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a b s t r a c t

The membrane (M) protein is one of the major structural proteins of coronavirus particles. In this study,
the M protein of transmissible gastroenteritis virus (TGEV) was used to biopan a 12-mer phage display
random peptide library. Three phages expressing TGEV-M-binding peptides were identified and charac-
terized in more depth. A phage-based immunosorbent assay (phage-ELISA) capable of differentiating
TGEV from other coronaviruses was developed using one phage, phTGEV-M7, as antigen. When the
phage-ELISA was compared to conventional antibody-based ELISA for detecting infections, phage-ELISA
exhibited greater sensitivity. A chemically synthesized, TGEV-M7 peptide (pepTGEV-M7; HALTPIKYIPPG)
was evaluated for antiviral activity. Plaque-reduction assays revealed that pepTGEV-M7 was able to pre-
vent TGEV infection in vitro (p < 0.01) following pretreatment of the virus with the peptide. Indirect
immunofluorescence and real-time RT-PCR confirmed the inhibitory effects of the peptide. These results
indicate that pepTGEV-M7 might be utilized for virus-specific diagnostics and treatment.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Transmissible gastroenteritis (TGE) is a highly contagious dis-
ease of swine characterized by up to 100% mortality in suckling
piglets (Laude et al., 1993). The clinical symptoms include acute
diarrhea, vomiting and dehydration. Pigs of all ages and categories
are susceptible. In seronegative herds, TGE can cause devastating
economic losses (Saif and Wesley, 1999; Ren et al., 2010; Yin
et al., 2010). The virus responsible for TGE (TGEV) has a glycopro-
tein surface envelope and positive-sense RNA genome of approxi-
mately 28.5 kb (Ortego et al., 2002). The virus consists of four
structural proteins: spike (S), small membrane (sM or E), mem-
brane (M), and nucleocapsid (N) proteins (Spaan et al., 1988; Saif
and Wesley, 1999; Penzes et al., 2001). The S protein is a large
transmembrane surface glycoprotein that induces virus-neutraliz-
ing (VN) antibodies (Jiménez et al., 1986; Laude et al., 1987; Suñé
et al., 1990); the N protein, together with genomic RNA, forms the
viral nucleocapsid (Suñé et al., 1990; Cavanagh, 1994); and the sM
protein regulates virion assembly and release (Laude et al., 1990).
The M protein is the most abundant component of the coronavirus
particle (Rottier, 1995). Roughly one-third of the M protein

assumes a topology where part of the endo domain constitutes
the fourth transmembrane segment, thereby positioning the car-
boxy terminus on the exterior portion of the virion (Risco et al.,
1995; Masters, 2006). It has been suggested that the M protein
induces innate immunity including interferon production (Charley
and Laude, 1988; Laude et al., 1992).

Phage display is a powerful technology that has been applied to
antibody engineering (Hayden et al., 1997; Cyranka-Czaja and
Otlewski, 2012), drug discovery and manufacturing (Kay et al.,
1998; Harper et al., 2011), ligand identification (Ehrlich and Bailon,
2001; Ladner and Ley, 2001; Yi et al., 2003; Beer and Liu, 2012),
and development of new diagnostics (Ren et al., 2010; Gazarian
et al., 2012) and vaccines (Lesinski and Westerink, 2001; Samoyl-
ova et al., 2012). Phage display yields billions of heterologous
fusion peptides that are expressed on the surfaces of filamentous
bacteriophage (Scott and Smith, 1990). Inasmuch as each phage
expresses only one fusion peptide, the technology permits high
throughput panning of a phage library with the intent of identify-
ing single phage particles with the capacity to bind a target
protein. This permits epitope mapping and easy purification at
marginal costs. In the current study, three TGEV M-binding phage
and the concomitant peptides were identified from a phage display
library. Results indicate the ability of these peptides to function as
TGEV-specific diagnostic reagents. One peptide was further studied
for its potential as an inhibitor of TGEV infectivity.
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2. Materials and methods

2.1. Cells and virus

Swine Testis (ST) cells were grown in Dulbecco’s MEM with 10%
fetal bovine serum at 37 �C, 5% CO2. TGEV (PUR46-MAD strain)
(Sánchez et al., 1990) was propagated in ST cells in the absence
of serum, followed by gradient ultracentrifugation purification
(Krempl and Herrler, 2001).

