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I. PROOF OF THEOREM 1

A. Preliminaries

We here recall the setup. We consider a quantum spin system with n spins, where each of the spin sits on a
vertex of the graph G = (V| E) with V the total spin set (|V| = n). For a partial set L of spins, we denote the
cardinality, that is, the number of vertices contained in L, by |L| (e.g. L = {i1,42,...,%1|}). We also denote the
complementary subset of L by L°:=V \ L. We denote the local Hilbert space by H” (v € V) with dim(H") =d
and the entire Hilbert space is given by H := @), o, H* with dim(#H) = d”. We also define the local Hilbert space
of the subset L C V as H’ and denote the dimension by dr, namely d, := d/*l. We define B(#) as the space of
bounded linear operators on H.

When we consider a reduced operator on a subsystem L, we denote it as

Ol = tr<(0) ® 11 € B(H) (S.1)
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FIG. 1. Schematic pictures of clusters of w € gf and w ¢ gf. Each of the elements {X|X, € E,} is a subset of the
total set V' (i.e., X C V). In (a), there there are no decompositions of w = wi U ws such that (L U Vi, ) N Vi, = O for
w = {X1, X2, X3, X4}, whereas in (b) the decomposition w’' = w} U wj with wi = {X3, X3} and wy = {X1, X} satisfies
(LUVypy )N Viyy =0

by using the superscript index, where 1 is the identity operator and trz. is the partial trace operation with respect
to the Hilbert space HL".
We also define the following set:

E@ = (X c V|diam(X) =z, |X|<k} (S.2)
with
diam(X) := e Aoy v (S.3)

where we defined d 4, p as the shortest path length via E which connects A and B (ACV, BCV).
In the setup of Theorem 1, we consider the Hamiltonian as

H= Y hx, with > |hx|<1 for VoeV (S.4)
X€E, X|X>3v
with
E,.=EVUE®U...uE" (reN). (S.5)

Here, the Hamiltonian (S.4) describes an arbitrary k-body interacting systems with finite interaction length r.
Throughout the manuscript, we denote the natural logarithm by log(-) for the simplicity, namely log(-) = log,(+).

1. Cluster notation

We then define several basic terminologies. On the graph (V,E), we call a multiset of subsystems w =
{X1,Xo,..., X} (X; € E, for j = 1,2,...,|w|) as “cluster”, where |w| is the cardinality of w. Note that

each of the elements {X; }ljill satisfies diam(X;) < r from the definition (S.5). We denote C, ,, by the set of w
with |w| = m and let V,, C V and E,, C E, be the set of different vertices (or spins) and subsystems which are

contained in w, respectively. Also, we define connected clusters as follows:

Definition 1. (Connected cluster) For a cluster w € Cy. ||, we say that w is a connected cluster if there are no
decompositions of w = wy Uwsy such that V,,, NV, = 0. We denote by Gr.m the set of the connected clusters with
|w| = m.

Definition 2. (Connected cluster to a region, Fig. 1) Similarly, we say that w € C,.},,| s a connected cluster
to a subsystem L if there are no decompositions of w = wy Uwsy such that (LU Vy,) N Vi, = 0. We denote by G-,
the set of the connected clusters to L with |w| = m.

Definition 3. (Connected cluster with a link between two regions, Fig. 2) Finally, for a connected cluster
W € Gy |w|, we say that w has links between A and B if there exist a path from A to B in E,. We denote by g;‘};f
the set of the connected clusters with |w| = m which have a link A and B.
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FIG. 2. Schematic pictures of clusters of w € gf ;lB and w ¢ g:f le. In (a), subsystems A and B are connected with each
other by the cluster w. On the other hand, in (b), the cluster w does not have a link between A and B, and in (c), the

cluster has the link but is not connected.

2. Basic lemmas for logarithmic operators

Before going to the proof, we prove the following basic lemmas:
Lemma 1. Let O € B(H) be an arbitrary non-negative operator written as
O=Tp,®T,,® T,
respectively and we assume L1 ULoU- - UL, = V.

(S.6)

where {T'z; }i_, € B(H) are supported on the subsystems {L;}7,,
Then, for arbitrary subsystems A, B,C C V, we have
log 0P + log OPC —10g OAPC —10g O = Z(log Fff + log I‘fjc —log F‘éJ_BC — log Ffj). (S.7)

j=1

Note that {OAB OB OABC OB} are reduced operators as defined in Eq. (S.1).

Proof of Lemma 1. We define A; := ANL;, Bj := BNLj,and C; := CNLjfor j =1,2,...m. We notice
that | ', A; = A, | |2, B; = B and | |;_, C; = C because of | |;_, L; = V. Then, from the definition (S.1), the

j=1 41
reduced operator of d with respect to the subsystem B is given by

OF =trp\p, (1) @ trp,\p, (Tr,) © - @ try,\p, (FL,,) @ 1pe
=I'p, @, @ - @Tp, @1z, (S.8)
where I'p; := trp \p, (FL ) ® TB;; for j = 1,2,...,m. We define 1";-30, FfBC and FjB in the same way. We thus
obtain
log O = Zlog I'p,. (S.9)
j=1
On the other hand, we have from the definition (S.1)
Ffj = trge (FLJ) ®ige = d|BC|*\Lj\Bj\FBj - d"*\BI*\L]‘HIBy‘\FBw (S.10)
which reduces Eq. (S.9) to
(5.11)

logO® = —(m — 1)(n — | B|) log(d) + ZlogFLBj.
j=1

We obtain the similar form to Eq. (S.11) for O48, OB and OABC. After a straightforward calculation, we prove

the equation (S.7). O
Second, we prove the following lemma:

