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1. Introduction 

The geodynamic evolution and seismicity of many orogenic systems in the Mediterranean domain, 

such as the Apennines, Carpathians, Hellenides or the Betic-Rif systems, are driven by the rapid 

Cenozoic retreat of genetically associated slabs (e.g., Vergés and Fernàndez, 2012; van 

Hinsbergen et al., 2014; Faccenna et al., 2013; 2014a,b; Horváth et al., 2015; Balázs et al., 2017; 

Jolivet and Burn, 2010; Jolivet et al., 2013). The evolution of such an orogen is typically 

characterized by the gradual migration towards the foreland of contraction in the external part and 

extension in the internal part, driven by slab retreat (Bertotti et al., 2006; Picotti and Pazzaglia, 

2008; Leever et al., 2006). The extension is defined as back-arc, although often there is no stable 

magmatic arc observed (see discussion in Jolivet et al., 2013). Numerous reconstructions, 

geodynamic modelling studies of subduction dynamics and magmatism, as well as extensive 

analysis of present-day seismicity and surface to deep mantle observations are readily available in 

the entire Mediterranean (e.g., Funiciello et al., 2006; Menant et al., 2016; Spakman et al., 2018; 

Andrić et al., 2018; Serpelloni et al., 2013; Métois et al., 2015; Faccenna et al., 2014a; 

Konstantinou, 2017; van Hinsbergen et al., 2020; Király et al., 2018). However, the multi-scale 

quantitative coupling between long-term geodynamic evolution and short-term seismogenic 

deformation is more poorly understood. We analyze this interplay in one well-known example of 
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such a typical retreating subduction orogen, the Northern Apennines (Fig. 1). Particularly, we aim 

to better understand the impact of deep processes and rheologies on the seismicity typically 

observed at shallow upper crustal levels. The present-day expression of Apennines orogenic 

processes and associated seismicity results from the large scale roll-back of its genetically 

associated slab (i.e., the Calabrian and its northern prolongation), starting 30 Ma. This 

migration of subduction was associated with compression in the external thrust belt and with 

gradual back-arc extension, which formed the Liguro-Provençal and Tyrrhenian basins through 

rotational kinematics in the overall Western Mediterranean system (Faccenna et al., 2014a; Jolivet 

et al., 2020; Le Breton et al., 2017, and references within). Lithospheric delamination has been 

invoked as the main deformation mechanism driving the tectonics and seismicity of the Northern 

Apennines, specifically (Chiarabba et al., 2014; Benoit et al., 2011; Panza et al., 2007). Therefore, 

the local buoyancy structure and lithospheric ductility could play a crucial role in the dynamics of 

this orogen, which might be explained by internal driving forces and rheological structure (e.g., 

Patacca et al., 1990; Faccenna et al., 1997, 2001; Jolivet and Faccenna, 2000; Carminati et al., 

2012; Faccenna et al., 2014b; Le Breton et al., 2017; Jolivet et al., 2020). 

Presently, two opposing tectonic regimes can be observed in the Northern Apennines. The 

frontal area is an active thrust belt with tectonic convergence at a rate of 2–3 mm yr−1 (Bennett et 

al., 2012). Most of it is subsiding at rates of 4–5 mm yr−1 (but locally as fast as 9 mm yr−1) and 

is buried by the foreland basin sediments of the Po Plain (e.g. Devoti et al., 2008; Picotti and 

Pazzaglia, 2008; Devoti et al., 2011; Serpelloni et al., 2013). The subsurface of the Po plain is 

affected by compressional earthquakes at depths of up to 20 km. Thrust-related seismicity also 

occurs at 20–35 km depth beneath the most external, northeastern part of the range (Chiarabba et 

al., 2005). To the south and west, more internally in the mountains, the thrusts are cross-cut by 

normal faults (Collettini et al., 2006), formed in response to the more internal extension (with 

2–3 mm yr−1 of horizontal motion) and modest uplift (up to 1 mm yr−1) (Bennett et al., 2012; 

Devoti et al., 2011; Serpelloni et al., 2013). Uplift and erosion in the most internal part of the range 

(in the Apuan Alps) have exhumed crustal material at an average rate of 0.7 mm yr−1 since 11 

Ma, with a peak of 1.3–1.8 mm yr−1 in the Messinian and Early Pliocene (Balestrieri et al., 2003). 

Uplift of what is now the crest of the chain began after the peak in exhumation of the Apuan Alps, 

further to the southwest, and progressed during the Pleistocene (Bartolini, 2003). 

Figure 1: Topographic map of the northern Apennines and surroundings, showing the trace of the 
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reference profile (thick line) and its continuation (thin, dashed), as well as earthquake locations 

and select focal mechanisms within 25 km of the profile. The cluster of thrust-faulting events to 

the northeast of the Apennines consists largely of the 2012 Emilia-Romagna sequence, which 

activated the most external thrusts of the orogenic belt. The radius of the focal mechanisms shown 

scales linearly with magnitude. Hypocenter locations with no mechanism were determined by 

Chiarabba et al (Chiarabba et al., 2014) on the basis of INGV recordings of earthquakes occurred 

between 28 February 2005 and 31 December 2014. Focal mechanisms are from an updated version 

(covering from 1977 to 2015) of a compilation of CMT solutions in the Italian region (Pondrelli et 

al., 2006). 

 

The tectonics and seismicity of the area have been the subject of renewed interest 

following the 2012 Emilia-Romagna earthquakes (Fig. 1). That seismic sequence activated part of 

the external thrust front complex through two main shocks of 
wM  5.9 and 5.7, respectively 

(Scognamiglio et al., 2012). Historical seismicity includes several earthquakes similarly located on 

blind thrusts beneath the plain and at the base of the mountain range, with a maximum estimated 

wM  of 6.1 . The middle and external parts of the range, further to the southwest, are also 

seismically active with earthquakes on shallow normal faults and extensionally reactivated thrusts. 

Among these events is the largest known earthquake in the area, the wM   6.5 

Lunigiana-Garfagnana earthquake of 1920 (Rovida et al., 2016). 

Despite recent studies on earthquake source mechanisms, surface deformation, and active 

structures in the Apennines belt (e.g., Tizzani et al., 2013; Cheloni et al., 2016), it is difficult to 

obtain a full picture of the seismicity and tectonics of the area and its relationship with the deep 

structure and geodynamics of the orogen. This is due to the limited temporal coverage of any 

catalog of historical and, even more so, instrumentally recorded seismicity. In the Northern 

Apennines, the problem is exacerbated by relatively low strain rates (~10−6 yr−1, Chiaraluce et al., 

2005) and resulting relatively low magnitudes ( wM  6.5, Rovida et al. (2016)) and relatively long 

( > 160 yr) recurrence time of the largest earthquakes (Mantovani et al., 2015a). The reasonably 

well-known internal structure and surface observations of active deformation of the Northern 

Apennines can be a starting point to shed light onto the long-term dynamics and large-scale 

structure and its influence on tectonics and short-term seismicity. 
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The link between lithospheric–scale structure and geodynamics and the resulting crustal 

tectonics has already been the subject of global observational studies. For instance, maximum 

earthquake size in subduction zones was suggested to correlate with convergence rate and 

lithospheric age (and thus temperature and slab pull) (e.g., Ruff and Kanamori, 1980). 

