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Abstract

Diagnosis is often equated with identification or detection when discussing parasitic
diseases. Unfortunately, these are not necessarily mutually exclusive activities; diseases
and infections are generally diagnosed and organisms are identified. Diagnosis is
commonly predicated upon some clinical signs; in an effort to determine the causative
agent, identification of genera and species is subsequently performed. Both identifica-
tion and diagnosis play critical roles in managing an infection, and involve the interplay
of direct and indirect methods of detection, particularly in light of the complex and
expanding problem of drug-resistance in parasites. Accurate and authoritative identifi-
cation that is cost- and time-effective, based on structural and molecular attributes of
specimens, provides a foundation for defining parasite diversity and changing patterns
of geographical distribution, host association and emergence of disease. Most tech-
niques developed thus far have been grounded in assumptions based on strict host
associations between Haemonchus contortus and small ruminants, that is, sheep and
goats, and between Haemonchus placei and bovids. Current research and increasing
empirical evidence of natural infections in the field demonstrates that this assumption
misrepresents the host associations for these species of Haemonchus. Furthermore, the
capacity of H. contortus to utilize a considerably broad spectrum of ungulate hosts is
reflected in our understanding of the role of anthropogenic forcing, the ‘breakdown’
of ecological isolation, global introduction and host switching as determinants of dis-
tribution. Nuanced insights about distribution, host association and epidemiology have
emerged over the past 30 years, coincidently with the development of increasingly
robust means for parasite identification. In this review and for the sake of argument,
we would like to delineate the diagnosis of haemonchosis from the identification of
the specific pathogen. As a foundation for exploring host and parasite biology, we
will examine the evolution of methods for distinguishing H. contortus from other com-
mon gastrointestinal nematodes of agriculturally significant and free-ranging wild ru-
minants using morphological, molecular and/or immunological methods for studies
at the species and genus levels.

1. INTRODUCTION

The differentiation of Haemonchus contortus from Haemonchus placei has
been deemed by many as inconsequential because of morphological,
biochemical and biological similarities between the organisms, as well as
similarities in the way they affect host physiology. Over time, two camps
have emerged; those wishing to define H. contortus and H. placei as distinct
species and those considering them as morphs, races or isolates of a single,
widespread species. Since comparative morphological criteria were recog-
nized, supporting their classification as distinct species (Jacquiet et al.,
1995, 1997; Lichtenfels et al., 1986, 1988, 1994), studies of the
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epidemiology and population genetics of these organisms have become
dependent on increasingly rapid and cost-effective protocols for accurate
identification. Although there is a dearth of methods currently available
that allow accurate differentiation of H. contortus from H. placei, those that
are available are not routinely applied. Consequently, there is ongoing
confusion about the relative importance of characters, such as variation in
vulval morphology, which are often explored in the absence of clear criteria
for specific identification. Furthermore, there is persistence in the literature
of host-based identifications for species ofHaemonchuswhich are not verified
relative to specimens, morphology or molecular data. It is important to be
mindful that the ability to readily delineate these species should be the stan-
dard, where complete and accurate identification serves, for example, as the
foundation for field-based epidemiological studies. In the absence of defin-
itive identification, the value of such studies becomes equivocal.

The importance of our capacity to identify Haemonchus species to a de-
gree parallels that for other recognized helminth pathogens. In the early
1970s and for a long time thereafter, when classification of the genus Trich-
inella was in flux, it was sufficient to present data on the epidemiology of
Trichinella spp. without having genetically characterized the isolates. Conse-
quently, today, most prior work on the circulation and biology of Trichinella
is of diminished value because the context linked to differentiation among
12 currently recognized species and genotypes was not available. Whereas
such an example may not have a demonstrable impact on the diagnosis of
haemonchosis, it can conflate and hinder a refined understanding of the
epidemiology and population genetics of these organisms.

Reviews since 2008 have holistically examined methods for diagnosing
and identifying nematode parasites infecting livestock (Gasser et al., 2008;
Preston et al., 2014; Roeber et al., 2013a,b). We have taken a more guided
examination of these studies in the hope of teasing out efforts focussing on
the genus Haemonchus and in particular H. contortus.

2. MORPHOLOGICAL APPROACHES FOR IDENTIFYING
HAEMONCHUS CONTORTUS

2.1 Morphology; the gold standard
The genus Haemonchus Cobb, 1893, was established for the large

stomach worms occurring globally in sheep, cattle and other free-ranging
artiodactyl ungulates. Recognition of these nematode parasites has a deep
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history, extending over the past 200 years, consistent with their economic
and veterinary significance. Of the 12 currently recognized species, H. con-
tortus (Rudolphi, 1803) was described based on abomasal parasites in sheep,
although it has been considered to include morphologically variable nema-
todes with an otherwise exceptional range of ruminant hosts (Gibbons,
1979; Hoberg et al., 2004; chapter: Evolution and Biogeography of
Haemonchus contortus: Linking Faunal Dynamics in Space and Time by
Hoberg and Zarlenga (2016), in this volume). Species of Haemonchus are,
for the most part, well differentiated morphologically, and delineation of
adults is possible based on typical structural and meristic characteristics of
male and female worms (Gibbons, 1979). Until the 1980s, however, it
was not possible to provide reliable identification ofH. contortus andH. placei
(Place, 1893) in domesticated ruminants. Conventional wisdom in the vet-
erinary literature often separated these species based erroneously on assump-
tions about host association, with the former regarded as parasites of sheep,
and the latter seen as distributed only in cattle (Giudici et al., 1999; Jacquiet
et al., 1997; Lichtenfels et al., 1994). Further creating potential confusion
were proposals for extensive partitioning of subspecies within H. contortus
based largely on the structure of the vulva and associated vulval fans and
knobs evident in female nematodes from different hosts and geographical
localities (discussed in Gibbons, 1979).

The need for efficient methods for rapid identification and separation of
H. contortus and H. placei had been evident, extending into the 1950s when
early observations were being assembled about the status of these proposed
species (summarized in Lichtenfels et al., 1986). Paramount was the appre-
ciation that an effective means of control and a clear understanding of epide-
miological patterns, host associations and geographical distribution would
emerge from an unequivocal definition of diversity for these nematodes.
In mixed natural infections, morphological differentiation of H. contortus,
H. placei and species hybrids is now based on multiple structural attributes,
including the configuration of the spicules and bursa in males and the syn-
lophe in males and females (system of cuticular ridges visible on the surface
of most trichostrongyloid nematodes (eg, Durette-Desset, 1983)).

2.1.1 Identification of adult worms
Initial development of reliable means for the morphological identification of
species and primarily limited to parasites circulating in domesticated hosts
emerged through studies of the synlophe. Criteria for identification included
the pattern of cuticular ridges, their numbers, and the extent or distribution
on the body of male and female nematodes as revealed in cross-section or

148 D.S. Zarlenga et al.



in examination of whole mounted specimens (Durette-Desset, 1983;
Lichtenfels and Pilitt, 2000; Lichtenfels et al., 1986, 1994, 2002). For
example, transverse sections at the level of the esophagealeintestinal junc-
tion reveal the presence of 30 ridges in H. contortus and 34 in H. placei
(Lichtenfels et al., 2002). Specific patterns of distribution for ridges in the
subventral and sublateral fields in the esophageal region of the body of adult
nematodes are diagnostic, and provide a capacity for robust identification of
individual males and females (Hoberg et al., 2002; Lichtenfels et al., 1994,
2001, 2002). Concurrently, morphometric protocols linked to discriminant
analysis for spicules provided an alternative means for rapid identification;
however, such protocols are limited to males ofH. contortus and other species
in domesticated ruminants (Jacquiet et al., 1997). Hybrids ofH. contortus and
H. placei occurring in sheep, cattle or other ungulate hosts in sympatry can
also be unequivocally identified based on the intermediate range of attri-
butes observed in adult nematodes (Lichtenfels et al., 1986, 1994).

