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1. Abstract 

Once infected with human immunodeficiency virus (HIV), currently available 

pharmacotherapies can only partly control, but not cure infection. Thus, there remains an 

urgent need for more potent and conceptually novel antiviral therapeutics, including the 

development of prophylactic and therapeutic HIV vaccines. To develop such novel treatment 

strategies, the use of animal models is critical to study virus replication and disease 

progression in vivo. On the other side, understanding how innate immunity works in primary 

human HIV target cells is important to find novel measures to inhibit or even eradicate HIV. 

Furthermore, knowledge gained from innate immunity studies in human cells can be 

transferred to animal model development. Here, we focus on both establishing rabbits as a 

suitable candidate to study HIV pathogenesis and identifying SAM domain and HD domain-

containing protein 1 (SAMHD1) and a currently unknown protein as important cellular factors 

inhibiting HIV replication in primary resting T cells.  

Cells from New Zealand white rabbits display a remarkable HIV susceptibility ex vivo as they 

express only three blocks to full-length HIV replication. Deficits at the level of entry and reverse 

transcription could be overcome by transient expression of human CD4/CCR5 on primary 

rabbit macrophages and by using a HIV/ simian immunodeficiency virus (SIV) capsid chimera 

to avoid recognition by rabbit tripartite motif-containing protein 5 (TRIM5). The nature of the 

third barrier, causing a HIV infectivity defect in primary rabbit macrophages, remains elusive. 

As the phenotype resembles the antiviral activity of serine incorporator proteins 3/5 

(SERINC3/5), we analyzed SERINC3/5 orthologs from mouse, rat and rabbit, and compared 

them to the human counterparts. We found that all orthologs are highly conserved at amino 

acid level. In the absence of viral antagonists, all rodent and lagomorph SERINC3 and 

SERINC5 orthologs displayed anti-HIV activity comparable to the human orthologs, generally 

with lower restriction activities for SERINC3 than for SERINC5. Interestingly, HIV Nef, murine 

leukemia virus (MLV) GlycoGag and equine infectious anemia (EIAV) S2 proteins 

counteracted the antiviral activity of all SERINC3/5 orthologs with comparable efficiencies. 

Thus, our results demonstrate that the antiviral activity of SERINC proteins is conserved also 

in rodents and rabbits, and can be overcome by all three thus far identified viral antagonists. 

These findings indicate that SERINC3/5 restrictions do not pose a significant barrier for the 

development of immunocompetent animal models for HIV-1 infection.  

 

Resting CD4 T cells are one of the major target cells for HIV. Since two decades it was known 

that resting CD4 T cells are highly resistant to productive infection by inhibiting early reverse 

transcription of incoming viral genomes, but its underlying nature remained elusive. Here, we 

identified the deoxynucleoside triphosphate triphosphohydrolase SAMHD1 as a major 
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restriction factor acting also in resting CD4 T cells. SAMHD1 reduces intracellular dNTP pools, 

which are a major substrate for the reverse transcription of HIV-1 RNA to cDNA. This restriction 

is overcome by HIV-1 or HIV-2 virions into which viral protein X (Vpx) is artificially or naturally 

packaged, respectively, or by addition of exogenous deoxynucleosides. Vpx from the SIVmac 

(rhesus macaque)/HIV-2 lineage mediates proteasomal degradation of SAMHD1, which leads 

to the elevation of intracellular deoxynucleotide pools and successful infection of Vpx-carrying 

HIV.  

Subsequently, we found that virion-packaged Vpx proteins from a second SIV lineage, SIV of 

red-capped mangabeys or mandrills (SIVrcm/mnd-2), increased HIV infection in resting CD4 

T cells, but not in macrophages. Surprisingly, these Vpx proteins did not induce SAMHD1 

degradation, dNTP pool elevation, or change SAMHD1 phosphorylation. We mimicked 

enhancement of early post entry steps in a Vpx rcm/mnd-2-like fashion by generating single 

amino acid changes in the SAMHD1-degrading Vpx mac239 protein. In addition, SIVmac239 

Vpx enhanced HIV-1 infection of SAMHD1-deficient resting CD4 T cells of a patient with 

Aicardi-Goutières syndrome. Thus, our results indicate that Vpx can also counteract an 

additional block at the level of reverse transcription that acts independently of the SAMHD1-

mediated restriction and is specific to resting CD4 T cells. 

 

Summarizing, identification, characterization and surmounting of barriers to HIV replication will 

increase our knowledge on HIV innate immunity and help to build an immunocompetent small 

animal model to HIV infection. 

 

2. Abbreviations 

2-LTR two-long terminal repeats 
AGS Aicardi-Goutières syndrome 
AIDS acquired immunodeficiency syndrome 
ALLN N-acetyl-Leu-Leu-Norleu-al; Calpain Inhibitor I 
AMD3100 Plerixafor, CXCR4-antagonist 
APOBEC apolipoprotein B mRNA editing catalytic 

polypeptide-like 
BD Below detection 
BLT humanized bone marrow-liver-thymus mouse 
CCR5 C-C chemokine receptor type 5 
CD cluster of differentiation 
CD25 α-chain of the IL-2 receptor, expressed on 

activated T cells 
CD3 T cell coreceptor 
CD317 Tetherin, BST-2 
CD4 Surface receptor on T helper cells, monocytes, 

macrophages, and dendritic cells 
CD69 transmembrane C-Type lectin protein, early 

activation antigen 
cDNA complementary DNA 
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CRISPR/Cas Clustered Regularly Interspaced Short 
Palindromic Repeats / CRISPR-associated 
protein, genome editing tool 

CRM1 Chromosomal Maintenance 1, Exportin 1 
CXCR4 C-X-C chemokine receptor type 4, fusin 
CycT1 Cyclin T1 
dN deoxynucleosides 
DNA deoxyribonucleic acid 
dNTP deoxynucleotide 
EFV Efavirenz, Sustiva 
EIAV equine infectious anemia virus 
env / Env envelope (gene/protein) 
F1 first filial generation 
FACS fluorescence-activated cell sorting 
FITC fluorescein isothiocyanate 
gag / Gag group of specific antigen (gene/protein) 
GBP guanylate binding protein 
GFP green fluorescent protein 
h human 
H/SCA HIV capsid switch mutant with 1-149aa of SIV 

capsid 
HAART highly active antiretroviral therapy 
HIV human immunodeficiency virus 
HLA human leukocyte antigen 
IFITM Interferon-induced transmembrane protein 
KO knockout 
LTR long terminal repeats 
mABs monoclonal antibodies 
mac macacca 
MARCH Membrane Associated Ring-CH-Type Finger 
MG132 carbobenzoxy-Leu-Leu-leucinal, proteasomal 

inhibitor 
µM micromolar 
mM millimolar 
MLV murine leukemia virus 
mnd mandrill 
Nef Negative Regulatory Factor 
NHP non-human primates 
p24 HIV capsid 
PBMC peripheral blood mononuclear cells 
PCR polymerase chain reaction 
PE phycoerythrin 
PERT qPCR-based product-enhanced RT 
pol / Pol polymerase (gene/protein) 
qPCR quantitative PCR 
R redundant, region of LTR 
R5 CCR5-tropic 
rcm red-capped mangabeys 
Rev regulator of virion expression 
RNA ribonucleic acid 
RNAseq RNA sequencing 
RT reverse transcriptase 
s.d. standard deviation 
s.e.m. standard error of the mean 
S2 EIAV regulatory protein 
SAMHD1 SAM domain and HD domain-containing protein 

1 
SCID severe combined immunodeficiency 
SERINC serine incorporator 
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SG-PERT SYBR Green I-based PERT assay 
SHIV SIV/HIV chimera 
SIV Simian immunodeficiency virus 
T20 Enfuvirtide, fusion inhibitor 
Tat trans-activator of transcription 
TRIM tripartite motif-containing protein 
U unique, region of LTR 
Vif viral infectivity factor 
Vpr viral protein R 
Vpu viral protein U 
Vpx viral protein X 
wt wildtype 
X4 CXCR4-tropic 
YFP yellow fluorescent protein 

 

3. Introduction 

HIV has become one of the most devastating pandemic in recorded history. Currently over 

36.7 million people are living with HIV-1 and about 1.1 million died in the same year (UNAIDS 

/WHO, 2016). The introduction of antiretroviral therapy in 1995 (HAART: highly active 

antiretroviral therapy) resulted in a marked reduction of mortality and morbidity caused by HIV-

1/ acquired immunodeficiency syndrome (AIDS), as determined by a decreased incidence of 

opportunistic infections, and deaths in the developed world. Despite the therapeutic advances 

made during the last decade, once an individual has become infected, eradication of the virus 

still remains impossible and no protective vaccine against HIV is in sight. 

 

All retroviruses possess three major coding domains between the two long terminal repeats 

(LTR). gag (group specific antigen) encodes internal structural proteins, pol (polymerase) the 

viral enzymes, and env (envelope) components of the envelope protein (Fig. 1). Late in the 

timing of infection, three primary HIV translation products, all encoding structural proteins, are 

synthesized as polyprotein precursors that are further processed by viral or cellular proteases, 

yielding mature particle-associated proteins. In addition to that, being a complex retrovirus, 

HIV possesses accessory genes which are vif, vpr, nef, tat, rev and vpu.  

