.62702 �84.53327 2470.9
Little River (Martha’s Falls) LIRI-1 Main 34.38873 �85.62033 365.7
Little River (Eberhart) LIRI-2 Main 34.35052 �85.67233 431.8
Little River (Blue Pond) LIRI-3 Main 34.28898 �85.68052 515.4
Chattahoochee River (Buford) CHAT-1 Main 34.15694 �84.07889 2693.6
Chattahoochee River (Norcross) CHAT-2 Main 33.99722 �84.20194 3030.3
Chattahoochee River (Roswell) CHAT-3 Main 33.98593 �84.31604 3159.8
Chattahoochee River (US 41) CHAT-4 Main 33.86816 �84.45382 3729.6
Wekiwa Springs WEKI-1 Main 28.71222 �81.45979 0.1
Wekiva River (Sanford) WEKI-2 Main 28.81527 �81.41924 489.5
Blackwater Creek WEKI-3 Trib 28.87444 �81.48972 326.3
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2017; Li et al., 2017; Schroeder et al., 2016)(Table S6).
P

EAR results
are summarized in Tables S7 and S8 for maximum and median
water exposure conditions, respectively.

3. Results and discussion

3.1. Protected-stream pesticide and pharmaceutical surface-water
exposures

Pesticide and pharmaceutical mixtures of varying composition
were common in water samples across all five protected-stream
systems in this study (Figs. 1-3 and S1-S2; Tables S3a-S3c). All

detections were attributed to environmental contaminants, as no
analytes were detected in any of the four water blanks
(Table S3a) or the two sediment blanks (Bradley et al., 2017a;
Bradley et al., 2017c) prepared for this study. Approximately 24%
(80) of the 334 unique (accounting for method overlap) analytes
assessed in water in this study were detected at least once (maxi-
mum exposure dataset) across all sites (Figs. 1-3, Table S3b).
Approximately 15% (49/334) were detected in at least half of the
samples from one or more sites in this study (median exposure
dataset; Fig. 3, S1-S2, Table S3c). For comparison, approximately
55% (1 8 4) and 30% (99) of the same analytical space (pesticide
and pharmaceutical) were detected under the estimated maximum

Fig. 1. Map showing sampling locations and cumulative maximum (sum of all compounds) detections and concentrations (ng L�1) of all pesticide and pharmaceutical
contaminants detected at least once in surface-water samples from NPS-protected southeast stream systems during 2015–2017. Unit codes are as shown in Table 1.

4 P.M. Bradley et al. / Science of the Total Environment 704 (2020) 135431



and median exposure conditions, respectively, in a recent study of
mixed contaminants in predominantly developed, wadeable,
headwater streams within the highly urbanized Piedmont region
of the southeastern US (Bradley et al., 2018a; Bradley et al., 2019).

Interestingly, a greater percentage (34%) and often higher con-
centrations of pharmaceuticals were detected compared to pesti-
cides (19%) in NPS SER protected streams, in contrast to similar
percentage detections of each (63% and 52%, respectively, for phar-
maceuticals and pesticides) in the predominantly developed Pied-
mont headwater stream study (Bradley et al., 2018a; Bradley et al.,
2019). The comparatively lower percentage detection of pesticides
is consistent with the protective riparian buffers in four (BISO, LIRI,
OBRI, WEKI) of these NPS SER stream systems and the correspond-
ing spatial separation from common non-point (spatially diffuse)
pesticide-contaminant sources, like animal and crop agriculture.
Nicotine was detected at least once at every site in this study
and the broad-spectrum herbicide, atrazine (or its degradate
hydroxyatrazine, OIET), was detected at all but one site
(Table S3b). Consistent with its pervasive detection in the
floodplain-dominated Congaree National Park (Bradley et al.,
2017c) and throughout the southeastern headwater streams study
(Bradley et al., 2018a; Bradley et al., 2019), the anti-diabetic med-
icine, metformin (or its environmental metabolite, guanylurea),
was detected at least once (up to more than 500 ng L�1;
Table 3b) at all but three sites (not detected at WEKI) and in more
than half of the samples (median exposure conditions) at 11 of 18
sites (Table S3c). Only nicotine and caffeine-related compounds
(caffeine, dimethylxanthine) were detected at concentrations
greater than 1 mg L�1 in this NPS SER study (Fig. 3; Table 3b), com-
pared with the more than 30 compounds detected in excess of 1 mg

L�1 in the predominantly urban southeastern streams study (Brad-
ley et al., 2018a; Bradley et al., 2019).

