
Stochastic Finite State Control of POMDPs with
LTL Specifications

Mohamadreza Ahmadi, Rangoli Sharan, and Joel W. Burdick

Abstract—Partially observable Markov decision processes
(POMDPs) provide a modeling framework for autonomous deci-
sion making under uncertainty and imperfect sensing, e.g. robot
manipulation and self-driving cars. However, optimal control of
POMDPs is notoriously intractable. This paper considers the
quantitative problem of synthesizing sub-optimal stochastic finite
state controllers (sFSCs) for POMDPs such that the probability
of satisfying a set of high-level specifications in terms of linear
temporal logic (LTL) formulae is maximized. We begin by casting
the latter problem into an optimization and use relaxations based
on the Poisson equation and McCormick envelopes. Then, we
propose an stochastic bounded policy iteration algorithm, leading
to a controlled growth in sFSC size and an any time algorithm,
where the performance of the controller improves with successive
iterations, but can be stopped by the user based on time or
memory considerations. We illustrate the proposed method by a
robot navigation case study.

I. INTRODUCTION

Robots and autonomous systems must interact with uncer-
tain and dynamically changing environments under complex
sets of rules that specify desired system behavior. This in-
herent uncertainty presents the challenge of synthesizing and
verifying the control and sensing algorithms against safety and
abstract rules. For example, autonomous robot manipulation
tasks are characterized by (i) imperfect actuation; (ii) the
inability to accurately localize the robot, its end effector and
the obstacles in the workspace; and (iii) noisy and error-prone
sensing. In fact, imperfect observation makes the decoupling
of planning and execution difficult, if not impossible.

Such operations can often be abstracted to a discrete system
representation at a sensible level of abstraction, yielding a
partially observable Markov decision processes (POMDP) [1].
This paper considers the task of designing finite state con-
trol systems for POMDPs with linear temporal logic (LTL)
specifications . Since both sensing and actuation are imperfect
and partially observable, it is only possible to probabilistically
guarantee adherence to the given LTL specifications. The
procedure developed in this paper maximizes the probability
of satisfaction within a given class of stochastic finite state
controllers (sFSCs).

A. Literature Review

During the past twenty years, formal methods have become
increasing popular in robotics and controls [2]–[7], where si-
multaneous motion and task planning is a challenging problem.

LTL is a useful choice for robot goal and safety specification
as it has an intuitive correlation to natural language [8].

M. Ahmadi, R. Sharan, and J. W. Burdick are with the California Institute
of Technology, 1200 E. California Blvd., MC 104-44, Pasadena, CA 91125,
e-mail: ({mrahmadi, rsharan, jwb}@caltech.edu)

Notably, LTL formulas can represent goals over infinite exe-
cutions. This is useful for representing persistent surveillance
and perpetually online applications. In order to capture envi-
ronmental disturbance, it is often useful to model the dynamics
in a probabilistic fashion. Markov decision processes [9] are
a popular choice for the discrete abstraction of noisy systems.
In the case of (fully observable) Markov decision process
(MDP), synthesis of controllers with probabilistic satisfaction
guarantees of LTL specification is well understood [10]. In
fact, for fully observable MDPs under LTL specifications,
robust [11] and receding horizon controllers [12] have been
formulated.

For POMDPs, the design of optimal controllers or policies
to meet LTL specifications is largely an open problem. In gen-
eral such policies are stochastic (randomized) and require in-
finite memory. For unbounded memory strategies EXPTIME-
completeness of a broad set of objectives (parity objectives)
is proven in [13]. Also, in [14] the existence and construction
of finite memory strategy for (strictly) positive probability of
satisfaction is shown to be an EXPTIME-complete problem.
To surmount this difficulty, many approximate, point-based,
and Monte Carlo based methods have been proposed [15].
However, these techniques do not provide guarantees for
LTL satisfaction. Approaches based on incremental satisfia-
bility modulo theory solvers [16] and simulations over belief
spaces [17] are also fettered by scalability issues. In [18], a
recurrent neural network based method is proposed to synthe-
size stochastic but memoryless policies and [19] synthesizes
sub-optimal FSCs for POMDPs using parametric synthesis
for Markov chains and a convex-concave relaxation [20].
However, these cannot be used to handle LTL specifications
and require assumptions on the structure of the FSC.