2.2. Virus titration

Cytopathic effect (CPE) assays were performed as described
(Ren et al., 2011b). Briefly, ST cells seeded onto 96-well tissue
culture plates (Costar, USA) were inoculated with 10-fold seri-
ally-diluted TGEV. After incubation at 37 �C for 48 h, CPE was
recorded at 100� magnification using the BDS200 microscope
(OPTEC, China).

2.3. Cloning and expression of the TGEV-M gene

Total RNA was isolated from TGEV-infected ST cells using
a commercial protocol (220010, Fastgene, China). Sense (P1:
50-GGGGGGATCCATGCGCTATTGTGCTATG) and antisense (P2:
50- CCCCGAATTCTTATACCATATGTAATAA) primers were used in
RT-PCR. The amplified M gene was inserted into the BamHI-EcoRI
site of a prokaryotic expression vector, pGEX (Novagen, Germany),
resulting in the recombinant plasmid, pGEX-TGEV-M. After
pGEX-TGEV-M was transformed into Rosette Escherichia coli bacte-
ria by heat shock (Bowyer, 2001), expression of the glutathione
S-transferase (GST) tagged-TGEV-M fusion protein was induced
with isopropyl-b-D-thiogalactoside (IPTG) and visualized by 12%
sodium dodecyl sulfate–polyacrylamide gel electrophoresis
(SDS–PAGE). The recombinant protein of interest (rTGEV-M) was
gel purified (Ren et al., 2011a). In parallel, rGST from pGEX, was
expressed and purified as well. The concentration of rTGEV-M
was measured spectrophotometrically using a NANODROP 2000
spectrophotometer according to manufacturer’s instructions.

2.4. Biopanning

Biopanning of the phage was performed using the Ph.D™-12
Phage Display Peptide Library Kit according to manufacturer’s
instructions (E8110SC, New England Biolabs, USA) with minor
modifications (Ren et al., 2010; Ren et al., 2011a). During the first
round of binding the phage library to the rTGEV-M, 15 lg/well of
rTGEV-M was used. In the second round, rTGEV-M was replaced
by rGST as a negative control to remove non-specific binding to
GST. The 3rd-6th rounds were performed under the similar condi-
tions except for gradually decreasing the concentration of rTGEV-
M (10, 7.5, 5, 2.5 lg/well) and increasing the concentration of
Tween 20 from 0.1% to 0.5% to increase the stringency of binding.
The phage remaining after the last round of biopanning were
titered and 10 were selected for phage amplification and further
study.

2.5. Analysis of binding activity of individual phages with rTGEV-M

Phages interacting positively with rTGEV-M were identified by
indirect ELISA. The 96-well plates (FEP201896, Jet Bio, China) were
coated either with rTGEV-M in 0.1 M NaHCO3 (pH 8.6) or with
purified TGEV in DMEM at 15 lg/well at 4 �C. Plates were blocked
with 1% BSA in TBS buffer (50 mM Tris–HCl, pH 7.5, 150 mM NaCl)
for 2 h at 37 �C then washed 6X with TBS-Tween. The 10 selected
phages derived from the last round of biopanning were added

separately to the wells at concentrations of 1.5 � 1011 plaque
forming units (pfu)/ml in 0.1 M NaHCO3 (pH 8.6) and incubated
at 37 �C for 1 h. The remaining steps were performed as described
(Ren et al., 2011a). Plates were read at OD450 with an ELX808 (Bio-
Tek, USA) ELISA reader.

