University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Publications from USDA-ARS / UNL Faculty

U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska

7-30-2008

Human dispersal of Trichinella spiralis in domesticated pigs

Benjamin Rosenthal United States Department of Agriculture, Benjamin.Rosenthal@ars.usda.gov

Giuseppe LaRosa Istituto Superiore di Sanita

Dante Zarlenga United States Department of Agriculture

Detiger Dunams United States Department of Agriculture

Yao Chunyu Jilin University

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub

Rosenthal, Benjamin; LaRosa, Giuseppe; Zarlenga, Dante; Dunams, Detiger; Chunyu, Yao; Mingyuan, Liu; and Pozio, Edoardo, "Human dispersal of Trichinella spiralis in domesticated pigs" (2008). *Publications from USDA-ARS / UNL Faculty*. 2255. https://digitalcommons.unl.edu/usdaarsfacpub/2255

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Authors

Benjamin Rosenthal, Giuseppe LaRosa, Dante Zarlenga, Detiger Dunams, Yao Chunyu, Liu Mingyuan, and Edoardo Pozio

Contents lists available at ScienceDirect

Infection, Genetics and Evolution

journal homepage: www.elsevier.com/locate/meegid

Human dispersal of Trichinella spiralis in domesticated pigs

Benjamin M. Rosenthal ^{a,*}, Giuseppe LaRosa ^b, Dante Zarlenga ^a, Detiger Dunams ^a, Yao Chunyu ^c, Liu Mingyuan ^c, Edoardo Pozio ^b

^a Animal Parastic Diseases Laboratory, Agricultural Research Service, United States Department of Agriculture, Building 1180, Beltsville, MD 20705, USA ^b Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, viale Regina Elena, 299-00161 Rome, Italy ^c Key Laboratory of Zoonoses, Ministry of Education, Institute of Zoonoses, Jilin University, 5333 Xian Road, 130062 Changchun, PR China

ARTICLE INFO

Article history: Received 5 June 2008 Received in revised form 18 July 2008 Accepted 19 July 2008 Available online 30 July 2008

Keywords: Trichinella Swine Domestication Epidemiology Population genetics Evolution Population Structure Pigs Parasite Zoonosis Zoonoses Public health Agriculture

ABSTRACT

To investigate the human impact on the evolutionary ecology of animal pathogens, we compared genetic diversity of severe foodborne parasites contracted by eating infected pork or wild game. In particular, we characterized Trichinella spp. from twenty-eight countries and four continents by genotyping nine microsatellite loci and sequencing one-fifth of the mitochondrial genome. All specimens of Trichinella spiralis, a swine parasite that can infect many species of wildlife, were remarkably uniform across Europe, North Africa, and the Americas. Far greater diversity characterized a comparable sample of Trichinella britovi, which parasitizes various sylvatic mammals endemic to Eurasia and North-Western Africa. A limited sample of T. spiralis in Asia, where swine were first domesticated, encompassed greater genetic variability than those in the West, as did small samples of Trichinella nativa and Trichinella murrelli, which parasitize wildlife hosts. We conclude that European lineages of T. spiralis originated several thousand years ago, approximately when pigs were first domesticated there. These data also imply that Europeans inadvertently introduced T. spiralis to the Americas via infected pigs and/or rats. Despite evidence that early hominid hunters ingested foodborne parasites by hunting wild game millions of years earlier, swine husbandry has governed the subsequent transmission, dissemination, and evolutionary diversification of T. spiralis. Where viable parasites have been eliminated from their diet, the residual risk posed to swine by exposure to wildlife or rats should be more precisely defined because breaking the cycle of transmission would confer enduring economic and health benefits.

Published by Elsevier B.V.

1. Introduction

Humans may be "the world's greatest evolutionary force" (Palumbi, 2001), inducing long-lasting change in other species. Animals and plants first domesticated ~9000 years ago still define our diet and landscape (Clutton-Brock, 1999; Diamond, 2002). Although early hominids first contracted certain animal parasites millions of years ago (Hoberg et al., 2001), efficient human transmission of other animal-derived pathogens was a consequence of intensive husbandry of animals. Diseases derived from Eurasian livestock, such as smallpox and measles, facilitated European colonial expansion by devastating previously unexposed human populations (Crosby, 1976, 1986). As present concerns over the pandemic potential of Avian Influenza attest, public health continues to be threatened when intensive agriculture exposes

people to communicable animal pathogens (Horimoto and Kawaoka, 2005). Have humans engendered evolutionary change only in those pathogens transmitted from person to person, or also in those we contract from other animals? Herein, we examined whether or not domesticating swine helped establish and disseminate *Trichinella spiralis*, a highly pathogenic foodborne parasite (Dupouy-Camet et al., 2002).

To investigate the human impact on the evolutionary ecology of animal pathogens, we compared the genetic diversity of *T. spiralis* obtained from wildlife and domesticated pigs. To this end, we compared the diversity of parasite populations in Asia, where pigs were first domesticated in the Neolithic from several lineages of wild boar, and in Europe, where pigs were subsequently domesticated from distinct, genetically limited ancestors (Larson et al., 2005, 2007). In particular, we sought to understand whether the older and more genetically diverse pigs of Asia might harbor correspondingly more diverse parasite populations.

Nematodes in the genus *Trichinella* are acquired by ingesting uncooked meat (striated muscle) in which larval parasites have

^{*} Corresponding author. Tel.: +1 301 504 5408; fax: +1 301 504 8979. *E-mail address*: benjamin.rosenthal@ars.usda.gov (B.M. Rosenthal).