Cumulative (sum of detected) pesticide and pharmaceutical
water concentrations under the estimated maximum exposure
conditions ranged 34–6538 ng L�1 per site (median: 685 ng L�1;
interquartile range [IQR]: 218–1362 ng L�1) and the maximum
number of analytes detected per site ranged 4–55 (median: 18;
IQR: 12–26) (Figs. 1-2; Table S3b). Under the estimated median
exposure conditions, cumulative (pesticide and pharmaceutical)
concentrations were substantially lower than under the estimated
maximum exposure conditions, ranging 4–1126 ng L�1 per site
(median: 67 ng L�1; IQR: 41–197 ng L�1) and the number of
organic compounds ranged 1–33 (median: 5; IQR: 4–12; Figures
S1-S2; Table S3c).

These results demonstrate that the protected-stream ecosys-
tems of the NPS SER are exposed to varied mixtures of pesticide
and pharmaceutical contaminants, which, given their designed
bioactivity, raise concerns for potential ecosystem effects. These
results are consistent with the widely documented occurrence of
mixed contamination in developed watersheds across the US
(Bradley et al., 2017b; Bradley et al., 2018a; Bradley et al., 2019;
Nowell et al., 2018; Van Metre et al., 2017) and elsewhere (e.g.;
Brack et al., 2015; Busch et al., 2016; Le et al., 2017; Malaj et al.,
2014; Peters et al., 2013; Posthuma et al., 2017; Rosi-Marshall
and Royer, 2012; Schäfer et al., 2016) and, likewise, with the few
previous reports of pesticide and pharmaceutical contaminants in
protected stream systems in the US (Battaglin et al., 2018;
Bradley et al., 2017c; Elliott and VanderMeulen, 2017;
Weissinger et al., 2018) and elsewhere (Camacho-Muñoz et al.,
2010; Gerber et al., 2016). However, the substantially lower

Fig. 2. Top: Total numbers (red squares, j) and cumulative maximum concentrations (ng L�1; bars) of pesticide and pharmaceutical analytes detected in surface-water
samples from NPS-protected southeast stream systems during 2015–2017. Bottom: Maximum concentrations (ng L�1; circles) of individual organics detected. Boxes,
centerlines, and whiskers indicate interquartile range, median, and 5th and 95th percentiles, respectively. Unit codes are as shown in Table 1. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Maximum (left plot) and median (right plot) detected concentrations (ng L�1) of 80 pesticide (red circles, d) and pharmaceutical (blue circles, d) analytes (334 total
analytes) detected at least once in surface-water samples from NPS-protected stream systems during 2015–2017, in order of decreasing site (18 total) detections. Circles are
data for individual sites. Boxes, centerlines, and whiskers indicate interquartile range, median, and 5th and 95th percentiles, respectively. Numbers to right of the plot
indicate number of sites at which the compound was detected at least once (maximum plot) or in at least half of the samples (median plot). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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cumulative concentrations observed in this study than in the
southeastern headwater stream study (maximum exposure:
1922–162346 ng L�1 and 29–153 compounds per site; median
exposure: 218–14099 ng L�1 and 4–92 compounds per site) (Brad-
ley et al., 2018a; Bradley et al., 2019) and the USGS-EPA national
surface-water pilot study (Bradley et al., 2017b) also emphasize
the benefits of protective watershed management in reducing in–
stream exposures.

3.2. Potential for surface-water-contaminant biological effects in
protected streams

The 334-compound analytical space assessed herein is a frac-
tion of the putative universe of environmental contaminants, with
more than 1000 pesticide (California Department of Pesticide
Regulation, 2018) and 4000 pharmaceutical (Monteiro and
Boxall, 2010; U.S. Food and Drug Administration, 2018) active
ingredients (parent compounds) in current use and an incalculable
chemical-space (Dobson, 2004) of associated metabolites and envi-
ronmental degradates (Vasquez et al., 2014). Given the broad range
of species, life-cycle stages, biomasses, and associated vulnerabili-
ties that characterize southeastern stream aquatic foodwebs
(Lydeard and Mayden, 1995; McKinney, 2006; Scott, 2006;
Warren et al., 2000) and the intrinsic biological potency of
commercially-viable pesticides and pharmaceuticals (Brodin
et al., 2013; Brönmark and Hansson, 2012; Brown et al., 2014;
Carter et al., 2015; Corcoran et al., 2010; Giacomini et al., 2016;
Gunnarsson et al., 2008; Gunnarsson et al., 2012; Hughes et al.,
2012; Kidd et al., 2014; Li, 2014; McRobb et al., 2014; Monteiro
and Boxall, 2010; Painter et al., 2009; Rosi-Marshall and Royer,
2012; Schultz et al., 2011; Van Donk et al., 2015), ubiquitous detec-
tion of pesticide and pharmaceutical contaminant mixtures in NPS
SER streams in this study is de facto evidence for potential molec-
ular toxicity and possible, sub-lethal effects to non-target, aquatic
organisms (Bradbury, 1994; Könemann, 1981; Russom et al., 1997;
Veith et al., 1983).