 

 
Figure 1: Organization of the HIV genome. The relative locations of the HIV open reading frames gag, 
pol, env, vif, vpr, vpu, nef, tat, and rev are indicated as well as the 5′ and 3′ LTRs (U3, R and U5 regions 
noted). 
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3.1 HIV animal models 

An immunocompetent, permissive small animal model would be valuable for the study of HIV-

1 pathogenesis and for the testing of drug and vaccine candidates.  

Non-human primate (NHP) models are used for the study of human diseases because they 

exhibit remarkable similarities to humans in virtually every aspect of their anatomy, physiology 

and endocrinology. Most pathogenesis and vaccine studies of retrovirus infections have been 

conducted in either the SIV- or SHIV chimera-macaque model including testing of inhibitors of 

the HIV reverse transcriptase and protease1-3. While acute viremia and persistent low level 

infection were found in vivo in pigtailed macaques using a minimally modified simian-tropic 

HIV-1 strain4, signs for AIDS-like disease were only reported after serial in vivo passage of the 

virus5. Disadvantages of NHPs are their limited accessibility due to their popularity as an HIV 

animal model, experiments result in high costs and the origin of the animals raises ethical 

concerns. Furthermore, rhesus macaques have to be infected with the related lentivirus SIV or 

SHIV chimeras.  

Since HIV does not replicate in mice and rats6 the majority of preclinical testing of anti-HIV 

drugs has been performed in various xenotransplant models, in which human hematopoietic 

cells or tissues are transplanted into SCID (severe combined immunodeficiency) mice. 

Selective aspects of HIV pathogenesis could be investigated using modified versions of the 

SCID mice. Recently, successful HIV-1 infection and sustained viremia was achieved via 

rectal, vaginal and mucosal exposure of BLT (bone marrow-liver-thymus) mice7-9, which was 

efficiently prevented by pre-exposure prophylaxis treatment8-10. Humanized 

NOD/SCID/IL2Rγnull (hNOG) mice, which were constructed by transplanting human fetal- or 

cord blood-derived hematopoietic stem cells in lymphoid tissue11-16, were used for long-term 

evaluation of anti-HIV drugs and broadly neutralizing antibodies (bNAbs)8,17-19 and selected 

aspects of HIV pathogenesis20,21. However, a disadvantage of all these systems is the lack of 

proper humoral and cellular immune responses. This is mainly due to the absence of HLA 

class I and II expression in the mouse thymus, which is required to support the selection of T 

cells following human stem cell engraftment21,22. A further disadvantage is the variation in 

human donors but also the reconstitutions. For the generation of BLT mice embryonic material 

has to be used, which raises ethical concerns. Such a model may therefore not replace but 

should help to limit the number of studies that are required in NHPs and humans and efforts 

to reduce the current limitations of this model are in progress22,23.   

An alternative approach to HIV animal model development has been the identification and 

surmounting of species-specific barriers that HIV encounters along its replication cycle in cells 

from small animals. These species-specific barriers are either due to missing cellular co-

factors, which are hijacked by HIV-1 at different steps of its life cycle for efficient replication, or 

due to the presence of restriction factors, which block HIV-1 replication at different steps. We 
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and others have characterized several barriers that limit HIV-1 replication in rodent cells24-29  

(Fig. 2). The ultimate goal is to use this knowledge to generate immunocompetent transgenic 

animals that are HIV-1 susceptible. In mice, barriers at the level of HIV-1 entry and transcription 

have been successfully overcome by transgenic expression of appropriate human cofactors, 

CD4, CCR5, and Cyclin T129,30. Parallel efforts in the rat species in the laboratory of Prof. 

Keppler have accomplished marked HIV susceptibility following systemic challenge of 

CD4/CCR5-transgenic animals31. This has allowed limited drug testing and contributed to 

selected aspects of studies into HIV pathogenesis and vaccine development31-36. However, 

several significant limitations exist in the current form of the transgenic rat model, including low 

and transient viremia and lack of HIV disease. Analogous to the mouse species this is due to 

ill-defined limitations in the later steps of the replication cycle that limit HIV production (Fig. 2). 

As a consequence, the search for an alternative small animal model, that either encounters 

less species-specific restrictions to HIV-1 replication or in which surmounting of those barriers 

is efficient, is required to develop a more permissive immunocompetent small animal model 

for HIV-1.  

Rabbits have been investigated as potential alternative animal models by either infecting 

rabbits in vivo with cell-free HIV-137,38 or with HIV-1-infected human cells39-43.  

 
However, these initial promising results could not be reproduced and further limitations at the 

level of virus entry and reverse transcription were identified44-50. 
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Figure 2: Summary of the efficiency of steps in the HIV-1 replication in primary cells of human, 
rat, mouse and rabbit origin. Schematic representation of consecutive steps in the HIV-1 replication 
cycle and the ability of primary cells (T = T cells; M = macrophages) from the respective species to 
support these steps (√ = efficient; x = inefficient or completely blocked). Yellow boxes indicate blocks in 
the rabbit species51. 
 

3.2. Resting CD4 T cells 

The main targets of HIV-1 are CD4 T cells, macrophages  and microglia, yet lymphoid tissues 

are the major viral reservoir of HIV52-54, compromising mainly latently infected resting CD4 T 

cells that carry integrated replication-competent HIV, even in patients under antiretroviral 

therapy55-61. Once latently infected resting CD4 T cells get activated, virus production is 

triggered, leading to the generation of fully-infectious HIV55. A SIV Macaca nemestrina (pig-

tailed macaques) model could mimic these findings by detecting SIV DNA in tissues containing 

residing resting CD4 T cells as well as in resting CD4 T cells from the peripheral blood62. In 

addition, we could recently show a lack of significant changes of integrated HIV-1 cDNA in 

patients treated with the integrase inhibitor Raltegravir, suggesting that most integrated DNA 

is archival63. In vitro infection studies with resting CD4 T cells, however, demonstrated that 

despite binding to and entering resting CD4 T cells, HIV is not able to replicate within this large 

cell population64,65. This is mainly due to inefficient reverse transcription65 as well as a block to 

integration of proviral DNA64, yet the cellular factor responsible for this block as well as its 

nature remained unidentified. These findings indicate that the block in resting CD4 T cells might 

be a driving force for HIV latency in infected patients and boosting of this factor might activate 

those latently infected reservoirs. 

 

3.3. SAMHD1 acts as innate immunity factor against HIV 

When mammals are attacked by pathogens, innate immunity represents the first line of 

defense before adaptive immunity is turned on. Specific pathogen-recognition receptors 

(PRRs) are expressed by cells of the innate immune system that recognize pathogen-

associated molecular patterns (PAMPs) of bacterial and viral pathogens. One important 

category of innate factors are so-called restriction factors. In the case of retroviruses, host cell 

proteins have been identified to interfere at different steps of the retroviral life cycle. Some 

factors have been shown to recognize virus-specific proteins or structural motifs to trigger an 

immune response and block virus infection of the cell. Among the proteins encoded by these 

antiviral genes are e.g. APOBEC3, TRIM5α, and CD31766. One of the more recent restriction 

factors is SAMHD167,68, which limits HIV at the level of reverse transcription in myeloid cells 

(Fig. 3) and acts as a dGTP-regulated deoxynucleotide triphosphohydrolase69,70. 
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Phosphorylation at position T592 was shown to be a key regulator of SAMHD1’s HIV restrictive 

capacity71-74.  

According to the current dogma, this potent restriction can be overcome by overriding 

SAMHD1’s triphosphohydrolase activity by providing an excess of nucleic acid substrates or 

by lentiviral incorporated Vpx proteins, which trigger subsequent proteasomal degradation of 

SAMHD1. Vpx proteins are naturally encoded by the less-pathogenic HIV-2 or SIV, yet HIV-1 

has lost an antagonism for SAMHD1, which may contribute to innate sensing-mediated T cell 

immunopathology and immune evasion in the development of AIDS75.  

 
Figure 3: Schematic representation of the replication cycle of HIV-1 in infected cells. Interactions 
between gp120, CD4 and chemokine receptors (CCR5 or CXCR4) lead to gp41-mediated fusion 
followed by virion uncoating, reverse transcription of the RNA genome, nuclear import of the viral pre-
integration complex, integration of the double-stranded viral cDNA into the host chromosome and 
transcription of HIV-1 genes. Late steps in the replication cycle include translation, assembly, budding, 
and maturation of HIV-1 particles. SAMHD1 (green) is active as a tetramer and inhibits HIV-1 at the 
level of reverse transcription. 
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4. Results and Discussion 

4.1. Rabbits are a better model to study HIV-1 infection 

4.1.1. High natural permissivity of primary rabbit cells with a virion infectivity defect in primary 

rabbit macrophages (Tervo and Keppler, J. Virol. 2010) 

Currently no animal model exists which recapitulates major aspect of HIV-1 disease in humans 

and which could be used to study HIV-1 pathogenesis and to test both new drugs and vaccine 

treatments. Within the past decades, many efforts were made to identify species-specific 

limitations to HIV-1 replication in mouse, rat and rabbit cells24-29,47,49,50. These limitations can 

be either due to the lack of cellular factors needed by HIV-1, so-called co-factors, as for 

example the HIV-1 receptor complex or CyclinT176-79. On the other hand, limitations can occur 

due to cellular proteins which block HIV-1 replication at distinct stages of its replication cycle 

and cannot be overcome by HIV-1’s accessory proteins, e.g. mouse / rat CD317 by HIV-1 

Vpu80 or rabbit APOBEC1 by HIV-1 Vif 81. 