^{1567-1348/\$ -} see front matter. Published by Elsevier B.V. doi:10.1016/j.meegid.2008.07.008

Table 1

Specimen origins and genotypes

								Micro	eatolli	te genot	hme (h		ine)						
Isolate	Country	Host	1		2	3		4		5	spe (b	6		7		8	9		Reference++
T_pseudospiralis_EU T_nelsoni_AF_104	_′ Russia Kenva	Raccoon Spotted hyena			226 22 231 23		189 204	330 320	330 320		221 225		163 161	227 22 220 22		232 232 229 229	192 183	192 192	
T_nelsoni_AF_105	Tanzania	Warthog	196 2	200	231 23	1 204	204	320	320		225		161	220 22	0 :	229 229	181	192	
T_britovi_EU_053	Italy	Pig			225 22		214	331	331	228	228		163	? ?		220 220			163
T_nativa_NA_096 T_nativa_NA_095	Canada Canada	Canadian fox Polar bear		196 196	233 23 233 23	3 201 3 201	201	325 328	328 331		227 227		163 163	236 23 234 23	6	240 240	181	187 188	43
T_nativa_AS_094	China	Domestic cat	196 1		223 22		201	325	325	237	248	163	163	238 24	8	237 237	192		532
T_nativa_EU_093 T_nativa_AS_091	Finland China	Raccoon dog Domestic dog			220 22 222 22		204 204	331 325	331 328		227 228		163 163	250 25		237 237 234 241	192 188		558 531
T_nativa_AS_092	Arctic	Polar bear		196	223 22	3 201	201	325	328	227	227	163	163	234 234		237 237	181	188	410
T_nativa_EU_090	Russia	Wolf			220 22		201	328	328	230	230		163	234 234		238 240	189	194	
T_murrelli_NA_101 T_murrelli_NA_100	United States United States	Coyote Raccoon			222 22 222 22		221 229	322 322	322 331	230 230	230	168 159	168	250 25		234 234 233 233	204 207		unpub. Wi 1708
_murrelli_NA_099	United States	Raccoon	204 2	212	222 22	2 212	218	331	331	228	228	161	161	256 25	6	234 234	207	207	225
[_murrelli_NA_098 [_murrelli_NA_097	United States United States	Raccoon Raccoon			222 22 222 22		218 229	331 322	331 331	228 230	228		167 165	256 25 250 25		234 234 234 234	205		227
_hitovi_EU_064	France	Red fox			222 22		225	331	331		228		163	242 243		220 244	192		unpub. WI 325
T_britovi_EU_060	Slovakia Switzerland	Red fox			221 22			331	331		228		163	238 25		234 234	194		360
T_britovi_EU_081 T_britovi_EU_055	Italy	Red fox Red fox			225 22 225 22		214 214	331 328	331 328		228 228		157 165	232 24		219 240 219 219	194 194	194	2
T6_NA_102	United States	Cougar	200 2	200	226 22	6 201	201	320	328	228	228	152	152	236 23	6	220 220	194		
[_britovi_EU_086 [_britovi_EU_058	Spain Bulgaria	Wolf Wild boar			225 22 225 22		214 214	328 328	328 328		228 228		165 165	232 233 232 243		219 219 219 219	193 195		11
_britovi_EU_089	Italy	Red fox			225 22		214	328	328		228		165	242 25		220 220	194	201	23
_britovi_EU_070	Bulgaria	Wild boar			225 22		214	328	328		228		165	242 243		219 219	193	200	1214
[_britovi_EU_052 [_britovi_EU_076	Bulgaria Croatia	Wild boar Wild boar			225 22 222 22		214 214	328 331	328 331		228 228		165 161	232 24 232 24		219 219 219 219	194 192	200	1217 142
_britovi_EU_051	Spain	Wild boar	200 2	204	222 22	5 204	204	331	331	228	228	157	157	238 24	4	219 219	194	200	1569
_britovi"_EU_050 britovi_EU_059	France Italy	Red fox Stray dog			225 22 225 22		214 214	331 331	331 331	228 228	228 228		157 157	242 24 232 23		220 241 219 219	199	199	138
_britovi_EU_039	Italy	Red fox			225 22		214	331	331		230		163	232 23		219 219 219	193	193	
_britovi_EU_067	Sweden	Red fox	184 2	200	225 22	5 214		334	334	228	228		159	232 24		220 220	196		277
_britovi_EU_063 _britovi_EU_071	Estonia Estonia	Brown rat Blue fox			222 22 221 22	5 ? 1 204	? 214	331 331	334 334		228 228		157 157	232 23 232 23		220 220 219 219	192 192		359 354
britovi_EU_062	Estonia	Pig	184 1	184	221 22	1 204	214	331	334	228	228	157	157	232 233	2	219 219	? ?	,	333
_britovi_EU_054	Slovak Republic Kazakhstan	Brown bear			221 22 222 22		214	331 331	331		228		161	232 24 240 24		219 219	194 192		234
_britovi_EU_080 [_britovi_EU_083	France	Wild cat Red fox	200 2		225 22		223 218	328	331 331		228 228		163 165	240 24 240 24		219 223 219 219	192		351
_britovi_EU_068	Spain	Wild boar	184 2	204	222 22	2 214	221	331	331	228	228	161	161	240 24	0	219 219	193	193	320
_britovi_EU_077 britovi_EU_069	Kazakhstan Italy	Wild cat Red fox			222 22 222 22		214 214	331 331	331 331		228 228		157 171	240 24		219 219 219 219	192 194		177
_britovi_EU_084	France	Red fox	184 2	204	222 22	2 206	214	331	331	228	228	163	163	242 243	2 :	220 220	192	192	326
_britovi_EU_088 _britovi_EU_066	Italy Spain	Red fox Wild boar			222 22 225 22		214 214	331 331	331 331		228 228	157 157	165 169	246 24 248 24		220 220 219 219	183 183	189 195	198 1555
_bnlovi_e0_000	South Africa	Spotted hyena			220 22		197	325	334		228	171	171	234 234		219 219 219 225	181	181	124
_britovi_EU_078	Kazakhstan	Golden jackal	184 2	204	222 22	2 204	210	331	331	228	228		163	240 24	0	219 219	170	194	179
_britovi_EU_082 _britovi_EU_073	France Italy	Red fox Red fox			222 22 222 22		214 206	331 328	331 331		228 228		165 163	242 25		220 220 220 220	173	173	348 54
britovi_EU_057	Italy	Red fox	184 2	204	222 22	5 204	210	331	331	228	228	163	163	240 24	0	219 219	? ?	,	200
britovi_EU_085 britovi EU_065	France France	Red fox Red fox			222 22 225 22		221 214	331 331	331 331		228 228		163 167	242 243		220 220 220 220	192		323
_britovi_EU_061	Macedonia	Pig			222 22		214	331	331	228	228		165	240 24		219 219	192		236
britovi_EU_072	Italy	Red fox			222 22		210	331	334		228		157	242 243		220 220	193		57
_britovi_EU_079 britovi_EU_087	Kazakhstan Norway	Golden jackal Red fox			222 22 223 22		214	331 328	331 331	228 228	228 228		165 165	240 24 240 24		219 219 219 219	194 194		128
_britovi_EU_075	Italy	Domestic cat	184 1	184	222 22	5 204	204	331	334		230	157	157	244 24	4 🔡	219 219	194	194	18
