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A B S T R A C T

We investigate the relative sensitivities of several tests for deviations from Gaussianity in the

primordial distribution of density perturbations. We consider models for non-Gaussianity that

mimic that which comes from inflation as well as that which comes from topological defects.

The tests we consider involve the cosmic microwave background (CMB), large-scale

structure, high-redshift galaxies, and the abundances and properties of clusters. We find that

the CMB is superior at finding non-Gaussianity in the primordial gravitational potential (as

inflation would produce), while observations of high-redshift galaxies are much better suited

to find non-Gaussianity that resembles that expected from topological defects. We derive a

simple expression that relates the abundance of high-redshift objects in non-Gaussian models

to the primordial skewness.

Key words: methods: analytical – galaxies: clusters: general – cosmic microwave

background – cosmology: theory – large-scale structure of Universe.

1 I N T R O D U C T I O N

Now that cosmic microwave background (CMB) experiments

(Balbi et al. 2000; de Bernardis et al. 2000; Jaffe et al. 2001; Lange

et al. 2001) have verified the inflationary predictions of a flat

Universe and structure formation from primordial adiabatic

perturbations, we are compelled to test further the predictions of

the simplest single-scalar-field slow-roll inflation models and to

look for possible deviations. Measurements of the distribution of

primordial density perturbation afford such tests. If the primordial

perturbations are entirely due to quantum fluctuations in the scalar

field responsible for inflation (the ‘inflaton’), then their distribution

should be very close to Gaussian (e.g. Guth & Pi 1982; Starobinski

1982; Bardeen, Steinhardt & Turner 1983; Falk, Rangarajan &

Srednicki 1993; Gangui 1994; Gangui et al. 1994; Gangui &

Martin 2000; Wang & Kamionkowski 2000). However, multiple-

scalar-field models of inflation allow for the possibility that a small

fraction of primordial perturbations is produced by quantum

fluctuations in a second scalar field. If so, the distribution of these

perturbations could be non-Gaussian (e.g. Allen, Grinstein & Wise

1987; Kofman & Pogosyan 1988; Salopek, Bond & Bardeen 1989;

Linde & Mukhanov 1997; Peebles 1999a,b; Salopek 1999).

Moreover, it is still possible that some components of primordial

perturbations are due to topological defects or some other exotic

causal mechanism (Bouchet et al. 2000), and if so, their

distribution should be non-Gaussian (e.g. Vilenkin 1985;

Vachaspati 1986; Hill, Schramm & Fry 1989; Turok 1989;

Albrecht & Stebbins 1992). Detection of any non-Gaussianity

would thus be invaluable for appreciating the nature of the

ultrahigh-energy physics that gave rise to primordial perturbations.

Ruling such exotic possibilities in or out will also be necessary to

test the assumptions that underly the new era of precision

cosmology.

There are several observables that can be used to look for

primordial non-Gaussianity. CMB maps probe cosmological

fluctuations when they are closest to their primordial form, and

many authors have developed various mathematical tools to test the

Gaussian hypothesis. The statistics of the present-day large-scale

structure (LSS) in the Universe can also be used (e.g. Coles et al.

1993; Luo & Schramm 1993; Lokas et al. 1995; Chodorowski &

Bouchet 1996; Stirling & Peacock 1996; Durrer et al. 2000; Verde

& Heavens 2000). The properties and abundances of the most

massive and/or highest-redshift objects in the Universe also contain

precious information about the nature of the initial conditions (e.g.

Chiu, Ostriker & Strauss 1998; Matarrese, Verde & Jimenez 2000,

hereafter MVJ00; Robinson, Gawiser & Silk 2000; Willick 2000;

Verde et al. 2000b). In Verde et al. (2000a, hereafter VWHK00),

the relative sensitivities of the CMB and LSS to several broad

classes of primordial non-Gaussianity were compared, and it was

found that the forthcoming CMB maps can provide more sensitive

probes of primordial non-Gaussianity than galaxy surveys. Here

we extend the results of that paper to include comparisons to the

abundances of high-redshift galaxies as well as the abundance and
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properties of clusters. One of our original aims was to determine

whether any of these probes would be able to detect the miniscule

deviations from Gaussianity that arise from quantum fluctuations

in the inflation; unfortunately, we have not been able to find any.