Furthermore, greater coupling between the slab and the rest of the subducting plate at the ocean 

floor was observed to correspond to less seismic moment release (Bilek et al., 2005). This is 

thought to reflect the effect of strength and structural integrity of the subducting plate on the 

localization of seismogenic brittle deformation. However, statistical correlations are often weak 

(e.g., Heuret et al., 2011). Furthermore, such studies are often limited by the short observational 

period compared to the recurrence times of earthquakes and by the difficulty of studying systems 

governed by multiple, interacting processes occurring at depths of tens to hundreds of kilometers 

and across various spatio-temporal scales. Modeling is thus needed to reveal the physical 

processes connecting deep and shallow deformation over different time scales (e.g., Dinther et al., 

2013b; Dal Zilio et al., 2018). 

To investigate the mechanisms controlling the regional tectonics and to address the 

limitations of existing research, this study considers long time periods and links small-scale 

tectonics and seismicity to large-scale dynamics and structure using a seismo-thermo-mechanical 

(STM) modeling approach (van Dinther et al., 2013b). This method can simulate long-term 

visco-elasto-plastic deformation of the lithosphere, dislocation creep and mantle flow together 

with short-term brittle-plastic failure and fault slip associated with accumulated elastic stress 

release. This ensures that faults can for the first time be loaded tectonically by velocities and 

stresses resulting from slab pull. Our model setup is thus based on the hypothesis that lithospheric 

dynamics driven by slab pull (i.e., with no imposed shortening or extension) can largely explain 

the active tectonics and seismicity of the modeled retreating subduction/collision system. 

We performed a series of numerical experiments to both investigate the retreating 

subduction/collision system and to identify a set of best-fit model parameters allowing to capture 

the present-day spatial distribution of compressional and extensional normal stresses and of 

surface velocities. This is achieved by varying the rheology of the lower crust and the temperature 

of the slab, the asthenospheric wedge and of the lowermost crust of Adria. Once the location of 

present-day tectonic regimes is broadly reproduced, the resulting seismicity and surface velocities 

are analyzed in comparison with observations. Subsequently, we study how these short-term 
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features are affected by slab pull and lithospheric rheology. 

 

2. Methodology and setup 

2.1. Seismo-thermo-mechanical modeling 

The STM modeling approach was developed, described, and first applied by (van Dinther et al. 

(2013b). This approach is based on a geodynamic numerical code that uses a fully staggered grid, 

conservative finite-difference scheme with marker- in-cell technique to solve for the conservation 

of mass, momentum and heat (Gerya and Yuen, 2007). To do so a Maxwell visco-elasto-plastic 

rheology is used. Drucker-Prager plasticity approximates both plastic and brittle yielding in a 

continuum mechanics framework and consists of plastic strain accumulation upon reaching a 

pressure-dependent yield strength yield . 

The constitutive relation linking deviatoric stress ij   with strain rate ij  is thus 
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where G  is the shear modulus, D
Dt

 the objective co-rotational time derivative, 
2 2

II = xx xz      

the second invariant of the deviatoric stress tensor, and   a plastic multiplier which connects 

strain rates to stresses during yielding (Gerya and Yuen, 2007). Non-plastic effective viscosity   

is computed as a function of stress according to a non-linear flow law with dependence on pressure 

P  and temperature T : 

 

1

II= exp ,
2

n

a a

D

E PV

A RT






  
 
 

 (2) 

with R  the universal gas constant, n  the exponential coefficient, DA  the pre-exponential 

factor, aE  and aV  the activation energy and volume (Ranalli, 1995). 

Brittle-plastic yielding occurs when the stress satisfies the Drucker-Prager yield criterion, 

defined as 

 =II yield   (3) 

with yield strength 
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 = .yield effC P   (4) 

Here, C  is the compressive residual strength and = (1 )eff    is the effective friction 

coefficient, with internal friction coefficient   and pore fluid pressure factor = fluidP

P
 , where 

fluidP  is fluid pressure and P  is total pressure. When 
II   reaches the yield strength 

yield , the 

effective viscoplastic viscosity 
vp , otherwise equal to  , becomes II

II



 





. To allow the 

spontaneous nucleation, propagation and arrest of seismic events, friction depends on local slip 

rate V  according to a strongly slip rate dependent friction formulation (e.g., Cochard and 

Madariaga, 1994; Ampuero and Ben-Zion, 2008), in which a relation with V  in the denominator 

is thought to represent friction at high seismic slip rates (e.g., Di Toro et al., 2011a): 

 = ,
1

c

s d
d V

V

 
 





 (5) 

where static and dynamic friction coefficients s  and d , respectively, and characteristic slip 

rate cV . In our models, d  is set to 30% of s  after Di Toro et al. (2011b) and cV  is 4.4 mm 

yr−1 following van Dinther et al. (2013b). The slip rate V  is computed as 

 II,= 2 ,vpV x   (6) 

where x  is grid size, representing the width of the fault, and II,vp  is the second invariant of the 

visco-plastic strain rate. 

 

2.2. Model setup and observational constraints 

The reference model setup in Fig. 2 combines a suite of geological and geophysical observations. 

We design the initial configuration on the basis of a geological and structural profile of Molli et al. 

(2010). We selected this profile because it synthesizes various geological and geophysical 

observations into a schematic yet detailed cross-section extending to mid-crustal depths. The faults 

in the profile are transposed into the model as thin zones with their own rock type. Their rheology 

is significantly weaker than the other rock types, and thus more prone to brittle-plastic yielding. 

However, yielding and seismicity can and do also occur away from prescribed faults. At depth, the 

profile is supplemented by published information. In particular, we adopt the Moho geometry from 

a cut through the model of Spada et al. (2013), based on seismic reflection and refraction as well as 
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receiver functions. In the setup, the lithospheric mantle and thus the Moho consist of two distinct 

and partly overlapping segments (Adriatic and Tyrrhenian), in accordance with the receiver 

function study of Bianchi et al. (2010). The Adriatic lower crust in the setup follows the Moho 

downwards and is shaped accordingly with the low-velocity zone tomographically imaged at 

moderate depths (35–55 km) beneath the middle and southwestern side of the range, above the 

Adriatic mantle (Di Stefano et al., 2009). The lithosphere-asthenosphere boundary is located 

100–120 km beneath the southern Po Plain and northernmost Apennines and around 70 km 

beneath the eastern coast of the Ligurian sea, in accordance with the surface wave tomography of 

(Panza et al. (2003). We add a subvertical slab of lithospheric Adriatic mantle down to depths of 

400 km, following the teleseismic tomography of Benoit et al. (2011). The uncertainty in the depth 

extent of the lithospheric mantle is implicitly addressed in the different temperature setups used 

(Fig. 3 and Section 3.3), since it is temperature that distinguishes the lithospheric and 

asthenospheric mantle in terms of rheology and density (Tables 1 and 2). 