[_britovi_EU_056 [_britovi*_EU_049	italy Estonia	Red fox Raccoon dog			222 22 222 22		214 214	331 328	331 331		228 228		163 165	244 244 244 240 240		222 222 219 232	194		119
britovi"_EU_048	Estonia	Wild boar		204	222 22		221	331	331		228		163	234 234		219 219	186		274
T_spiralis_NA_026 T_spiralis_NA_039	United States United States	Raccoon			238 24 238 24		223 223	331 331	331 331	214	221 221		152 152	203 203		234 234	192 192		Racc1 (Murrell et al 1985) Beltsville
_spiralis_NA_030	United States	Pig Pig			238 24		223	331	331		221		152	203 203 203 203		234 234 233 233	192		Maine pig (Murrell et al 1985)
spiralis_NA_029	United States	Bobcat		188	244 24	223	223	331	331		221	152	152	203 20		233 233	192	192	41
spiralis_EU_016 spiralis" EU 012	Yugoslavia Italy	Pig Red fox		188 188	244 24 241 24		223 223	328 328	331 328		221 221	152 152	152 152	205 209		233 233 233 233	192 192		161 151
spiralis_EU_004	Spain	Pig			244 24		223	331	331		221		152	203 203	3 :	233 233	192		206
spiralis_NA_032	United States	Skunk Wild boar		188 188	244 24 247 24		223	331 331	331		221		152	203 203		234 234	192		Skunk-1(Murrell et al 1985)
_spiralis_EU_025 _spiralis_EU_017	Spain Bulgaria	VVIId boar Pig			247 24 244 24		223 223	331 328	331 331		221 221		152 152	203 203 203		233 246 243 243	192 192		192 1222
spiralis_NA_031	United States	Pig	188 1	188	244 24	7 223	223	331	331	221	221	152	152	203 20	5	233 233	192	192	SC pig (Dame et al, 1987)
_spiralis_EU_007 _spiralis_EU_011	Spain Spain	Wild boar Wild boar		188 188	244 24 244 24		223 223	331 331	331 331		221		152 152	203 203 203 203		233 233 233 233	192 192		132
spiralis_NA_027	United States	Opossum	188 1	188	244 24	4 223	223	331	331	221	221		152	203 203	3	233 233	192	192	Opossum1 (Murrell et al 1985)
spiralis_NA_028	United States	Raccoon		188	244 24	223	223	331	331		221 7	??		203 203	3	233 233	192	192	Racc2 (Murrell et al 1985)
_spiralis_NA_033 _spiralis_EU_022	United States Poland	Pig Pig			241 24 241 24		223 223	331 331	331 331		221 221		152 152	203 203 203		233 233 234 234	192 192		III-1 (Gamble and Murrell, 1986) 168
spiralis_EU_015	Austria	Wild boar	188 1	188	241 24	1 223	223	331	331	221	221	152	152	203 203	3 :	234 234	192	192	102
spiralis_EU_001 spiralis_SA_110	Spain Argentina	Wild boar Pig			241 24 244 24		223 223	331 331	331 331		221 221		152 152	203 203 203 203		233 233 233 233	192 192		207 405
spiralis_SA_110 spiralis_NA_040	United States	Pig			244 24 244 24		223	331	331		221	152	152	203 20		233 233	192		195
spiralis_NA_041	United States	Red fox	188 1	188	244 24	7 223	223	331	331	214	221	152	152	203 203	3	234 234	192	192	229
_spiralis_EU_020 _sprialis*_EU_014	Spain Spain	Wild boar Wild boar		188 188	244 24 244 24		223 223	331 331	331 331		221 221		152 152	203 203 203		234 234 234 234	192 192		252 248
spiralis_NA_038	United States	Wild boar	188 1	188	244 24	223	223	331	331	214	214	152	152	203 203	3 :	234 234	192	192	WB-133 (Zarlenga and Barta, 1990
spiralis_NA_035	United States United States	Wild boar Wild boar			244 24 244 24		223 223	331 331	331 331		214 214		152 152	203 203 203		234 234 233 233	192 192		unpub. NH unpub. NH
spiralis_NA_037 spiralis_NA_036	United States	Wild boar Wild boar			244 24 24		223	331 331	331 331		214		152 152	203 20		233 233 233 233	192		unpub. NH unpub. NH
spiralis_SA_109	Argentina	Pig	188 1	188	244 24	223	223	331	331	214	214	152	152	193 20	9 :	233 233	192	192	404
spiralis_NA_034 spiralis_EU_024	Canada Denmark	Polar bear Pig			245 24 245 24		223 223	331 331	331 331		214 214		152 152	205 205 205		234 234 233 233	192 192		PB4 (Dame et al, 1987) 26
_spiralis*_EU_013	Slovak Republic	Red fox	188 1	188	247 24	7 223	223	331	331	214	221	152	152	203 203	3	234 234	192	192	174
spiralis_EU_019	Spain Sweden	Pig			247 24 247 24		223 223	331 328	331 328	214 214	221		152 152	203 203 203 203		233 233 229 229	192 192		212
_spiralis_EU_010 _spiralis*_EU_023	Sweden Spain	Pig Wild boar			247 24 244 24		223	328	328		214		152 152	188 20		234 234	192		204
spiralis_EU_018	Romania	Horse	188 1	188	241 25	223	223	331	331	214	214	152	152	188 20	3	233 233	192	192	482
_spiralis_EU_002 spiralis_EU_021	Spain Spain	Pig Pig			247 24 241 24		223 223	331 331	331 331		221 221		152 152	188 203 203 203		233 233 233 233	192 192		208
_spiralis_EU_009	Spain	Wild boar	188 1	188	241 24	1 223	223	331	331	214	221	152	152	203 203	3	233 233	192	192	88
_spiralis_EU_003	Serbia	Horse			241 24 234 24			331 331	331		221		151	203 203 203		233 233 233 233	192		599
_spiralis_EU_006 _spiralis_AF_005	Finland Egypt	Plg Pig			234 24 238 23		223 223	331	331 331		214 214		152 152	203 203 203		233 233 234 234	192 192		559 154
_spiralis_EU_008	France	Widboar		188	226 24	223	223	322	331		221	152	152	203 20		233 233	192		186
_spiralis_AS_047 _spiralis_AS_044	Thailand South Korea	Pig Badger		192 192	226 22 227 22	6 223 7 229	238 229	322	331 322		221 214		163 157	200 20		231 237 237 237	186 192	190 192	Thai pig (Dame et al, 1987) 623
spiralis_AS_043	China	Pig	184 1	192	227 22	9 218	223	322	328	214	221	152	163	200 20	0	231 231	178	199	82
spiralis_AS_110	China	Pig		192 192	229 22 229 22	223	229	322 322	322 322		221		163 163	200 20		231 231 231 231	178 178	192 192	
_spiralis_AS_109 _spiralis_AS_042	China China	Pig Pig			229 22	223	229 229	322	322		221 221		163	200 20		231 231 231 231	178	192	
spiralis_AS_045	China	Pig	192 1	192	227 23	2 223	229	331	331	214	214	165	169	205 205	5 :	234 244	192	192	unpub.
_spiralis_AS_046	China	Pig	184 1	192	230 23	178	218	328	328	214	214 ?	?	1	201 20		234 243	192	192	unpub.