The recurring necessity to provide authoritative and accurate identifica-
tion for species of Haemonchus that circulate among domestic and free-
ranging ungulates is emphasized by the strongly developed mosaic structure
of ruminant parasite faunas (Hoberg, 2010; Hoberg et al., 2008). Translo-
cation, introduction and successful establishment have been dominant pro-
cesses since the 1500s, associated with widespread invasion and expansion of
nematode faunas globally (Zarlenga et al., 2014). Dissemination and gene
flow associated with recurrent introductions of parasites with small and large
domestic ruminants likely extend to exchanges and trade near the time of
domestication over 10,000 years ago, but may have been maximized during
the time frame for extensive European colonization (Hoberg, 2010; Rosen-
thal, 2009). Such a history of invasion may account for founder events and
considerable population structure now partitioned globally, and contrasts
with current or contemporary intercontinental geographical barriers to
dispersal that are evident (Giudici et al., 1999; Troell et al., 2006). Although
population genetic structure is apparent on continental scales, this structure
does not coincide with identifiable morphological variation (eg, vulval
morphology) that had been the primary basis for subspecies designations
(Gibbons, 1979). Consequently, integrated morphological and molecular
evidence is consistent with H. contortus as a single, highly variable and wide-
spread species with a considerable capacity to infect a broad range of ungu-
late hosts (Hoberg et al., 2004).

Accurate species identification and an understanding of circulation and
epidemiology for nematode faunas at the intersection of managed and native
or wild ecosystems remains a priority. Identification is particularly important
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in habitats under accelerating environmental change linked to climate and
other factors of anthropogenic forcing (Cerutti et al., 2010; Hoberg,
2010; Hoberg et al., 2008). Patterns of geographical invasion and host
switching between domestic and free-ranging ruminants in this arena of
perturbation are expected to influence persistence, dissemination and ge-
netic exchange among drug-resistant populations in zones of contact or
sympatry. Comparative morphological approaches provided an initial
pathway for clear identification of H. contortus and continue to constitute
relatively efficient means to explore species and faunal diversity that are at
the foundations of managing and mitigating impacts associated with parasites
and parasitism. Studies have shown that ante-mortem, morphological exam-
ination of third-stage larvae (L3) coincides well with PCR-derived data for
differentiating H. contortus and H. placei (Santos et al., 2014a). Further, a
combined parasitological and molecular barcoding assay used by Budischak
et al. (2015) to examine cultured L3s from wild hosts (due to limitations
imposed by postmortem analyses) accurately estimated both total and spe-
cies-specific worm abundance, and exhibited similar rates of parasite species
discovery as derived from postmortem analyses. Worm prevalence and com-
munity compositions were similar to those derived from lethal sampling, and
all morphological analyses were corroborated by the molecular data. Conse-
quently, morphology provides the foundation upon which other direct
methods of parasite identification are predicated; namely molecular and
biochemical-based technologies. In the following sections we review and
explore some of the techniques that have emerged.

2.1.2 Identification of infective third-stage larvae
Identification of free-living, infective stages (L3) of gastrointestinal nema-
todes of ruminants remains an important aspect of epidemiological studies
and in defining the dynamics of transmission. It is becoming increasingly
critical to understand the persistence and expansion of parasitic populations
in rapidly changing environments. Assessment of gastrointestinal parasite di-
versity has often relied on culturing larvae from eggs recovered from faeces
of naturally infected hosts (MAFF, 1986). Further, determination of pasture
contaminants and, thus, the potential for transmission across and within
seasonally defined windows has been related to egg counts and the identifi-
cation of L3s collected from rangelands populated with domestic stock.

Development of methods and criteria for identification of L3s for gastro-
intestinal nematodes in ruminants has an extensive history and, over time,
has resulted in standardized protocols based on comparative morphological
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approaches (eg, Dikmans and Andrews, 1933; MAFF, 1986; van Wyk and
Mayhew, 2013). An understanding of the range of diagnostic characters
that could provide differentiation among members of the Trichostrongy-
lina and other strongylate nematodes in ruminants emerged initially from
the studies of life cycles, life history and development of free-living and
parasitic stages (Ransom, 1906; Veglia, 1915). Increasingly detailed descrip-
tions of L3s focussed on overall length, number of intestinal cells, structure
of the cuticular sheath, sheath length, tail length and cephalic morphology
including attributes of the buccal capsule have allowed the separation of tri-
chostrongylines such as Haemonchus, Cooperia, Ostertagia, Trichostrongylus,
nematodirines including Nematodirus andNematodirella, and other strongyles
including Chabertia and Oesophagostomum (Dikmans and Andrews, 1933;
Goodey, 1922; Veglia, 1926). These studies confirmed that among genera,
it was usually possible to distinguish most nematodes circulating in rumi-
nants based on relatively constant and consistent attributes (Veglia, 1926).
Although often unequivocal identification could be achieved among four
genera typically observed in sheep (Cooperia, Haemonchus, Ostertagia e
now Teladorsagia e and Trichostrongylus), overlap in the tail and tail-sheath
lengths obviated the use of additional attributes (Dikmans and Andrews,
1933). Further, reliable characters for the definitive identification to species
have remained elusive (Dikmans and Andrews, 1933; M€onnig, 1931).
Methods and criteria applied to parasite diversity among domestic ruminants
also could not be generally translated to free-ranging wild hosts or to a
broader understanding of parasite circulation in zones of contact or sym-
patry at the interface of managed and natural systems (Budischak et al.,
2015).

Criteria currently applied to identification of L3s have not been modi-
fied substantially over the past 80 years and primarily relate to a series of
definitive papers addressing either single species or species assemblages of
nematodes in domestic ungulates (eg, Borgsteede and Hendricks, 1974;
Dikmans and Andrews, 1933; Hansen and Shivnani, 1956; Keith, 1953).
A standardized protocol for identification has been codified in the veteri-
nary literature, as exemplified by diagnostic keys that reflect nematode
faunal diversity among domestic ruminants on a regional and global stage
(MAFF, 1986; van Wyk and Mayhew, 2013). Although comparative
morphological approaches will remain a central approach in diagnostics,
the capacity for accurate species-level identification can be directly linked
to a range of available and developing molecular-based pathways (eg,
Budishak et al., 2015).
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2.1.3 Identification of parasitic fourth-stage larvae
Recognition that parasitic infection by an assemblage of gastrointestinal nem-
atodes in ruminants often involved immature or larval stages suggested the
importance of being able to identify genera and species that were involved.
Fourth-stage larvae (L4s) could be present in the abomasum or small intestine
during typical development, or could reflect the occurrence of inhibition
(Michel, 1963, 1974), thus representing distinct epidemiological processes
in transmission that have different consequences for infection and disease.
Although considerable attention had been focussed on the identification of
free-living larvae, only sporadic studies, often limited to development
observed in single species, characterize available information for parasitic
L3s and L4s (eg, Douvres, 1957a,b). Parasitic L3s and L4s of trichostrongylines
(eg, Cooperia, Haemonchus,Ostertagia and Trichostrongylus) can be differentiated
morphologically by primary attributes of the buccal capsule, tail and place-
ment of the excretory pore, and identification is limited to separation of
genera. Furthermore, prior to the separation of H. contortus and H. placei as
distinct species, most infections in sheep or cattle were attributed to the
former species, and definitive identification was not possible. Arrested devel-
opment of H. contortus occurs in the early L4, and structurally these may not
differ substantially, except in length and the degree of development of the
genital primordium in males and females, relative to conspecific nematodes
observed under typical ontogeny (Blitz and Gibbs, 1971; Veglia, 1915).