 

Figure 2: Reference model setup showing the distribution of the different rock types, as well as the 

isotherms of the reference temperature setup (with values in °C). Topography is not vertically 

exaggerated. (a) Full setup with the rock type legend and the velocity boundary conditions. (b) 

Zoom on the area outlined in (a), showing the details of the lithospheric setup. The labels and 

arrows show the location of the whole orogen and of the mountain range and identify the two 

lithospheric domains. Horizontal distance is measured northeastwards along the profile trace 

starting from the city of Massa, on the coast. 

 

The reference set of material properties corresponding to each rock type is shown in Table 

1. Three different lower crustal rheologies are tested, as their ductility is expected to control the 

style of deformation. Following Faccenda et al. (2009) and Ranalli (1995), these are mafic 

granulite, plagioclase, and wet quartzite. 

 

Table 1: Rheological and other physical parameters for each material type in the reference model. 

For all materials, 0= [1 ( 298)][1 ( 0.1)]T P        and = 0.3d s  . All rock types (faults 

included) have 
5= 3 10   

1C , 5=10 

 MPa−1, and =1000pC
 

1 1J kg C  . Air has 
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1= 0 C  , 1= 0MPa  , and 
6 1 1= 3.33 10 J kg CpC    . 

s  is 0.3 on faults, 0.8 in the mantle, 

0.6 in other rock types and 0 in air.   is 0.4 in the mantle and lower crusts, 0.6 elsewhere. The 

physical quantities corresponding to each symbol and the sources for the values used are specified 

in Table 2 

Symbol 1 /
D

A  n  
a

E  
a

V  G  C  s
   

0
  k  

rH  

Units nPa s  – kJ J
bar

 GPa MPa – – 
3

kg

m
 w

Cm
 

3

nW

m
 

Sticky air 171.00 10  1.0 0.00 0.0 700 0 0 0 1 200 0 

Po Plain 

sediments 

171.97 10  2.3 154  0.6 50 3 0.6 0.6 2800 807
77

0.64
T

    

64 10 Pe


 

1500 

Tuscan 

foredeep units 

171.97 10  2.3 154  0.8 50 5 0.6 0.6 2800 807
77

0.64
T

    

64 10 Pe


 

1500 

Continental 

basement 

171.97 10  2.3 154  1.2 50 10 0.6 0.6 2900 807
77

0.64
T

    

64 10 Pe


 

1000 

Adriatic lower crust 

Mafic granulite 211.13 10  4.2 445  0 120 5 0.6 0.4 2900 474
77

1.18
T

    

64 10 Pe


 

250 

Plagioclase 

(An75) 

224.80 10  3.2 238  0 25 5 0.6 0.4 3000 474
77

1.18
T

    

64 10 Pe


 

250 

Wet quartzite 171.97 10  2.3 154  0 10 5 0.6 0.4 3000 474
77

1.18
T

    

64 10 Pe


 

250 

Tuscan 

metamorphics 

222.80 10  3.2 238  0.8 50 26 0.6 0.6 2900 474
77

1.18
T

    

64 10 Pe


 

250 

Mantle 

(lithosphere) 

163.98 10  3.5 532  0.8 50 5 0.8 0.4 3300 1293
77

0.73
T

    

64 10 Pe


 

22 

Mantle 

(asthenosphere) 

163.98 10  3.5 532  0.8 50 5 0.8 0.4 3300 1293
77

0.73
T

    22 
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64 10 Pe
  

Tuscan nappe 171.97 10  2.3 154  1.2 50 19 0.6 0.6 2850 807
77

0.64
T

    

64 10 Pe
  

1000 

Ligurian units 171.97 10  2.3 154  1.2 50 4 0.6 0.6 2800 807
77

0.64
T

    

64 10 Pe
  

1000 

Tyrrhenian 

lower crust 

211.25 10  4.2 154  0.8 50 5 0.6 0.4 2800 474
77

1.18
T

    

64 10 Pe
  

250 

Faults 255.01 10  4.0 154  0.8 12 1 0.3 0.6 2900 1293
77

1.73
T

   

64 10 Pe


 

22 

 

Table 2: Symbols and sources of physical parameters used in the models 

Quantity Symbol 

Inverse of pre-exponential factor a  1/ DA  

Flow law exponent a  n  

Activation energy
a

 aE  

Activation volume
a

 aV  

Shear modulus G  

Compressive residual strength C  

Static shear modulus
c
 s  

Pore-fluid pressure factor   

Reference density 
0  

Thermal conductivity
,b d

 k  

Radiogenic heat production 
rH  

a  From Ranalli (1995). 

b  From the corresponding generic rock types from Clauser and Huenges (1995). 

c  Chosen on the basis of the values for generic rock types used in previous STM work (van 

Dinther et al., 2013a, and references therein] and of the mixes of lithologies present in the 
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orogen (Molli, 2008; Cerrina Feroni et al. 2002). 

d  In the formulas, P  and T  are in SI units 

 

The model temperature field is initialized on the basis of a self-consistent simulation of 

retreating subduction with a generic initial geometry. The initial temperature field accounts for 

model geometry and includes a cold accretionary crustal wedge, a hot asthenospheric wedge, and a 

lithosphere-asthenosphere boundary at around 1300 °C. The maximum depths of earthquake 

hypocenters between 2005 and 2015 (Chiarabba and De Gori, 2016) are used as a broad indicator 

of the location of the thermally determined brittle-plastic transition, keeping in mind that 

seismicity has been observed beneath the Apennines in hotter areas than normally expected 

(Pasquale et al., 2010). The isotherms in the asthenospheric mantle follow an adiabatic thermal 

gradient of 0.5 °C km−1 (Katsura et al., 2010). The top of the crustal basement has a temperature 

of around 200 °C, in accordance with the thermal model inverted by (Pasquale et al., (2013). For 

the initial thermal setup, temperature contours are designed with 100 °C) intervals. These contours 

are then interpolated to the entire temperature field using a biharmonic splines method. The 

location of any specific isotherm is uncertain to a large degree. To explore such uncertainty and 

consider at least partly the possible range of temperatures, we also test alternative versions of the 

temperature field. In particular, we vary the isotherms in the poorly constrained areas that might 

control the large-scale tectonic regime: (i) the subducted slab and (ii) the deep suture area between 

Adriatic and Tyrrhenian lithospheres (Fig. 3). 