*Isolates previously assigned to other species. **Accession number in the International Trichinellosis Reference Center (http://www.iss.it/site/Trichinella/) or specified publication. See Refs. (Dame et al., 1987; Gamble and Murrell, 1986; Murrell et al., 1985; Zarlenga and Barta, 1990).

encysted. Most species of *Trichinella* occupy well-defined geographic ranges (Zarlenga et al., 2006). *Trichinella britovi* parasitizes various sylvatic mammals (canidae, felidae, mustilidae, ursidae, viverridae and suidae) endemic to Eurasia and North-Western Africa, whereas *Trichinella murrelli* is restricted to North American wildlife (Kapel, 2000; Pozio and Murrell, 2006). Domesticated swine may become infected with *T. spiralis* if they are permitted to eat uncooked meat (Pozio and Murrell, 2006). Although swine represent the most significant source of human exposure to *T. spiralis*, this parasite is capable of infecting a wide range of other mammals (Kapel, 2000; Pozio, 2000; Pozio and Murrell, 2006).

To compare the extent and pattern of genetic variability in ecologically distinct species of *Trichinella*, we defined the variability of nine nuclear microsatellite loci and sequenced approximately one-fifth of the mitochondrial genome from the broadest population sample yet attempted for species of *Trichinella*, involving twenty-eight countries on four continents. We discovered that *T. spiralis* in domesticated pigs throughout the Western world share strikingly uniform genotypes. By implicating permissive agricultural practices as responsible for the parasite's historical dissemination, these data motivate renewed interest in understanding whether such practices remain necessary for this parasite's continued transmission.

2. Methods

2.1. Specimens

Decades of sampling contributed to our broad survey of specimens, most of which were derived from the International Trichinella Reference Centre in Rome, Italy (http://www.iss.it/site/ Trichinella). Each specimen and its origin is specified in Table 1. Our study emphasized a comparison between *T. spiralis* and *T. britovi*, including additional specimens of other available species and genotypes for added context.

2.2. DNA extraction

DNA was extracted from small pools (\sim 15) of larvae that were isolated from fresh tissue or from long-term liquid nitrogen storage, using Proteinase K digestion and adsorption to magnetic beads using the DNA-IQ system and the Tissue and Hair extraction kit (Promega).

2.3. PCR amplification

Microsatellite primers and repeat motifs

Table 2

The primers for each locus, and the repeat motif they flank, are specified in Table 2. To identify microsatellite loci, we screened the draft *T. spiralis* genome project *in silico* for simple repeat motifs. Candidate loci were screened via PCR for their ability to amplify robust products under a range of annealing temperatures. We

Table J	Та	ble	3
---------	----	-----	---

Mitochondrial sequencing primers

Forward	Reverse
CACATGATTCACAATCACCT	GAAGCTTAAAATGTCTTCTC
GCAGTAAGAAACCCATCAGA	TAAGTAAGATTTCAATGGCG
GGAGTAACCAAAAATCTAGATCCAA	AAATCTTAAGTACTCGTAGTTTA
CTAGAATGAAAGGAGCAAAG	AGGTTGTGATTATTAGTTTCTAGGG
CCACAATTACCTTACTAATCAC	CCACAATTACCTTACTAATCAC
ACACACCATTAGGATGAATA	AGGAATACACCTACGATTAA
GCATGTCTAAGACTAATTGCATCA	CCTAGTCAGGAGGAGTTGGG

confirmed the target locus using agarose gel electrophoresis and bi-directional fluorescent sequencing using BigDye v.3.1 chemistries. Thereafter, microsatellite genotyping was accomplished via capillary electrophoresis of products labelled with 6-FAM on an ABI 3730 DNA sequencer. Alleles were called using Genemapper software (Applied Biosystems).