Nevertheless, some detectable deviations from Gaussianity are

conceivable with multiple-field models of inflation and/or some

secondary contribution to primordial perturbations from topologi-

cal defects. We will follow VWHK00 and parametrize the

primordial non-Gaussianity with a parameter that can be dialled

from zero (corresponding to the Gaussian case) for two different

classes of non-Gaussianity. We will then compare the smallest

value for the parameter that can be detected with each of the

different approaches.

2 T H E M E T H O D

2.1 Models for primordial non-Gaussianity

There are infinite types of possible deviations from Gaussianity,

and it is unimaginable to address all of them. However, we can

consider plausible physical mechanisms that produce small

deviations from the Gaussian behaviour and thus analyse the

following two models for the primordial non-Gaussianity (e.g.

Coles & Barrow 1987; MVJ00; VWHK00). In the first model, we

suppose that the fractional density perturbation d(x) is a non-

Gaussian random field that can be written in terms of a Gaussian

random field f(x) using (Model A)

d ¼ f 1 eAðf
2 2 kf 2lÞ: ð1Þ

In the second model, we assume that the primordial gravitational

potential F(x) is a non-Gaussian random field that can be written in

terms of a Gaussian random field f(x) using (Model B)

F ¼ f 1 eBðf
2 2 kf 2lÞ: ð2Þ

Non-Gaussianity in the density field is then obtained from that in

the potential through the Poisson equation. Here, F and d refer to

the primordial gravitational potential and density perturbation,

respectively, before the action of the transfer function that takes

place near the matter–radiation equality.

Although not fully general, these models may be considered as

the lowest-order terms in Taylor expansions of more general fields,

and are thus quite general for small deviations from Gaussianity.

The scale-dependence of the non-Gaussianity in the two models

differs. Model A produces deviations from Gaussianity that are

roughly scale-independent on large scales, while Model B

produces deviations from non-Gaussianity that become larger at

larger distance scales. Although we choose these models

essentially in an ad hoc way, the non-Gaussianity of Model B is

precisely that arising in standard slow-roll inflation and in non-

standard (e.g. multifield) inflation (Fan & Bardeen 1992; Falk et al.

1993; Gangui et al. 1994; Luo 1994; see also below). Model A

more closely resembles non-Gaussianity than would be expected

from topological defects (e.g. VWHK00). In either case, the lowest-

order deviations from non-Gaussianity (and those expected

generically to be the most easily observed) are the three-point

correlation function (including the skewness, its zero-lag value) or

equivalently the bispectrum, its Fourier-space counterpart. It is

straightforward to calculate these quantities for both Models A and B.

2.2 Cosmic microwave background and large-scale structure

Temperature fluctuations in the CMB come from density

perturbations at the surface of the last scatter, so the distribution

of temperature fluctuations reflects that in the primordial density

field. It is thus straightforward to relate the density-field bispectra

of Models A and B to the bispectrum of the CMB. Density

perturbations in the Universe today grow via gravitational infall

from primordial perturbations in the early Universe, and this

process alters the mass distribution in a calculable way. The

cosmological perturbation theory allows the bispectrum for the

mass distribution in the Universe today to be related to that for

the primordial distribution.

VWHK00 calculated the smallest values of eA and eB which

would be accessible with the CMB and with LSS. For the CMB

calculation, it was assumed that a temperature map could be

measured to the cosmic-variance limit only for multipole moments

‘ & 100; it was assumed (quite conservatively) that no information

would be obtained from larger multipole moments. The LSS

calculations were made under the very optimistic assumption that

the distribution of mass could be determined precisely from the

galaxy distribution (i.e., that there was no biasing) in a survey of

the size of the Sloan Digital Sky Survey (SDSS) and/or the Anglo-

Australian Two-Degree Field Survey (2dF). VWHK00 found that

the smallest values of e that can be detected with the CMB under

these assumptions is eA , 1022 and eB , 20 (Komatsu & Spergel

2001, including noise and foreground but neglecting dust

contamination found that eB * 5 from the Planck experiment),

while the smallest values measurable with LSS are eA , 1022 and

eB , 103. More realistically, the galaxy distribution will be biased

relative to the mass distribution, and this will degrade the

sensitivities to non-zero eA and eB obtainable with LSS. VWHK00

thus concluded that the CMB will provide a better probe on

primordial non-Gaussianity for the class of models considered.