Lemma 2. For an arbitrary non-negative operator O € B(H) which is given by the form of

O=0;®1 (S.12)

with LN C =0, we have
log 048 +10g OBC —log OAPC —1og OF = 0. (S5.13)



Proof of Lemma 2. From the definition, we obtain
04BC = 048 ¢ i¢. (S.14)

Thus, we obtain log OB¢ = log(O®f @ 1¢) and log OAFC = log O4Z, and hence we immediately obtain Eq. (S.13).
This completes the proof. [

B. Generalized cluster Expansion

We first parametrize H by using a parameter set @ := {ax }xcp, as

Hgi: Z axhx, (815)

where H = Hy with T = {1,1,...,1}. Note that there are | E,| parameters in total. By using Eq. (S.15), we define
a parametrized Gibbs state pz as

P , (S.16)

where Z; 1= tr(e=#Ha).

In the standard cluster expansion, we consider the Taylor expansion of e #Ha with respect to the parameters
a. It works well in analyzing a correlation function or tensor network representation, while it is not appropriate
to analyze the entropy or effective Hamiltonian of a reduced density matrix. To overcome it, we generalize the
standard cluster expansion. We parametrize a target function of interest by fz and directly expand it with respect
to @, where f;z can be chosen not only as a scholar function but also as a operator function. Here, we choose the
conditional mutual information as the function fz. By using pz, we parameterize the conditional mutual information
by Zz(A : C|B) in the following form:

T3(A: C|B) = —tr [p (log pg ” +log pf< —log pg *“ —log pf )]

= —tr [p (log p3” + log p2< — log p % —log p%)] , (S.17)
where p = p; and we define gz as
pg = e PHa (S.18)
with
Pl = (e PHa) " = trpe (ePH5) @ 1. (S.19)
Note that we use the definition (S.1) for g% (L C V)
In the following, we define
Hz(A: C|B) :=log p3” +1log p2“ —log pg ¢ —log pZ, (S.20)
which gives
To(A: CIB) = tr [pHa(A : C|B)] < | Ha(A: C|B)]. (5.21)

Then, the Taylor expansion with respect to @ to the operator Hz(A : C|B) reads

fIf(A:C|B)—Z KZ Fax ) #(A:C|B)

m= O XeE,

, (S.22)

a=0

where 0 = {0,0,...,0}. By using the cluster notation, we obtain

> = > (S.23)

X1, X2, X €E,  wECym
which yields

{(A:C|B) :imi 3 ﬁl : (A C’|B’ Z > nuDuHs(A:CIB)| ., (824)
J

m=1 X1,X2,0 . Xm€Ex : wWEC m B



where w = {X1, X5 ..., X, } and n,, is the multiplicity that w appears in the summation, and we defined
=1] 9 ith we (X1, X0, X} (S.25)
- 8axj

We notice that the partial derivatives ai

“— and L commute with each other because log(pL) is a C*°-smooth

function with respect to @ as long as the system size n is finite. The Coo—smoothness of log(p ) is proved as follows:
For a finite system size n, the C*°-smoothness of e=##a is ensured, and hence p% is also C*>-smooth from the
definition (S.19). Also, we can set

e Pk < 1. (5.26)

by choosing a finite energy 7 < oo appropriately. Notice that e~ pa is Hermitian and e~ pL > 0. This implies
the absolute convergence of the following expansion:

. . . . . © —1)ym—1
log(pL) = 71 + log(e TlpaL) =7l+log(l+e Tlpf =71+ Z L(e_ﬂﬁa’: nm. (S5.27)
m
m=1
Thus, the C*°-smoothness of ﬁé implies of C'"*°-smoothness of log(ﬁg ).

Note that the case of m = 0 (i.e., |w| = 0) does not contribute to the expansion because of Hz(A : C|B) = 0. In
order to calculate the summation of ) cc,...» We utilize the following proposition:

Proposition 3. The cluster expansion (S.24) reduces to the summation of connected clusters which have links
between A and C':

Hy(A:C|B) = Z =Y nwDyHa(A: ClB)|

wegr m

where the definition of Q;‘};g has been given in Def. 3.

(S.28)

a’

From this proposition, we only need to estimate the contribution of clusters in g;‘};,? to upper-bound the condi-
tional mutual information Z;y(A : C|B) = tr[pH;(A : C|B)].

1. Proof of Proposition 3

We first introduce the notation @, as a parameter vector such that the elements {ax } Xgw are vanishing, that is,
(@w)x =0 for X ¢w, (5.29)

where we denote an element of ax in @ by (@) x. We then obtain

Dy Ha(A C|B)’d_6: D, Hz,(A: C|B)|. . (S.30)
In the following, we aim to prove
DwHz,(A:C|B) e 0 for w¢ g |w‘ (5.31)

We notice that if w ¢ g the cluster w satisfies either one of the following two properties (see Figs. 2 (b) and
()):
L,NA=0 or L,NC=0 (S.32)
and
W & Gy |- (S.33)

In the first case (S.32), we can immediately obtain Hz, (A : C|B) = 0 by choosing O = e~#Haw in the lemma 2.
In the second case (S.33), there exists a decomposition of w = wy Uwsy (|wi], |ws| > 0) such that V,,, NV, = 0.