2.1.4 Identification of eggs
There exist other less conventional assays for the diagnosis of nematode
infections and, in particular, those of the genus Haemonchus. In addition to
the well-established FAffa MAlan CHArt (FAMACHA) (Bath et al.,
1996), which today has been relegated to assessing the level of H. contortus
infections in small ruminants, because of resultant anaemia, there have
been other efforts to correlate morphometric dimensions and appearances
of eggs in faeces to genus-level identification. Given improvements in
computer technology and digital imaging in the last decade, morphometrics
bears mentioning in the context of this chapter because state-of-the-art,
technological advances have not yet been fully exploited in the direct exam-
ination of faecal eggs. Further, tests have been developed to differentiate
eggs based on lectin binding, wherein Haemonchus specifically binds peanut
agglutinin. Advancements in the last 5e10 years may provide the impetus
for more common use. However, the central theme in these assays remains
genus- rather than species-level identification.
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Cunliffe and Crofton (1953) were among the first to systematically
characterize and attempt to standardize egg measurements as a method to
identify parasites, though they did not pioneer this approach (Shorb,
1939; Tetley, 1941). After examining eggs derived from dissected female
worms, their data compared well with prior art, and they devised a series
of equations to define each parasite group based on the norms of length
and width measurements. However, given the ranges in size, they
concluded that, based only on these measurements, mixed populations
would be difficult to classify, even though the method was more rapid
and less variable than larval culture. In 1982, Christie and Jackson used
egg measurements, coupled to information on the stage of embryonic devel-
opment, to identify with high accuracy, Ostertagia and Trichostrongylus spe-
cies; however, they made similar conclusions regarding other species, and
suggested that many of the sheep parasites, including Haemonchus, would
require larval culture followed by the examination of L3 morphology,
depending on the composition of the infection.

Georgi and McCulloch (1989) utilized an electronic digitizer and multi-
variate analysis to combine data from length, width, area and perimeter as
well as areas and arc lengths of egg polar regions. Stepwise discriminant anal-
ysis allowed them to correctly identify H. contortus and Trichostrongylus colu-
briformis 85% of the time. Unlike prior data, eggs prepared from fresh faeces
were no different from those immediately fixed in formalin, although eggs
derived from the uterus were morphometrically distinct from those obtained
from faecal material (Tetley, 1941). Kerboeuf et al. (1996) was among the
first to adopt flow cytometry to analyse Haemonchus eggs. The investigators
used native egg fluorescence and scattering pulses to generate histograms
similar to cell histograms. Although they did not investigate the ability of
the technique to distinguish between parasite genera, they did show a strong
correlation between the level of native green fluorescence and resistance to
anthelmintics (benzimidazoles). Consequently, this test may be adaptable to
assessing the level of resistance within a flock or herd of animals.

About the same time that Kerboeuf et al. (1996) was testing flow cytom-
etry, digital imaging was employed to examine morphometric parameters
(Sommer, 1996) and egg texture (Sommer, 1998), as a means to differentiate
common bovine nematodes. Species from five common genera (Ostertagia,
Cooperia,Haemonchus, Trichostrongylus andOesophagostomum) were examined.
Using linear discrimination analysis, the test generated a correct classification
86% of the time when 19 of 25 measured features were evaluated. Relegat-
ing this analysis to the five most important features slightly reduced the

Identification of Haemonchus Species and Diagnosis of Haemonchosis 153



accuracy to 82%. In contrast to the test developed by Georgi andMcCulloch
(1989), this analysis did not require outlining the egg prior to taking mea-
surements. Although the test was not evaluated for quantifying eggs in
mixed populations, it, nonetheless, suggested its utility for this purpose, pro-
vided sufficient sampling was done. This same group examined egg texture
including grey colour levels throughout the egg using digital imaging
(Sommer, 1998). Of the 25 different texture parameters that were used,
10 had significant discriminatory power and collectively identifiedOstertagia
ostertagi, Cooperia oncophora and Ostertagia radiatum 91% of the time. When
these data were combined with egg size and shape, correct identification
increased to 93%. At the time that this technology was developed, methods
were not available to accurately quantify mixed egg populations by PCR, to
validate or refute the morphometric and digital imaging approach for exam-
ining mixed populations. However, revisiting the assay with state-of-the-art
cameras and digital imaging software concomitant with real-time PCR
might provide better insight into the efficacy of the technology for herd/
flock-level analysis.

Nwachukwu et al. (1987) showed that egg shells from the nematode
Onchocerca gutturosa were able to bind to peanut agglutinin (PNA) and sug-
gested that nematode eggshells were capable of eliciting host-protective re-
sponses. It was not until 1996, however, that Palmer and McCombe (1996)
demonstrated that PNA was able to specifically bind to Haemonchus eggs and
that lectin binding corresponded well with data from larval cultures. Binding
was monitored using fluorescently labelled PNA, and the data provided a
good estimation of the number of H. contortus eggs in mixed populations.

Colditz et al. (2002) expanded on earlier work by extending the breadth
of species examined and incorporating flow cytometry into the analysis,
which enabled quantification of lectin staining. They showed that staining
was not altered due to the developmental stage of the egg and that the prev-
alence of Haemonchus in mixed field infections compared well with that
obtained from larval culture. In order to garner broader use, the method
was further modified by Jurasek et al. (2010) for expediency, cost and the
need for less training. In particular, the time required to purify eggs (multiple
sieving and overnight flotation in saturated salt) was a major deterrent to the
adaptation of this technique. These authors also showed that formalin
fixation could be used to preserve the eggs, but that staining intensity was
substantially diminished by 5 weeks following treatment.

Hillrichs et al. (2012) took the technology one step further and screened
19 different lectins spanning wide-ranging sugar specificities in the hope of

154 D.S. Zarlenga et al.



identifying a bank of lectins that specifically differentiated four life-cycle
stages of H. contortus and T. circumcincta, including eggs, adult worms, and
sheathed and exsheathed L3. As previously mentioned , PNA was indeed
the preferred lectin for specifically interacting with Haemonchus eggs. Lectins
that interacted with the other stages were less specific and depended on the
age of the worm. Unfortunately, differential rather than specific interactions
were routinely observed.

3. MOLECULAR METHODS FOR IDENTIFYING
HAEMONCHUS

3.1 Haemonchus contortus, Haemonchus placei or both?
Over the years, numerous ‘first-generation’ molecular and biochem-

ical methods have been developed for identifyingHaemonchus species and for
examining drug-resistant genotypes. Restriction enzyme digestion followed
by agarose gel electrophoresis (Beh et al., 1989), Southern blotting (Roos
et al., 1990; Zarlenga et al., 1994), repetitive DNA hybridization probes
in conjunction with Southern blots or dot blots (Christensen et al.,
1994a,b), and isoenzyme banding profiles (Bentounsi and Cabaret, 1999;
Echevarria et al., 1992; Knox and Jones, 1992) were among the most pop-
ular examples of first-generation technologies. Sensitivity and specificity,
however, were key issues that prompted the transition to PCR-based assays
for developing more advanced tests. Also, DNA sequencing for differenti-
ating closely related species has been available for many years; however
this technology only gained popularity and momentum once PCR took
hold and problems associated with PCR inhibitors in biological samples
were addressed.