2.3 High redshift and/or massive objects

According to the Press–Schechter theory, the abundance of high

redshift and/or massive objects is determined by the form of the

high-density tail of the primordial density distribution function. A

probability distribution function (PDF) that produces a larger

number of . 3s peaks than a Gaussian distribution will lead to a

larger abundance of rare high redshift and/or massive objects.

Since small deviations from Gaussianity have a deep impact on

those statistics that probe the tail of the distribution (e.g. Fry 1986,

MVJ00), rare high-redshift and/or massive objects should be

powerful probes of primordial non-Gaussianity. The number

densities of high-redshift galaxies and/or of clusters (at either low

or high redshifts) provide a very sensitive probe of the PDF. Since

the Gaussian tail is decaying exponentially at higher densities, even

a small deviation from Gaussianity can lead to huge enhancements

in the number densities.

The non-Gaussianity parameters eA,B are effectively ‘tail

enhancement’ parameters (c.f. MVJ00).1

In order to determine the minimum value of eA,B that can be

1 In fact, when looking on a particular scale, it is always possible to

parametrize the deviation of the PDF from Gaussianity, with some

‘effective’ eA or eB, if the PDF is not too non-Gaussian. It is easy to

understand this statement if one thinks in terms of skewness. Physical

mechanisms that produce non-Gaussianity generically produce non-zero

skewness in the PDF for the simple reason that an underdense region cannot

be more empty than voids while overdense regions can become arbitrarily

overdense. Skewness can be scale dependent, but for a given value of the

skewness there is a one-to-one correspondence to the eA,B parameters (see

the Appendix).
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detected using high-redshift objects, one needs to compute by how

much the observed number density of objects changes with respect

to the Gaussian case, when the primordial field is described by

equations (1) and (2). We calculate this enhancement using the

results for the mass function for mildly non-Gaussian initial

conditions obtained analytically in MVJ00. Conservatively, we

make the assumption that objects form at the same redshift at

which they are observed ðzc ¼ zÞ; since for some objects the dark

halo would have collapsed before we observe them, the assumption

therefore gives a lower limit to the amount of non-Gaussianity.

The directly observed quantity, however, is not the mass function,

but is Nð$ M; zÞ, the total number of objects – in the survey area –

of mass $M that collapse at redshift z. In fact it is extremely difficult

to obtain an accurate estimate of the mass of high-redshift objects –

what is a more robust quantity is the minimum mass that these

objects must have in order to be detected at that redshift. This

quantity is related to the mass function, n(M, z), by

Nð$ M; zÞ ¼

ð1

M

nðM; zÞ dM: ð3Þ

In calculating the enhancement of high-redshift objects due to

primordial non-Gaussianity, we restrict ourselves to consider, at

any given redshift, only those masses M # MmaxðzÞ for which at

least one object is expected in the whole sky for Gaussian initial

conditions ½Nð$ Mmax; zÞ ¼ 1 in 4p rad].2 This is illustrated in

Fig. 1 for a LCDM model [hereafter we adopt the currently

favoured cosmological model with parameters V0 ¼ 0:3,

L0 ¼ 0:7, h ¼ 0:65, s8 ¼ 0:99 and the transfer function of

Sugiyama (1995) with Vb ¼ 0:015/ h 2� where the shaded region

encloses predictions for Mmax(z ) from different mass functions

(e.g. Press & Schechter 1974; Lee & Shandarin 1998; Sheth &

Tormen 1999; Jenkins et al. 2001).