“PHaw, g eiﬁH‘Twz, and from Lemma 1 we obtain

Hz, (A:C|B)=Hgz, (A:C|B)+ Hgz, (A:C|B). (S.34)

Hence, we have e #Haw = ¢

Because of Dwﬁdwl (A:C|B) = leﬁdw (A:C|B) =0, we have D,,Hz, (A : C|B) = 0. This completes the proof
of Proposition 3. [J

[ End of Proof of Proposition 3 ]



C. Estimation of the expanded terms

In order to estimate the summation (S.28) with respect to > ga.c, we consider a derivative of

D, log p& i Dy log p%w L (S.35)

= w=

for an arbitrary subsystem L C V. We choose the subsets AB, BC, ABC and B as L afterward. We here give an
explicit form of the derivative D,, log p% 7 in the following proposition 4.

Proposition 4. Let us take m—1 copies of the partml Hilbert space H™" and distinguish them by {’HLL . Then,
we define the extended Hilbert space as HY @ HL, with
HE =HE @HY @ o HE. (S.36)
Then, for an arbitrary operator O € H, we extend the domain of definition and denote Oy € B(H' ® ’Hchm) by
the operator which acts only on the space H” ®HSLC, Now, for an arbitrary cluster w = {X1, Xa,..., X}, we have
N (=B)" S(0)7(1) 7 (m—1
D108 P a5= i Pt (PR R D), (S.37)

where trpe — denotes the partial trace with respect to the Hilbert space H and we define

00 .— Ox, OB .— O, +O0g, +--+0g. — 307:(5+1 (S.38)
for s=1,2,...,m. Note that P, is the symmetrization operator as
PrbSORG) - R = Z 3% h<1 ...;;gg:), (S.39)

where ), denotes the summation of m! terms which come from all the permutations.

1. Proof of Proposition 4

For the proof, we consider the Taylor expansion with respect to 3:

log pL = 7;) % ;;:n log p% o (5.40)
Next, because of
8;’1” log(dpe) =0 for m>1, (5.41)
we have
a—mlog pL = o log [trre (e_BHd/ch)] ‘ (5.42)
g g=0 Op™ B=0
for m > 1.
We aim to prove the following lemma which gives the explicit form of the derivatives with respect to 3:
Lemma 5. The derivatives of log ﬁé with respect to B can be written as
;ﬁ log [trpe (e~ #He /d )] ‘,8:0 - (:ﬁzm troe (Hg’) aw... f{é’"’”) : (S.43)

where the definitions of ﬁés) (s = 0,1,2,...,m — 1) and HE,, have been given in Egs. (S.38) and Eq. (S.36),
respectively. We give the proof of the lemma afterward.



By assuming the above lemma, we can prove Eq. (S.37) as follows. In considering D, log ﬁaé a_g With |w] = m,
only the mth order terms of § in the expansion (S.40) contribute to the derivative. Hence, we have
Bm

leogﬁé{ﬁzo D (85 log [trze(e BHE/ch)})‘ . (5.44)

8=0
By combining Egs. (S.35), (S.43) and (S.44), we have

Dy log 7% |._, (_nf.) de wtres (A - D)
"y
(=B)™ 1 © (m-1)
= g P (RO ). (S.45)

We therefore obtain Eq. (S.37) in Proposition 4. This completes the proof. [

[Proof of Lemma 5] In order to prove Eq. (S.43), we first expand log [trzc (e =#H@ /dc)] as follows:

o 100 g4 37 GO )] R CIT (57 CATIID ) s

ch q m)! ch

q=1 m=1

where in the first equation we use the fact that Oth term of the expansion gives trye(1/dp.) = 1. We then pick up
the terms of 8. Because of

= (=)™ trpe(H)
<Z m' Lch )

m=1
o — mitmatetmg trre H:nl trre H:n2 ceetrpe Hinq
- > o e el )il ) (5.47)
m=q mit+me+t--+mg=m 12 9 Le
mi>1me>1,.me>1
the mth-order term in Eq. (S.46) is given by
i (—1)(1_1 (_1)m trLc(Hlnl)trLc(HTZ) N 'tI'Lc(Hz.nq)
m —t Z 4 a -, S.48
B Z Z mylmay! - myg! dl. ( )
= my+matetmg=m
m1>1mo>1,...,mg>1
We thus obtain
log [trpe (e ?Ha Jd . (
85’” og [trre(e Jdre)] 0
72 (-t 3 ml(=1)™  Pytrpe(HI trpe (HT2) - trpe(HZ') (5.49)
B Imo! - -m,| 1d4 ’ ’
po q b g = mylma!---mg! qld7.
mi>1me>1,.me>1
where P, is the symmetrization operator with respect to {mq,ma, ..., mq}. In the same manner, we can formally
expand
—1)m N - e
C e, (AR D)
dz’bc 1:m a a a
=> ) CA0 sy Patrre (HE™ Jorpe (™) - trpe (HE™). (8.50)

qg=1 mi+mao+--+mg=m
my>1ma>1,.me>1

For the proof of Lemma 5, we need to check whether each of the coefficients of Pytrpc (HZ" )trpe (HZ'?) - - - trpe(H, ')
for all the pairs of {mi,ma,...,mg} is equal between Egs. (S.49) and (S.50). Instead of directly writing down the

explicit form of Cy(,‘fzym%___qu, we will take the following step. First, we prove