Approximately 3100 bp of contiguous mitochondrial DNA (spanning cytb, tRNA-Ser, SSU rDNA, tRNA-Val, LSU rDNA, atp6, and cox3 genes) were sequenced from each of 14 Western and 8 Asian isolates of *T. spiralis*. Primers Trichi-cob-F1 and Trichi-cox3-R1 (Lavrov and Brown, 2001) were used in conjunction with a series of internal primers designed from a full-length mitochondrial genome sequence AF293969 (Table 3).

Lyophilized DNAs were reconstituted in 50 μ l water prior to use. Polymerase chain reactions (20 μ l) were comprised of 2 μ l DNA, 0.2 mM dNTPs, 0.5 μ M of each primer, and either 0.5 U of Platinum[®] High Fidelity Taq polymerase (Invitrogen) in 0.6 mM MgSO₄ 1× buffer (Invitrogen), or 0.5 U Native Taq polymerase (Fisher Scientific) in 0.6 mM MgCl₂ 1× PCR buffer. Negative control reactions were included in each experiment. Each PCR commenced with 3 min denaturation at 94 °C and culminated with a final 10 min extension at 72°. Microsatellite loci were amplified using 35–40 cycles @ 94° for 30 s, 53° for 45 s, and 72° for 90 s, using 6-FAM labelled forward primers; mitochondrial loci were amplified using 35 cycles @ 94° for 30 s, 55° for 30 s, and 72° for 2 min.

2.4. Microsatellite length determination

Amplified products were diluted 50-fold in water and mixed 1:10 in Hi-DiTM Formamide containing 0.75% GeneScanTM 500 LIZ[®] Size Standard. Samples were electrophoresed on an Applied Biosystems 3730 DNA Analyzer and genotyped using Genemapper[®] v.3.7.

2.5. Sequencing

To prepare PCR products for dual-directional sequencing, excess primers and dNTPs were removed by adding 0.8 μ l of ExoSap-IT[®] (USB Corp.) to 2 μ l of the PCR product. After successive 15 min incubations at 37° and 80°, sequencing reactions were completed by adding 1 μ l of BigDye[®] Terminator v.3.1, 2 μ l of 5× Big Dye[®]

Locus	Alias	Forward	Reverse	Repeat
1	TP1	GCGCGATTACGACACTACAA	ATTCGCCACTGTCACTTTCC	TTAA
2	TP5	TACATGGCCCACAGCAAAT	GATGGCCACCAGGTAAGAAA	TTA
3	TP19	AGGAAGATCAAGCGGCAATA	CACGAGTTTGCCTGATGAAA	CAA
4	TP26	GACGTTCAAGAAACGAATGCT	GGATAACCCTCGGCGTATTT	AAC
5	TP28	TCGTTTTTCGTGCTTGATTG	CGGACTTGGTTGCTAGTTGA	TTAAAA
6	TP32	GCGGGTGAAAAATTTCTCTTT	TCAGTCGAAGCAAACCAAAA	TG
7	TP43	TACAGGCGTTCGACACAATC	AGCGCTGAGGTGTCTTTCAT	TA
8	TP47	GAACAGCTTCGGTAGGATGC	TGAATGGCGTGTTTGACAAT	TA
9	TP53	TTGCACAAGTGCGAAAACTC	TGGGTGTGATAGCAACCAGT	TG

terminator buffer (Applied Biosystems) and 1 μ l 3.2 pmol primer. These underwent 25 cycles @ 92° for 15 s, 50° for 15 s, 60° for 4 min. Unincorporated fluorescent dNTPs were then removed using gel cartridge columns (Edge Biosystems) prior to electrophoresis on an ABI 3100 sequencer. Sequence chromatograms were edited using Sequencher[®] v.4.6 (Genecodes Corp.). Sequence data were aligned in Vector NTI Advance v.10 (Invitrogen Corp.).

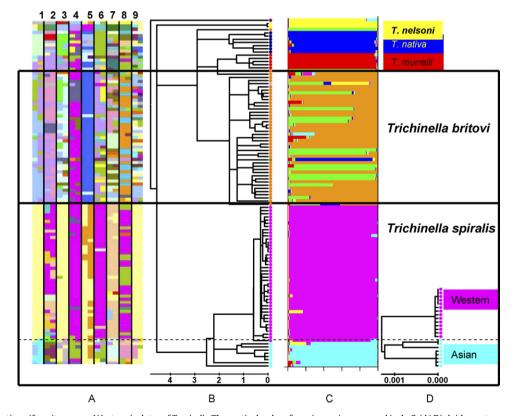
Mitochondrial gene trees were reconstructed under the criterion of minimum evolution from Kimura 2-parameter distances using MEGA 4.2 (Tamura et al., 2007).

2.6. Genotype-based assignment of individuals to populations

Structure 2.2 was used to assess the statistical confidence with which each specimen could be assigned to one (or more) population subdivisions. Each of ten replicate analyses sampled 1 million generations after discarding a 'burn-in' period of 100,000 generations, under the assumption of seven populations. The statistical plausibility and population composition of alternative scenarios, assuming less or more population subdivision, was also evaluated. These resulted in qualitatively similar outcomes: whereas parasites of wildlife hosts could be further subdivided, Western isolates of *T. spiralis* could not (data not shown).

2.7. Divergence time estimation

The mean difference in microsatellite length, $(\partial \mu)^2$ provides an accurate estimate of divergence time irrespective of changes in


population size when this estimator has not yet asymptotically approached its maximum value (Goldstein et al., 1995). Its application to the divergence between Western and Asian populations of *T. spiralis* appears justified, since its value (40.59) is less than one-sixth the value as when Western *T. spiralis* and *T. britovi* are compared (257.57).