 

Figure 3: Contours of different interpolated temperature setups used in the models. For each setup, 

the same isotherms are shown. Each color corresponds to a different temperature setup. Boundary 

conditions are also shown. The thin grey lines, shown as a spatial reference, are material contours.  

 

2.3. Model specifications 

The boundary conditions used are free-slip on all boundaries and zero lateral P  gradient at the 

four corners (with = 0P  at the top). Lateral boundaries are zero-heat-flux, while the top has fixed 

T  (0 °C) and a fixed T  gradient (2.413 °C km−1) at the bottom. A 25-km-thick weak “sticky air” 

layer ( = 0yield , =1  kg m−3, 17=10  Pa s) was placed at the top to approximate a free surface 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



(Crameri et al., 2012). The models have a variable spatial resolution, from 250 m in the area of 

interest to 5 km at the edges and bottom. To minimize boundary effects, the model space extends 

vertically for 500 km and horizontally for 1000 km. 

 

2.4. Modeling procedure 

Following Dal Zilio et al. (2018), we run the models in two phases: (i) long-term, with timestep 

= 200t  yr, and (ii) short-term, with =1t  yr. The long-term phase allows the model to 

develop self-consistent stresses and velocities and attain isostatic equilibrium. Once the stress 

configuration and crustal velocities are broadly consistent with present-day observations, the 

timestep size is progressively reduced to 1 yr. We then switch to the short-term phase, during 

which the model is run for 20,000  years and spontaneous events are simulated. 

 

2.5. Evaluation of model seismicity 

Due to computational challenges, we use a constant timestep of 1 yr during the short term 

modeling phase. Hence, seismic slip rates cannot be achieved. For the purpose of this paper, we 

focus on the type, distribution and size of events and do not attempt to realistically simulate the 

rupture process. To detect events, we record all occurrences of relative displacement (slip) along 

localized, spontaneous plastic shear bands that experience a substantial increase in slip rate and 

permanent stress drop, following Dal Zilio et al. (2018). We use a stress drop threshold of 0.5MPa 

(Allmann and Shearer, 2009) and a slip rate threshold of 94 10  ms−1. The detection algorithm 

groups into the same event all model markers that are are undergoing brittle-plastic yielding, meet 

the thresholds, and are within a timestep and grid step of each other. To relate events size to the 

most common quantity describing earthquake size, we compute the total (3D) moment magnitude 

wM  from width W  (in km) using the empirical scaling law 

 
10

= ( ),logwM a b W  (7) 

with the empirical coefficients = 3.8049a  and = 2.4390b  calculated by Blaser et al. (2010) via 

orthogonal least-squares regression. We only consider events with 3.5WM  , corresponding to 3 

grid steps in the densest part of the model. The markers within each event that yield at the earliest 

time define the hypocentral region. 
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3. Results and analysis 

3.1. Lithospheric and crustal dynamics 

The present-day distribution of velocities and stresses in the study area of the northern Apennines 

can be broadly reproduced by our reference model through the combination of high temperatures 

in the mantle wedge and lowermost crust and the most ductile (wet quartzite) lower crust rheology 

(Fig. 3 and 4). These parameters allow mantle material to protrude upward and northward at 

relatively high velocity ( 20 mm yr−1) into the lower crust. As a result, a hot, low-viscosity, 

increasingly weak channel forms above the Adriatic lithospheric mantle. This decouples the 

overlying upper crust, which includes the mountain range, from the slab and pushes upward and 

laterally with respect to the Tyrrhenian domain further to the southwest, causing uplift and 

extension. Conversely, the portion of the upper crust ahead of the low-viscosity channel, including 

the Po Plain, is compressed by the protruding material. It is also still mechanically coupled to the 

partly delaminated, sinking lithospheric mantle slab and therefore subsides. Two tectonic regimes 

thus form in the upper crust: extension and uplift throughout the range versus compression and 

subsidence in the foreland (Fig. 4). This is in agreement with present-day observations. 

In contrast, the use of the strongest (mafic granulite) lower crust rheology, produces a 

rheological coupling of the slab to the upper crust, regardless of temperatures. This leads to 

tectonic regimes opposite to the observed in the study area, with thrusting and subsidence in the 

range and extension and uplift in the Po plain (Fig. 5). 

On the other hand, the intermediate (plagioclase) rheology of the lower crust allows for 

wedge protrusion and lithospheric delamination only when the lower crust is brought to 

temperatures of over 450°C. However, normal stresses in the range are partially compressional, 

the deep area 20–35 km underneath the base of the mountain range is not entirely compressional, 

and the foreland beyond the external thrust front undergoes intense extension and uplift (Fig. 5). 

With further modeling, we attempt to produce realistic tectonic regimes with less ductile 

lower crust, such as by imposing a zone of eclogitic material or a localized shear zone at the deep 

suture between the two lithospheric domains. These efforts did not lead to compression throughout 

the Po plain without significant changes in the defined initial crustal and lithospheric geometry. 

Therefore, the simulations suggest that the simultaneous presence of the two tectonic regimes 
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observed at present day requires high temperatures in the mantle wedge and lowermost crust. 

 

Figure 4: Deformation features of the reference model in comparison with observations. 

Deviatoric normal stresses are shown in the background. All stresses are taken from the last 

timestep of the model. (a) Principal stress axes and velocity vectors in the reference model. (b) 

Event hypocenters and surface velocities at the end of the short-term model phase. (c) Locations of 

all markers involved in events. Observed stress axes, velocities, and hypocenters are projected 

onto the profile from within 40 km of horizontal distance. The compressional (long) and 

extensional (short) principal stress axes are shown in brown for the model and in cyan for World 

Stress Map observations (Heidbach et al., 2016). In (a), velocities are in 50,000:1 scale with 

respect to the plot axes: a length of 1 in the reference frame of the axes corresponds to 20 mm yr −1. 

In (b) and (c), the topography is vertically exaggerated. In (b), velocity arrows represent the 

average yearly displacement in 500,000:1 scale. The faulting style of model earthquakes is 

determined by the average coseismic orientation of principal strain rate axes (extension closer to 

the horizontal than vertical direction for normal faulting, vice versa for thrust faulting) and average 

horizontal normal stress (positive for normal faulting, negative for thrust faulting) of the markers 

in each event. Observed earthquake hypocenters are selected from an updated version of the CMT 

catalog of Pondrelli et al. (2006) and plotted as circles with diameter proportional to wM . Only 

events with 3.5wM   are considered in both observed and model seismicity. 