= -1)m [ [ rr(m—
log [trre (e fdpe)] ‘5:0: (dzl)c trpe (HéO)Hél)mHé 1)) (S.51)

am
apm
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FIG. 3. Nx,|u is defined by a number of subsystems in w that have overlap with X,. When w = {X1, X2, X3, X4, X5} is
given as above, we have Nx,|w = 2, Nx,jw = 1, Nx3jw = 2, Nx,w = 2 and Nx;jw = 4.

in the case of L¢ = V. The proof of Eq. (S.51) implies that the coefficients of Pytrre(HZ" )trre (HZ'?) - trpe(Hy'®)
are equal between Egs. (S.49) and (S.50) for L® = V. Then, because the coefficients c}g},mz, .,m, do not depend on
the form of L€, the proof in the case of L¢ = V also results in the proof in the other cases (i.e., L¢ # V'). Therefore,

in the following, we aim to give the proof of Eq. (S.51) for L = V.
For L° =V, we have

0 try (e=AHa)
1 — —tr(H=p~ .52
85 Og |: dV tr( apa)7 (S 5 )
and hence our task is to calculate
om try (e =AHa) gm—1
I = —t Hi——pz . S.53
apm { dv A\ Migpm-tf (5.53)
By using Lemma 2 in Ref. [1], we have
ol (=pm* 7(0) /(1) | fp(m=1)
[ — =)= frng c - - e - . 4
aﬁmfltr (Hapa) 8=0 dr&z trvlzm, ( a a Ha ) ’ (S 5 )

where in the inequality (B.3) in [1], we choose as m; = 0, ma = m — 1 and wx = Hgz. We thus obtain the
equation (S.51). This completes the proof of Lemma 5. O

[ End of Proof of Proposition 4 ]

We then aim to obtain an upper bound of HtrLim (ﬁg?i fz()g e ﬁg?:”) H For the purpose, we utilize the following
proposition.

Proposition 6. Let {O,}7, be operators supported on a subset w := {X;}7,, respectively. When they satisfy
trre(Os) =0 for s =0,1,2...,m, we obtain

trus, (0F0NOF .- O V)| < ol T12V5 041, (.55)

s=1

where we define 0% as in Eq. (S.38). Nx,|w is a number of subsets in w that have overlap with X (Fig. 3):
Nx, jw = #{X e w|X # X, X N X, # 0}. (S.56)

The proof is the same as that of Proposition 3 in Ref. [1], which proves Ineq. (S.55) for L =V.

In order to apply Proposition (6) to trre (Bg?f B;z) - Bg?:r:l)), the condition trz.(hx) = 0 is necessary, whereas

it is not generally satisfied. Thus, instead of considering hx, we consider hx which is defined as follows:

L

h
hx :=hx — d;i for X € E,, (S.57)

where hx satisfies trrc(hx) = trpe(hx) — h%trre(1)/dre = h% — h% = 0 from the definition (S.1). By using the
notation of hx, we obtain

trpe (;}ggfﬁg;...g%;n) =ty (h(O)h(l N m 1)) +Z§<1 (b(l)b(z) "f) m— 1))’ (S.58)

Le K
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where we use 6(5) = ﬁ(s) for s > 1 which comes from the definition (S.38), and apply Eq. (S.57) to Bg?f We then
prove trre (b(l)h@) . (m 1)> = 0. By using the definition (S.38) for F)gg, we have

v, (BRS0) = tras (P, — Bxaa ) BB (5.59)

Because the operator 6&? (s > 2) is invariant under the swapping between the Hilbert spaces H {“C and HQLC (i.e.,
H1 < Ha), we have

2 r(m—1 2 m—1
trrg LY (hX2 th( ) g(m )) - trl’i m <bX2 th( = g(n )> (860)
Therefore, the term (S.59) vanishes and Eq. (S.58) reduces to

(RORY A ) =gy (FO5L Y)Y, (5.61)

By using Proposition 6, we obtain an upper bound of trze (ﬁg?f ﬁg; e Bﬁ?jn‘”) as follows:

i (2825

m

tI‘Lc

1:m 1 m

1:

trag,, (RORE - RD)| =

m m
dr. dLC

(S.62)

s=2 s=1

where we use ||hx|| < 2||hx]| which comes from the definition (S.57). By combining the inequality (S.62) with
Eq. (S.37), we obtain an upper bound of

3

—_

| Dw logpa|a 0 - (S5.63)

2

By applying the inequality (S.63) to the cases L = AB, L = BC, L = ABC and L = B, we obtain the following
inequality:

|DwHz(A: CIB)|,_5l| <2(48)™ [ Nx.pwlbx. I, (S.64)

where Hz(A : C|B) has been defined in Eq. (5.20). Then, the final task is to upper-bound the summation with
respect to > _ca.c in Eq. (S.28):

|Hy(A:C|B)| < ii > nwHDwHa(A:CIB)\a

m=1 wegh$

<

(S.65)

N
m=1 weGhS
where we use the proposition 3 in the first inequality.