Within this study, we confirmed that rabbits possess a barrier to HIV-1 replication at the level 

of entry and reverse transcription47,50. Entry could be readily overcome by transient 

overexpression of human CD4 and CCR5 on rabbit macrophages and the block imposed by 

rabbit TRIM5 was surmounted by introducing the first 149 amino acids of SIV capsid in the 

context of HIV (H/SCA) 51 (Fig. 4).  

 

Figure 4: Primary rabbit macrophages are rendered permissive to R5 HIV-1 viruses by 
coexpression of human CD4 and CCR5. (A) FACS dot plots of hCD4 and hCCR5 expression on rabbit 
macrophages, which had been transfected with corresponding expression constructs. The FACS gate 
indicates the receptor-positive cell population. (B) Microscopic images of transfected macrophages from 
panel A, which were subsequently challenged with JR-FL Env-pseudotyped HIV-1 or HIV-1 (H/SCA) 
GFP vectors. (C) Percentages of infected (GFP-positive) rabbit macrophages from panel B as 
determined by flow cytometry 3 days postinfection. 
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Figure 5: HIV-1 released by primary human and rabbit T cells is equally infectious. Primary human 
and rabbit T cells were transfected with full-length HIV-1NL4-3 proviral DNA. 36 hours post-transfection, 
supernatants were concentrated and harvested for p24 capsid ELISA (A) and TZM-bl cells were 
inoculated. B) Infectious titer was calculated as infectivity per ng p24 capsid. The arithmetic means ± 
s.e.m. of individual experiments in human (n=4) and rabbit (n=8) T cells are depicted. 

 

Yet, a third cell-type specific defect at the level of infectivity of released virions was identified. 

As shown in Figure 5, primary T cells of rabbit and human origin were transfected with full-

length HIV-1 proviral DNA and physical particles released as well as their infectivity was 

measured by p24 capsid-ELISA and blue cell assay on TZM-bl reporter cells, respectively. The 

amount of released viral particles was higher in rabbit T cells than in human T cells, yet the 

relative infectivity of released particles was comparable. This was in clear contrast to the 

scenario in primary macrophages. Primary human macrophages were infected with infectious 

49.5, a CCR5-tropic variant of HIVNL4-3, and primary rabbit macrophages transfected with 

proviral HIV-1NL4-3 DNA (Fig. 6). The amount of released particles was calculated as percent 

release of particles measured in the supernatant to the total amount of p24 capsid.  

 

Figure 6: Primary rabbit macrophages display an infectivity defect of released HIV particles. 
Primary rabbit macrophages were transfected with full-length HIV-1NL4-3 proviral DNA. Primary human 
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macrophages infected with 49.5, a R5-tropic variant of HIV-1NL4-3, served as control. A) HIV-1 release 
was quantified 5 days post transfection or infection as the percentage of total p24 capsid (in cells and 
supernatant) that was secreted as virion-associated p24 capsid. B) The relative infectivity was 
determined as described for Figure 3. The arithmetic means ± s.e.m. of individual experiments of human 
macrophages (n=4) and rabbit macrophages (n=16) are depicted. 

 
 
As depicted in Figure 6, the percent release of HIV-1 was comparable between both species. 

Yet, relative infectivity of released virions was reduced by 26-fold in primary rabbit 

macrophages. This could be due to the lack of a co-factor needed for HIV-1’s infectivity or the 

presence of a restriction factor that is incorporated into the budding particle. However, the latter 

scenario is more likely as different restriction factors have nowadays been described to inhibit 

HIV-1 infectivity by different mechanisms. Rabbit APOBEC1 was described to reduce HIV-1 

infectivity by hypermutating its de novo transcribed cDNA in the next round of infection81. We 

also analyzed the mutation pattern in TZM-bl reporter cells that were inoculated with filtered 

supernatants of HIV-1NL4-3 transfected primary rabbit macrophages. Yet, we could not identify 

APOBEC-specific hypermutation patterns within the amplified fragments and they were quite 

similar to those found in TZM-bl cells inoculated with filtered supernatants of infected primary 

human macrophages (data not shown).  

More recently, IFITMs (interferon inducible transmembrane proteins), MARCH8 (membrane 

associated ring-CH-type finger 8), GBP-5 (guanylate binding protein 5), 90K and SERINC3/5 

(serine incorporators 3/5) were described to influence HIV-1 infectivity82-87. IFITMs reduce 

virion infectivity by disturbing incorporation and processing of the envelope protein88. The 

mechanism by which MARCH8 blocks envelope incorporation into budding virions is currently 

not fully understood83, but it is highly expressed in terminally differentiated myeloid cells. GBP-

5 expression levels in primary macrophages inversely correlate with infectious HIV-1 yield. 

Furthermore, GBP-5 interferes with Env processing and incorporation87. 90K was also recently 

described to reduce particle infectivity by affecting proteolytic cleavage of Env precursor 

molecules84. SERINC proteins do not affect Env maturation but rather inhibit a step prior to 

small pore formation and thus impair fusion of the virus with the next target cell89.  

Analyses of the individual putative restriction factor orthologs in an ectopic overexpression 

context in otherwise permissive cells would shed light whether they have an impact on HIV-1 

infectivity. In addition, RNAseq and mass spectrometric analyses of primary rabbit T cells and 

macrophages could directly identify several candidates that might be more abundantly 

expressed in primary rabbit macrophages. Knockdown or knockout approaches in primary 

rabbit macrophages could then directly show whether one of the currently known candidates 

is the cause for the infectivity defect of HIV-1. Once, the candidate is known, strategies to 

overcome this specific factor would have to be set-up. 
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Summarizing our findings, rabbit cells pose only three replication barriers to HIV-1, which is far 

less than in rodents25,26. Currently the nature of only one limitation remains elusive. In 

combination with recent knock-in and knock-out strategies also in this species 90-92, rabbits are 

an attractive candidate to become a fully permissive small animal model to study HIV-1 and 

test antiviral strategies.  

 

4.1.2. SERINC3 and SERINC5 do not pose a barrier for HIV animal model development 

 (de Sousa-Pereira et al., submitted) 

Generation of immunocompetent human immunodeficiency virus (HIV)-permissive animal 

models have been hampered by the fact that HIV encounters replication barriers in rodents 

and lagomorphs and most of them are still not characterized or overcome25,29,31,36. These 

barriers are in some instances due to missing or incompatible cellular co-factors. This is 

especially the case for CD4, CCR5 and CXCR4. Here, HIV entry is supported only by the 

human orthologs31,93,94. In addition, a single species-specific amino acid change or variant 

(C261Y) in rodent CyclinT1 abrogates Tat-mediated transcription elongation95,96. Recently, 

Sherer et al. identified surface-exposed elements in CRM1, which are unique to higher 

primates and important for Rev-regulated nuclear export of unspliced and singly spliced viral 

mRNA97. Expression of human CyclinT1 and/or human CRM1 enhance HIV gene expression 

in T cells and macrophages from transgenic rats36,98, yet further undefined limitations exist in 

the late phase of HIV replication in T cells from hCD4/hCCR5/hCyclin T1 transgenic rats36. 

On the other side, HIV encounters barriers that are due to the presence of intrinsic innate 

immunity factors, so-called restriction factors. HIV has evolved accessory proteins that 

counteract these factors for successful replication in human cells. HIV reverse transcription is 

affected by lagomorph TRIM5 proteins whose restriction can be evaded by exchanging the 

first 149 amino acids of HIV capsid by simian immunodeficiency virus (SIV) capsid50,51,99. 

SAMHD1 restricts HIV replication at the level of reverse transcription by reducing intracellular 

dNTP pools and is degraded by lentiviral Vpx proteins67,68, yet the antiretroviral activity of 

murine SAMHD1 cannot be antagonized by Vpx100. CD317/BST-2/Tetherin tethers mature 

virions at the plasma membrane and its antiviral activity is counteracted by HIV-1 Vpu/HIV-2 

Env101,102. However, rodent CD317 proteins are resistant to currently known antagonists80,103, 

and murine leukemia virus (MLV) seems devoid of a CD317 antagonist104. Members of the 

APOBEC cytidine deaminase family get incorporated into budding virions and trigger G to A 

hypermutations during HIV reverse transcription in the next round of infection. Virion inclusion 

is prevented by lentiviral Vif proteins. However, rat APOBEC1, mouse APOBEC3 and rabbit 

APOBEC1 are still incorporated in the presence of Vif81,105,106. Thus, species-specific 
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comparisons may not only add valuable information to the mode of action and interacting 

motifs, but also identify factors that are critical for building HIV-permissive small animal models. 