Given the rapidly dying tail of the Gaussian PDF, small

uncertainties in the mass determination of high-redshift objects

could lead to an overestimation of the value of eA,B. An

overabundance of galaxies of estimated mass Me, which in

principle can be attributed to a non-zero value of eA,B, can also be

explained under the hypothesis of Gaussian initial conditions if the

actual galaxy mass Mtrue satisfies the condition Mtrue , Me. We

thus include conservative values for the uncertainty DM in the mass

determination of high-redshift objects, and we then calculate the

minimum change DN in the number density of objects over

the Gaussian case that cannot be attributed to the uncertainty in the

mass determination. For a given uncertainty in the mass, this can be

computed by using the standard Press–Schechter (PS) theory

(Press & Schechter 1974). Observationally it is difficult to measure

the mass of high-redshift clusters with an accuracy better than 30

per cent, using either weak lensing or the X-ray temperature, and of

high-redshift galaxies better than a factor of 2 ðDM ¼ M; at least of

their stellar mass). Although the calculations in this section are

obtained using the standard PS theory, our conclusions will be

essentially unchanged if we had used modified PS theories (e.g.

Lee & Shandarin 1998; Sheth & Tormen 2001; Sheth, Mo &

Tormen 1999; Jenkins et al. 2001; see below).

With the mass uncertainties discussed above, we obtain that the

minimum DN that cannot be attributed to DM is a factor of 10 for

clusters and a factor of 100 for galaxies (see, e.g. fig. 6 of MVJ00).

We therefore estimate the minimum eA,B that can be measured

from the abundance of high-redshift galaxies and clusters as the

one that corresponds respectively to a factor of 100 and 10 change

in the observed number density of objects ½Nð$ M; zÞ� over the

Gaussian case. This condition can be written as

Nngð$ M; zÞ/Nð$ M; zÞ; RðM; zÞ $ R*; ð4Þ

where N is obtained using the Gaussian mass function while Nng is

obtained using the non-Gaussian mass function as in MVJ00, and

R* is set to be 100 for galaxies and 10 for clusters.

For small primordial non-Gaussianity (i.e. for small values of

eA,B), it is possible to derive an expression for R(M, z) using the

analytical approximation for the mass function nng found in

MVJ00. Doing so we find,

RðM; zÞ .

Ð1

M
ðsMMÞ21 exp 2

d2
*ðzcÞ

2s2
M

" #
FðM; zc; eA;BÞ dM

Ð1

M
ðsMMÞ21 exp 2

d2
cðzcÞ

2s2
m

� �
dsM

dM

���� ���� dM:

ð5Þ

Here,

FðM; zc; eA;BÞ ¼
dcðzcÞ

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 S3;MdcðzcÞ=3

p dS3;M

dM

�����
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 S3;MdcðzcÞ=3

p
sM

dsM

dM

�����; ð6Þ

Figure 1. Mmax as a function of redshift. At a given redshift one should only

consider those masses (#Mmax) for which at least one object is expected in

the whole sky for Gaussian initial conditions. The shaded region encloses

predictions for Mmax(z ) from different mass functions in the literature; we

adopted the currently favoured cosmological model with parameters:

V0 ¼ 0:3, L0 ¼ 0:7, h ¼ 0:65, s8 ¼ 0:99 and transfer function of

Sugiyama (1995) with Vb ¼ 0:015h 221 (LCDM).

2 This choice for the threshold Nð$ Mmax; zÞ ¼ 1 is motivated by the

following considerations. Of course it is not robust to detect non-

Gaussianity that suppresses the number of objects with respect to the

Gaussian prediction, since one can always argue that one did not look hard

enough, or that the objects are there but are somewhat ‘invisible’. So we set

to detect non-Gaussianity that enhances the number of objects relative to

the Gaussian case. If within Gaussian initial conditions we expect Nð.