 

Figure 5: Comparison with observations of the deformation features of different models. (a): mafic 

granulite lower crusts and the same temperature setup as the reference model (hot mantle wedge, 

cold slab). The resulting pattern of tectonic regimes is opposite as what is observed in the Northern 

Apennines, with thrust-related seismicity and subsidence in the mountain range and with 

seismogenic extension and uplift in the plain. (b): plagioclase lower crusts and a hot lithosphere 

and slab. Lithospheric delamination-retreat and wedge protrusion are occurring. However, the 

mountain range is partly compressional and the external Po plain intensely extensional and 

uplifting, and the Moho geometry has deformed significantly from the initial setup. Observed 

topography, observed and model velocity arrows and earthquake hypocenters by faulting 

mechanism, and model stresses and material contours are shown as in Fig. 4. 
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3.2. Seismicity and surface deformation 

We analyze the short-term behavior of the reference model in terms of surface displacement and 

seismicity. 

 

3.2.1. Surface velocities 

Horizontal model velocities show less than 2 mm yr−1 of extension distributed throughout the 

external half of the mountain range and  3 mm yr−1 of convergence across the whole of the Po 

plain. A similar trend is present in GPS measurements by Devoti et al. (2011) with respect to stable 

Eurasia (Fig. 6). In general, we found model velocities 1.5 2  mm yr−1 lower than observed, 

probably due to the northeastward drift of the northern Adriatic domain (Mantovani et al., 2015b), 

which we do not model. Horizontal velocities in the plain and in the most external and internal 

parts of the range are in good agreement with most of the GPS velocity data from Bennett et al. 

(2012). Model velocities describe horizontal shortening between the base of the range and the 

external buried thrust front as well as extension in the middle and external side of the chain. 

Vertical model velocities in the Apennines are compatible with some GPS observations, especially 

those by Bennett et al. (2012). In general, however, GPS data do not show consistent uplift in the 

mountain range like the models do. Furthermore, in the foreland the modeled subsidence peak is 

relatively low in amplitude (less than 5 mm yr−1) and extends across the whole plain. 

 

Figure 6: Average horizontal and vertical velocities of markers placed at the surface of the 

reference model. Vertical velocities are positive upwards. Only interseismic time periods between 

major events are considered. Published GPS velocities are shown for comparison, projected from 

within 40 km of the profile. Note that velocities from Bennett et al. (2012) are relative to the 

centroid of the regional GPS network used, whereas Devoti et al. (2011) take stable Eurasia as the 

reference frame and Serpelloni et al. (2013) use a global reference frame (ITRF2008). The Vertical 

bars correspond to an uncertainty of one standard deviation (1 ). Topography is outlined in light 

gray for orientation purposes. 

 

3.2.2. Seismicity and stresses 

Crustal stresses in the reference model are extensional underneath the Apennines and 

compressional throughout the Po Plain (Fig. 4). Average deviatoric shear stresses xy   reach their 
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highest magnitudes in the middle of the Po plain, in the external thrust front. Most of the modeled 

seismic moment release occurs in this area, both on the prescribed faults and in off- fault events. 

Modeled earthquakes also occur on thrusts around the base of the range, which produce fewer 

earthquakes than the external thrust front itself (Fig. 4). This is in agreement with both 

instrumentally observed and historical seismicity, which tend to cluster on the external thrust front 

complex. Extensional crustal seismicity in the reference model is focused in the middle of the 

mountain range and is absent in its most internal part (distance along the profile < 25x  km). This 

is in agreement with earthquake locations observed tens of kilometers to the southeast and with the 

proposed source of the 
wM   6.5 Lunigiana-Garfagnana earthquake of 1920 (Rovida et al., 

2016). Nevertheless, several earthquakes have been observed instrumentally along our reference 

profile at < 25x  km (Chiarabba et al., 2005). The largest events in the model have a 
WM  of 7.4. 

Reference model seismicity also includes events in the lithospheric mantle, at the top of the 

Adriatic slab. These occur on spontaneously formed normal faults located in the external hinge 

area of the bending slab (Fig. 4). Overall, the depth distribution of model earthquake hypocenters 

is bimodal, with a peak in the upper crust and one in the bending slab, and no events in the lower 

crust (Fig. 7). However, the cluster of instrumentally recorded earthquakes underneath the external 

thrust front only shows focal locations at middle- to - lower crustal depths (25-45 km), rather than 

in the lithospheric mantle. 

 

Figure 7: Depth distribution of earthquakes in the reference model. The relative depth distribution 

is compared with that of events in the updated instrumental seismicity catalog of Chiarabba et al. 

(2005) within 25 km of horizontal distance from the profile. 

 

3.3. Slab pull controlling the distribution of seismicity 

In a novel development, we directly link slab pull and events in the same simulation. To explore 

the importance of slab pull in driving the dynamics of the northern Apennines, we perform two 

numerical experiments. In these experiments, we use alternative temperature setups (Section 2.2 

and Fig. 3) with different isotherms in and around the slab, thus altering its buoyancy. This also 

allows us to explore the effect of different mantle temperatures on model dynamics, which is 

important given the lack of knowledge of the deep thermal conditions. Higher slab temperatures, 
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corresponding to a lower average density and less negative buoyancy and thus to less slab pull, 

decrease the intensity of crustal deformation (Fig. 8). Conversely, lower temperatures increase 

slab pull and the intensity of deformation. This occurs despite the absence of strong mechanical 

coupling between the upper crust and the slab (Fig. 3). The effect of slab temperatures on 

deformation is manifested in the total seismic moment released and in seismic rates (Fig. 8). In 

fact, the hotter slab reduces the moment released in both crustal regimes to around 20% of its value 

in the reference model (17% in the extensional crustal domain, 21% in the compressive one). The 

seismic rate in the crust is also reduced, though more unevenly in the two regimes. The seismic 

rate in the mountain range under extensional stresses is reduced by 68% and becomes 60% of that 

in the active thrust belt, where the reduction is by 50%. The different magnitude of the effect of 

slab temperatures on seismic moment release and on seismic rates is consistent with the 

distribution of model stresses and seismicity. In particular, in the reference model the 

compressional regime has a lower proportion of smaller earthquakes than the extensional one, as 

well as larger | |xx   and II  . This is consistent with the inverse relationship between the 

Gutenberg-Richter b  value and differential stress   observed in the laboratory (Amitrano, 

2003), in earthquakes in continental areas (Scholz, 2015), and in STM modeling of orogenic belts 

(Dal Zilio et al., 2018). Therefore, the seismic rate in the extensional regime is more susceptible to 

weaker driving forces, as even a small reduction in crustal stresses stops the small extensional 

earthquakes from occurring. The influence of slab temperatures on crustal deformation is also 

evident in the surface velocities: the colder, more buoyant slab increases horizontal and vertical 

velocities, while the hotter slab has the opposite effect (Fig. S1). Based on our results, we can 

conclude that the lateral distribution of relative earthquake frequency and seismic moment release 

in the studied migrating orogen is critically controlled by the slab pull driving this system. 