Here, we are interested in a species-specific comparison with rodent and lagomorph orthologs 

of SERINC3/5, two newly described antiviral factors, as the antiviral phenotype of SERINC3/5 

resembles in part the infectivity defect recently reported in primary rabbit macrophages, which 

manifests itself by twentyfold decreased HIV infectivity compared to human macrophages51.  

SERINC3 and SERINC5 were recently discovered to reduce virion infectivity85,86. They have 

been proposed to belong to a family of serine incorporators107, yet they are not involved in lipid 

biosynthesis108. SERINC3/5 are highly conserved in terms of amino acid sequences among 

eukaryotes and primate SERINC3/5 do not show any signatures of positive selection or 

difference in their antiviral activity109,110. Their exact mode of action is still under debate, yet 

fusion to the next target cell is impaired. Recently, Sood and colleagues demonstrated that 

virion-associated SERINC3/5 interfere with HIV entry prior to small pore formation with the new 

target cell89. This step is critical within the HIV entry process. First, HIV envelope molecules 

attach to the cell membrane and bind to its major receptor CD4 and subsequently to its co-

receptors CXCR4 or CCR5. Second, co-receptor binding induces exposure and insertion of 

the gp41 fusion peptide into the host cell membrane. Small pore formation is finally induced by 

gp41 pre-bundles, which culminate in the formation of six-helix bundles (reviewed in 111).  

Those six-helix bundles most likely stabilize and expand the opening pores (reviewed in 111).  

Importantly, viruses have developed strategies to evade the inhibitory effect of restriction 

factors. HIV Nef, MLV GlycoGag and equine infectious anemia virus (EIAV) S2 proteins 

counteract human, primate, murine and equine SERINC3/5 and increase virus particle 

infectivity85,86,110,112. How this antagonism works is not clear yet, but it was suggested that both 

virion exclusion of cellular SERINC5 and inactivation of virion-associated SERINCs is driven 

by HIV-1 Nef113. An interplay with GlycoGag and Envelope seems to be important to overcome 

SERINC5 antiviral activity against MLV114. In addition, equine SERINC5 is also inhibiting EIAV 

in an Env-dependent manner and EIAV S2 uses similar motifs as HIV Nef for its 

counteraction112. 

As access to primary rabbit T cells and macrophages is currently limited, we assessed whether 

ectopically expressed rodent and rabbit SERINCs possess antiviral activities and can be 

counteracted by HIV-1 Nef, MLV GlycoGag and EIAV S2 proteins. 

First, we aligned rodent and rabbit orthologs of SERINC3 and SERINC5 with human 

counterparts and found that their amino acid sequences are quite conserved. They share 78-

93 % amino acid identity for SERINC3 and 81-91 % for SERINC5 (Fig. 7A-B). Further, we 

calculated the overall mean diversity, which defines the number of base differences per site 

from averaging over all sequence pairs. The overall mean diversity for SERINC3 is 0.155+/-

0.007 and for SERINC5 0.177+/-0.007. In addition, putative transmembrane domains, 
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highlighted in grey, are well-preserved (Fig. 7A-B). Thus, SERINC3/5 orthologs are quite 

conserved also among rodents, lagomorphs and humans and none of them seems to be under 

positive selection. As we considered only sequences from four different species, we could not 

make any statement whether the orthologs experienced evolutionary pressure due to the arms 

race between the host and the virus.   

 

Figure 7: Rodent and rabbit SERINC3/5 are highly conserved on amino acid level. A-B) Translation 
of the nucleotide sequences for Homo sapiens (NM_006811 and NM_001174072), Oryctolagus 
cuniculus (XM_002721072 and XM_008261873), Rattus norvegicus (NM_001008312 and NM_133395) 
and Mus musculus (NM_012032 and NM_172588) SERINC3 (A) and SERINC5 (B). Highlighted in grey 
are the transmembrane domains predicted using the web tool PredictProtein 115 and in accordance with 
107.  
 

We then isolated rodent and rabbit orthologs of SERINC3 and SERINC5 from mouse, rat and 

rabbit splenocytes and cloned them into pcDNA- (strong expression) and pBJ6-based (weak 

expression) vectors.  
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HEK293T cells, expressing low endogenous SERINC levels, were co-transfected with a 

proviral HIV-1NL4-3 lacking Nef (HIV-1∆Nef) and increasing concentrations of plasmids encoding 

for the different SERINC3 and SERINC5 orthologs. Supernatants were collected 48 hours post 

transfection and TZM-bl reporter cells inoculated to further assess virion infectivity. In addition, 

physical HIV particles were quantified via an in-house p24 capsid ELISA of supernatants and 

cells, and supernatants were collected for a quantitative RT activity assay116 (Fig. 8A). Figure 

8B shows the relative infectivity, calculated as the infectivity measured on TZM-bl reporter cells 

per Unit RT activity. Nef-defective HIV-1 was inhibited by SERINC3/5 orthologs in a dose-

dependent manner. The reduction imposed by SERINC5 ranged between 1.4 and 151-fold 

whereas SERINC3 was less potent (2.1- to 29.2-fold). SERINC5 reduced virion infectivity to 

maximal 0.43-0.85% and SERINC3 only to 3.43-5.49%. The protein abundance of SERINC3/5 

was determined in parallel by Western Blotting (Fig. 8B) and flow cytometry (data not shown). 

For both analyses, increasing levels of HA-tagged SERINC3/5 could be detected for all 

orthologs with increasing amount of plasmid DNA used for transfection. Yet, as seen in Figure 

8B, HA-tagged SERINC3 orthologs show only one prominent band at the expected size of ~ 

53 kDa. The expression pattern for SERINC5, in contrast, is more complex and is most likely 

due to different levels of glycosylation and phosphorylation.  

 
Figure 8: SERINCs from rodents and rabbits are restricting HIV in a dose-dependent manner. 
HEK293T cells were transfected with proviral HIV-1NL4-3 plasmid DNA lacking Nef (HIV-1NL4-3ΔNef) and 
increasing amounts of expression plasmids encoding for the different SERINC3/5 orthologs. 
Supernatants were collected 48 h post transfection and analyzed for reverse transcriptase (RT) activity 
of released viral particles using SG-PERT. In parallel, TZM-bl cells were inoculated with harvested 
supernatants and firefly luciferase activity measured 48 hours post inoculation. In addition, HEK293T 
cells were harvested and SERINC3/5 expression levels monitored by Western Blotting. Relative HIV-1 
infectivity was calculated as a ratio of firefly luciferase counts to RT units and normalized to control 
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(empty expression plasmid). Shown are arithmetic means +/- s.e.m. of three independent experiments. 
* < 0.05; ** < 0.01; *** < 0.001; ns = not significant. 

 

To assess at which step of the HIV replication cycle SERINC3/5 orthologs act as restriction 

factors, we assessed the fusion capacity of HIV-1∆Nef virions produced in the presence or 

absence of individual SERINC proteins by performing BlaM-Vpr fusion assays117. Identical RT 

Units were applied onto TZM-bl cells and virion fusion was measured by flow cytometry118. 

Figure 9A depicts representative dot plots of fusion events in TZM-bl cells. Uninfected and 

fusion inhibitor T20 control-treated, infected TZM-bl cells did not display infection levels above 

background. Fusion of particles produced in the presence of SERINC5 and SERINC3 dropped 

from 78% in control viruses to 0.2- to 3.6% and to 6.4- to 27%, respectively (Fig. 9A). 

Over a range of multiple experiments, virus entry was significantly reduced from 3 to 257-fold 

when HIV-1∆Nef virions were produced in the presence of SERINC3/5 orthologs (Fig. 9B). In 

order to judge whether these virion fusion analyses correlate with the virion infectivity read-

outs performed in parallel, we plotted the log10 of relative virion fusion and relative virion 

infectivity. Both parameters correlate highly with each other with R² of 0.9113 and p < 0.0001 

(Fig. 9C). Thus, our assay approach shows that the extent of inhibition of fusion is similar to 

the extent of infection inhibition.  In contrast to Rosa et al., our data does not indicate a further 

limitation after virus entry85.  
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Figure 9: Rodent and rabbit SERINC3/5 orthologs interfere with HIV prior to virus entry. A) 
HEK293T cells were transfected with proviral HIV-1NL4-3ΔNef plasmid DNA, a BlaM-Vpr expression 
plasmid together with expression plasmids encoding for the SERINC3/5 orthologs. Viral particles were 
harvested 48h post transfection and pelleted via sucrose cushion. Equal RT units (determined by SG-
PERT) were used to infect TZM-bl cells. Fusion was analyzed 4 hours post infection via flow cytometry, 
measuring the shift in fluorescence caused by the cleavage of CCF2 upon cellular entry. T20 was used 
as fusion inhibitor. Shown are representative dot plots. B) Graphical representation summarizing the 
raw data presented in (A). Shown are arithmetic means +/- s.e.m. of two independent experiments. C) 
Correlation between fusion events and relative infectivity measured in parallel. * < 0.05; ** < 0.01; *** < 
0.001; ns = not significant. 
 