2.6. Virus detection using ELISA

Ten TGEV-positive phage clones were amplified using an E. coli
expression system (36). The DNAs of interest were extracted, puri-
fied (51106, Qiagen, Germany), PCR amplified and sequenced to
corroborate the presence of TGEV-M sequences (3). Deduced ami-
no acid sequences were determined (Wu et al., 2011). Phage ELISA
and antibody-ELISA were compared for their abilities to detect the
presence of the virus as described (Wu et al., 2011). For phage-ELI-
SA, TGEV serially-diluted in DMEM was coated onto ELISA plates
overnight at 4 �C. Then either the specific phage clone or a non-
specific phage complex (negative control) from the phage display
library was diluted in PBS (1.5 � 1011 pfu/100 ll) and added to
the wells. Next, the wells were incubated with commercially-avail-
able rabbit anti-M13 antibody (1:1000 in PBS) followed by horse-
radish peroxidase-conjugated goat anti-rabbit antibody (GARP)
(1:5000 in PBS). For antibody-mediated ELISA, rabbits were immu-
nized once with 2 mg rTGEV-M in Freund’s complete adjuvant fol-
lowed by three additional immunizations at 1 week intervals with
the same amount of antigen in Freund’s incomplete adjuvant. Ani-
mals were bled 5 days after the final boost. TGEV was coated onto
ELISA plates to which was added rabbit anti-TGEV-M followed by
GARP secondary antibody (1:5000). In all experiments, the concen-
trations of TGEV were determined experimentally such that ELISA
values could be measured and where [OD450 phage (P)/OD450 neg-
ative control (N)]>2 was considered positive.

2.7. Specificity of TGEV-reactive phages

The specificity of TGEV-reactive phages for TGEV infection was
evaluated by phage-ELISA. A panel of selected viruses prepared in
our laboratory consisting of TGEV (Ren et al., 2008), porcine epi-
demic diarrhea virus (PEDV) strain HLJBY (Ren et al., 2010), porcine
reproductive and respiratory syndrome virus (PRRSV) strain
JilinTN1 (Gao et al., 2012), porcine rotavirus (PRV) (Ren et al.,
2011c), porcine pseudorabies virus (PrV) strain Kaplan
(Sui et al., 2010), porcine parvovirus (PPV) isolate PPV2010
(Cui et al., 2012), and porcine circovirus type II (PCV2) strain
PCV2-LJR (Zhu and Ren, 2012) were assembled for comparative
studies. These viruses were diluted in DMEM to final concentra-
tions of 5 lg/well and coated onto ELISA plates at 4 �C for 4 h. ELISA
was performed according to standard protocols (Wu et al., 2011).
The unpanned Ph.D™-12 Phage Display Peptide Library (phage L)
was used as a negative control. Statistical significance of the
OD450 values among all viral antigens was evaluated where
[OD450 virus /OD450 phage L]>2 was judged as positive and
subsequently analyzed using the t-test.

The amino acid sequence corresponding to the phage with the
highest binding activity to TGEV (pepTGEV-M7) was commercially
synthesized (BOSHI, China). The peptide was diluted in sterile
water to a final concentration of 1 mg/ml. Purified rTGEV-M or
control protein rTGEV S-AD (Meng et al., 2011) was coated onto
ELISA plates (15 lg/well) at 37 �C. The 50 ll of serially-diluted
pepTGEV-M7 (500, 100, 20 or 4 lg/ml) were mixed with 50 ll of
phTGEV-M7 or 50 ll of phTGEV-S-AD (1.5 � 1011 pfu/ml) and
incubated at 37 �C for 1 h. After washing, the wells were incubated
with rabbit anti-M13 antibody (1:1000 dilution; Abcam, China) for
1 h followed by a 1:5000 dilution of GARP for 50 min; the OD450

values were recorded.
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2.8. Antiviral activity of pepTGEV-M

Three experimental approaches were used to evaluate the anti-
viral activity of pepTGEV-M7 (Miyazaki et al., 2010; Ren et al.,
2011b). First, to assess the ability of the peptide to bind TGEV
in vitro, 100 TCID50 of TGEV was pre-incubated with pepTGEV-
M7 at 500, 250, 125, 62.5 or 31.25 lg/ml before infecting ST cells.
Second, to determine any impact of pepTGEV-M7 on ST cells, cells
were treated with serially-diluted peptide at 37 �C for 1 h prior to