For the estimation of the summation, we first focus on the fact that any cluster in w € Q;f},’f must have overlaps
with the surface regions of A and C, say 9A, and 9C, (r € N):

04, :={v e Ald, ac <r}, 0C,:={veCCldyce <r}. (5.66)

Second, because d4 ¢ is the minimum path length on the graph (V, E) to connect the subsystems A and C, the
condition w € Q;‘};,? implies |w| > da,c/r as the necessary condition. From these two fact, we will replace the
summation »° coac With 32 coa D54, o/r 2owegy Dy taking all the clusters with the sizes |w| > da,c/r

which have overlap with A into account:

Z 2 4,3 m Z e Z Z 2(45)’m Z nill;HNX.;\thXsHa (8.67)
ml 24

m=1 wegh S s=1 vEDA, m>da.c/r wegy .,

where the same inequality holds for the replacement of ) A, by Yo ac,-
In order to estimate the summation of > , we utilize the following proposition which has been given in

Ref. [1]:

WEGY 1
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Proposition 7 (Proposition 4 in Ref. [1]). Let {ox}xcr.. be arbitrary operators such that

> loxll<g for Ywev, (S.68)
X|X>v

where Ey is defined by Eq. (S.5) and it gives the set of all the subsystems X C V with |X| < k. Then, for an
arbitrary subset L, we obtain
> HNX s lox, | < 5 ‘LV’“@e gk)™, (S.69)
wGQL :
where wy, is defined as wy, := {L, X1, Xo, ..., Xy} for w={X1,Xo,..., X} }.

By applying Proposition 7 to the inequality (S.67), we have

N T 1 m
S ST Nxlih I < gt e, (8.70)
weg;:,m Ts=1

where we use Ny |, < Nx, jo in (5.69) and the condition (S.4) gives g = 1. Therefore, the inequality (S.67)
reduces to

Z =Y e |[DuHi(ACIB)|| gl < Y Y MRS

m= O wEQT ;C vEOA, m>da,c/r

(8¢3kB)da.c/r

< el0A | — S8

(S.71)

where we use k > 1. We notice that the same inequality holds for the replacement of |0A,.| by |0C;|. By combining
the inequalities (S.21), (S.65) and (S.71), we prove Theorem 1. O

II. QUASI-LOCALITY OF EFFECTIVE HAMILTONIAN ON A SUBSYSTEM: PROOF OF
THEOREM 3

We here consider the effective Hamiltonian on a subsystem L, which we define as
Hp = —B tlogp*, (S.72)
where pl is defined in Eq. (S.19). We prove the following theorem which refines the Theorem 3:

Theorem 8. The effective Hamiltonian Hy, is given by a quasi-local operator

_ s 1
Hy=Hy+ Y > nwhp, — —logZpe (S.73)
m=1,egL;L* b
with
1 A
Hyp = Z hx, Zpc:= —tr( —BHye X 1L) (874)
XcL dy

for L C'V, where each of {hr,,},cgr.1e is supported on the subsystem Ly, := LNV, (see Def. (S.89)) and QL’LC ;

defined as a cluster subset defined in Def. 3. The effective interaction terms {hr,} L.Le 1s exponentially localized

wegG,,
around the boundary:

(B/Be)™

e
< RWWLA (S.75)

Z Z nwllhL,

C
m>mo wGGf)’WI:

for an arbitrary mg.
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From Eq. (S.73), the effective interaction term ®y, is given by
= 1
o= > nyhy, — < logZp.. (S.76)
m=1,egL,L* b

Because of diam(V,,) < mr, the subsystem LNV, (w € QTL’;,LLC) is separated from the boundary L at most by a
distance mr, namely L NV,, C dL,,,, where OL; was defined as follows:

OL; :={v € L|dy rc <I}. (S.77)

Hence, by defining ®5;, as

1
Qop, = > Y. nwhp, — 3 log Zye, (S.78)
m<|[l/r] wegf;ﬁc
we have
e (B/B)"

B, — By || < —LL2 111 S.79
|90 = @on, | < 5L l0L| (5.79)

This gives the proof of Theorem 3.

A. Proof of Theorem 8

In order to apply the generalized cluster expansion, we first parametrize Hy, as
Hyp g :=—p""logpk. (S.80)

As in Eq. (S.24), the generalized cluster expansion for H L,g reads
- 1 X1 N
H, ;= -3 Z — nwDwHr | . (S.81)

We can now prove the following proposition:

Proposition 9. The summation with respect to the clusters ) reduces to the following form:

weC, m
- 1 =1 N
A, ;=H - 3 log Ze + — > nDyHya e (S.82)
m=1 " yeghke B

where Hy, =Yy, hx and Zy, := d; 'tr(e PHre).