In order to assess whether SERINC3/5 orthologs can be antagonized by known viral 

counteractors of SERINC proteins, HIV-1∆Nef and SF2Nef virions were produced in the 

presence or absence of SERINC expressed from pBJ6-based plasmids. SF2Nef was chosen 

as one of the strongest SERINC3/5 antagonist of HIV-185. The expression of pBJ6-driven 

plasmids is much weaker than from CMV-driven ones85,113, which further allows Nef 
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antagonism studies. Due to this, SERINC3/5 protein levels could not be detected by Western 

Blotting, yet expression could be verified by measuring HA-tag levels by flow cytometry (data 

not shown). First, we titrated the amount of pBJ6-driven SERINC3/5 to get the optimal dose 

that shows maximal inhibition of HIV-1∆Nef and best rescues by SF2Nef virions (data not 

shown).  

As expected, the impact of pBJ6-driven SERINC on virion infectivity was less pronounced as 

with CMV-driven expression plasmids. Nevertheless, individual SERINC5 proteins reduced 

virion infectivity of HIV-1∆Nef virions by 2.8 to 9.2 fold, whereas SERINC3 had only a marginal 

1.3 to 2.9-fold effect on virion infectivity of HIV-1∆Nef particles (Fig. 10A). In the presence of 

SF2Nef, SERINC3/5’s antiviral activity was antagonized. Specifically, SF2Nef significantly 

increased virion infectivity of SERINC5-containing particles from 2.6- to 9.2-fold. This effect 

was less pronounced for SERINC3-containing particles with 1.1- to 1.9-fold and no significant 

effect was detected for murine SERINC3.  

In addition to HIV-1 Nef, MLV GlycoGag was shown to antagonize SERINC3/585. Thus, we 

produced HIV-1∆Nef virions in the presence or absence of pBJ6-based SERINC3/5 and MLV 

GlycoGag. Regardless which SERINC3/5 orthologs were used during virus production, the 

antiviral activity was antagonized by GlycoGag (Fig. 10B). Here, GlycoGag significantly 

increased virion infectivity of SERINC5-containing particles from 2.8- to 7-fold. As already seen 

for SF2Nef, infectivity enhancement for SERINC3-containing particles was less pronounced 

with 1.2- to 2.9-fold, without being significant for rabbit SERINC3. 

In a last approach, we produced HIV-1∆Nef virions in the presence or absence of pBJ6-based 

SERINC3/5 and EIAV S2. Here, we could also detect no antiviral activity of SERINC3/5 when 

S2 was present during virion production (Fig. 10C). More important, EIAV S2 significantly 

increased virion infectivity for SERINC5-containing particles with 2.8- to 5.4-fold. Infectivity of 

SERINC3-containing particles were only enhanced 1.7- to 2.4-fold in the presence of EIAV S2, 

without being significant for murine SERINC3. 
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Figure 10: Rodent and rabbit SERINC3/5 orthologs are counteracted by three different viral 
proteins. A-C) HEK293T cells were transfected with plasmids encoding for SERINCs and proviral HIV-
1NL4-3ΔNef or HIV-1NL4-3SF2 Nef plasmid DNA (A); proviral HIV-1NL4-3ΔNef plasmid DNA in the presence 
or absence of a MLV (Murine leukemia virus) GlycoGag expression plasmid (B) or EIAV (Equine 
Infectious Anemia Virus) S2 expression plasmid (C). Relative infectivity values were calculated as 
described before. Shown are arithmetic means +/- s.e.m. of three independent experiments. * < 0.05; ** 
< 0.01; *** < 0.001; ns = not significant. 
 
Summarizing our results, we show that human, rodent and lagomorph SERINC3 and SERINC5 

orthologs are conserved in regards of their amino acid sequences. Analyses with simian 

orthologs showed that these genes do not exert typical signatures of an arms race with 

pathogens109. Normally, it is an arm race between the host and the virus and through 

continuous evolution, mutations manifest themselves within the host and/or the virus as a result 

of evolutionary pressure. This was recently shown for human restriction factors like 

APOBEC3G or BST-2 in contrast to human SERINC3 and SERINC5109. Of course, rodent and 

rabbit SERINC3 and SERINC5 orthologs have not encountered HIV, yet other retro- or 

lentiviruses, like MLV or RELIK 119, may have posed pressure on those genes.  

We observed that rodent and lagomorph SERINC3 and SERINC5 are as antivirally active as 

human and simian orthologs in the absence of viral antagonists85,86,110. Both are acting in a 

dose-dependent manner, whereas the magnitude of inhibition is less pronounced for SERINC3 

orthologs.  
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In the absence of a viral antagonist, SERINC3/5’s antiviral activity is displayed prior to virus 

entry. This is highly correlated with their infectivity defect in the same experimental set-up (R² 

= 0.9494, p <0.0001; Fig. 3c), which is consistent with other reports85,113. Our data does not 

support the additional post-entry defect that was suggested by Rosa et al.85, indicating that it 

might dependend on the experimental system whether or not SERINC3/5’s antiviral activity is 

displayed only prior virus entry or additionally post-entry. 

 To our surprise, the three known antiviral factors, HIV-1 Nef, MLV GlycoGag and EIAV 

S285,86,112, were able to counteract all SERINC3 and SERINC5 orthologs. Normally, HIV 

restriction factors orthologs are antivirally active, yet the block induced by these factors cannot 

be surmounted with the viral antagonists. Rodent CD317/BST-2/Tetherin inhibits release of 

HIV-1, HIV-2, SIV and MLV and known viral antagonists, like HIV-2ROD-10 Env, Ebola GP, KSHV 

K5, or HIV-1 Vpu, are unable to rescue infection80,103. HIV-1 Vif cannot exclude incorporation 

of murine APOBEC3G into budding virions106. Furthermore, rodent and rabbit APOBEC1 have 

also antiviral activity against HIV, SIV and MLV without being counteracted by Vif proteins81. 

Thus, our results show that the domains responsible for the antiviral activity are highly 

conserved among the SERINC3/5 orthologs. In addition, interacting domains necessary for 

counteraction have to be preserved to a very high degree that viral antagonists expressed by 

complex lentiviruses (HIV, EIAV) and a simple gamma retroviruses (MLV) are able to 

counteract. However, this does not mean that all three viral proteins target similar motifs or 

antagonize via direct interaction. HIV-1 Nef, MLV GlygoGag and EIAV S2 proteins most likely 

have evolved independently to counteract SERINC3/5 proteins. HIV-1 Nef and EIAV S2 

proteins share similar interacting motifs85,112 and together with MLV Glycogag they localize to 

cellular membranes. Recently, Dai et al. identified the intracellular loop 4 of SERINC5, 

specifically amino acids 9-26, to confer sensitivity to Nef120. Within this stretch, amino acid 

sequences between human, rodent and rabbit SERINC5 present 1-3 amino acid differences 

(Fig. 7), in contrast to 6-7 amino acid differences for frog and zebrafish SERINC5120. This might 

explain the high conservation of Nef antagonism. Yet, little is known about important domains 

in SERINC3/5 orthologs and domains essential for counteraction by MLV GlycoGag or EIAV 

S2 proteins. Thus, the underlying interactions need to be determined.  

In summary, rodent and lagomorph SERINC3/5 orthologs are restricting HIV infectivity and 

can be counteracted by HIV-1 Nef, MLV GlycoGag and EIAV S2 proteins. Our main conclusion 

is that rodent and lagomorph SERINC3/5 orthologs do not pose any barrier for HIV animal 

model development. 

 

As SERINC5’s antiviral function is highly conserved among mammals and virus-encoded 

countermeasures have evolved in a diverse set of pathogens (HIV Nef, SIV Nef, MLV 

GlycoGag, EIAV S2), we will now use murine leukemia virus (MLV) and its natural host as a 
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model system to study SERINC5’s impact in an endogenous setting (funded by Else-Kröner 

Fresenius Stiftung starting 04/2018). In particular, we will elucidate (i) the mode of action for 

SERINC5’s antiviral activity and antagonism by studying the effect of exogenous SERINC5 

orthologs on MLV infectivity, (ii) we will measure endogenous SERINC5’s impact in vitro and 

(iii) investigate its role in viral dissemination and immune response in vivo. Furthermore, (iv) 
we will study how HIV Nef affects SERINC5 in vivo.  

We anticipate that our results will lead to a gain-of-knowledge for virus host interactions in 

general and in particular in vivo and furthermore open new options for drug design approaches. 