The ToxCast EAR results for estimated maximum (Fig. 4;
Table S7) and median (Figure S3; Table S8) exposure conditions
support this conclusion. The in vitro ToxCast EAR approach informs

the potential for sub-lethal effects at an observed concentration
(Becker et al., 2015; Blackwell et al., 2017), provides probable
effects screening consistent with traditional in vivo water-quality
benchmark-based toxicity quotient (TQ) approaches (EAR = 0.001
comparable to commonly employed TQ = 0.1 effects threshold
(Corsi et al., 2019)), and supports cumulative effects (

P
EAR) esti-

mation (CA-model (Ankley et al., 2010; Conolly et al., 2017;
Judson et al., 2014; Villeneuve et al., 2014)). Although sometimes
restricted only to chemicals with a common mode of action, CA-
predicted toxicities typically agree with observed toxicities within
a factor of 2–4, regardless of recognized mode of action (Belden
et al., 2007; Boobis et al., 2011; Cedergreen et al., 2008; Ermler
et al., 2011; Faust et al., 2003; Rodney et al., 2013; Thrupp et al.,
2018; Warne, 2003; Zhang et al., 2011). ToxCast (U.S.
Environmental Protection Agency, 2019) employs primarily verte-
brate cell lines to assess exposure–response thresholds for more
than 9000 organic chemicals at approximately 1000 standardized,
primarily molecular, endpoints (Kavlock et al., 2012; Richard et al.,
2016; U.S. Environmental Protection Agency, 2018a), but does
include a suite of zebrafish (ZF; Danio rerio) embryonic-exposure
endpoints that provide useful models of organism-level as well
as vulnerable, early-life-cycle effects in fish (Padilla et al., 2012;
Truong et al., 2013). Given the diversity of organisms and respec-
tive contaminant vulnerabilities extant in southeastern stream
foodwebs (Lydeard and Mayden, 1995; McKinney, 2006; Scott,
2006; Warren et al., 2000), we employed the conservative (protec-
tive) effects-screening threshold of 0.001 suggested recently (Corsi
et al., 2019) as described (Bradley et al., 2019). Of the 80 pesticides
and pharmaceuticals detected at least once in this study, 56% (45)
had acceptable exposure-effects relation data at the time of Tox-
Cast access (see Table S6 for ToxCast exclusions). Under maximum
exposure conditions, all but one site (WEKI-3) had at least one
compound with individual EAR greater than the 0.001 effects-
screening threshold (Fig. 4), indicating, at a minimum, transient
exposures with a probability of vertebrate molecular effects in
NPS SER protected-stream systems. For the 49 pesticides and phar-
maceuticals observed under median exposure conditions, all but
one site (WEKI-3) had

P
EAR greater than the 0.001 effects-

screening threshold and 72% of sites (all except BISO-2, BISO-4,

Fig. 4. EAR values for individual detections (circles) and cumulative EAR values (
P

EAR, sum of EAR for all detections; red triangles, N) for 45 pesticides and pharmaceutical
analytes listed in ToxCast and detected (80 total detected) in surface-water samples from NPS-protected stream systems during 2015–2017. Boxes, centerlines, and whiskers
indicate interquartile range, median, and 5th and 95th percentiles of individual detections. Unit codes are as shown in Table 1. Solid red line indicates exposures shown to
modulate activity in vitro; dotted red line indicates the effects-screening threshold of 0.001. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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LIRI-3, WEKI�1, WEKI-3) had at least one compound with individ-
ual EAR greater than the effects threshold (Figure S3), indicating
that sites with persistent exposures with a probability of verte-
brate molecular effects also were common. The ToxCast EAR
results observed herein under the estimated median and maxi-
mum exposure conditions are generally lower than those reported
in the southeastern headwater-stream urban-gradient study
(Bradley et al., 2019). Notably, estrogenic activity, as measured
by the in vitro yeast assay, was only observed at locations where
at least one compound had an individual EAR greater than the
effects threshold; maximum estrogenicity observed in this study
was 1.72 ng L�1 at LIRI-2 (Table S9). Androgenic and glucogenic
activities were not observed in any collected sample.