1. Proof of Proposition 9

For the proof, we first prove
Dw log(ﬁaéw) =0 for wé¢ G, ju- (S.83)

The proof is given as follows. Due to the existence of decomposition w = w; Uws such that Vi, NV, = 0, we have

_BH=~ —BHz —BHgz
e=PHa, = ¢=PHiw, g ¢~PHauw, and hence,

log(pz,) = log(pg, ) +1og(p%, ) — logdpe.. (S-84)

Because Dy, log([)aéwl) = Dy, log(ﬁaéwz) = 0, we obtain Eq. (S.83).
We then consider the cases of V,, C L and V,, C L€ in Eq. (S.81). In the case of V,, C L, the definition (S.19)
gives

log(pr,a,) = —BHa, + logdre. (S.85)
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Therefore, we have D,, log(p% ) vanishes for m > 2, and

_% > % Y mDuHpa| = hx=H (S.86)

m=1""w€Gr m,VwCL “ XCL

On the other hand, in the case of V,, C L, log(pk ) becomes a constant operator (i.e. , log(pZ ) 1). Hence, we
obtain

1 _ log Z;,.. -
__ 1 (e—BHLeY] — _ o
ii” B log[trr. (e )] 3 1. (5.87)

I 1 _
73 Z % Z 4nwaHL,d’

- 1 1 - 1 1 -
DI S N A DOF D D X
) ] , |
Bm:l me WEGr,m,Vw CL 6 m=0 ml WEGr m, Vi CLC =0
1o 1 .
~ 52 2 mwDuHia
m=1 " wegﬁ;ﬁc
1 1
=H — =log Zye > — > muDuHpa (S.88)
ﬂ /8 m=1 m: L,L¢
weG; i
This completes the proof. O
[ End of Proof of Proposition 9 ]
We now define by, as
_6—1 -
hr, = ———DwHra| (S.89)
m a=0

where w € QL L® " Note that the operator hr,, is supported on the subsystem L,, = L NV,. Then, the effective
Hamiltonian H » is formally written by

=H,—— log Zre + Z > nwhe,. (S.90)
wegy "

By using the proposition 4 with the inequalities (S.62) and (S.70), we have

> nullhn,l <

weGy weGy,,

< (4p)™ ”’f(ze%) %w/mm, (5.91)

nw

where we use e'/* < e due to k > 1. By using the above inequality, the contribution of mth order terms in the

expansion (S.82) is bounded from above by

> mullbelis 30 > mullh, )l < 45 = (8/B)™OLs |, (5.92)

wegkL® vEDL, wEGY

rm

where OL, has been defined in Eq. (S.77).

[& > e . Cm0+1
I B L e ($.99)

L,L¢ =
m>mo wegh;L m=mgo—+1

This completes the proof of Theorem 8. [
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B. Computational cost of cluster summation

We here show the computational cost to estimate the effective Hamiltonian H,. For this aim, we start from a
slightly weaker expression than Eq. (S.82) as follows

(I)L = ‘HL,I_ HL = —% Z % Z nw’DwﬁL,a (‘1‘:6 6 Z m' Z nwD HLa :6’ (894)

" WEGym,VwCLe weGHE®

where we use the second and third terms in the first equation of (S.88). Our task is to estimate the computational
cost of ”waHLﬁ’a:G and the number of clusters in {w € G, ,,,, Vi C L°} and w € QTLWQ )

First, we consider ny,D,H Lﬁ‘a:ﬁ' As defined in Eq. (S.24), n,, is immediately calculated, and hence we need to
estimate the computational cost to calculate the multiderivative

Dy H S.95
Gu=0 I;I Y ld,=0 ( )

with w = {X,}™, by using numerical differentiation. The operator Hy z, is given by
Hyg, =—B 'logpg, = —f Mrpe (e 7)) @ 1, (S.96)

where we use the definition (S.19). Note that Hz, is supported on V,, C V. Hence, the computational cost to
calculate Hp, 4, is at most of d°Vel)  In order to perform the differentiation, we need to calculate 2/*! values
of HL’aw for ax, = £A (A — 40) for s = 1,2,...,|w|. Thus, for the numerical differentiation we need the
computational cost of 2/ . gOUVul) = gOUk) with |w| = m, where we use |V,| < |wlk.

We then need to sum up the contributions from all the clusters in {w € G, ,,, Vi C L¢} and w € G5L°. For the
purpose, we first prove the following theorem on the number of clusters: 7

Proposition 10. The total number of different clusters in QTLm is bounded as follows:

4 {w € Crom|w € Grn, Vi CLC or we g£;5°} < |L°| (3 2~drk) ™ (S.97)

This roughly gives the total number by \L°|dg(rkm),

In total, the computation of the m-th order in the expansion (S.94) is performed with the runtime bounded from
above by

dOmE) e dg ™ < n(d - dig )™ (S.98)

Also, the convergence of the expansion (S.94) is estimated as in (S.92) and (S.93)

HnwaﬁL,d 5 Z — Z HnwaﬁIL@ o
WEGr,m Vi CL® m: — =
<Y 3 mallhrll < 588 1L < 58/ ™. (5.99)

vELC weGY

r,m

which yields

0
Z Z HnwaHL,E Z Z m Z HnwaHL,[i
,L¢

m>mo wEGr, m,Vw CLC m>mo m=1 u,eg7 L

(S.100)

| < cn o
a=0 '

4B 1-p5/B.