 

Figure 8: Comparison of the total released seismic moment 0M  (a–c), and number of earthquakes 

(d–f) in models with different temperatures in and around the slab. The isotherms corresponding to 

the different temperature setups used are shown in Fig. 3. Increasing slab pull increases the seismic 

moment released in both the extensional and compressional regimes of the upper crust. It also 

increases the seismic rate in the crust and lowers it in the mantle. The two crustal regimes and the 

lithospheric mantle slab are selected manually. Only earthquakes with 3.5wM   are considered. 
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3.4. Effect of lithospheric mantle stiffness on seismicity 

The impact of elastic properties of the lithospheric mantle on shallow tectonics is typically thought 

to be negligible. We evaluate this impact by varying its elastic stiffness. A higher shear modulus 

G  in the lithospheric mantle leads to a stiffer, more rigid slab, which generally reduces slab 

bending and lithospheric delamination. As a consequence, less crustal deformation occurs. 

Therefore, generally less seismic moment is released in the crust, especially in the compressional 

domain (Fig. 9). The vertical components of model surface velocities are also affected (Fig. S2). In 

particular, they decrease by up to  1 mm yr−1 in the external part of the mountain range (thus 

reducing uplift) and in the plain (which amounts to faster subsidence). Despite a general negative 

trend, the change in released seismic moment and vertical surface velocities with increasing slab 

G  is variable. This could be due to a trade-off between two processes: on one hand, the 

lithospheric mantle undergoes less bending in response to the unchanged dynamic load. This 

forces the deformation due to hot mantle wedge and lower crust protrusion to localize to a greater 

extent in the crust, rather than in the bending and downwelling of lithospheric mantle. On the other 

hand, greater stiffness slows down slab bending and thus overall deformation through reducing 

crustal loading rates. Such influence of slab stiffness on seismicity demonstrates the importance of 

complex interactions between different subsurface regions. Furthermore, it shows that small 

changes in stresses and displacements due to preperties of material at sub-crustal depths (greater 

than 40 km) contribute to determine the lateral distribution and abundance of earthquakes. 

 

Figure 9: Comparison of the total seismic moment 0M  in models with different shear modulus 

G  in the lithospheric mantle. Slab stiffness affects the lateral distribution of crustal seismicity. 

The two crustal regimes in (a) and (b) and the bending lithospheric mantle hinge regime in (c) are 

considered separately and selected manually, looking at the distribution of events in space. Only 

earthquakes with 3.5wM   are considered. 

 

3.5. Effect of rock strength on earthquake distribution 

We also investigate the influence of the yield strength parameters on short-term tectonics in the 

models. Yield strength is expected to strongly affect local stresses and the specific distribution of 
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seismicity, while having a negligible effect on the overall stress and velocity pattern. The results of 

such experiments are presented and discussed in Appendices A and B. We find that both bulk rock 

strength and fault friction (which determines fault strength) do influence the intensity and 

distribution of simulated seismicity. In particular, higher or lower bulk strengths accordingly 

increase or decrease the seismic moment 
0M  released. The effect on total seismic rate in the 

different regimes is not uniform, because the distribution of the released seismic moment over 

different magnitudes is not constant and depends on the specific combination of model parame ters. 

Fault friction, instead, affects seismic 
0M  release in a less consistent way. Both decreasing and 

increasing fault friction reduce the 
0M  released in the extensional regime. Conversely, the effect 

of increasing friction on 
0M  release in the compressional regime is monotonic. This implies that 

the lateral distribution of the intensity of seismicity, in terms of 
0M  release, is significantly 

affected by fault friction, because of the different stress loading regimes active in different areas of 

the model. 

Overall, the strength of bulk rock and of predefined faults determine the specific lateral 

distribution of seismicity across the model. However, the magnitude of the impact of strength, 

especially of bulk rock, on seismic moment release is not dominant with respect to the effect of the 

temperature and stiffness of the lithospheric mantle (Section 3.3 and 3.4). Therefore, our 

simulations suggest that the elastic and thermal properties of deep material, in the particular 

geodynamic setting of the northern Apennines, can be of comparable importance in controlling 

crustal seismicity as the mechanical strength of the crust. This is a significant result, given that 

rock and fault strength are usually paid much more attention than any deep properties when 

studying seismicity on complex fault systems. 

 

4. Discussion 

4.1. Deformation 

4.1.1. Surface deformation and GPS observations 

The horizontal components of model velocities delineate moderate surface extension in the 

external part of the range and shortening in the adjacent Po plain foreland, in agreement with GPS 

observations by Devoti et al. (2011). Vertical model velocities delineate the pattern of uplift in the 
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mountain range and subsidence in the foreland generally observed for the Northern Apennines. 

Upward model velocities are in agreement with exhumation rates estimated near the southwestern 

end of our reference profile ( 0.7 mm yr−1 on average, 1.8 mm yr−1 maximum; Balestrieri et al. 

(2003)). However, present-day vertical velocities from GPS observations show a roughly even 

mix of uplift and subsidence in the mountain range (Fig. 6). This suggest that either localized 

deformation overprints the slow uplift signal, or that broad tectonic uplift has recently ceased. 

The downward velocities produced in the models form a broad peak more than 100 km 

wide. Conversely, in GPS observations directly along the profile, subsidence in the Po plain is 

focused in the vicinity of the range and reaches rates of 8 mm yr−1 or more. However, results from 

the geodetic study of Serpelloni et al. (2013) are in better agreement with the subsidence rates 

produced in the model. In particular, their best- fit smoothed spline along a line 50 km to the 

southeast of our profile defines an 80-km-wide peak beginning with an amplitude of less than 4 

mm yr−1. This suggests that subsidence in the eastern part of the Po Plain might be compatible with 

a lithospheric-scale velocity field dominated by lithospheric delamination and slab flexure and 

retreat, as proposed by Carminati et al. (2003). The lack of a lithospheric delamination-retreat 

signal in the vertical velocities observed along our reference profile could result from slab retreat 

and flexure being significantly slower or currently absent altogether to the northwest of the 

lithospheric tear proposed by Piccinini et al. (2014). Alternatively, shallow crustal processes such 

as fault creep and sediment deposition might mask the signal of lithospheric delamination-retreat. 

 

4.1.2. Geodynamics 

Our results show that the characteristic tectonic configuration of the Northern Apennines can be 

explained by lithospheric and asthenospheric dynamics driven only by the buoyancy anomalies of 

the slab and mantle wedge through partial decoupling and retreat of the downgoing lithosphere, in 

agreement with inferences of previous studies (e.g., Ventura et al., 2007; Picotti and Pazzaglia, 

2008). In particular, slab buoyancy and viscous flow in the hot lower crust and mantle wedge drive 

lithospheric delamination and slab retreat and reproduce the tectonic regimes of the orogen (Fig. 