M; zÞ , 0 in the whole sky, and observations find Nð. M; zÞ . 1 in the

survey area, we can say that we have detected non-Gaussianity. However,

the non-Gaussianity (or tail enhancement) parameter is directly related to

the ratio of observed Nngð. M; zÞ to the Gaussian predicted Nð. M; zÞ (see

equation 4). Obviously this ratio is well defined for any Nng . 0 and N . 0,

but the observed Nng can only be an integer $1. The tail enhancement

parameter will then make Nng $ N (and we consider only cases where

Nng * 10NÞ. It is reasonable therefore to consider only those masses and

redshifts for which the theoretical prediction for the Gaussian Nis $ 1.
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and

d*ðzcÞ ¼ dcðzcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 S3;MdcðzcÞ=3

p
; ð7Þ

dcðzcÞ ¼ Dc/DðzcÞ; ð8Þ

where D(zc) is the linear-theory growth factor, and Dc is the linear

extrapolation of the overdensity for spherical collapse.

In the formulae above, S3,M denotes the primordial skewness,

S3;M ¼ eA;Bm
ð1Þ
3;M/s2

M ; ð9Þ

where the expressions for m
ð1Þ
3;M and s2

M can be found in MVJ00

section 3.2, equations (37) and (38). However, for S3 * 1/dcðzcÞ,

the mass function nng(M, z) has to be evaluated numerically and

equation (5) is not valid.

For the cosmological model considered here and the redshifts of

interest, the quantity Dc takes a nearly constant value (<1.686) in

the PS theory. A better fit to the mass function of halos in high-

resolution N-body simulations is, however, obtained by lowering

Dc for rare objects and giving it an extra mass and redshift

dependence (Sheth & Tormen 1999; Bode et al. 2001), as

motivated by ellipsoidal collapse (e.g. Lee & Shandarin 1998;

Sheth, Mo & Tormen 1999).

It is possible to understand the effect of a lower Dc by the

following argument. For rare fluctuations such as high-redshift

objects, one is probing the mass function above the knee. Since the

mass function drops very rapidly as M increases, we can

approximate Nð. M; zcÞ , nðM; zcÞM. It is then possible to obtain

an analytic expression for rðM; zcÞ; nngðM; zcÞ/nðM; zcÞ ,
RðM; zcÞ if the primordial non-Gaussianity is small,

rðM; zcÞ . exp
D3

cS3

6s2
M

� �
dc

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2

S3dc

3

r dS3

dsM

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2

S3dc

3

r��������
��������: ð10Þ

For a given mass M, r (M, zc) slowly decreases on lowering Dc,

slightly damping the effect of non-Gaussianity. For example, when

lowering Dc from the value 1.686 that we assume here, to the value

<1.5 – appropriate to fit the numerical mass function of Sheth &

Tormen (1999) for the range of masses and redshifts considered

here – r(M, zc) decreases by less than a factor of 2. However this

effect is compensated by the fact that, by lowering Dc, objects are

created more easily also with Gaussian initial conditions, and it is

therefore possible to consider objects of higher M and/or z, where

the effect of non-Gaussianity is bigger. In summary, the

conclusions obtained by assuming Dc ¼ 1:686 will not be

substantially modified.

It is important to note that for Model A, the primordial

skewness has the same sign as eA, while for Model B it has the

opposite sign of that of eB. In detecting non-zero eA,B from CMB

maps, the sign of the skewness does not influence the accuracy

of the detection of non-Gaussianity, but when using the

abundance of high-redshift objects the sign of the skewness

matters. Only a positively skewed primordial distribution will

generate more high-redshift objects than that predicted in the

Gaussian case. Although a negatively skewed probability

distribution will generate fewer objects than the Gaussian case,

it might be difficult to attribute a decrement exclusively to a

negatively skewed distribution. Therefore in the following we

will consider only negative eB and positive eA.