As noted earlier, the biggest misconception in the identification of Hae-
monchus species is the belief thatH. contortus is a sheep parasite andH. placei is
a cattle parasite. Hence, most techniques to identify Haemonchus species
have targeted genus- rather than species-level differentiation with this lim-
itation in mind. While years ago this assumption may have held true and
may even today be appropriate in regions where cattle production is either
nonexistent or very limited, today anthropogenic forcing has globalized the
dissemination of these and many other parasite species (Hoberg, 2010;
Zarlenga et al., 2014). As an example, H. placei was found in western
Australian cattle; a geographical region believed not to be conducive to
this species because of its predilection for more tropical and subtropical
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climates (Jabbar et al., 2014). Consequently, blanket assumptions of exclu-
sivity regarding hostepathogen associations can no longer be considered
unilateral, as it relates to H. contortus and H. placei. do Amarante (2011)
made special note of this issue, providing as support for differentiating
the species the need to establish proper and sustainable control strategies,
especially in light of drug-resistant parasites and the inability of H. placeie
infected animals to cross-protect against challenge infection with H. contor-
tus (see Santos et al., 2014b). It is also necessary to consider circulation
among domestic stock and free-ranging ungulates, and the growing under-
standing that populations that involve multiple species ofHaemonchus can be
maintained in a broad array of wild cervids, camelids and bovids (including
caprines) that occur in sympatry in particular regions of the world (eg,
Cerutti et al., 2010; Hoberg et al., 2001, 2008).

Chaudhry et al. (2014) noted the presence of drug-resistant alleles in cat-
tle-derived H. placei obtained from mid-western and eastern southern
United States. Six of nine populations contained the characteristic P200Y
(TAC) isotype-1 polymorphism indicative of b-tubulin benzimidazole resis-
tance, albeit at low frequencies. This group also identified the presence of
naturally derived hybrids in isolates of Haemonchus obtained from Pakistan
and southern India, where numerous worms were heterozygous for fixed,
species-specific single nucleotide polymorphisms (SNP) within the internal
transcribed spacer 2 (ITS-2) of nuclear ribosomal DNA (rDNA) (Chaudhry
et al., 2015). Among these worms, one hybrid contained theH. contortus iso-
type-1 b-tubulin benzimidazole resistance allele, suggesting not only that
hybridization had occurred, but also that introgression of drug resistance
loci can transpire between the two species. This finding could only have
ensued from mixed infections. In this same study, these authors noted that
cattle in southern India were only infected with H. contortus; H. placei was
not to be found.

Other reports of mixed or dual infections have been emerging world-
wide. H. contortus and H. placei have been reported as highly sympatric
species in North Africa in both large and small ruminants based on morpho-
metric parameters and PCR (Akkari et al., 2013). Results showed that
>50% of all small ruminants tested had multiple infections, with numbers
being slightly less in cattle. There are similar reports from West Africa
(Achi et al., 2003) for small and large ruminants. In a herd in the United
States, sequence analysis of faecal eggs prior to anthelmintic treatment
revealed anH. placei infection; however, following drug treatment and a sec-
ond round of egg DNA isolation and sequencing, H. placei infection was
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expelled, but a low level of drug-resistant H. contortus, not originally
detected by sequencing, was noticeably present in the herd (unpublished
data). Although one early report identified a DNA hybridization probe
(Christensen et al., 1994b) and several additional reports of species-level
PCR-based assays for differentiating H. placei from H contortus are discussed
in the following sections, it has become increasingly important to develop
methods for the differentiation of these species, and depend less on genus-
level identification.

3.2 Traditional PCR
Clearly, the biggest hurdles to generating quality PCR data have been in
obtaining amplifiable DNA or RNA devoid of inhibitors and if possible,
producing genetic material of sufficient length to allow adequate sensitivity
during amplification. Efforts to perform egg-based PCR directly from
faeces, to reduce processing time has met with sporadic success, owing to
sensitivity issues and PCR inhibitors (Demeler et al., 2013; Roeber et al.,
2012a). There are a plethora of commercial and noncommercial methods
now available for isolating nucleic acids for PCR; however regardless of
the method chosen, the presence of enzymatic inhibitors in biological sam-
ples must be addressed before or during PCR.

Over the years, numerous genes have been targeted for identifying para-
site-specific PCR primers. Roos and Grant (1993) were among the earliest
to develop a H. contortusespecific PCR test. In this assay, the investigators
synthesized primers that amplified a region of the isotype-I b-tubulin
gene spanning an intron that exhibited size variation between H. contortus
and T. colubriformis. The primers chosen did not bind to other common
sheep parasites; however, the sensitivity of the assay was low. At the time,
it was not clear whether the low sensitivity was related to PCR contami-
nants, the size of the amplicons (1300e1500 bp) or to a suboptimal copy
number of the gene. Consequently, the focus switched to using mitochon-
drial gene sequences (Blouin, 2002) and genomic spacer sequences associ-
ated with the rRNA gene repeat (for review, see Chilton, 2004) as
amplifiable targets for PCR. The compelling arguments for these choices
have been that both are highly abundant in all life-cycle stages and suffi-
ciently variable among species of gastrointestinal nematodes to attain
adequate sensitivity and specificity when designing an assay. Stevenson
et al. (1995) were among the first to assess the second internal transcribed
spacer (ITS-2) sequence for the differentiation of H. contortus from H. placei.
Several SNPs were identified among the individuals chosen, which resulted
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in unique restriction enzyme digestion patterns for each species after PCR
amplification. One or more of these SNPs were later used to identify hybrid
organisms in Pakistan (Chaudhry et al., 2015) by sequencing. Though not
directly related to the delineation of species, other studies have used ampli-
fied ITS-2 sequences and denaturing gradient gel electrophoresis (DGGE)
to examine sequence heterogeneity among populations of H. contortus (see
Gasser et al., 1998).

In 1994, SNPs in the external transcribed spacers (ETS) were observed
between these same species (Zarlenga et al., 1994), as well as distinct differ-
ences in the rRNA gene repeats emanating from the external nontranscribed
spacer (NTS) that permitted the differentiation ofH. contortus from H. placei.
The SNPs were generated from cloned sequences and were not validated on
larger numbers of field samples. However, Santos et al. (2014a) used and
validated the existence of multiple rRNA gene repeats within H. contortus
(cf. Zarlenga et al., 1994) by comparing PCR fragmentation patterns to
morphometric data on individual Haemonchus worms. Their results showed
that the morphology of L3s could be used as the primary method to identify
and differentiate the two species. A multiplex PCR developed by Zarlenga
et al. (2001) not only differentiated five major genera of gastrointestinal
nematodes routinely found in cattle and sheep, but provided data wherein
the chosen primers which amplified portions of the ETS were capable of
differentiating H. contortus from H. placei. Such a test would work well on
individual worms of Haemonchus; however, given the overlap in sizes be-
tween the two species, it would be problematic in the event of a mixed
infection or if performed on populations of eggs. The doublet generated
in this assay was produced only from H. contortus DNA and was the result
of either multiple-sized fragments or heteroduplex formation from sequence
variation among the repetitive units of the rRNA gene within H. contortus
(see Zarlenga et al., 1994). Given that H. contortus was shown to have mul-
tiple and distinct repeats, the former explanation is likely correct. This pro-
posal is further supported in studies showing substantially less genetic
variability among populations of H. placei than among populations of
H. contortus (see Brasil et al., 2012; Hussain et al., 2014; Jacquiet et al.,
1995). Chilton (2004) reviewed the benefits of targeting ribosomal DNA
markers for delineating bursate nematodes.