Therefore, we need to choose m = O(log(1/¢)) to calculate @, up to an error ne as long as 8 < (.. Hence, the
computational cost is estimated as

(d dr )k@ log(1/¢€) (1/6) klOg(ddTG)). (8101)

This completes the derivation of the computational cost in Theorem 3 for calculating 5. O
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FIG. 4. Decomposition of w in Gy, as in Eq. (S.107). In the picture, we have wo = {X3,Xs}, w1 = {X2, X4, Xo},
w2 = {X57X7}7 w3 = {X17X10}7 wyq = {XG,Xll}.

1. Proof of Proposition 10

We here prove Proposition 10 which gives an upper bound of the number of cluster connecting to a subset L°.
For the purpose, we estimate the number of clusters in G;,,, which gives an upper bound of

# {w € Crom|w € G, Vi CLC or we gr%c} <3 #{wwedl,}. (S.102)
veL®

First, we count the number of clusters w = { X }?_; which satisfy X, NY # 0 for VX, (s = 1,2,...,q), where Y
is an arbitrary subset in V. The number is bounded from above by

q
#{w € Cr gl XsNY #0, s=1,2,...,q} < > I des(vs), (S.103)

{v1,v2,...,v4}CY s=1
where we define deg(v) as deg(v) := # {X € E,|X > v}. By using the graph degree d¢, we can upper-bound deg(v)
by
dg rk
deg(v) =#{X € E| X 3v} < h <dg’, (S.104)

where d, is the upper bound of the number of vertices {v'},cy such that d,,» < r. Also, note that X € E,
implies | X| < k from the definitions (S.4) and (S.5). The summation with respect to {v1, v, ..., v4} is equal to the
g1-multicombination from a set of |L| vertices, which is equal to

Y Y|—-1
S ) G EE
{le'u?v"')vq}gy

By combining the inequalities (S.104) and (S.105) with (S.103), we obtain
#{w € CrglXsNY £0, s=1,2,...,q} < 2VI=1(2diF)e. (S.106)
We then consider the following decomposition of w € G, (see Fig. 4):
w=woUw UwyU---Uw;, 0<I<m-—1, (S.107)

where w; C wy, satisfy d(w;,v) = j for j =0,1,2,...,1. Here, we define d(w;,wp) as the shortest path length in
the cluster wo U wq U --- U w;_1 which connects from w; to v. We also define ¢; := |w;| with ¢; > 1. We notice
that all the clusters w € G/, can be decomposed into the from of (S.107).

For fixed {qo,q1,-..,q}, the number of clusters {wy, ws,...,w;} defined as in Eq. (S.107) is bounded by

#{w € Cp g0l Xo,s NV # 0, s:1,2,...,qO}H max (#{wecr,qj|ijﬂV L FE0, s =1, 7...,qj})

w;_1E€C, aj

!
(2dzF)® H [2ka-1=1(2dF) 4] < 27! (zkﬂdgk)m7 (S.108)

j=1
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where we denote w; = {X,, 55:13 note that Zi‘:o g;j = m. Then, by taking the summation with respect to
{90,491, --,q} and [, we finally obtain the upper bound of #{w|w € G; .} as follows:

m—1
—_ m
#lulwegr, y <> Y 2 (@MdE)
=0 go+q1+-+qu=m
go>1,q121,...,q1>1

1
I+1 —1 (ok+1 k)™

-1

m

I

3

(m z_ 1) 27 (2F )™ < (3 2Fdgh)™, (S.109)
l

Il
=)

where the summation with respect to {qo,q1,-.., ¢} (90 > 1,1 > 1,...,q; > 1) is equal to the (m — 1 — 1)-
multicombination from a set of [ + 1 elements:

()0

qot+aq1+-+qa=m
go>1,q121,...,qi>1

By applying the above upper bound to the inequality (S.102), we obtain the main inequality (S.97). This completes
the proof. [J

[ End of Proof of Proposition 10 |

III. PROOF OF THEOREM 5

We here show the proof of Theorem 5 which upper bounds the conditional mutual information in long-range
interacting systems. We rewrite the Hamiltonian with the power-law decay interaction by using the notations (S.2)
and (S.5):

H= > hx=>» Y hx (S.111)
X€eE =1 XeE®
We here define g; as
gi = max > lhxl- (S.112)
XeEW|X>v
Then, the assumption
f(R)=R™® (a>0) (S.113)

in the main manuscript implies
o0
YooY dnxll <> a<Rr™ (S.114)
I>RXeEW|X3v IZR
We again show the statement that we would like to prove:

Theorem 11. Let A, B and C be arbitrary subsystems in V (A, B,C C V). Then, under the assumption that the
inverse temperature satisfies

1
1l = ——— A1
B < Be/ S305% (S.115)
the Gibbs state p satisfies the approximate Markov property as follows:
. 1e!/* /3.
Z,(A: C|B) < Bmin(|A], |C|)mdﬁc, (5.116)

where we assume that da.c > 2o
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A. Details of the proof

We start from Eq. (S.24). By parametrizing the Hamiltonian as

Z axhX:Z Z axhx, (8117)