2.3.1 Cluster size–temperature distribution

Verde et al. (2000b) showed that the size–temperature (ST)

distribution of clusters is fairly sensitive to the degree of primordial

non-Gaussianity. If clusters are created from rare Gaussian peaks,

the spread in formation redshift should be small and so should the

scatter in the ST distribution. Conversely, if the PDF has long non-

Gaussian tails, then clusters of a given mass that we observe today

should have a broader redshift formation distribution and thus a

broader ST relation. In Verde et al. (2000b), the non-Gaussianity

considered is a lognormal distribution; it is not strictly equivalent

to Models A or B considered here. However, for small deviations

from Gaussianity, the two models can be identified if, for a given

scale, they produce the same skewness in the density fluctuation

field. We thus find that in the LCDM model the minimum eA and

eB detectable with the ST distribution method are 3 � 1023 and

500, respectively. These estimates assume that the cosmology and

s8 are well known, but use only the local cluster data set of Mohr

et al. (2000). Of course, with improved observational data, the ST

method could probably yield stronger constraints.

3 R E S U LT S

Table 1 summarizes our results.

We find that the non-Gaussianity of Model A has a greater effect

on high-redshift galaxies than on high-redshift clusters. This can be

understood for the following reason. For Model A the skewness

S3,M is approximately scale independent ðdS3;M/dM ¼ 0Þ. Thus, as

found in MVJ00, the mass function for non-Gaussian initial

conditions is obtained from the PS mass function for Gaussian

initial conditions replacing dcðzcÞ ! d*ðzcÞ. The effect of a non-

zero skewness is therefore to lower the effective threshold for

collapse, thus allowing more objects to be created. For a given

S3, d*(zc) is a monotonically decreasing function of zc. Since

galaxies can be observed at zc much bigger than that of clusters, the

effect is greater. On the other hand, clusters are better probes than

galaxies for Model B. In fact, for Model B the induced skewness in

the density field is scale dependent and the effect of non-

Gaussianity is roughly the same for galaxies with 8 , z , 10 and

clusters with 1 , z , 3. However, since mass determinations are

more accurate for clusters than for galaxies, we have R*;clusters ,

R*;galaxies : clusters are therefore better probes.

In Fig. 2 we show the ratio R ¼ Nngð$ M; zÞ/Nð$ M; zÞ [cf.

Table 1. Minimum |eA| and |eB| detectable form
different observables and their sign when positive
skewness is required for detection. For Model A the
primordial skewness has the same sign as eA, while for
Model B the primordial skewness has the opposite sign
as eB. In detecting non-zero eA,B from CMB maps, the
sign of the skewness does not influence the accuracy of
the detection of non-Gaussianity, but, when using the
abundance of high-redshift objects it is robust to detect
non-Gaussianity that produces an excess rather than a
defect in the number density. Only a positively skewed
primordial distribution will generate more high-redshift
objects than predicted in the Gaussian case.

Observable Min. |eA| Min. |eB|

CMB 1023 , 1022 20
LSS 1022 103,104

High-z obj. (1)5� 1024 (gal.) (2) 200 (clusters)
ST relation (1)3� 1023 (2) 500
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equation (5)] for galaxies at redshift z ¼ 8–10 for eA ¼ 5 � 1024

(Model A, left panel) and clusters at redshift z ¼ 1–3 for eB ¼

2200 (Model B, right panel), as a function of M. Lines are plotted

only for masses where, for Gaussian initial conditions, one would

expect to observe at least one object in the whole sky with the most

conservative estimate (see Fig. 1). Note that those high-redshift

objects represent 3 to 5s peaks. If we now require RðM; zcÞ . R*,

we deduce that the minimum detectable deviation from Gaussian

initial conditions will be eA , 5 � 1024 (from high-redshift

galaxies) and |eB| , 200 (from high-redshift clusters). We also

estimate that an uncertainty of 10 per cent on s8 would propagate

into an uncertainty of 25 per cent in eB (from clusters) and of 70 per

cent in eA (from galaxies).

The minimum eB detectable from high-redshift cluster

abundances is much larger than the value that can be measured

from the CMB ðeB , 5 to 20 for Planck data), while for eA, high-

redshift galaxies are much better probes than the CMB, which can

only detect eA , 1022.