Blouin et al. (1997) showed that numerous fixed differences existed
among the mitochondrial ND4 gene sequences from H. contortus and
H. placei to allow for sequence-based or PCR-based differentiation between
the two species. These haplotypic differences were used to examine genetic
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variation among worms parasitizing sheep and goats in China, where nearly
all 152 individual worms exhibited distinct haplotypes (Yin et al., 2013).
Random amplified polymorphic DNA assays were also tested (Humbert
and Cabaret, 1995; Jacquiet et al., 1995; Rabouam et al., 1999) where suf-
ficient genetic variation was observed between the two species (Jacquiet
et al., 1995). However, given the variability in the assay, the dependency
on pristine DNA and amplification conditions and inconsistencies in PCR
amplification using small, nonspecific primers, this technology was aban-
doned relatively soon after its inception.

Many assays have been developed with genus-specific rather than spe-
cies-specific detection in mind. As such, linking H. contortus and H. placei
in assay development has been a common and pervasive theme. Gasser
et al. (1994) developed a restriction fragment length polymorphism
(RFLP) linked PCR assay based on ITS-2 sequences to delineate six com-
mon trichostrongyles of ruminants, includingH. contortus. Heise et al. (1999)
sequenced the ITS-2 from eight species of gastrointestinal nematodes and
later, Schnieder et al. (1999) developed a PCR assay for differentiating
five major genera of gastrointestinal nematodes infecting cattle and sheep,
among them, the genus Haemonchus; however, species-level identification
was not assessed. Bisset et al. (2014) developed a multiplex PCR capable
of differentiating 10 strongylid species that commonly infect small rumi-
nants. They combined both species-specific primers and genus-specific
primers to generate gel-banding profiles unique for each of the organisms.
The inclusion of genus-specific primers obviates the need for PCR-positive
controls (Zarlenga et al., 1999).

3.3 Real-time PCR
With the advent of real-time PCR, some new methodologies emerged for
the identification of Haemonchus spp. Real-time PCR had its inception in
the desire to quantify gene transcription; however, over time, many workers
adapted it as a means to supplant conventional PCR for identification. Some
approaches use fluorescence via resonance energy transfer between fluoro-
phore and quencher molecules bound to a DNA-probe for added specificity
(Harmon et al., 2007; Learmount et al., 2009; McNally et al., 2013; von
Samson-Himmelstjerna et al., 2002; Siedek et al., 2006). Though PCR
probes greatly enhance specificity, generating DNA probes that are dual-
labelled for proper energy transfer and fluorescence can be cost prohibitive.
Consequently, other techniques have emerged, wherein nonsequence-spe-
cific fluorescent dyes are used that intercalate and/or bind double-stranded
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DNA and fluoresce either by resonance energy transfer interactions with the
helix, or by stabilization of the fluorophore when bound to DNA (Dragan
et al., 2012). Though substantially easier and less costly, many of the avail-
able fluorophores, including the most commonly used, SYBR I green, are
inhibitory to PCR to varying degrees, and can alter the melting temperature
of the DNA in a concentration-dependent manner (Gudnason et al., 2007).
This influence on melting temperature can affect studies involving melting-
curve analysis for identification and for quantification. For this reason, real-
time techniques have emerged using fluorescent dyes other than SYBR I
green (Bott et al., 2009; Roeber et al., 2011).

As the technological advances have moved towards real-time PCR, ef-
forts have begun to focus more on application rather than mere assay devel-
opment. Siedek et al. (2006) showed good correlation between probe-based
real-time PCR data and coproculture, though the study focussed only on
cultured larvae. Since this time, efforts have turned to ante-mortem
PCR-based identification of faecal eggs, rather than culturing to L3 fol-
lowed by morphological examination; a technique that has been extensively
reviewed (Preston et al., 2014; Roeber et al., 2013a,b). In conjunction with
performing molecular tests on faecal eggs, numerous reports have been pub-
lished, in which egg isolation was not preceded by purification, and DNA
isolation was performed directly on whole faeces. For instance, Sweeny
et al. (2011) used the Power Soil DNA Isolation Kit (Mol-Bio, West Carls-
bad, CA, United States) and were able to successfully perform nematode-
specific PCR on DNA isolated directly from ovine faeces. The data coin-
cided well with egg flotation assays where the epg > 50; however, the limits
of egg detection were never determined and cultures were not performed
on the faecal eggs in an attempt to confirm the PCR data. The same group
(Sweeny et al., 2012) modified the procedure in the hope of applying real-
time PCR to quantify (qPCR) larval burdens on pasture. Little correlation
was observed between qPCR Ct values and log-transformed pasture larval
counts, possibly due to a mixture of L3s and eggs on pasture. The qPCR
data was, nonetheless, encouraging. Later, McNally et al. (2013) developed
a method to extract DNA from sheep faeces that involves dehydration in
ethanol, bead-beating to disrupt faecal samples, and magnetic beadebased
DNA extraction, followed by genus-level multiplex qPCR to quantify
eggs from Haemonchus, Trichostrongylus and Teladorsagia. The assay showed
a sensitivity of 10 eggs per gram (epg) using this approach. Given that this
test also was somewhat labour intensive and exhibited a sensitivity that
was substantially less than that achievable when using purified eggs, general
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laboratory practices have thus far conceded that some level of egg purifica-
tion and/or DNA dilution to reduce inhibitors is in order, to maximize
PCR sensitivity rather than isolating DNA from unfractionated, environ-
mental samples (Demeler et al., 2013; Roeber et al., 2012b).

Efforts have been made to quantify faecal eggs in mixed species infec-
tions. While it is well accepted that egg output rarely coincides with adult
worm burdens (except for Haemonchus), and bias is often generated in faecal
cultures, making it difficult to apportion egg counts to worm species
(Dobson et al., 1992), quantification nonetheless can provide information
on pasture seeding densities. This is particularly important when considering
the potential for drug-resistant worms in the flock and when establishing
pasture management programmes to reduce worm burdens within the
host. Conventional approaches to quantification, that is, larval culture, fol-
lowed by morphological identification of L3, require a person skilled in the
morphological identification of L3, and presume that the different worm
species develop at the same rate and efficiency under artificial growing con-
ditions. Some researchers would argue that molecular amplification of faecal
eggs can succumb to differences in DNA content (egg stage development)
and variations in target gene copy numbers among the species. Anecdotal
evidence indicates that the former is not an issue, and the latter point can
be addressed by properly controlling assay conditions and parameters.
Also, Harmon et al. (2007) showed that the time following egg embryona-
tion, and higher concentrations of competing DNA derived from similar
nematodes could affect egg quantification; however, changes in DNA con-
tent demonstrably affecting quantification occur only within the first 6e7 h
following embryonation.

von Samson-Himmelstjerna et al. (2002) was among the first to develop
real-time PCR for quantification of gastrointestinal nematodes of sheep.
Genus-specific probes and primers to regions within the ITS-2 were
designed to encompass common nematodes of small ruminants. The assays
exhibited good specificity and sensitivity over a large dynamic range using
DNA derived from cultured L1 and L3 parasites. The test had the advantage
of partial multiplexing due to the different labels that were chosen among
subsets of nematodes. Bott et al. (2009) developed real-time PCR method-
ology coupled to melting curve analysis to delineate seven distinct strongylids
of sheep using a single conserved reverse primer with species- and genus-
specific forward primers. In order to quantify, on a relative basis, the numbers
of eggs derived from any given species, standard curves were generated and
used in the final analysis. The technology was later applied to naturally
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acquired infections in sheep for a sample size of 470 animals (Roeber et al.,
2011). The method exhibited near 98% sensitivity and 100% specificity, well
supporting the overall goal to migrate from larval cultures and morphological
examination of L3 to molecular-based analyses. The approach also demon-
strated better efficiency in assessing drug-susceptibility/resistance in strong-
ylid nematodes of sheep relative to more conventional approaches, such as
the faecal egg count reduction test (FECRT) (Roeber et al., 2012b). Iden-
tification was further advanced by automation via the development of a ro-
botic, high-throughput, multiplex tandem PCR to delineate key nematodes
infecting sheep and goats, including H. contortus. This assay again developed
primer sets targeting ITS-2. Results in field trials showed high levels of sensi-
tivity and specificity, and correlated well with the more laborious larval cul-
ture techniques.