XeFE =1 XeE®

we have

Hy(A:C|B)=>_ % > H a log

m=1 " X1,X2,..,Xm€EEq j=1

o0 m 8

AP > G

m=1 X, €EM) XoeEB2) . X, €EUm) j=1 X

log(pg)| ._

oo 1 o0 5
= — > Y nmuDuHz(A:C|B)| (S.118)
m=1""" lo=m weCnm(lo) =
where we define C,,,(lp) C Coo,m as
Cllo) =S w={X1,Xa,..., X0} €Coorm|X; €EW), j=12...0m st. > lj=ly. (S.119)
j=1

See Eq. (S.2) and Sec. IA 1 for the definitions of Coy ,, and EX).
Next, from Eq. (S.118), we can derive a similar statement to the proposition 3:

H:(A:C|B) = Z Z 3 DL Ha(A: C’|B)’

m=1 lo m weCp, (lo)

:Z% Yo > nuDuHg(A: CIB)‘ = (S.120)

lo>da,c wegh C(lo)

where we define G;3“ (lo) C G256, as
G Cllo) = w={X1,Xs,.... X} €GAC,|X; € B j=12,...0m st. Y li=ly,. (S.121)

Notice that we have w ¢ G2 (l) if ly < da ¢ from the above definition.
By following the same discussions in the derivation of Ineq. (S.67), we obtain

RCREISTED BH DED DEECTILEND SIS | P

veEAm=11y>da,c wegy (o)  s=1

(S.122)

where in this case, the summation of v € A, is replaced by v € A due to 04, = A (see Eq. (S.66)). Then, by
using the inequality (S.70), obtain

m 1/k(2 Sl{f)m m
n e (& ~
) f;;; I V. wlibx. | < — ) 114 (S.123)
wegy . (lo)  s=1 litlo+..Hlm=lo j=1

where we defined g; in Eq. (S.112). By combining the inequalities (S.122) and (S.123), we obtain

|Hp(A:CIB)I <> > e F k)™ [ [ a1, (S.124)
vEAmM=11l1+la++lm>da,c j=1
We can prove the following inequality (see Sec. III A1 for the proof):
o, <umige (S.125)

litlo+-+lm >lo j=1
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for arbitrary ly > 2«. By using the above inequality, we obtain

- oL/ (83 1k 1% 8/8,
> > (8¢3kB)™ H Ze (118/Be)"™ < 1575 dac: (S.126)

m=111+l2++ln >da,c 1153/ B,

m=1

By combining the inequalities (S.124) and (S.126), we finally obtain
7 . /ﬂc —a

[Hy(A: C|B)|| < B\AI 115/6 dyc- (S.127)

In the same way, we can derive the inequality such that |A| is replaced by |C| in (S.127). By combining the above
inequality with (S.21), we prove Theorem 5. [J

1. Proof of the inequality (S.125)

For the proof, we start from the following form:

oo 13, < nmle™ (S.128)

Lo+l 2o j=1

We, in the following, construct a recurrence relation to determine 7,,. First, Eq. (S.114) immediately implies
m
> Ila < H Z a, < L. (S.129)
Lot Hlm >0 j=1 j=11;=1

Based on the inequalities (S.128) and (S.129), we consider the case of m + 1 as

m—+1 m
> Hac< Y o ) 11,
lit+la++lmy12lo j=1 lmy1=1 i+t +lm>lo—lm+1 J=1
oo
<t D Gt max [(lo = bng1) %, 1]
lnL+1:1
lp—1 lo—1
Snngl(lo—l +nngl <77ng1 lo— 1)~ +nmly @, (S.130)
= 1>lo

where the last inequality comes from the inequality (S.114) with R = ly. In order to upper-bound the first term,
we decompose the summation as follows:

lop—1

S ate-D={ S + 3 + X + Y Jat-n, (S.131)
=1

le[L,ly)  l€[ly,la)  1€[lals)  1€[ls,lo)
for a > 2, where Iy = [lo/a], l2 = [lo/2], I3 = [lo — lo/a]. For o < 2, we decompose as

lo—1

allo-D=| > + > |alo—-n (S.132)
=1

l€[1,la)  1€[l2,lo)
Next, for arbitrary choice of [z,y) (1 <z <y <lp—1), we have
S allo-D"<(lo—y+1)™™ > a<lo-y+1)*> G <lo—y+1)" "2, (S.133)
le[z,y) l€[z,y) 1>z
which reduces the inequality (S.131) to

lo—1

Y aillo =17 <(lo = [lo/al +1)7" + (lo = [lo/2] + 1)~ [lo/a] ™
=1

+ (lo = [lo = lo/a] +1)"*[lo/2]7% + [lo — lo/a]™*
<2(lo — lo/a)™* +2(lo/2)"*(lo /)™

=2l5° {(11/04)04 + (212‘)1 <105 (S.134)
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for a > 2, where we use 1/(1 — 1/z)* < 4 for x > 2 and Iy > 2« from the condition of the theorem. For a < 2, we

also obtain

lo—1

> o =)™ < 2(1o/2)" < 8l§
=1
from the decomposition (S.132), where we use 2* < 4 for a < 2.

By applying the inequalities (S.134) and (S.135) to the inequality (S.130), we obtain

m—+1

> IT 3, < 11mmi5e,

lLi+lo++lmy1>lo j=1
which gives rise to
77m+1 S llnm

This yields the inequality (S.125). This completes the proof. O

(S.135)

(S.136)

(S.137)
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