TGEV infection. Finally, to determine the effect of pepTGEV–M7 on
ST cells after TGEV infection, cells were first infected with TGEV
(100TCID50) at 37 �C for 1 h then washed and incubated with seri-
ally-diluted pepTGEV-M7 at 37 �C for 1 h. All the cells were grown
to 100% confluency in 24-well plates overlaid with 1% methylcellu-
lose then cultured for 48–72 h to maximize plaque development.
To evaluate the effects of pepTGEV-M7 on TGEV replication
in vitro, indirect immunofluorescence assay (IFA) was performed.
Briefly, confluent ST cells were incubated with peptide-treated
TGEV [15 ll of serially diluted (2�1–2�5) peptide was incubated
with 15 ll of TGEV (100TCID50)] at 37 �C for 48 h then processed
for IFA as previously described (Meng et al., 2011); an unrelated
peptide that binds the PEDV-S1 protein, pepPEDV-S1 (diluted
2�1) was used as a negative control.

The impact of pepTGEV-M7 on virus replication was evaluated
by real time RT-PCR targeting a portion of the TGEV-S gene. The
TGEV was treated with serially-diluted peptide ranging from 500
to 31.25 lg/ml at 37 �C for 1 h; 500 lg/ml of pepPEDV-S1 was used
as negative control. After washing the ST cells with PBS, confluent
monolayers were infected with peptide treated TGEV (100TCID50)
at 37 �C for 36 h. Then the virus-containing culture was frozen and
thawed three times followed by the addition of an equal volume of
20% PGE-8000 at room temperature for 30 min. The samples were
centrifuged at 12,000 rpm for 5 min and the pellets were sus-
pended in RNase-free water. Total RNA was extracted according
to the manufacturer’s instructions (Fastgene, China) and real-time
RT-PCR was performed on cDNA as described (Ren et al., 2011b). It
was anticipated that a detrimental effect of pepTGEV-M7 on viral
infectivity would be reflected in significantly reduced numbers of
TGEV S gene copies.

116               

66           

45             

35               

Fig. 1. Expression and purification of TGEV M protein. Protein expression was
induced in the recombinant E. coli harboring the TGEV M gene and bacterial
proteins were separated by SDS–PAGE. Lane 1, marker; lane 2, cell lysate; lane 3,
purified rTGEV-M.
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Fig. 2. Binding analysis of the selected phages to TGEV M protein in ELISA. Ten selected phages were incubated with rTGEV-M or TGEV in ELISA plates to test their binding
activities as measured by OD450 values. Individual phage are labeled M1–M10. The controls (1–8) contain; (1) phage library; (2) PRRSV GP5; (3) rTGEV N; (4) no primary
antibody; (5) no phage; (6) blocking buffer; (7) protein dilution buffer; and (8) elution buffer. The OD450 readings were performed in triplicates. (a) Binding antigen was
rTGEV-M. (b) Binding antigen was TGEV. Statistical significance is noted by ‘‘⁄’’ (p < 0.01) compared to control groups.
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3. Results

3.1. Expression of rTGEV-M and biopanning

Using the previously described techniques (Ren et al., 2010; Ren
et al., 2011a), the rTGEV-M protein was expressed in E. coli (Fig. 1)
for use in biopanning the phage display library to identify peptides
that bind the M protein of TGEV. During the isolation process it
was determined that rTGEV-M was present within inclusion
bodies. Peak expression was observed at 5 h post-IPTG induction.
The mass of the rTGEV-M was �55 kDa (Fig. 1).

Five rounds of biopanning were performed using the rTGEV-M
as the target and one additional round with GST as target. The
amount of eluted phages increased between rounds 1 and 5 from

2.9 � 1011 to 8.4 � 1011, respectively. Ten different TGEV-M pro-
tein-reactive phages were identified by ELISA, when rTGEV-M
was used as the coating antigen (Fig. 2a). All ten phages exhibited
better binding to rTGEV-M than to other phage-expressed protein
controls (p < 0.05, Fig. 2a). Phages M1, M3 and M5-M9 had higher
binding affinity (p < 0.01) with TGEV than with the other phages
(Fig. 2b). Among all ten reactive phages that bound rTGEV-M with
high affinity, phTGEV-M7 exhibited the highest binding to TGEV
(p < 0.01, Fig. 2b) followed by phTGEV-M5.and phTGEV-M6.