We therefore conclude that if future Next Generation Space

Telescope (NGST) or 30- to 100-m ground-based telescope

observations of high-redshift galaxies yield a significant number of

galaxies at z , 10 and are able to determine their masses within a

factor of 2, these observations will perform better than CMB maps

in constraining primordial non-Gaussianity of the form of Model A

with positive eA. Conversely, forthcoming CMB maps will constrain

deviations from Gaussianity in the initial conditions much better

than observations of high-redshift objects for Model B (with positive

and negative value for eB) and for Model A with negative eA.

3.1 Slow-roll parameters and primordial skewness

The type of non-Gaussianity of Model B is particularly interesting

because initial conditions set from standard inflation show

deviations from Gaussianity of this kind. In fact, it is possible to

relate the two slow-roll parameters,

e* ¼
m2

Pl

16p

V 0

V

� �2

; and h* ¼
m2

Pl

8p

V 00

V
2

1

2

V 0

V

� �2
" #

; ð11Þ

to the non-Gaussianity parameter eB. In equation (11) mPl is the

Planck mass, V denotes the inflation potential and V 0 and V 00 are

the first and second derivatives with respect to the scalar field. The

skewness S3 for FB, S3;F ¼ kF3
Bl=kF2

Bl2
, can be evaluated

following a similar calculation of Buchalter & Kamionkowski

(1999), obtaining

S3;F ¼ 2eB � 3½1 1 g ðnÞ�; ð12Þ

where g ðnÞ ! 1 and weakly depends on n if n , 0, but diverges for

n . 0. For a scale-invariant matter–density power spectrum,

n ¼ 23, g ðnÞ ¼ 0, and so S3;F ¼ 6eB.

We can then compare this expression with the value for the

skewness parameter for the gravitational potential arising from

inflation to infer the magnitude of eB. Gangui et al. (1994) calculate

the CMB skewness for the Sach–Wolfe effect S2 in several

inflationary models; S2 is related to S3,F by S2 ¼ S3;FA21
sw where

Asw ¼ 1=3. From this it follows that S2 ¼ 3S3;F ¼ 18eB. The

condition for slow roll from Gangui et al. (1994) is S2 # 20; thus,

eB # 1, and the relation with the slow-roll parameters is (cf. Wang

& Kamionkowski 2000)

eB ¼ ð5=2Þe* 2 ð5=3Þh*: ð13Þ

Since this combination of the slow-roll parameters is different from

the combination that gives the spectral slope n of the primordial

power spectrum ðn ¼ 2e* 2 6h* 1 1Þ, in principle, if eB could be

measured with an error !1, it would be then possible to determine

the shape of the inflation potential through equation (11). However,

from the present analysis, an error of eB of about an order of

magnitude larger seems to be realistically achievable.

4 D I S C U S S I O N A N D C O N C L U S I O N S

We considered two models for small primordial non-Gaussianity,

one in which the primordial density perturbation contains a term

that is the square of a Gaussian field (Model A), and the other in

which the primordial gravitational potential perturbation contains a

term proportional to the square of a Gaussian (Model B). The non-

Gaussianity of Model B is precisely that arising in standard slow-

roll inflation and in non-standard inflation, while Model A more

closely resembles the non-Gaussianity that would be expected

from topological defects. We investigated the relative sensitivities

of several observables for testing for deviations from Gaussianity:

CMB, LSS and high redshift and/or massive objects (e.g. galaxies

and clusters).

The analytic tools developed above allow us to address the

question of whether the abundance of currently known high-redshift

Figure 2. Ratio RðM; zÞ ¼ Nngð$ M; zÞ/Nð$ M; zÞ for galaxies at redshift z ¼ 8–10 for eA ¼ 5 � 1024 (left panel) and clusters at redshift z ¼ 1–3 for eB ¼ 200

(right panel), as a function of M. Lines are plotted only for masses where, for Gaussian initial conditions, one would expect to observe at least one object in the

whole sky with the most conservative estimate (see Fig. 1). Note that these high-redshift objects represent 3 to 5s peaks. The values for the number density

enhancement R that can be safely attributed to primordial non-Gaussianity are R ¼ 100 for galaxies (left panel) and R ¼ 10 for clusters (right panel). See text

for details.
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objects can be accommodated within the framework of inflationary

models for a given cosmology. Recently Willick (2000) has studied

in detail the mass determination of the cluster MS1054-03

concluding that its mass lies in the range 1:4 ^ 0:3 � 1015 M for

Vm ¼ 0:3 [similar to the independent mass estimates by, e.g.