4). This geodynamic configuration fits well within the larger framework of the entire Western 

Mediterranean back-arc system being driven by upper mantle–scale convection cells associated 

with slab retreat, back-arc extension and dynamic topography (Faccenna et al., 2014a). In this 

context, our modeling results clarify how viscous flow and resulting dynamic topography relate to 
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the observed tectonics and pattern of uplift and subsidence. We find that dynamic subsidence 

coupled with horizontal shortening affects the external part of the orogen and the Po plain, where 

the upper crust is coupled with the lithospheric slab. The internal, southwestern part of the orogen 

undergoes active uplift and extension as a consequence of upward and outward flow of hot 

material in the upper mantle and lower crustal wedge. We successfully reproduce the coupling of 

modest uplift with horizontal extension and subsidence with compression that characterizes the 

Northern Apennines. The two tectonic regimes of our models are coupled and migrate gradually 

towards the foreland as a result of continued lower crustal wedge protrusion and lithospheric 

delamination-retreat, consistently with the observed northeastward migration of both the external 

thrust front and of the locus of extension over the past 30 Ma (Jolivet and Faccenna, 2000; 

Faccenna et al., 2001). 

Producing lithospheric delamination associated with slab retreat in our models requires the 

presence of ductile and buoyant material near the contact between the Adriatic and 

Tyrrhenian-Ligurian domains. Such material properties are obtained in the models through a wet 

quartzite rheology for the Adriatic lower crust together with high temperatures. The importance of 

ductile lower crustal material decoupling the upper crust and lithospheric mantle, shown by our 

models (Figs. 4 and 5), is consistent with previous studies. In particular, Benoit et  al. (2011) 

explain the deep structure and magmatism of the Northern Apennines in terms of lithospheric 

mantle delamination, which requires a rheological weakness of the lower to middle crust. 

Furthermore, the rheology of Adriatic middle-lower lithosphere was inferred to control the 

tectonic style of the orogen by Chiarabba et al. (2014). They proposed a mechanism of propagation 

of the tip of the asthenospheric wedge that resembles the protrusion of asthenospheric and lower 

crustal material in our simulations, although they do not attempt to simulate such mechanism or its  

enabling conditions and tectonic effects. 

Our approach imposes inferred present-day structure on the model setup and therefore 

cannot properly simulate the long-term geodynamic evolution that led to the current configuration 

of the orogen. Nevertheless, the agreement of our results with the obsberved and inferred features 

of the orogen indicates that the geodynamic regime in our model captures the fundamental 

processes that shape the Northern Apennines. In particular, the deduced presence of ductile lower 

crustal flow, agreement between model uplift rates and geological evidence of exhumation rates 

(Section 4.1.1), and presence of the two characteristic and opposing tectonic regimes with 
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corresponding types of seismicity suggests that the model captures the geodynamic processes of 

lithospheric delamination-retreat and back-arc uplift and extension that have built the Northern 

Apennines and shaped other orogens in the Mediterranean region. Therefore, although our models 

specifically simulate the Northern Apennines, our results could also be relevant for other locations 

where similar processes and features occur. This particularly holds where previous studies inferred 

the presence of highly ductile or molten lower crust associated with slab rollback, trench ret reat 

and back-arc extension, such as in the Aegean (e.g., Jolivet and Brun, 2010; Jolivet et al., 2013; 

Ersoy and Palmer, 2013; Menant et al., 2016; Kruckenberg et al., 2011). 

The ductile lower crust and resulting asthenospheric wedge protrusion in the models could 

not reproduce the thrust-related seismicity observed beneath the external part of the mountain 

range, at horizontal distances along the profile around 60 km and at mid-crustal depths (Fig. 4). 

This supports the idea that ductile deformation beneath the Tyrrhenian Moho is not dominant in 

the western sector of the Northern Apennines, while crustal underplating is likely taking place. 

Such an interpretation of regional tectonics was proposed by Thomson et al. (2010) from 

thermochronological observations. It is also supported by Chiarabba et al. (2014), who in fact 

restrict their hypothesized mantle nose mechanism to the more southeastern part of the orogen. 

Nevertheless, the models indicate that ductility of deep material at the Tyrrhenian-Adriatic suture 

and ongoing lithospheric mantle retreat are needed to obtain realistic stress distribution pattern. 

This is the case, at least, given the assumptions of buoyancy-driven dynamics and predominantly 

axis-parallel deformation that underlie our model setup. 

 

4.2. Seismicity 

Earthquake magnitudes seem realistic, though the maximum values (up to WM  7.4) are 

significantly larger than those of any known historical event ( WM  6.5 maximum). In the reference 

model, 19 events larger than any observed earthquake ( wM  in the 6.5–7.5 interval) occur in the 

20,000 years simulated. If these simulations indeed reflect the true possible maximum event size, 

events larger than those known from the historical record of the last five centuries are long overdue 

and may occur in the near future. Alternatively, the models may overestimate the maximum 

possible event size in the area or its frequency of occurrence. For instance, a single event in the 

model might correspond in reality to multiple episodes of aseismic and seismic slip, or the 
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rheology of crustal layers might be overly prone to yielding. 

Extensional seismicity in the models occurs on major faults—including reactivated 

thrusts—underneath the crest of the range, while compressional crustal seismicity is focused on 

the external thrust front complex. This is in agreement with the observed hypocenter locations and 

focal mechanisms in an update version of the catalog of Pondrelli et al. (2006). 

The moderately deep seismicity (deeper than 20 km) observed underneath both the base of 

the range and the external thrust front is not reproduced in the models (Figs. 4 and 7). This suggests 

that the models might not be fully capable to capture the rheological structure of the orogen. In 

particular, a higher-viscosity and more brittle lower crust in the Adriatic foreland may be present. 

However, such brittle lower crustal material, if present, is likely to be localized to a relatively small 

area, since highly ductile material is needed at mid-crustal depths in the suture region between the 

two lithospheric domains (Sections 3.1 and 4.1.2). 

Seismicity in the models is sensitive to multiple physical parameters, delineating a 

complex non-linear system. The different models highlight the importance of a sufficiently ductile 

lower crust and mantle wedge in allowing a realistic velocity and stress distribution (Figs 4 and 5). 