2.8. Estimating parasite generation length

Indirect estimates of parasite longevity were derived by considering the life history of their typical hosts. Traditionally, piglets were weaned at 2–3 months of age, at which point they could first acquire infection. Subsequent transmission could commence soon thereafter (when many such animals were slaughtered) or within 2 or 3 years (their typical maximum age) (Mason, 1986). Parasite longevity would be further reduced in swine dying before their intended slaughter, in swine whose immunity allowed them to outlive their parasites, and in synanthropic rats where transmission would cycle more rapidly.

3. Results

One group of *T. spiralis* isolates share remarkably uniform genotypes defined by nine autosomal microsatellite markers (Fig. 1A). This "Western" group, which included every isolate of *T. spiralis* sampled from Europe, the Americas, and Egypt (n = 43), harbored fewer alleles and multilocus genotypes than either *T. britovi* from European wildlife (n = 44) or *T. spiralis* from Asia

Fig. 1. Exceptional genetic uniformity among Western isolates of *T. spiralis*. The vertical order of specimens is conserved in A–C. (A) Diploid genotypes of 110 isolates at each of 9 microsatellite loci. Each allele is represented as a color. Western *T. spiralis* isolates are absolutely fixed at loci 1 and 9 (yellow) and nearly fixed at loci 3, 4, and 6. Greater diversity occurs in Asian *T. spiralis* (below dotted line) and wildlife parasites (above bold line). (B) Neighbor-joining tree reconstructed from the *D*_{sw} distances (Shriver et al., 1995) of the microsatellite data. Western isolates of *T. spiralis* (**)** define an especially shallow clade. The tree is rooted with *T. pseudospiralis* (**)** and includes individual specimens of T6 (**)** and T8 (**)**. (C) Western isolates of *T. spiralis* are assigned to a single, especially homogeneous population (pink) by a Bayesian statistical procedure (PritchardStephens and Donnelly, 2000) applied to microsatellite data. Greater population subdivision is evident among *T. britovi* isolated from European wildlife. (D) Significantly deeper divergence is observed among Asian isolates of *T. spiralis* than among Western isolates in a Minimum Evolution tree reconstructed from 3100 bp of mt DNA.

(n = 8). Although more than five times as many "Western" than Asian isolates were genotyped, Western isolates harbored more alleles at only one of nine microsatellite loci. The most frequent allele never exceeded 67% in Asian isolates, but did so in six of nine microsatellite loci in Western isolates. At eight of nine loci, the predominant allele in Western isolates was more frequent than the predominant allele in Asia (p < .005, Wilcoxan signed-rank test). Among polymorphic loci, half as many alleles occur in *T. spiralis* as in T. britovi. Despite their derivation from four continents and several host species (including domestic pigs wild boars, red foxes, opossums, raccoons, and horses), the isolates of the Western group in our entire sample set are genetically less variable than those European specimens of *T. britovi* obtained from a single wildlife species (red foxes, n = 14). They are also less variable than our modest sample of either T. murrelli or T. nativa, parasites endemic to wildlife hosts of temperate North America and the Arctic, respectively.

A tree reconstructed from inter-individual differences in microsatellite length confirms that all isolates of *T. spiralis* are monophyletic and that Western isolates share an especially recent common origin (Fig. 1B). Far greater microsatellite divergences are evident among isolates of *T. spiralis* in Asia, and among isolates of *T. britovi* and other taxa of *Trichinella* in wildlife. These data reaffirm the earlier conclusion (Zarlenga et al., 2006) that *T. spiralis* and a species endemic to African carnivores, *Trichinella nelsoni*, diverged prior to the lineage of Holarctic species comprised of *T. britovi*, *Trichinella nativa*, and *T. murrelli*, but point to a recent dissemination of *T. spiralis* in the West.

Using a Bayesian statistical procedure (Pritchard et al., 2000) that assigns individuals to subpopulations based solely on their microsatellite genotypes without reference to *a priori* taxonomic or geographic designations, each Western *T. spiralis* isolate was unambiguously assigned to one population, whereas Asian isolates of *T. spiralis* and isolates of *T. britovi* were assigned to other, more variable population subdivisions (Fig. 1C). Comparatively deeper branching in clades defined by *T. nativa* and *T. murrelli* again attests to their apparently greater degree of genetic variability.

Assuming that each microsatellite locus sustained an average of 5.6×10^{-4} mutations (Goldstein et al., 1995) during parasite generations averaging six months, Western and Asian lineages of *T. spiralis* would have diverged ~18,000 years ago. Greater precision in this estimate would be possible if the mutation and transmission rates were better known. To further test

whether the geographically widespread Western isolates of T. spiralis share an especially recent common ancestry, we characterized the extent of variation evident in a substantial portion of the maternally inherited mitochondrial genome. Each specimen of Western T. spiralis had one of only two haplotypes differing at only one of 3100 base pairs (d = 0.00032). By contrast, among only eight sampled Asian isolates, three mitochondrial haplotypes were identified that differed by as much as eight times that amount (Fig. 1D; Fig. 2). If mitochondrial lineage pairs accumulated differences at a roughly constant rate of $\sim 2\%$ per million years (Brown et al., 1979), Western T. spiralis matrilineages would have undergone a population bottleneck within the last 16,000 years. That bottleneck might have occurred only 6000 years ago if mitochondrial substitutions actually accumulated 2.6 times faster, as implied by models that account for substantial variation in the substitution rate among sites in mitochondrial genes (Arbogast et al., 2002).