 

4.1.3. Generation of hCD4/hCCR5 transgenic rabbits (unpublished) 

Based on our findings, the generation of transgenic rabbits carrying the HIV-1 entry receptor 

complex on target cells would be a prerequisite for the generation of a susceptible 

immunocompetent animal model for HIV-1. hCD4/hCCR5 transgenic rats and mice are 

susceptible to HIV-1 infection and this was dependent on both receptors31,94,121. We 

hypothesized that the hCD4 and hCCR5 transgenic constructs used in rodents29,31 may support 

cell-type specific transgene expression also in rabbits. Analogous to their strategy, we 

generated transgenic rabbits expressing hCD4/hCCR5 in collaboration with a commercial 

vendor (AGROBIOGEN GmbH., Hilgertshausen, Germany) by co-microinjection of both 

constructs. Until now, we have generated five founder lines, three of which transmit both 

transgenes to their offsprings. We sacrificed one pair of littermates (non-transgenic and 

transgenic) and performed immunohistochemical (Fig. 11) and flow cytometric (Fig. 12) 

analyses. Both analyses showed that hCD4 and hCCR5 are expressed in relevant HIV target 

organs, i.e. thymus, spleen and bone marrow.   

 

Figure 11: hCD4 expression in rabbit spleen and thymus. Transgenic and non-transgenic F1 
animals were sacrificed. Tissue sections from spleen and thymus were stained for hCD4 expression by 
immunohistochemistry using New Fuchsin and hematoxylin as nuclear counter stain. 
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Figure 12: CD4/hCCR5 are expressed in lymphatic organs. Thymocytes (upper panel), splenocytes 
(middle panel) and bone marrow cells (lower panel) of transgenic and non-transgenic animals were 
isolated and stained with mABs for hCD4 and hCCR5 coupled to PE and FITC, respectively, and 
expression levels analyzed by flow cytometry. Unstained control with cells of transgenic F1 animal.  

 

Summarizing, we succeeded to generate hCD4/hCCR5 transgenic rabbits that express the 

HIV receptor complex on relevant HIV target cells. As CRISPR/Cas manipulation strategies 

are now available for rabbits as well90-92, we will express hCD4 and hCCR5 in rabbit TRIM5 

KO rabbits. Yet, HIV may not be able to readily infect these genetically modified rabbits. The 

adaption of the virus to the rabbit background has to be considered on hCD4 and hCCR5-

positive TRIM5 KO rabbit cell lines or primary ex vivo cultures from genetically modified 

animals, in which HIV can replicate and evolve. Virus replication will be monitored over time 

by SG-PERT116 and once replication has been established, we will isolate the virus and 

sequence for adaptation-induced mutations. Alternatively, we will perform a similar evolution 

approach in vivo as recently published for NHPs5. 
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4.2. Resting CD4 T cells express a potent restriction factor other than SAMHD1 

limiting the early phase of infection 

4.2.1. SAMHD1 restricts HIV-1 infection in resting CD4 T cells (Baldauf, Pan et al., Nature 

Medicine, 2012) 

SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase and was identified as a 

restriction factor in myeloid cells67-70, which restricts HIV by depleting intracellular dNTP pools. 

This potent restriction can be overcome by overriding SAMHD1’s triphosphohydrolase activity 

by an excess of nucleic acid substrates or by lentiviral incorporated Vpx proteins, which trigger 

proteasomal degradation of SAMHD1. Vpx proteins are naturally encoded by the less-

pathogenic HIV-2 or SIV67,68,122. 

As HIV-1 does not encode for Vpx proteins, we generated a HIV-1NL4-3 proviral plasmid, which 

encodes a Vpx packaging signal within the p6 domain (HIV-1*GFP). Viruses were produced in 

HEK293T cells in the presence or absence of Vpx expression plasmids and co-packaging into 

virions confirmed by Western blotting (Fig. 13D). We then challenged resting CD4 T cells with 

equivalent infectious units of HIV-1*GFP virions with (+Vpx) or without (Control) incorporated 

Vpx from SIVmac239 and measured GFP expression, as a surrogate marker for early viral 

gene expression, by flow cytometry three days post infection. We determined in parallel also 

levels of 2-LTR circles by quantitative PCR. As 2-LTR circles are a by-product of integrated 

proviral DNA and only present in the nucleus, it can be used as a surrogate marker for nuclear 

entry. Figure 13A shows primary dot plots for our gating strategy of infected resting CD4 T 

cells. Both the percentage of GFP positive cells and the amounts of 2-LTR circles were 

elevated, in the case of GFP expression by more than 30-fold (mean: 31.3 ± 8.4; range: 2.2–

199.4-fold), when cells were infected with Vpx-carrying virions (Fig. 13B-C).  



 

  24 

 

Figure 13: Vpx overcomes a restriction to HIV-1 infection in resting human CD4 T cells. A-C) 
Resting CD4 T cells were challenged with equivalent infectious units of HIV-1* GFP virions with (+Vpx) 
or without (Control) incorporated Vpx from SIVmac239 and analyzed on day 3 after infection. The reverse 
transcriptase inhibitor efavirenz (EFV) served as specificity control. A) Dot plots of flow cytometric 
analysis for 1 out of 23 donors. The percentages of viable (gate R1, left graphs) resting (CD25−CD69−) 
and infected (GFP+) CD4 T cells are shown in the bottom right quadrants. B-C) Percentage of GFP+ 
cells (B) and relative copy numbers of HIV-1 2-LTR circles (C). Bars represent means of triplicates + 
s.d., with the factors of increase by Vpx indicated. D) Immunoblotting of HIV-1 virions for incorporated 
epitope-tagged Vpx proteins from SIVmac239, SIVPBj or HIV-2GH-1. HIV-1 p24 served as a loading control.  
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We next were interested to see whether the phenotype we observe in resting CD4 T cells is 

linked to SAMHD1. We established a staining approach of SAMHD1 to monitor its expression 

levels in parallel to HIV infection in resting CD4 T cells by flow cytometry. We observed that 

SAMHD1 was degraded in resting CD4 T cells when infected with HIV-1* GFP virions 

containing Vpx. This degradation was very fast as we observed it as early as 6 hours after 

virion challenge (Fig. 14A-B). We next determined whether this SAMHD1 degradation depends 

on virus entry and the release of Vpx from disassembled viral capsid. Thus, we added the 

peptidic virion fusion inhibitor T20 or the CXCR4 antagonist AMD3100 and determined that 

SAMHD1 degradation is dependent on efficient virus entry (Fig. 14C). We further showed that 

SAMHD1 depletion and infection enhancement in resting T cells was abrogated, when the cells 

were treated with the proteasome inhibitors MG132 (Fig. 14C) or ALLN (data not shown).  

SAMHD1’s function is to hydrolyze intracellular dNTPs, which are required for efficient HIV-1 

reverse transcription. Thus, SAMHD1 might lower the dNTP concentrations below a certain 

threshold69,70,122. Exogenous addition of pyrimidine and purine deoxynucleosides (dNs) as 

dNTP precursors to the culture medium should thus provide sufficient levels of dNTPs. Addition 

of dNTP precursors enhanced the permissivity of resting CD4 T cells for HIV-1 GFP ninefold 

(n = 8) over solvent-treated control cells in the absence of Vpx proteins (Fig. 14D). Collectively, 

these results showed that intracellular dNTPs pools are rate limiting for HIV reverse 

transcription123 and that SAMHD1 may be a key regulator of this cellular antiviral state. 
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Figure 14: Susceptibility of resting CD4+ T cells to Vpx-carrying HIV-1 is paralleled by 
proteasomal degradation of SAMHD1. A) Time course of SAMHD1 and GFP expression in resting 
CD4 T cells after challenge with HIV-1* GFP + Vpx (SIVmac239). The percentages of cells in the respective 
quadrants are shown. B) Quantification of SAMHD1 expression in resting CD4 T cells within the first 22 
hours after exposure to HIV-1* GFP with (+ Vpx) or without (Control) incorporated Vpx. Data points mark 
the percentages for cells with low SAMHD1 levels (corresponding to the bottom left quadrants in FACS 
panels shown in (A). C) Effect of proteasome or HIV-1 entry inhibitors on SAMHD1 levels in resting CD4 
T cells after exposure to HIV-1* GFP ± Vpx. Resting CD4 T cells were pretreated for 1 hour with either 
DMSO, the proteasome inhibitor (PI) MG132 (10 μM), the fusion inhibitor T20 (50 μM) or the CXCR4 
antagonist AMD3100 (5 μM) before infection with HIV-1*GFP with or without virion-packaged Vpx. Drugs 
were removed 20 h later. Shown are the percentages of resting CD4 T cells with low levels of SAMHD1 
24 h after infection for one of three donors. D) Relative factor of increase of infection of resting CD4 T 
cells with HIV-1* GFP by virion-packaged Vpx (n = 15) or by incubation with deoxynucleosides (dNs) (n 
= 8). Means + s.e.m. *P < 0.05; ***P < 0.005. 

 

In addition to RNAi experiments, we had the chance to infect resting peripheral blood 

mononuclear cells (PMBCs) with a nonsense mutation in SAMHD1 obtained from a patient 
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with Aicardi-Goutières syndrome (AGS)124,125.  We were unable to detect SAMHD1 in 

CD25−CD69− CD3+CD4+ T cells from this patient. Unlike cells from healthy donors, resting CD4 

T cells from this patient with AGS were intrinsically permissive for HIV-1 GFP infection (Fig. 