Droplet digital PCR (ddPCR) is a methodology that provides absolute
quantification of PCR products without the need for generating standard
curves that plague many of the real-time technologies (Hindson et al.,
2011). In ddPCR, a fluorescent probeebased PCR reaction is segregated
into 1-nL reverse-micelles (water-in-oil), where zero or more copies of
the target DNA are randomly partitioned into nanoparticles along with all
other reagents needed for amplification. Following PCR, the absolute fluo-
rescence of each droplet is measured, and defined as negative or positive
based on fluorescence intensity, which accounts for droplets containing
multiple copies. The absolute number of target nucleic acid molecules is
then calculated directly from the ratio of positive droplets to total droplets
analysed. Some research has been advanced, demonstrating the applicability
of ddPCR for quantifying protozoan parasites. Yang et al. (2014) developed
such a method for identifying and quantifying Cryptosporidium in environ-
mental samples, and Wilson et al. (2015) have shown that ddPCR is more
sensitive and accurate than microscopy for quantifying Babesia spp. in blood
samples. To date, however, no studies have been generated using droplet
digital PCR (ddPCR) to quantify nematode eggs.

3.4 The next generation
3.4.1 Loop-mediated isothermal amplification
Several methodologies are on the horizon for DNA-based identification of
gastrointestinal nematodes and, in particular, those belonging to the genus
Haemonchus. In addition to ddPCR, which might find application in quan-
tifying nematode eggs in a mixed population, another technology that has
been around for 15 years, but has only recently gained traction for the
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identification of gastrointestinal nematodes is loop-mediated isothermal
amplification (LAMP) (Notomi et al., 2000). Typically, this technology uti-
lizes Bst DNA polymerase rather than a thermostable enzyme, which makes
it far less subject to inhibition by contaminants. Other benefits include high
sensitivity, no requirement for expensive equipment (isothermal
reaction) and visualization that can be performed by whole sample fluores-
cence or turbidity without gel electrophoretic analysis. These benefits bode
well for adaptation to ‘in-the-field’ assays. Also, the use of four to six distinct
primers per reaction increases specificity, making it less prone to false-posi-
tive reactions from irrelevant DNA; nonetheless, the primer selection usually
requires a proprietary Primer Explorer software package. There are caveats,
however, where one has less freedom to choose primer locations and prod-
uct lengths, and where difficulties arise when differentiating closely related
organisms and multiplexing for the detection of other nematodes. Further-
more, a high false-positive rate often results inadvertently from the high
sensitivity of the assay, and displaying results via agarose gel electrophoresis
is critical when examining small amounts of target PCR product amidst an
excess of irrelevant genomic DNA. Still, Melville et al. (2014) developed a
highly specific LAMP assay for the identification of Haemonchus spp. based
on fluorescence using DNA from purified eggs. The sensitivity of this assay
was 10 times greater than conventional PCR, and the assay enabled a calcu-
lated detection level of 2 epg. In addition, the sensitivity of the assay rivals
nested PCR, and the ability to perform this test in 30 min makes it partic-
ularly appealing.

3.4.2 Metagenomics and pyrosequencing
Metagenomics is a technical innovation involving holistic genetic analysis of
an assemblage of microorganisms recovered directly from environmental
samples and obviates the need for prior culturing and/or purification. Analysis
is usually performed by high-throughput, next generation, shotgun se-
quencing methodologies. Though diagnostic metagenomics (Pallen, 2014)
has been generally relegated to discerning genomically less-complicated
organisms, such and bacteria, viruses and fungi, it is finding its way into pop-
ulation genetic studies (Mobegi et al., 2014; Wu et al., 2011) and other
organisms such as plant-parasitic (Porazinska et al., 2014) and marine nema-
todes (Carugati et al., 2015). One study showed the utility of pyrosequencing
to examine nematode biodiversity in sylvatic rats (Tanaka et al., 2014) using
18S rDNAebased metagenomics and an Illumina MiSeq sequencer.
Currently, as a test to identify gastrointestinal nematodes in faecal matter,
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this approach is somewhat excessive, given the cost of supplies, equipment
and algorithms needed for data analysis. However, in the future, continuing
technological advancements in whole genome sequencing and data analyses
are likely to replace many other forms of molecular genotyping. One
example is in the adaptation of nanopore technology to high-throughput
sequencing (Maitra et al., 2012) which has the potential to substantially
reduce the time and cost of sample preparation. Furthermore, as costs
continue to moderate and as science migrates towards the philosophy of
‘One Health’, we can expect that diagnostic tests based upon metagenomics
will be developed to encompass multitudes of pathogens, among which
gastrointestinal nematodes could be included.

4. IMMUNOLOGICAL METHODS FOR DIAGNOSING
HAEMONCHOSIS

Serological methods for diagnosis can be highly informative for deter-
mining Haemonchus-specific exposure or infection. Review articles on the
immunological methods used for diagnosing haemonchosis via the specific
detection of IgG antibodies have been published (eg, Preston et al., 2014;
Roeber et al., 2013b). In general, these assays have not received wide appli-
cation because they can exhibit problems with antigen specificity and rele-
vancy where antibody levels can remain long after the infection has cleared.
In addition, the host tends to exhibit clinical signs of infection long before
Haemonchus-specific antibody titres increase to reproducibly detectable
levels. Moreover, serum antibody levels to infection can vary substantially
among outbred animals. The application of bead-based technologies for
immunodiagnosing nematode infections has shown promise for distinguish-
ing cattle infected with C. oncophora, Dictyocaulus viviparus and Fasciola
hepatica (Karanikola et al., 2015); however, like most immune-based assays
including those for haemonchosis, this test is genus rather than species spe-
cific. Consequently, haematological-based methods, such as blood packed
cell volume, eye-lid colouration (FAMACHA), and faecal egg counts
(FECs) have been used as generic indicators of nematode infection. In com-
bination with FAMACHA, which is a subjective assessment of host anaemia
resulting from blood-feeding nematodes, such as Haemonchus, the other
techniques are easy to use, practical and in some cases amenable to field
applications.

Beyond the simple diagnosis of infection, immunological methods are
important tools in research for estimating levels of exposure, population
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immunity, correlating natural resistance to the level of immune response, and
in identifying animals that respond poorly to H. contortus infection. Evalua-
tion of population immunity and identification of poor- or nonresponders in
the flock can be useful for managing infections and for strategic deworming.

Herein, we cover immune-based advances that focus on indirect, sero-
logical detection of haemonchosis, and discuss less conventional immuno-
logical assays that deviate from the detection of parasite-derived diagnostic
markers. As such, the assays described here examine specific IgG and non-
IgG antibodies against Haemonchus, as well as host responses to infection,
such as eosinophilia and eosinophil peroxidase, mast cell and mastocytosis,
T cell proliferation, and changes in cytokine profiles as markers of infection.