Newmann & Arnaud (2000) and Tran et al. (2000)]. As already

pointed out by Willick (2000), for Vm $ 0:3 the expected number

of objects like MS1054-03 in the survey area is #0.01; i.e. it must

be a 3s fluctuation or larger. Using the formalism we have

described here, a primordial non-Gaussianity parametrized by

eB $ 400 would be required to account for MS1054-03 as a 1s

fluctuation in the LCDM model described above. This value is

much too large to be consistent with the slow-roll inflation. Our

calculation shows that if such a non-Gaussianity exists, it would be

easily detectable from the forthcoming CMB maps.
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A P P E N D I X A

In this appendix we quote the expressions for the primordial bispec-

trum and skewness for the two non-Gaussian models considered in

this paper. The LSS bispectrum for model A is (e.g. VWHK00)

Bðk1; k2; k3Þ ¼ 2eAPðk1ÞPðk2Þ1 cyc: ðA1Þ

where P denotes the power spectrum. The CMB bispectrum for

model A is (e.g. VWHK00)

B‘1‘2‘3
.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘1 1 1Þð2‘2 1 1Þð2‘3 1 1Þ

4p

r
‘1 ‘2 ‘3

0 0 0

 !

�
2eA

g

2

3
C‘1

C‘2

‘2
1‘2

2

‘2
3

1 cyc:

� �
ðA2Þ

where C‘ denotes the CMB power spectrum, g denotes the

radiation transfer function and (…) denotes the Wigner 3J symbol.

The LSS bispectrum for model B is (e.g. VWHK00)

Bðk1; k2; k3Þ . Pðk1ÞPðk2Þ2eB
Mk3

Mk1
Mk2

� �
1 cyc: ðA3Þ

where3 Mk , ½2k 2TðkÞð1 1 zÞ�=ð3H3
0Þ and T denotes the matter

transfer function. The CMB bispectrum for model B is (e.g. Luo

1994; VWHK00; Wang & Kamionkowski 2000; Komatsu &

Spergel 2001):

B‘1‘2‘3
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘1 1 1Þð2‘2 1 1Þð2‘3 1 1Þ

4p

r
‘1 ‘2 ‘3

0 0 0

 !

�
2eB

g
ðC‘1

C‘2
1 cyc:Þ ðA4Þ

The corresponding primordial skewness S3 ¼ kd 3l=kd 2l2
where

d denotes dr/r for the LSS case and DT/T for the CMB is easily

obtained from the consideration that kd 3l is given by:

kd 3lLSS ¼

ð
d3k1

ð2pÞ3
d3k2

ð2pÞ3
d3k3Bðk1; k2; k3Þd

Dðk1 1 k2 1 k3Þ ðA5Þ

3 This expression is strictly valid only for an Einstein de Sitter universe. For

a more general model M is defined by dkðzÞ ¼MkðzÞFðkÞ where F

denotes the gravitational potential field.
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(in the absence of spatial filtering) and

kd 3lCMB ¼
1

4p

X
‘1‘2‘3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘1 1 1Þð2‘2 1 1Þð2‘3 1 1Þ

4p

r

�
‘1 ‘2 ‘3

0 0 0

 !
B‘1‘2‘3

ðA6Þ

for LSS and CMB, respectively. For example in the LSS, model A,

for a power-law power spectrum and in the absence of spatial

filtering4 we have S3 ¼ 6eA.

This paper has been typeset from a TEX/LATEX file prepared by the author.

4 The expression for kd 3lLSS in the general case can easily be derived

following the calculations of Buchalter & Kamionkowski (1999) by setting

b1 ¼ 0 and b2/2 ¼ eA.
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