15A-C). 

 

Figure 15: A homozygous nonsense mutation renders resting CD4 T cells permissive for HIV-1 
infection. A) Flow cytometric analyses of PBMCs from healthy donor A (solvent- or dN-treated, top 
graphs) or PBMCs from a patient with AGS with a homozygous nonsense mutation in the SAMHD1 
gene (EFV-treated or untreated, bottom graphs) 3 days after challenge with HIV-1 GFP (multiplicity of 
infection = 1). The percentages of resting (CD25−CD69−), infected (GFP+) CD3+CD4+ PBMCs are shown 
in the bottom right quadrants boxed in red, with the percentage of infected cells indicated. B) Intracellular 
SAMHD1 expression in resting CD4 T cells of PBMCs from the patient with AGS and from healthy 
donors A and B, as determined by flow cytometry. The mean fluorescence intensity of SAMHD1 levels 
is indicated. C) Quantification of the percentage of infected (GFP+) resting CD4 T cells from the patient 
with AGS and from healthy donors. Shown are arithmetic means of duplicates. BD, below detection. 

 
Summarizing our findings, HIV-1 reverse transcription is actively suppressed in resting human 

CD4 T cells, and we identify SAMHD1 as a long-sought cellular factor that is responsible for 
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this restriction. SAMHD1 thus emerges as a ubiquitous and potent barrier to productive HIV-1 

infection in dendritic and myeloid cells67,68,122,125 and also in the large pool of noncycling CD4 

T cells in vivo. 

 

4.2.2. Vpx overcomes a SAMHD1-independent block to HIV-1 reverse transcription in resting 

CD4 T cells (Baldauf et al., PNAS 2017) 

During our initial studies126, we however realized that two Vpx proteins behave different to the 

others we have tested. As seen in Figure 16, Vpx proteins from the second Vpx+ lentiviral 

lineage, represented by SIVrcm and SIVmnd-2, enhanced HIV-1*GFP infection in resting T 

cells 3 days post infection by 8- to 54-fold for SIVmnd-2 Vpx and SIVrcm Vpx, respectively. In 

our previous study, we showed that infection with X4 HIV-1*GFP with packaged Vpx from 

SIVmac239 resulted in a massive depletion of SAMHD1 and GFP expression was detected 

almost exclusively within the SAMHD1low population (Fig. 16C, Lower Right quadrant). We 

were surprised to see that infection with SIVrcm or SIVmnd-2 Vpx incorporated virions did not 

influence SAMHD1 levels and GFP+ cells were observed in the SAMHD1high population. 
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Figure 16: Vpx of SIVmnd-2 and SIVrcm enhance HIV-1 infection in resting CD4 T cells in the 
absence of degradation of SAMHD1. A) Phylogenetic tree analysis of Vpx proteins from HIV-2 and 
the two Vpx-carrying SIV lineages used in the current and previous studies. The figure was generated 
using the online tool on www.phylogeny.fr with MUSCLE for alignment and PhyML for the generation of 
the phylogenetic tree. Depicted are SAMHD1-degrading (red) and nondegrading (SIVmnd-2 in green; 
SIVrcm in blue) Vpx proteins of HIV-2 and SIV. HIV-1 NL4-3 Vpr was used as a reference. Stars denote 
previously analyzed Vpx alleles126. B-C) Resting CD4 T cells were challenged with equivalent infectious 
units of X4 HIV-1*GFP virions without (no Vpx; n = 15) or with incorporated Vpx from SIVmac239 (n = 
15), HIV-2 ROD9 (n = 10), HIV-2 7312A (n = 11), SIVmnd-2 (n = 10), or SIVrcm (n = 12) and analyzed 
3 d later for expression of GFP and SAMHD1, in principle as reported 126. B) Factor of increase of Vpx-
mediated HIV-1 infection enhancement. Shown are arithmetic means + s.e.m. C) Dot plots of flow 
cytometric analysis of intracellular SAMHD1 and GFP expression for one representative donor. 

 
We further investigated whether exogenous addition of dNTP precursors would be beneficial 

for HIV infection in resting CD4 T cells and primary macrophages that were challenged with 

virions that had different Vpx proteins incorporated. Addition of dNs did not have any effect in 

resting CD4 T cells, when the cells were challenged with Vpx containing particles (Fig. 17A). 

http://www.phylogeny.fr/
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To our surprise, primary macrophages were refractory to infection with SIVrcm or SIVmnd-2 

containing particles and infection was elevated when the cells were treated with dNs (Fig. 17B). 

Thus, Vpx from SIVrcm and SIVmnd-2 can only enhance infection of resting CD4 T cells, but 

not of primary macrophages. In addition, intracellular dNTP concentrations are rate limiting for 

HIV-1 in primary macrophages than in resting CD4 T cells. 

 

Figure 17: Exogenous addition of dNs has a different impact on HIV-1 infection in resting CD4 T 
cells and macrophages. A) Resting CD4 T cells were challenged with equal infectious units of X4 HIV-
1*GFP virions with or without (no Vpx) incorporated Vpx from SIVmac239, SIVmnd-2, or SIVrcm in the 
presence or absence of 2 mM dNTP precursors (dNs) and analyzed on day 3 postinfection for GFP 
expression and SAMHD1 levels. The percentages of GFP+ cells are shown for one representative donor 
out of three. B) MDMs were challenged with equal infectious units of VSV-G pseudotyped HIV-1*GFP 
virions with or without (no Vpx) incorporated Vpx from SIVmac239, SIVmnd-2, or SIVrcm in the presence 
or absence of 4 mM dNs and analyzed on day 3 post infection for GFP expression and SAMHD1 levels. 
The arithmetic means + s.e.m. of four donors are depicted for the percentage of GFP+ cells. 

 

We next investigated whether SIVmac239 Vpx is only able to enhance HIV-1 infection of 

resting CD4 T cells by degrading SAMHD1 and thereby elevating dNTP levels or whether it 

carries a SIVrcm/mnd-2-like activity in the absence of SAMHD1 degradation. Thus, we 

generated a panel of SIVmac239 Vpx mutants with a focus on residues that are conserved 
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among Vpx proteins of the two lentiviral lineages and are thought to be involved in binding to 

SAMHD1 (L25) or zinc (H39 and H82) or fail to target SAMHD1 for degradation for unknown 

reasons (W56)125,127,128. Interestingly, alanine mutations at positions 25, 39, 56 and 86 

enhanced HIV infection of resting CD4 T cells in the absence of SAMHD1 degradation (Fig. 

18A-B). Furthermore, these SIVmac239 mutants did not enhance dNTP levels (Fig. 18C), but 

strongly enhanced levels of reverse transcribed HIV-1 cDNAs and 2-LTR circles (Fig. 18D). 

Thus, single amino acid replacements in Vpx mac239 lost their interactions with SAMHD1, 

which resulted in accessory proteins that phenocopied the infection-enhancing ability of 

SIVmnd-2 and SIVrcm Vpx.  

Finally, we analyzed resting CD4 T cells with a nonsense mutation in SAMHD1 obtained from 

one patient with AGS125,126. As already shown in our previous report 126, CD25–CD69– 

CD3+CD4+ T cells from this donor were intrinsically more permissive for X4 HIV-1*GFP 

infection compared with resting CD4 T cells from healthy donors (Fig. 18 E-F), underscoring 

the relevance of SAMHD1 in this process. We increased HIV-1 infection of noncycling CD4 T 

cells from healthy donors with SIVmac239 Vpx by 159-fold, but, importantly, Vpx also boosted 

infection of SAMHD1-deficient AGS cells by 11-fold (Fig. 18 E-F). Due to highly limited fresh 

cell samples available and the low survival rate of previously cryopreserved resting CD4 T cells 

from patients with AGS, SIVmnd-2/rcm could, unfortunately, not be analyzed in this experiment 

and cells from additional donors were not accessible. These results provide direct evidence 

that Vpx can target a SAMHD1-independent restriction in resting CD4 T cells. 
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Figure 18: Antagonism of a SAMHD1-independent early postentry restriction for HIV-1 in resting 
CD4 T cells is a conserved feature of Vpx proteins. A-B) Resting CD4 T cells from healthy donors 
were challenged with equivalent infectious units of X4 HIV-1*GFP virions without (no Vpx) or with 
incorporation of the indicated Vpx alleles and point mutants and analyzed 3 days later for GFP 
expression and SAMHD1 levels. A) Dot plots of flow cytometric analysis of intracellular SAMHD1 and 
GFP levels for one representative donor. B) Factor of increase of Vpx-mediated HIV-1 infection 
enhancement 3 d post challenge. Shown are arithmetic means + s.e.m. of data from at least three 
donors. C) Resting CD4 T cells were cotransfected with pDisplay-YFP and expression constructs for 
the indicated Vpx constructs, sorted for YFP surface expression, and analyzed for dTTP levels. Shown 
are the arithmetic means from two independent experiments. D) Resting CD4 T cells were challenged 
with equivalent infectious units of the indicated DNase-treated virus stocks and harvested 3 d later for 
qPCR analyses. Shown are levels of early (RU5) and late (GAG) RT products as well as 2-LTR circles 
presented as arithmetic means + SEM of five donors. E - F) Resting CD4 T cells from a patient with 
AGS with SAMHD1 deficiency and from two healthy donors were challenged with equivalent infectious 
units of X4 HIV-1*GFP virions without (no Vpx) or with incorporation of Vpx from SIVmac239 and 
analyzed 3 d later for expression of GFP and activation markers CD25/CD69. E) Representative FACS 
dot plots and F) arithmetic means of the percentages of GFP+ cells of duplicate infections. 