4.1 Antibody assays for the diagnosis of haemonchosis;
ELISA and Western blotting

Antigen-specific, anti-Haemonchus antibodies can be detected and quantified
using ELISA or Western blot. These techniques involve target antigens
(whole parasite extract, secreted, purified native or recombinant proteins)
being immobilized on a solid support, followed by incubation with host
body fluids (eg, serum, mucus and saliva) containing antigen-specific anti-
bodies. Detection is followed by incubation with a labelled isotype-specific
secondary antibody, followed by an appropriate substrate. ELISA testing is
generally prone to nonspecific interactions; consequently, specificity must
often be confirmed by Western blotting. All members of sheep immuno-
globulins (Ig), including IgG, IgA, IgE and IgM, can be measured by ELISA
using isotype-specific antibodies.

Serum or mucous IgG and IgA are by far the most studied Ig classes in
sheep infected with H. contortus (see Miller, 1996). Early on, serum or mu-
cous IgG and IgA were measured by radio-immunoassay (RIA) (Duncan
et al., 1978; Smith, 1977); however, this test was rapidly replaced by ELISA,
which does not require the use of radioactive materials, and exhibits higher
throughput and sensitivity. As noted earlier, sensitivity and specificity can
pose problems where the titre of specific IgG in Haemonchus-infected sheep
is generally low (Cuquerella et al., 1995; Smith, 1977; Duncan et al., 1978),
and clinical signs normally appear before the antibody titres reach detectable
levels. Since the 1990s, more reagents have become available, so that Hae-
monchus antigenespecific IgG1 and IgG2, IgA and IgM can now be moni-
tored. Delineating subclasses has become important because IgG1 appears as
the predominant antibody species elicited by Haemonchus infection (Schallig
et al., 1995; Schallig, 2000).
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Antigen-specific antibodies in body fluids can also be evaluated by
Western blot, which first separates parasite antigens by SDS-PAGE before
transferring them to a membrane and screening them with diluted host
antibodies. Though more labour intensive and not conducive to high
throughput, it has the distinct advantage of determining whether or not anti-
body binding is specific or cross-reactive in nature. This assay can also identify
the presence of isotype-specific antibodies that unambiguously recognize
known antigen(s) or particular protein bands with known molecular masses
if total antigens are used. As with ELISA, this assay has not received unilateral
use as a diagnostic test for haemonchosis; however, it has become an invalu-
able tool for discovery research onHaemonchus (García-Coiradas et al., 2009;
Hart et al., 2012; Raleigh and Meeusen, 1996; Rathore et al., 2006; Schallig
et al., 1995, 1997; Wang et al., 2014a,b; Yan et al., 2010).

4.2 Antibody assays as research tools to study
haemonchosis

Assays to detect Haemonchus-specific antibodies in body fluids (serum, tears,
saliva and faecal fluids from live animals) include ELISA and Western blot-
ting. These assays have been well described (Preston et al., 2014; Roeber
et al., 2013b), and few significant technological advances have been noted
in the literature. These assays generally target serum IgG and can be conve-
niently accomplished with ELISA; however, the detection of IgE and IgA in
the circulation, which is important in relation to understanding disease, and
are considered to be more important than IgG when assessing levels of host
protection, can be challenging due to limited availability of costly reagents.
Antigen-specific IgE and IgA from infected animals can be reliably assayed in
local mucosal tissues following biopsy or postmortem. Thus, these assays
have great utility for laboratory research, but less for the diagnosis of hae-
monchosis in live animals.

The reliable detection of low levels of IgE and IgA in blood is usually
achieved using capture/sandwich ELISA with high sensitivity, accuracy
and reproducibility. A broadly cross-reactive IgA sandwich ELISA, which
also detects ovine IgA, is commercially available (http://www.antibodies-
online.com), though it seems not to have received wide use in ovine
studies. The availability of commercially available antibodies against sheep
IgE has permitted the measurement of this Ig subtype by ELISA (Kooyman
et al., 1997; Redmond and Knox, 2004; Shaw et al., 1996). A sheep IgE
capture ELISA was developed using an antisheep IgE monoclonal antibody,
2F1, generated from a chimeric IgE protein (Bendixsen et al., 2004). This
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assay was used to detect total IgE in colostrum and intestinal homogenates,
but not in serum. Of particular note, antigen-specific IgE appeared higher
in resistant than in susceptible sheep infected with T. colubriformis (see
Bendixsen et al., 2004). A similar trend in elevated IgE was seen in Gulf
Coast Native (Native) sheep known to be more naturally resistant to Hae-
monchus infection than Suffolk lambs (Shakya et al., 2011). Also, systemic
H. contortusespecific IgE was evident in sheep exposed to infection on
pasture, as determined using this same assay, and protection in H. contortus
antigen-vaccinated lambs correlated better with levels of IgE than with
IgG1 (Kooyman et al., 2000; LeJambre et al., 2008). Inasmuch as IgE facil-
itates basophil activation and IL-4/IL-13 release, which in turn are essential
for host protection against helminth infections in the mouse models
(Schwartz et al., 2014), this information suggests the need for better and
more sensitive assays to consistently measure IgE in body fluids and tissue
homogenates of ruminants infected with H. contortus. If key H. contortus an-
tigenespecific IgA and IgE can be more accurately and consistently
detected in ovine blood or other body fluids, these antibodies may be useful
in determining population mucosal immunity as well as in selecting animals
with natural resistance toH. contortus infection, as mediated by high levels of
IgA and IgE.

4.2.1 Eosinophils and eosinophil peroxidase assays
Eosinophilia is well documented in H. contortuseinfected animals as well as
in animals infected with other nematodes, and has been correlated with
protection (Fawzi et al., 2014; Huang et al., 2015; Preston et al., 2014;
Reinhardt et al., 2011). Traditionally, eosinophilia has been determined
by counting this cell population in whole blood. However, obtaining eosin-
ophil counts in blood and tissues from infected animals at postmortem can be
difficult, and data from current enumeration assays tend to be highly variable
and inconsistent. Recent advances to assess eosinophilia rely on monitoring
levels of eosinophil-specific peroxidase (EPX) in serum, tissue homogenates
or other body fluids using a sensitive sandwich ELISA. Eosinophil peroxi-
dase is specific to primary and secondary granules of mammalian eosinophils.
This sandwich ELISA utilizes a matched pair of monoclonal antibodies spe-
cific for EPX (Ochkur et al., 2012) and reflects not only eosinophil activa-
tion such as degranulation, but may also correlate with the magnitude of the
activation (eg, number of activated eosinophils). Although a good indicator
of nematode parasite-induced eosinophilia, evidence is lacking to link EPX
directly to host protection (Cadman et al., 2014; Ramalingam et al., 2005).
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Given that this assay can detect ruminant EXP, it should also be useful for
assessing individual and population immunity and for selecting eosinophil-
mediated resistant breeds.

4.2.2 Mast cell and mastocytosis assays
Like eosinophilia, mastocytosis is also correlatedwith protection inH. contortus
and other gastrointestinal nematode infections (Hepworth et al., 2012;
Schallig, 2000; Schallig et al., 1997; Shakya et al., 2011). In the mouse model,
mast cell accumulation and, in particular, mast cell degranulation at early stages
of infection by gastrointestinal nematode parasites are critical to priming a pro-
tective Th2 response (Hepworth et al., 2012). Tryptic peptidases (tryptases),
which belong to the serine-class peptidases, are among the most abundant
proteins in mast cell secretory granules and they are released externally during
exocytosis. Thus, detection of local or systemic mast cellespecific markers,
such as tryptase (Miller and Pemberton, 2002; Pemberton et al., 2000;
Schwartz, 2006), can be useful for assessing mast cell activation/degranulation
and for determining parasite susceptibility of the host. Currently, an assay for
the specific detection of mast cell tryptase in sheep is not available; however, a
bovine ELISA tryptase appears to have broad cross-reactivity with tryptases of
other host species, including sheep and goats.