4. Discussion

Because the evolutionary ecology of Trichinella spp. has been insufficiently examined (Tibayrenc, 2001), we undertook a global survey of population genetic variation in parasites that exploit wildlife hosts and domesticated swine. Developing a suite of markers which show promise in elucidating the history and diversity of other species of Trichinella, we discovered that a nearly uniform lineage of *T. spiralis* now occupies an exceptionally broad, trans-Atlantic distribution. More limited geographic ranges typify species of Trichinella restricted to wildlife hosts. The absence of regional differentiation between far-flung Western populations underscores the hypothesis that T. spiralis disseminated there only recently. Genealogies reconstructed from both the microsatellite and mitochondrial data indicate that the earliest diversifications in T. spiralis occurred in Asia. More intensive sampling in Asia might establish with greater precision where and when the Western lineage of *T. spiralis* originated. Stochastic sampling error renders molecular clock estimates imprecise even when rate calibrations are well-supported (Ayala, 1997; Hillis and Moritz, 1996), but extant Western isolates of T. spiralis share more recent common ancestry than do lineages of Trichinella evidently separated during the Pleistocene (i.e. T. nativa and the T6 genotype) (Zarlenga et al., 2006). Neither domesticated pigs nor their feral descendants inhabited the Americas before the Colonial Era. Our genetic data suggest that the same is true of *T. spiralis*.

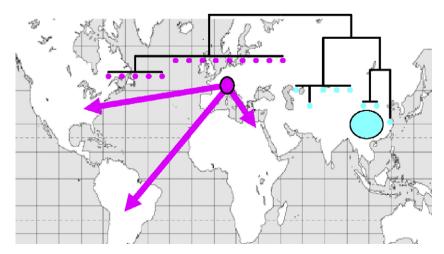


Fig. 2. Limited mitochondrial diversity in Western isolates of *T. spiralis*. A Minimum Evolution tree was reconstructed from Kimura 2-parameter distances in 3100 bp of mitochondrial DNA. Western isolates of *T. spiralis* differ by at most one substitution (0.00032). Isolates derived from Asia differ to a much greater extent. Colors as in Fig. 1B and C.

Human beings may have first consumed meats infected with Trichinella and other parasites millions of years before the advent of agriculture (Owen et al., 2005; Zarlenga et al., 2006). T. spiralis diverged early in the history of the genus; its distant relationship to other species of Trichinella therefore renders its ultimate origins enigmatic (Zarlenga et al., 2006). Evidence from other parasites ingested in meat suggest that Trichinella could have infected human beings millions of years before the domestication of pigs. For example, swine and cattle probably first became infected with tapeworms (of the genus Taenia) by Neolithic farmers, whose remote ancestors first became infected while consuming the traditional prey of hyenas (Hoberg et al., 2001). If such early hominid hunters were simultaneously exposed to infection with Trichinella, then the extant genetic variation in T. spiralis reflects only its most recent transmission and dispersal history.

The extant ecology and epidemiology of foodborne parasites has been profoundly influenced by livestock domestication. As may also be true for pork tapeworms (Campbell et al., 2006; Nakao et al., 2002), *T. spiralis* in the West originated in domesticated pigs only within the last several thousand years and was disseminated by European colonists only within the last several hundred years. Interestingly, the diversity in *T. spiralis* appears to be greater where pigs were first domesticated, in East Asia. There, the true diversity of *T. spiralis* undoubtedly exceeds that evident in the current, admittedly limited sample. By contrast, additional sampling of isolates in the West would seem unlikely to identify heretofore uncharacterized variants.

Although *T. spiralis* remains a parasite of animals, its abundance, distribution, and diversity were profoundly influenced by human activity. This distinguishes *T. spiralis* from other pathogens engendered by Eurasian agriculturalists and disseminated by their seafaring descendants (i.e. smallpox and measles viruses, which lost their dependency on animal reservoirs) and from other zoonoses requiring animal reservoirs (which, like anthrax and rabies, generally originated in the tropics prior to the advent of agriculture) (Wolfe et al., 2007). Thus, a distinct evolutionary ecology may characterize zoonotic pathogens of domesticated livestock.

The expansion of agriculture was evidently responsible for the historical dissemination of T. spiralis, but the requirements for ongoing transmission remain uncertain. In particular, it is unclear how extensive a risk wildlife or rats pose to swine where transmission among pigs has been prevented by eliminating, from their diet, meats harboring viable parasites. The species of Trichinella that most commonly infect wildlife pose negligible risk to the safety of pork (Kapel and Gamble, 2000). Nonetheless, the risks to swine posed by suspected wildlife reservoirs of T. spiralis should be evaluated in the various agro-ecological settings where swine are raised, because measures intended to safeguard food safety require substantial effort and cost. Does T. spiralis thrive primarily where poor management facilitates its transmission among swine (Kapel, 2000; Pozio, 2000; Pozio and Murrell, 2006), or has the parasite instead become established in selfsustaining cycles among wildlife (Rafter et al., 2005)? If eliminating T. spiralis from swine herds irrevocably breaks the cycle of transmission necessary for its local persistence, such interventions would provide enduring benefits to the economy and to public health.

Acknowledgements

We greatfully acknowledge financial support from USDA CRIS Project 701-1265-140-11 and the Organization for Economic Cooperation and Development's Co-Operative Research Programme for Biological Resource Management for Sustainable Agricultural Systems. All of those who deposited specimens with the International Trichinellosis Reference Center made this comparative study possible.