 

Summarizing our findings, degradation of SAMHD1 and subsequent elevation of cellular 

dNTPs is critically required for efficient infection of primary macrophages, both events are not 

necessary in resting CD4 T cells (Fig. 19). Our data suggests the presence of a restriction 

factor other than SAMHD1 that acts at the level of reverse transcription (RT) and is specific for 

resting CD4 T cells. This factor limits HIV RT, which would be consistent with an RNase activity, 

and might be the driving force for HIV latency. SIVmac239 Vpx wt degrades SAMHD1 and 

presumably also targets this factor inefficiently.  In contrast, SAMHD1 non-degrading SIVmnd-

2 and SIVrcm Vpx as well as non-degrading SAMHD1 SIVmac239 Vpx mutants primarily or 

exclusively target this restriction factor, resulting in an up to 1000-fold accumulation of early 

RT products compared to Vpx-negative particles. Interestingly, these enhanced levels of RT 

products do apparently not efficiently enter into the nucleus. Thus, another yet unidentified 

block at the level of or prior to nuclear import seems to be active in resting CD4 T cells. 
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Figure 19: Proposed model for HIV restrictions in primary resting CD4 T cells and counteraction 
by SIV Vpx variants. A) Both SAMHD1 (RT block 1) and an unknown factor (RT block 2) are able to 
restrict HIV at the level of reverse transcription. Downstream, an unknown factor limits nuclear import of 
the preintegration complex (NI block 1). B) SIVmac239 Vpx WT targets SAMHD1 for degradation to 
overcome RT block 1. In the presence of SAMHD1 and RT block 2, SAMHD1 is the preferred target of 
SIVmac239 Vpx WT, but in the absence of SAMHD1, RT block 2 is targeted. SAMHD1 degradation-
deficient mutants of SIVmac239 Vpx target RT block 2 similarly to SIVmnd-2 and SIVrcm Vpx through 
a mechanism that likely involves proteasomal degradation. C) SIVmnd-2 and SIVrcm Vpx are unable to 
target SAMHD1 for degradation but apparently overcome the major restriction at the level of reverse 
transcription by targeting RT block 2. Despite highly efficient reverse transcription, levels of 2-LTR circles 
are similar to those observed with SIVmac239 Vpx, indicating that also under these conditions, nuclear 
import is restricted by NI block 1. 
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5. Perspectives 

5.1. Immunocompetent, genetically modified rabbit model of HIV infection  

 
Current lentiviral animal models face profound shortcomings to recapitulate HIV disease in 

humans. Our goal is to generate genetically modified rabbits with an intact immune system 

that are susceptible to HIV infection and develop key aspects of HIV pathogenesis in humans 

such as loss of CD4 T cells and AIDS. Building on my exciting recent characterizations of HIV 

susceptibility in the rabbit species, I aim to I) generate and characterize TRIM5-knockout 

rabbits expressing hCD4 and hCCR5 in a lineage-specific manner, II) identify remaining 

barrier(s) to high HIV infectivity in primary rabbit macrophages to further improve the model, 

and III) establish genetically modified rabbits as a unique in vivo screening platform for pre-

clinical testing of HIV vaccine candidates. The broad application range of the rabbit animal 

model will tremendously stimulate studies on viral pathogenesis and on virus-host interactions 

occurring during HIV infection in vivo. In addition, studies on HIV’s impact on the immune 

system and even co-infection studies will be feasible in this rabbit model of HIV infection. 

 

5.2. Characterization of HIV entry in rabbit cells 

HIV-1 entry is dependent on the expression of human CD4 and the human co-receptors 

CXCR4 or CCR5. In collaboration with Dr. Olga Kalinina (Max-Planck-

Institute for Computational Biology; Structural Bioinformatics of Protein Interactions), we 

modelled interaction of gp120 with human and rabbit CD4 orthologs using the 3D structure of 

the complex of CD4 with the core domain of HIV-1 gp120 (PDB in 2QAD129). As seen in Figure 

20A, the overall interaction is generally very well conserved. Yet, an insertion between the 

residues 41G and 42S (human), corresponding to 66G-71S in rabbit, and 44L → 73W + 45T 

→ 74L substitution were identified. Based on this finding, four models were built: (1) wt rabbit 

CD4; (2) rabbit CD4 without polyS insertion; (3) rabbit CD4 without polyS insertion and with 

W73L+L74T mutations; (4) wt human CD4 (for comparison purposes) (Fig. 20B). In these 

models, the non-conserved rabbit-specific residues form a substantial additional volume, which 

leads to the formation of non-favorable “too tight” contacts and potential clashes. The complex 

energy in each model of the rabbit CD4 was estimated with FoldX (http://foldxsuite.crg.eu/) 

and compared to the complex energy of the model of the human CD4 (Fig. 20C). It must be 

noted that in all cases the energy is positive, which is generally non-favorable.  

http://foldxsuite.crg.eu/
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Figure 20: Modelling of CD4 with gp120. A) The 3D structure of the complex of CD4 with the core 
domain of HIV-1 gp120 (PDB id 2QAD129) was taken as basis for modelling. The complex of HIV-1 
gp120 core domain (green) with wt rabbit CD4 (blue) is modelled in which all non-conserved elements 
in the wt rabbit CD4 are presented in the stick model. B) Shown is the interaction energy that was 
calculated for four models: (1) wt rabbit CD4; (2) rabbit CD4 without polyS insertion; (3) rabbit CD4 
without polyS insertion and with W73L+L74T mutations and compared to wt human CD4. C) Depicted 
is the interaction energy change relative to human CD4 with wt rabbit CD4, rabbit CD4 without polyS 
insertion and rabbit CD4 without polyS insertion and WL substitution. 

 

We performed similar analyses for human, rat and rabbit CCR5. Most of the interacting 

residues are conserved in all three species, with one exception (Fig. 21). Position I198 in 
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human is mutated to N in rabbit (conserved in rat). It has been shown that the substitution 

I198A strongly reduces the HIV-1 coreceptor and maraviroc binding 130. Taken together, N-

terminal residues 1-24 and I198 might be the key specificity determinants. 

Based on these initial observations, we are currently addressing the impact of rabbit wildtype 

and mutated CD4 and CCR5 on HIV entry efficiency.  

 

 

 

 

 

 

 

 

 

 

Figure 19: Comparison of non-conserved residues in human, rabbit and rat CCR5. The residues 
conserved in rat and rabbit, but not in human, are depicted in red, the residues conserved in human and 
either in rat or rabbit are in yellow, and the residues different in all species are in blue. The residues 
involved in HIV-1 coreceptor activity are shown as spheres. The non-conserved residues and residues 
implicated in HIV-1 binding in the structure of human CCR5. Only the part of the protein close to the 
extracellular side of the membrane is shown. The view is along the membrane plane. 

 

5.3. Finding factor X in resting CD4 T cells 

We recently screened a set of Vpx alleles for their ability to overcome the SAMHD1 barrier in 

resting CD4 T cells. For the majority of functional Vpx alleles, successful infection correlated 

with proteasomal degradation of SAMHD1 and an elevation of dNTP pools. However, we 

identified two Vpx alleles from SIV strains, SIVmnd-2 and SIVrcm, the virion packaging of 

which enhanced the HIV susceptibility of resting CD4 T cells in the absence of SAMHD1 

degradation. In collaboration with Prof. Oliver Fackler (University Hospital Heidelberg, 

Department of Infectious Diseases, Section Integrative Virology) and Prof. Oliver Keppler 

(LMU Munich, Max von Pettenkofer-Institute, Virology), we are currently identifying this novel 

factor in resting CD4 T cells. One hypothesis is that the putative new restriction factor in resting 

CD4 T cells is degraded by SIVmnd-2 and SIVrcm Vpx via the highly conserved interaction 

with the E3 ubiquitin ligase complex. In this scenario, Vpx and this new restriction factor are 
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physically interacting. Strategies to identify the interaction partner of SIVmnd-2 and SIVrcm 

Vpx include mass spectrometry after enrichment of Vpx-transfected resting CD4 T cells or 

immunoprecipitations of flag-tagged Vpx proteins. Another hypothesis is that interaction occurs 

indirectly in a bigger complex or via an adaptor protein. Whole cell analysis as well RNAseq of 

resting CD4 T cells in comparison to primary macrophages, which most likely do not express 

the novel factor, might help to identify the novel factor in resting CD4 T cells.  
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