3.3. Protected-stream sediment pesticide exposures

Pesticides were assessed in one-time sediment samples col-
lected in four of the study stream systems (BISO, CHAT, LIRI, OBRI),
but only detected consistently at CHAT sites (Table S5). No pesti-
cides were detected at the most upstream CHAT study site located
immediately downstream of the dam discharge at Lake Lanier. Five
pesticides (bifenthrin, fipronil sulfone, dithiopyr, oxadiazon, prodi-
amine) were detected in all downstream CHAT sample locations
and at comparable concentrations. Among these, bifenthrin and
fipronil sulfone (fipronil degradate) are an insecticide and
insecticide-degradate, respectively, typically associated with con-
trol of fire ants and other residential pests common to the south-
east US. The remaining three are common residential-use (lawn
and ornamental) herbicides. The detection of residential-use pesti-
cides (single analyte concentrations up to 55.6 ng g�1 prodiamine;
cumulative concentrations up 71.5 ng g�1) in CHAT sediment sam-
ples is consistent with their hydrophobic character and resultant
tendency to partition to sediment and with the predominantly res-
idential land use and general lack of riparian buffers within the
CHAT study reach. Notably, the toxicity of bifenthrin and fipronil
sulfone to stream macroinvertebrates is well established (Cheng
et al., 2017; Nowell et al., 2016; Rogers et al., 2016; Weston and
Lydy, 2014) and both were observed in all downstream CHAT loca-
tions at sediment concentrations ranging 287–393 ng g�1 organic
carbon (OC) and 16–79 ng g�1 OC, respectively. Multiple excee-
dances of the bifenthrin Threshold Effect Benchmark (TEB) of
170 ng g�1 OC for Hyalella azteca and the fipronil sulfone TEB of
26 ng g�1 OC for Chironomus species (Nowell et al., 2016) raise con-
cerns for toxic effects to benthic organisms in the CHAT system.

3.4. Preliminary contaminant source attribution

While residential, lawn, and ornamental pesticides are fre-
quently reported in wastewater in the southeast (Bradley et al.,
2019) and elsewhere (Le et al., 2017; Münze et al., 2017; Sprague
and Nowell, 2008), elevated occurrences in surface waters are typ-
ically attributed to spatially distributed, landscape-scale sources
such as agriculture (Gilliom, 2007; Moschet et al., 2014; Ryberg
and Gilliom, 2015; Shen et al., 2005; Smalling et al., 2013; Stone
et al., 2014; Van Metre et al., 2017). The instream influence of such
non-point sources can be substantially mitigated by establishment
and maintenance of riparian buffers (Aguiar et al., 2015;
Broadmeadow and Nisbet, 2004; Lerch et al., 2017; Orlinskiy
et al., 2015; Turunen et al., 2019). The protective efficacy of ripar-
ian buffers, however, is undermined by hydraulic short-circuits
that extend across the buffer into developed landscapes, including
illicit piped discharges, agricultural tile drains, drainage ditches, or
tributaries (Bereswill et al., 2012; Ghirardini and Verlicchi, 2019;
Stehle et al., 2016). Land application of waste biosolids as agricul-
tural fertilizer represents an analogous landscape-scale source of
pharmaceutical contaminants to surface waters (Ghirardini and

Verlicchi, 2019; Sabourin et al., 2009), which would likewise be
mitigated by riparian buffers in protected systems. However,
human wastewater (wastewater treatment facility (WWTF) and
septic tank) discharge is a well-documented source of elevated
pharmaceutical contamination in streams (aus der Beek et al.,
2016; Fatta-Kassinos et al., 2011; Loos et al., 2013; Monteiro and
Boxall, 2010), including in the southeast (Bradley et al., 2017b;
Bradley et al., 2016).