RNA samples isolated from TGEV-M-reactive and control
phages were amplified by RT-PCR. All samples yielded products
approximately 250 bp in length (data not shown). All deduced pep-
tides (12 aa in length) were unique (Table 1). Phages bearing the
peptides LTFPVTTTPPAV, MTHNMHGPNSEP and HALTPIKYIPPG
were selected for their high-affinity binding with rTGEV-M
(Fig. 2a) and TGEV (Fig. 2b). These three peptides were named
pepTGEV-M5, pepTGEV-M6 and pepTGEV-M7, respectively.

3.2. TGEV-specific ELISA

The binding efficiencies of the selected TGEV-M-reactive phages
were examined by phage-ELISA. Virus concentrations between
0.1–10 lg/well all exceeded the signal limitations of the assay. As
illustrated in Fig. 3a, titratable virus concentrations fell in the
range <0.1 ug/well. The lowest concentrations of virus detectable
with phTGEV-M5, phTGEV-M6 and phTGEV-M7 where P/N P 2
were 0.07, 0.03, and 0.02 lg/well, respectively.

For antibody-based ELISA, the rabbit antibody titers against
rTGEV-M where P/N P 2 were determined to be 1:2.6 � 105. When
assaying the antibody binding to TGEV, at virus concentrations

Table 1
Deduced amino acid sequences of phage clones.

Phage clones (number) Phage displayed peptide sequence

PhageM1 MQLPKADARHPH
PhageM2 YQITLPYRYEMP
PhageM3 TFSWEFTGWWGQ
PhageM4 Failed
PhageM5 LTFPVTTTPPAV
PhageM6 MTHNMHGPNSEP
PhageM7 HALTPIKYIPPG
PhageM8 SSAYYYHYEYFH
PhageM9 LSISPQHALVFA
PhageM10 AMYHGHYTITRW

Ten selected phages (phages M1–M10) were subjected to phage DNA extraction and
PCR. The deduced amino acid sequences are presented.
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Fig. 3. Detection limits of TGEV. (a) Phage-mediated ELISA. Serially-diluted TGEV was used as coating antigen followed by successive incubation with phTGEV-M5, phTGEV-
M6 or phTGEV-M7, and antibody detection. OD450 ratios where P/N (sample/negative control) > 2 were considered positive. The experiment and determination of OD values
were derived from three independent assays. The concentration of the virus is indicated on the x axis. (b) Antibody-based ELISA. Serially-diluted TGEV in DMEM was coated
into ELISA plates followed by incubation with serially-diluted rabbit against TGEV serum and antibody binding using GARP; normal rabbit serum was used as negative
control. OD450 ratios where P/N > 2 were considered positive. The experiment and determination of OD values were derived from three independent assays. The concentration
of the virus is indicated on the x axis. Antibody and virus dilutions are as indicated.
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>1.0 lg/ml, P/N values began to exceed the limits of detection.
Virus (0.8–1.0 lg/well) were reproducibly detected (P/N P 2) with
antibody dilutions less than 1/400 (Fig. 3b).

The binding specificities of phTGEV-M5, phTGEV-M6, phTGEV-
M7 for non-TGE viruses were examined (Fig. 4). In all cases P/
N > 2 for TGEV only. Demonstrable binding was not observed with
any other viruses tested. Further, our results showed that pepT-
GEV-M7 bound to rTGEV-M and did not bind other proteins
(Fig. 5). Increasing the concentration of pepTGEV-M7 effectively
competed with binding of phTGEV-M7 for rTGEV-M as evidenced
by decreasing OD450 values; however, pepTGEV-M7 did not com-
pete with phage binding when a non-specific protein, rTGEV-S-
AD was used as the coating antigen (Fig. 5).

3.3. Antiviral effects of pepTGEV-M1 in vitro

To determine the impact of pepTGEV-M7 on TGEV infection,
three separate approaches were used: (1) TGEV was treated with
peptide before inoculation of ST cells; (2) ST cells were treated

with peptide prior to TGEV inoculation, and; (3) ST cells were in-
fected with TGEV before being treated with peptide.