They also show how significantly the temperature of the slab and its immediate surroundings 

affects crustal seismicity, particularly the seismic rate in the extensional regime and the seismic 

moment release in both the extensional and compressional regimes (Figs 8 and 9). Such influence 

of slab and asthenospheric wedge temperatures on model seismicity, together with the significant 

observed seismic activity in both regimes in the orogen, suggest that the deep structure of the 

Northern Apennines includes a significantly cold and negatively buoyant subducting slab and a 

distinctly hot mantle wedge. The lack of observed earthquakes in the mantle, produced in the 

models through slab bending (Figs 4 and 7), suggests that the lithospheric mantle in the models is 

either not strong or not ductile enough. As an alternative explanation, the lithospheric mantle 

might be undergoing aseismic creep or slow fault slip without generating earthquakes. However, it 

is also possible that the regional seismic velocity models used to locate earthquake hypocenters 

systematically underestimate deep velocities and thus the hypocentral depths. If so, at least some 

of the lower crustal earthquakes recorded there and not reproduced in our simulations could indeed 

be located immediately below the Adriatic Moho, thus eliminating some of the discrepancies 

between model results and observations. 
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4.3. Implications of deeper processes affecting upper crustal seismicity 

The significance of results and conclusions from our numerical study likely goes beyond the 

specific setting of the Northern Apennines. In fact, this study shows the importance of long-term, 

large-scale dynamics on determining short-term tectonic regimes and seismicity. It also shows the 

influence of deep temperatures, strength and stiffness on short-term tectonics. In particular, these 

parameters significantly affect the stress regime as well as the speed of tectonic loading in the 

various domains of a geodynamic system. They thus alter the spatial partitioning of earthquakes 

between different regions (Sections 3.3 to 3.5 and 4.2 and Figs. 8 and 9). The specific respone of 

the simulated system to changes in model parameters is complex and certainly depends on the 

details of the setup and rheological quantities. Nevertheless,there is no reason why a broadly 

similar setup representing another orogenic system dynamically driven b y its own buoyancy 

structure, especially if via lithospheric delamination-retreat, would lack any sensitivity of 

short-term crustal tectonics to deep rheology and the resulting dynamics. Certainly, our models 

indicate that the possibility exists for interplay between rheological complexity and geometrical 

structure resulting in the crustal seismicity being highly sensitive to various physical and 

rheological features of deep material. Furthermore, the models suggest that tectonic loading in 

systems with complex fault networks can be spatially complex and therefore cannot be modeled 

using a simple boundary condition with uniform far-field relative displacements. It thus needs to 

be simulated at least partly self-consistently and with the inclusion of realistic driving forces and 

tectonic loading to be able to correctly reproduce the distribution, frequency, size and type of 

seismicity in different areas. Overall, both long- and short-term dynamics, and therefore the lower 

crustal rheologies, deep thermal structure and material parameters that affect them, are needed for 

a complete physics-based seismic hazard assessment of a region with complex loading conditions 

resulting from tectonic forces. This importance of realistic tectonic loading and complex 

rheological structures on seismicity should be taken into account in physics-based seismic 

simulations (e.g., Dieterich and Richards-Dinger, 2010). 

These results also imply that evidence of certain tectonic regimes, in terms of surface 

deformation and stress orientation, can be used to constrain the rheological structure and driving 

forces that cause them. Conversely, given a realistic rheological-structural model of the crust, 

present-day observations can be extended to also use seismicity to point towards plausible 

lithospheric and asthenospheric rheologies and long-term flow patterns and important parameters 
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such as mantle viscosity and material strength. 

 

4.4. Limitations 

This study shows that STM modeling can partly reproduce the observed seismically active tectonic 

regimes in a very complex system in which deformation is driven by buoyancy forces. This 

methodology can be applied to a variety of tectonic regimes in complex and diverse geodynamic 

settings. However, the current limitations of our numerical methodology need to be considered. 

Two major limitations are the purely slip rate–dependent friction and the coarse temporal 

resolution. Both of these have been recently addressed in a newer version of the numerical code, 

which is yet to be tested on large-scale models (Herrendörfer et al., 2018). Short-term model 

characteristics such as the duration of events as well as their specific frequency and size may thus 

be affected, but the long-term stress regimes and resulting large-scale distribution of events in the 

extensional and compressional domains are likely to be robust. Another major limitation is the 2D 

model geometry. This allows a relatively simple model setup procedure and short run times, but 

implies the assumption of lateral homogeneity of the system, which is unrealistic for a real-world 

orogen. 

 

5. Conclusions 

We investigated the link between the lithospheric-scale geodynamic deformation and the 

relatively short-term tectonics and seismicity in the Northern Apennines orogen. We use 

seismo-thermo-mechanical numerical modeling and compare our results with earthquake catalogs 

and GPS observations. Results show that a large-scale dynamic regime driven by negative slab 

buoyancy can broadly reproduce the distinct, coupled extensional and compressional tectonic 

regimes of the Northern Apennines, in terms of both stress orientations and velocities. The latter, 

in particular, exhibit the coupling of uplift with extension and subsidence with compression that 

characterizes the region. Nevertheless, discrepancies remain between modeled and observed 

vertical surface velocities. This misfit could indicate spatial and temporal changes in orogen 

behavior, deviating somewhat from the modeled geodynamic mechanism. However, it could also 

be due at least partly to shallow crustal processes. 

The models can reproduce realistic tectonic regimes thanks to a highly ductile lower crust 
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rheology (here, wet quartzite) and high temperatures. The resulting highly ductile lower crustal 

material, together with the hot asthenospheric wedge, protrudes upward and northwards as the 

negatively buoyant slab sinks and retreats. This flow of material produces uplift and extension in 

the overlying mountain range and decouples the upper crust from the lithospheric mantle, which 

delaminates. Ahead of the protruding material, where the upper crust is still coupled to the 

lithospheric mantle, subsidence and compression are produced. Our models thus indicate that 

thermally- and rheologically-controlled slab sinking and retreat and lower crustal deformation are 

needed to achieve the observed tectonic configuration of the orogen, as previously suggested by 

Chiarabba et al. (2014); Benoit et al. (2011). 

The two tectonic regimes reproduced in the models generate seismicity, which is affected 

quite strongly in its cumulative released moment and spatial distribution by unexpected 

parameters. Slab pull controls critically both the distribution of seismic activity in the two tectonic 

regimes of the orogen. A colder and thus more negatively buoyant slab increases slab pull and thus 

the intensity of tectonic loading and the deformation and seismicity of the upper crust. Other 

material properties, such as slab stiffness and the strength of both bulk rock and faults, also 

influence the specific features of crustal seismicity. The shear modulus of the slab has a variable 

but broadly dampening effect on the release of seismic moment in the crust, which reflects the 

delamination-retreat mechanism that drives tectonics in the model. These results highlight the 

influence of the physical properties of deep material, at lithospheric mantle depths, on upper 

crustal seismicity. This influence is comparable with that of rock and fault strength, whose effect 

on earthquake ruptures is more direct and of widely acknowledged importance. This implies that 

research aiming to simulate the spatio-temporal distribution of earthquakes in complex fault 

systems should consider realistic forcing and rheologies to obtain appropriate loading of faults and 

surrounding rocks. 

The success of STM modeling in reproducing some major features of the regional tectonics 

of the Northern Apennines and in describing the complex influence of key physical parameters on 

such tectonics paves the way for future applications, which could ultimately contribute to  

improved regional seismic hazard assessments. 
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 Simulation links crustal tectonics, seismicity with long-term geodynamics driven solely by 

slab pull 

 Lithospheric delamination allowed by a ductile lower crust is needed for a realistic stress 

pattern 

 Deep material properties (e.g., slab temperature, stiffness) significantly affect crustal 

seismicity 
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