Four (BISO, LIRI, OBRI, WEKI) of the five stream systems
included in the current study lie within protected riparian buffers
(typical minimum 0.25 mile on each bank) intended to limit
anthropogenic impacts to the aquatic ecosystems, including over-
land and shallow subsurface contaminant transport from the sur-
rounding landscape. In such settings, fluvial inflows and
visitation are notable concerns as potential sources of instream
contamination (Battaglin et al., 2018; Bradley et al., 2017c;
Camacho-Muñoz et al., 2010; Elliott and VanderMeulen, 2017;
Gerber et al., 2016; Weissinger et al., 2018). In three (BISO, LIRI,
OBRI) of these systems, lower cumulative contaminant detections
and concentrations observed in tributary samples (BISO, OBRI
only) than in primary-stream samples, comparable or decreasing
cumulative detections and concentrations in downstream order
in primary stream samples, combined with limited road access
within the study reaches (except Leatherwood Ford, BISO) are con-
sistent with fluvial inflows from upstream external sources, as sug-
gested in other protected-area streams in the US (Battaglin et al.,
2018; Bradley et al., 2017c; Elliott and VanderMeulen, 2017;
Weissinger et al., 2018), Europe (Camacho-Muñoz et al., 2010),
and Africa (Gerber et al., 2016). Likewise, the presence of wastew-
ater sources, including private residential (septic) and municipal/-
community wastewater treatment facilities upstream of these
systems (e.g., OBRI (Guyot, 2005; Knight et al., 2014)) and gener-
ally (median exposure conditions) lower detections and concentra-
tions of pesticides (common landscape-derived, non-point
contaminants) than pharmaceuticals (common wastewater-
associated, point-source contaminants) support the importance
of fluvial inflows as contaminant sources to these three study
reaches. Similarly, cumulative contaminant detections and concen-
trations in Wekiva River samples were comparable between
upstream (WEKI-1) and downstream (WEKI-2) locations and gen-
erally higher than in the tributary (WEKI-3). Because the Wekiva
River is spring-fed and the upstream sample location (WEKI-1)
was in the spring-fed, public swimming area in Wekiva Springs
State Park, the pattern of pesticide and pharmaceutical contami-
nants in Wekiva River water samples is consistent with
groundwater-discharge and visitation-driven contaminant sources.
CHAT, however, is a National Recreation Area stream that flows
through the metropolitan Atlanta urban center with predomi-
nantly private land ownership on both banks and intermittent
riparian protection in isolated park properties (typically on one
bank) distributed throughout the study reach. Numerous sources
of anthropogenic contamination, including residential water-
front lawns and gardens and municipal WWTF on tributaries, are
well-documented within the study reach (Bradley et al., 2019;
Calhoun et al., 2003; Frick and Zaugg, 2003; Frick et al., 1998;
Glassmeyer et al., 2005; Gregory and Frick, 2000; Hinck et al.,
2007; Hinck et al., 2008).

4. Conclusions

Importantly, 76% (2 5 4) of the pesticides and pharmaceuticals
assessed in this study were not detected. However, 80 pesticides
and pharmaceuticals were detected across all sites, with detection
frequencies for individual compounds ranging up to 100% (18) of
sites for nicotine (median: 3 sites; 17%). Frequent detections of
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pesticide and pharmaceutical contaminant mixtures and common
exceedance of the 0.001 EAR effects-screening threshold (Corsi
et al., 2019) in NPS SER protected-stream systems raise concerns
for potential adverse effects to aquatic and associated terrestrial
foodwebs and illustrate the opportunity for improved direct and
indirect management actions. Visitors and proximal property own-
ers are often heavily vested in preserving the health and beauty of
NPS SER protected streams, potentially increasing the efficacy of
public outreach efforts, particularly those posted at stream access
points. Accordingly, widespread dissemination of these results
and the findings of other NPS studies using accessible language is
indicated. For example, in light of the global Type II diabetes epi-
demic, communicating the widespread occurrence and probable
adverse effects of metformin contamination in protected streams
as ‘‘Drugs to treat diabetes have been found in this stream. These
medicines affect fish as well as humans” is likely to be instantly relat-
able for many park visitors. As suggested earlier (Battaglin et al.,
2018), because many human–use pharmaceuticals are excreted
primarily in urine (e.g., metformin), modification of current ‘‘Leave
No Trace Principles” on backcountry human waste disposal (Leave
No Trace Center for Outdoor Ethics, 2019) to provide comparable
emphasis on minimizing urination impacts is appropriate. The
results of this reconnaissance indicate that fluvial and groundwater
inflows from up-gradient external contaminant sources are impor-
tant drivers of in-stream concentrations of pesticides and pharma-
ceuticals, suggesting the need for increased engagement with
potential up-gradient contributors including waterfront property
owners and municipal WWTF.
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