As expected, the results showed no impact of pepTGEV-M7 on
ST cells already infected with TGEV or on ST cells pretreated with
pepTGEV-M7 prior to incubation with the virus (data not shown).
However, when TGEV was pre-incubated with pepTGEV-M7, its
infectivity decreased in a dose-dependent manner: At 100 lg/ml
of pepTGEV-M7, the drop in infectivity was nearly 55% whereas
at 500 lg/ml a 66% drop in virus infectivity was observed (Table 2)
suggesting peak inhibition was reached. These data indicate that
pepTGEV-M7 is able to interfere with the ability of the virus to in-
fect ST cells. The antiviral effects of pepTGEV-M7-treated virus
were further investigated by IFA. Results demonstrated a dose-
dependent reduction in the infection of ST cells in the presence
of pepTGEV-M7 whereas the unrelated peptide, pepPEDV-S1, had
no effect on virus uptake (Fig. 6).

Real-time RT-PCR was used to confirm and quantify the TGEV
inhibitory effects of pepTGEV-M7 (Fig. 7). Results showed that
the amount of viral RNA was lower (p < 0.01) when TGEV was pre-
treated with pepTGEV-M7 than in peptide-untreated controls. At
the highest concentrations (500 lg/ml), virus RNA levels dropped
93.45%; however, significant (p < 0.01) and reproducible reduc-
tions (70%) were observed when 62.5 ug/ml of pepTGEV-M7 were
used. These data corroborated the IFA studies.

4. Discussion

Despite the availability of commercial vaccines, TGE still poses a
regional threat to the swine industry due to the high morbidity and
mortality that TGEV causes in suckling piglets under 2 weeks of
age (Miyazaki et al., 2010). Although passive, lactogenic immunity
induced by virulent or attenuated TGEV vaccines can provide effec-
tive protection, sufficient risk remains. Albeit safer, inactivated

Fig. 4. Specificity of phage- mediated ELISA. Three TGEV-selected phages, phTGEV-M5, phTGEV-M6, and phTGEV-M7, were tested for specificity of binding to TGEV, PEDV,
PRRSV, PRV, PrV, PPV and PCV. All viruses were coated onto ELISA plates at final concentrations of 5 lg/well. The phage complex from the phage library (phage L) was used as
a negative control. Statistical significance is indicated by ‘‘⁄’’ (p < 0.01). All experiments were performed in triplicate.

Fig. 5. Binding of the peptides to rTGEV-M in ELISA. To confirm the specific binding
of pepTGEV-M7 to rTGEV M protein and not to other phage components, rTGEV-M
was coated onto ELISA plates and incubated with mixtures of pepTGEV-M7 and
phTGEV-M7. The amount of phTGEV-M7 (1.5 � 1011 pfu) was kept constant amidst
decreasing concentrations (500 lg/ml – 4.0 lg/ml) of pepTGEV-M7. Binding of
phTGEV-M7 to rTGEV M protein was monitored using anti-M13 antibody and GARP
secondary antibody which target phTGEV-M7 only. In parallel, rTGEV S-AD was
screened as a negative control. Concentrations of pepTGEV-M7 are shown on the y
axis. Statistical significance is indicated by ‘‘⁄’’ (p < 0.01) or, ‘‘#’’ (0.01 < p < 0.05)
relative to controls. All experiments were performed in triplicate.

Table 2
Inhibition of peptide M to plaque production on ST cells.

Concentration of
peptide (lg/ml)

Virus (average
plaque number)

Virus + peptide
(average plaque
number)

Inhibition
rate (%)

500 196 66 66.2
100 188 85 54.8
20 202 190 5.9
4 190 187 1.6
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vaccines provide less protection. As such, accurate diagnostic tests
are needed to better effect TGE prevention and therapy. Phage
display and biopanning are powerful methods for identifying key

ligands within large target antigens that may be involved in pro-
tection and/or diagnosis (Wu et al., 2011). This technology has
been used for identifying receptor binding domains (RBDs) in TGEV
that may interact with its pAPN cellular receptor (Ren et al.,
2011a). It has also been used for identifying immunogenic proteins
in pig sera from convalescent animals with a history of Salmonella
typhimurium infection (Meyer et al., 2012), and for targeting tissues
like bone-marrow dendritic cells and kidney, liver, lung, spleen and
visceral adipose tissues (Jung et al., 2012).