References

- Arbogast, B.S., Edwards, S.V., Wakeley, J., Beerli, P., Slowinski, J.B., 2002. Estimating divergence times from molecular data on phylogenetic and population genetic timescales. Annu. Rev. Ecol. Syst. 33, 707–740.
- Ayala, F.J., 1997. Vagaries of the molecular clock. Proc. Natl. Acad. Sci. U.S.A. 94, 7776-7783.
- Brown, W.M., George, M., Wilson, A.C., 1979. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. U.S.A. 76, 1967–1971.
- Campbell, G., Garcia, H.H., Nakao, M., Ito, A., Craig, P.S., 2006. Genetic variation in Taenia solium. Parasitol. Int. 55 (Suppl.), S121–126.
- Clutton-Brock, J., 1999. A Natural History of Domesticated Mammals Cambridge. Cambridge University Press.
- Crosby, A.W., 1976. Virgin soil epidemics as a factor in the aboriginal depopulation in America. William Mary Q 33, 289–299.
- Crosby, A.W., 1986. Ecological Imperialism: The Biological Expansion of Europe 900–1900. Cambridge University Press, Cambridge.
- Dame, J.B., Murrell, K.D., Worley, D.E., Schad, G.A., 1987. Trichinella spiralis: Genetic evidence for synanthropic subspecies in sylvatic hosts. Exp. Parasitol. 64, 195– 203.
- Diamond, J., 2002. Evolution, consequences and future of plant and animal domestication. Nature 418, 700–707.
- Dupouy-Camet, J., Kociecka, W., Bruschi, F., Bolas-Fernandez, F., Pozio, E., 2002. Opinion on the diagnosis and treatment of human trichinellosis. Expert. Opin. Pharmacother. 3, 1117–1130.
- Gamble, H.R., Murrell, K.D., 1986. Conservation of diagnostic antigen epitopes among biologically diverse isolates of *Trichinella spiralis*. J. Parasitol. 72, 921– 925.
- Goldstein, D.B., Ruiz Linares, A., Cavalli-Sforza, L.L., Feldman, M.W., 1995. Genetic absolute dating based on microsatellites and the origin of modern humans. Proc. Natl. Acad. Sci. U.S.A. 92, 6723–6727.
- Hillis, D.M.B.K.M., Moritz, C., 1996. Applications of molecular systematics: the state of the field and a look to the future. In: Hillis, D.M.C.M., Mable, B.K. (Eds.), Molecular Systematics. 2nd ed. Sinauer Associates, Sunderland, MA, pp. 531–540.
- Hoberg, E.P., Alkire, N.L., de Queiroz, A., Jones, A., 2001. Out of Africa: origins of the Taenia tapeworms in humans. Proc. Biol. Sci. 268, 781–787.
- Horimoto, T., Kawaoka, Y., 2005. Influenza: lessons from past pandemics, warnings from current incidents. Nat. Rev. Microbiol. 3, 591–600.
- Kapel, C.M., 2000. Host diversity and biological characteristics of the *Trichinella* genotypes and their effect on transmission. Vet. Parasitol. 93, 263–278.
- Kapel, C.M., Gamble, H.R., 2000. Infectivity, persistence, and antibody response to domestic and sylvatic *Trichinella* spp. in experimentally infected pigs. Int. J. Parasitol. 30, 215–221.
- Larson, G., Albarella, U., Dobney, K., Rowley-Conwy, P., Schibler, J., Tresset, A., Vigne, J.D., Edwards, C.J., Schlumbaum, A., Dinu, A., Balacsescu, A., Dolman, G., Tagliacozzo, A., Manaseryan, N., Miracle, P., Van Wijngaarden-Bakker, L., Masseti, M., Bradley, D.G., Cooper, A., 2007. Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. Proc. Natl. Acad. Sci. U.S.A. 104, 15276–15281.
- Larson, G., Dobney, K., Albarella, U., Fang, M., Matisoo-Smith, E., Robins, J., Lowden, S., Finlayson, H., Brand, T., Willerslev, E., Rowley-Conwy, P., Andersson, L., Cooper, A., 2005. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307, 1618–1621.
- Lavrov, D.V., Brown, W.M., 2001. *Trichinella spiralis* mtDNA: a nematode mitochondrial genome that encodes a putative ATP8 and normally structured tRNAs and has a gene arrangement relatable to those of Coelomate metazoans. Genetics 157, 621–637.
- Mason, I.L., 1986. Evolution of Domesticated Animals. John Wiley & Sons.
- Murrell, K., Leiby, D.A., Duffy, C.H., Schad, G.A. (Eds.), 1985. Susceptibility of Domestic Swine to Wild Animal Isolates of *Trichinella spiralis*. The State University of New York Press, Albany.
- Nakao, M., Okamoto, M., Sako, Y., Yamasaki, H., Nakaya, K., Ito, A., 2002. A phylogenetic hypothesis for the distribution of two genotypes of the pig tapeworm *Taenia solium* worldwide. Parasitology 124, 657–662.
- Owen, I.L., Gomez Morales, M.A., Pezzotti, P., Pozio, E., 2005. Trichinella infection in a hunting population of Papua New Guinea suggests an ancient relationship between *Trichinella* and human beings. Trans. R. Soc. Trop. Med. Hyg. 99, 618– 624.
- Palumbi, S.R., 2001. Humans as the world's greatest evolutionary force. Science 293, 1786–1790.
- Pozio, E., 2000. Factors affecting the flow among domestic, synanthropic and sylvatic cycles of *Trichinella*. Vet. Parasitol. 93, 241–262.
- Pozio, E., Murrell, K.D., 2006. Systematics and epidemiology of *Trichinella*. Adv. Parasitol. 63, 367–439.
- Pritchard, J.K., Stephens, M., Donnelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945–959.
- Rafter, P., Marucci, G., Brangan, P., Pozio, E., 2005. Rediscovery of *Trichinella spiralis* in red foxes (*Vulpes vulpes*) in Ireland after 30 years of oblivion. J. Infect. 50, 61–65.

- Shriver, M.D., Jin, L., Boerwinkle, E., Deka, R., Ferrell, R.E., Chakraborty, R., 1995. A novel measure of genetic distance for highly polymorphic tandem repeat loci. Mol. Biol. Evol. 12, 914–920.
- Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596.
- Tibayrenc, M., 2001. The relevance of evolutionary genetics for identification of *Trichinella* sp. and other pathogens at the strain, subspecies and species levels. Parasite 8, S21–23.
- Wolfe, N.D., Dunavan, C.P., Diamond, J., 2007. Origins of major human infectious diseases. Nature 447, 279–283.
- Zarlenga, D.S., Barta, J.R., 1990. DNA analysis in the diagnosis of infection and in the speciation of nematode parasites. Rev. Sci. Technol. 9, 533–554.
- Zarlenga, D.S., Rosenthal, B.M., La Rosa, G., Pozio, E., Hoberg, E.P., 2006. Post-Miocene expansion, colonization, and host switching drove speciation among extant nematodes of the archaic genus *Trichinella*. Proc. Natl. Acad. Sci. U.S.A. 103, 7354–7359.