Another marker for infection is mast cell proteinase-1 (Miller and
Pemberton, 2002; Pemberton et al., 2000), which is also a serine proteinase
with dual chymase/tryptase activity. It is expressed in gastrointestinal mast
cells and transported to the surface mucosa during nematode infections.
With respect to fibrinogen cleavage and fibroblast stimulation, the sheep
mast cell proteinase (SMCP) exhibits functional similarities to mast cell tryp-
tase (Pemberton et al., 1997). ELISA targeting SMCP has been developed
(Huntley et al., 1987). The presence of SMCP has been linked to protection
in sheep infected with H. contortus, where SMCP is elevated in immune
gastric mucosa compared with that in normal tissues (Huntley et al.,
1987). Although, SMCP is abundant in homogenates of abomasal tissue of
parasite-immune sheep, it remains low to undetectable in serum and lymph,
thus limiting its application to live animals. Furthermore, sheep serum and
lymph contain inhibitors that can interfere with the SMCPeantibody inter-
actions. Consequently, the SMCP-ELISA works best with homogenates
from abomasal tissue.

4.2.3 T cell proliferation assay
T cells are one of the major components of peripheral blood mononuclear
cells (PBMC) and key players in both innate and adaptive immunity. T cells
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proliferate upon activation in a recall response, which is required for protec-
tion (Haig et al., 1989; Jasmer et al., 2007; Pe~na et al., 2006). Antigen-
specific T cell assays can be useful in determining T cell responses to
H. contortus infection, and can be used to study parasite molecules capable
of modulating host immunity (Torgerson and Lloyd, 1993). Research on
isoforms of recombinant galectin (Hco-gal-m and ef) from H. contortus,
have shown that parasite-derived galectins suppress immunity and therefore
promote the infection process by binding the surface of PBMC, including T
cells (Wang et al., 2014a,b) and, in particular, to the transmembrane protein
63A (Yuan et al., 2015). Consequently, T cell assays can be quite informa-
tive. However, the process of identification and characterization is quite
tedious, involving 3H-thymidine, homologous host cells as antigen-
presenting cells (APCs) and irradiated APCs, if T cell lines or clones are
used (Tuo et al., 1999). This type of assay is useful only for research purposes,
particularly in assessing vaccine efficacy and candidate vaccine discovery.

4.2.4 Cytokine and host alarmin assays
Cytokines are well known for their involvement in the expulsion of gastro-
intestinal nematodes. In preparation for the protective Th2 immunity
against such nematodes, the gastrointestinal epithelial cells respond to the
infection by releasing innate cytokines, such as IL-1, IL-25, IL-33, and
thymic stromal lymphopoietin (TSLP). They also release tissue/cell
injury-associated alarmins or danger-associated molecular pattern (DAMP)
molecules, such as uric acid, ATP, high mobility group box 1
(HMGB1) and S100 proteins (reviewed by Hammad and Lambrecht,
2015). Thus, characterizing the immune state of the animal can have a
demonstrable impact on delineating pathways involved in the infection pro-
cess. For example, one might expect to see ATP levels increase during Hae-
monchus infection, due to cell damage; however, levels of adenosine and
ADP were reported to be substantially reduced (Gressler et al., 2014).
This finding aligns with the importance of adenosine and ADP in control-
ling platelet activation and allowing Haemonchus to feed on blood. In addi-
tion, extracellular HMGB1 was shown to have a dual function, where it can
regulate inflammation and cellular repair, as a passively released molecule
from damaged cells or as a secreted molecule from activated immune cells
(Vande Walle et al., 2011).

Quantifying selected groups of cytokines, such as IL-4, IL-13,TNF-a,
IFN-g, either directly, or by reverse-transcription PCR (RT-PCR) has
aided in evaluating breeds of small ruminants that are resistant to H. contortus
infection (Alba-Hurtado and Mu~noz-Guzm�an, 2013; Miller and Horohov,
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2006; Zaros et al., 2014). Such assays can be critical for assessing vaccine and
drug efficacies. Unfortunately, the lack of commercially available immuno-
logical assays for sheep and goats has made direct investigations of many
cytokines difficult. Consequently, today RT-PCR has become the method
of choice.

4.2.5 ELISPOT and the identification of antibody-secreting cells
Immunohistochemistry can be used as a research tool to identify the spatial
localization of isotype-specific antibody-containing cells in situ. This proce-
dure involves tissue fixation, embedding, sectioning, rehydration and prob-
ing with antiisotype antibodies labelled with a reporter enzyme, followed by
detection using a substrate. For instance, Gill et al. (1992, 1993) detected
IgA-, IgG1-, IgG2- and IgM-containing cells in the abomasum of H. contor-
tuseinfected sheep, where the most abundant cell types were test positive for
IgA, IgG1 and IgM. The disadvantages of this method are that it can only
assess relative numbers of isotype-specific antibody-containing cells, and
that the antibodies detected are not necessarily antigen specific. There is
no report of the use of the enzyme-linked immunospot assay (ELISPOT)
for the detection of H. contortusespecific antibodies in small ruminants,
although the test was successfully applied to study T. colubriformisespecific
antibodies (Emery et al., 1999). This assay might be used for assessing the
frequencies of isotype-specific secreting cells in a mixed cell population in
H. contortuseinfected small ruminants.

5. FINAL THOUGHTS

When one holistically examines the identification of Haemonchus spp.
and the diagnosis of Haemonchus infection or haemonchosis, certain issues
become apparent. First, for the most part, delineation among Haemonchus
in domestic livestock has been relegated to host associations rather than
direct methods of identification. Other than for morphological identifica-
tion of adult worms and direct DNA sequencing of specific gene targets,
PCR tests to define species based on worm populations are lacking. This
aspect becomes problematic when performing epidemiological studies and
equally important, when accessioning gene sequences to worldwide data-
bases. Personal experience has instructed us that the sources of gene
sequence data derived from earlier database submissions can at times be
faulty due to nematode misidentification. In most instances, such genetic
data were not accompanied by the submission of morphologically identified
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voucher specimens for archival storage in museum repositories. We suggest
that genetic data should be concurrently derived from specimens that have
an authoritative identification and which, because of archival deposition, can
be available to confirm or secondarily assess the validity of field-based obser-
vations. Voucher specimens are particularly critical in areas of sympatry for
assemblages of domestic and free-ranging ungulates, where there is a consid-
erable expectation for cross-transmission of parasites between or among
animal species. In recent years, most of the sequence databases have been
updated using highly inbred worm populations or laboratory strains of para-
site species; however, new data from epidemiological studies can no longer
rely on host associations for definitive identification/diagnosis, given anthro-
pogenic forcing and the broad host associations of members of this genus
with wild ruminants.

Second, it has become clear that antibody-based assays and other im-
mune-related tests have not been widely used for diagnosis, although they
have played insurmountable roles in understanding haemonchosis and the
host immune response against Haemonchus. Physiological parameters have
taken precedence, because of their ease of use in the field, lack of need
for expensive equipment and laboratory consumables/supplies, and because
the host exhibits symptoms of disease long before the serological tests
become functionally beneficial to use.

Finally, rapid changes and progress in molecular and proteomic technol-
ogies will continue to advance this field of research, and at a remarkable
pace. However, we need to be mindful that morphology has and will
continue to be the benchmark for defining taxa in the foreseeable future,
given the significant genetic diversity within and among populations that
defines most nematodes of the gastrointestinal tract of ruminants.
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