Since the M protein is one of the three major TGEV structural
proteins, it was used as a target in biopanning a 12-mer phage dis-
play peptide library to identify peptides that ultimately inhibit
virus binding. To this end, the TGEV-M protein was first expressed
in E. coli as a GST fusion protein. Given the possibility of identifying
GST-binding phage, we included additional panning steps using
purified recombinant GST as the target to remove phage that did
not specifically target the rTGEV-M protein. Also, the stringency
was systematically increased by panning with decreasing concen-
trations of rTGEV-M and increasing concentrations of Tween-20.

Three of 10 TGEV-M phages identified in this study were evalu-
ated by ELISA for detecting TGEV infection. Results showed that the
widely used TGEV-M antibody-ELISA and phage-ELISA both could
detect the virus successfully; however, phage-ELSIA is more cost-
effective because it does not involve animals and phages are in
unlimited supply. Further, even using serum from animals boosted

Fig. 6. Inhibition of virus infectivity monitored by IFA. 100TCID50 TGEV virus was pre-incubated with 2-fold, serially-diluted (500–31.25 lg/ml) peptide (pepTGEV-M7) then
added to ST cells for 48 h. Loss of fluorescence intensity coincides with loss of viral infectivity; an un-related peptide pepPEDV-S1 was used as control.
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Fig. 7. Inhibition of virus infectivity monitored by RT-PCR. Real time RT-PCR was
used to quantify TGEV RNA in ST cells and therefore virus infectivity. PCR was
performed on the TGEV S-AD gene. 100TCID50 TGEV virus was pre-incubated with
2-fold, serially-diluted (500–31.25 lg/ml) peptide (pepTGEV-M7) then added to ST
cells for 48 h. An un-related peptide pepPEDV-S1 at the maximal concentration was
used as control. Virus-derived cDNA was amplified and DCt values were measured
in triplicate. The relative amplification of TGEV S-AD in TGEV-infected cells was
normalized to beta-actin and calculated using 2�44Ct method. Statistical signifi-
cance is indicated by ‘‘⁄’’ (p < 0.01) relative to 0 lg/ml peptide.
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3X with rTGEV-M, the phage-ELISA appeared more sensitive.
Clearly, targeting the M protein rather than the whole virus could
sacrifice sensitivity. Although we demonstrated specificity in
phage and peptide binding to rTGEV-M, we have not determined
how well-exposed the binding region is to the surface of the virus.
As such, using the M protein as the biopanning agent is probably
not as effective as using whole virus. Also, this may have contrib-
uted to the lower than expected signal strength in the polyclonal
Ab-ELISA especially when the Ab titer using rTGEV-M protein as
antigen was so high.

The use of antivirals represents one approach to treat coronavi-
rus infections (Ren et al., 2011b). In this study, a peptide encoded
by phTGEV-M7 that interacted with the rTGEV-M protein was syn-
thesized. The interaction was deemed specific in that it was titrat-
able and similar results were not observed with interactions
between pepTGEV-M7 and another TGEV structural protein, rTGEV
S-AD (Meng et al., 2011). Plaque-reduction assays showed that
TGEV infectivity decreased only when virus was pre-treated with
the peptide. In contrast, when the pepTGEV-M7 was incubated
with ST cells alone or with TGEV-infected ST cells, no inhibitory ef-
fect was observed. This is an expected outcome given that rTGEV-
M was used to pan for bioreactive phage and this protein is not
present on the surface of or within ST cells. Collectively the data
presented here are consistent with pepTGEV-M7 binding to the
surface of the virus and either interfering with the ability of the
virus to invade the cell or generate progeny virus. Neither incubat-
ing the peptide with ST cells prior to or after adding virus had a
demonstrable effect on replication. The virus-specific effects of
pepTGEV-M7 were confirmed by IFA and RT-PCR.

5. Conclusions

In summary, peptide sequences that recognize the TGEV-M pro-
tein were identified in our study using phage display technology.
Phages bearing these peptides may be utilized in serology-based
diagnosis of TGE, pepTGEV-M7 had direct inhibitory effects on
TGEV infectivity in vitro. In future research, peptides identified in
this study may be subjected to antiviral testing.
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