B. Contributions

We propose a methodology to design sFSCs for POMDPs
with LTL specifications. Our method presents an any time
algorithm, which can optimally add states to the finite state
controller to improve the probability of satisfaction. The main
contributions of this paper are as follows:
‚ We represent the LTL specifications as a deterministic Ra-

bin automaton (DRA) and construct a product-POMDP.
We then show that closing the loop with an sFSC leads
to a Markov chain with a set of free parameters. We
then cast the problem of maximizing the probability
of LTL specifications over the free parameters into an
optimization problem;

‚ We use the Poisson equation and the Reformulation-
Linearization technique to convexify a set of the con-

ar
X

iv
:2

00
1.

07
67

9v
1

 [
cs

.A
I]

 2
1

Ja
n

20
20

straints of this optimization problem;
‚ We propose a bounded policy iteration (BPI) method to

design the sFSCs with efficient policy improvement steps;
‚ We mitigate the conservatism of the proposed methodol-

ogy by formulating algorithms for finding initial feasible
controllers and modifying the number of states in the
sFSC to improve the probability of LTL satisfaction.

C. Outline

We briefly review some notions and results used throughout
the paper in the next section. In Section III, we describe
how POMDP traces produced by POMDP executions can be
verified against an LTL formula. In Section IV, we formulate
an optimization problem to maximize the probability of LTL
satisfaction. In Section VI, we propose a method based on
bounded policy iteration to design sFSCs. In Section VII, we
elucidate the proposed methodology with a robot navigation
example. Finally, Section VIII concludes the paper.

II. PRELIMINARIES

A. Linear Temporal Logic

Temporal logic enables representation and reasoning about
temporal aspects of a system [10], [21], [22]. It has been
utilized to formally specify and verify behavior in many
applications [23]. This paper considers the Linear Temporal
Logic (LTL) subset of temporal logic. LTL is built upon a
set of atomic propositions AP , and is closed under the logic
connectives, p ,_,^,Ñq, and the temporal operators “next”
(l), “always” (l), “eventually” (♦), and “until” (Uq. An LTL
formula can be constructed as ϕ “ true|false|ϕ1 ^ ϕ2|ϕ1 _

ϕ2| ϕ|ϕ1 Ñ ϕ2|l ϕ|♦ϕ| l ϕ|ϕ1Uϕ2.
LTL semantics are given by interpretations over infinite

executions of a finite transition system with state space S.
For an infinite execution σ “ s0s1 . . . si P S, LTL formula ϕ
holds at position i ě 0 of σ, denoted si |ù ϕ, iff ϕ holds for
the remainder of the execution σ, starting at position i.

For any LTL formula ϕ over atomic propositions, AP,
one can construct a Deterministic Rabin Automaton (DRA),
with the input alphabet 2AP , that accepts all and only those
infinite words, σ P

`

2AP
˘ω

, where Aω denotes infinite words
composed of elements of A, that satisfy ϕ [24], [25]. Al-
gorithms for converting an LTL formula ϕ to an equivalent
DRA can be found in [26] and a popular tool is described
in [27]. While the worst case complexity of this conversion
is doubly exponential, sufficiently expressive subsets of LTL
can be translated to a DRA in polynomial time [28].

Definition 1 (DRA): A Deterministic Rabin Automaton
(DRA) is a five-tuple DRA “ pQ,Σ, δ, q0,Ωq, where
‚ Q is the set of states,
‚ Σ is the input alphabet. For our purposes, Σ “ 2AP ,
‚ δ : Qˆ Σ Ñ Q is the deterministic transition function,
‚ q0 P Q is the initial state,
‚ Ω “ tpAvoidr, Repeatrq|r P t1, . . . , NΩu,
Avoidr, Repeatr Ď Su is the Rabin acceptance
condition.

Definition 2 (Rabin Acceptance): A run π “

q0q1 . . . of a DRA with acceptance condition

Ω “ tpAvoid1, Repeat1q, . . . pAvoidNΩ , RepeatNΩqu is
accepting if there exists an r P t1, . . . , NΩu, such that
Infpπq X Avoidr “ H and Infpπq X Repeatr ‰ H, where
Infpπq is the set of states that occur infinitely often in π.

The Rabin acceptance conditions implies that for some pair
pAvoidr, Repeatrq P Ω, no state in Avoidr is visited infinitely
often, while some state in Repeatr is visited infinitely often.

To use a DRA to verify an LTL formula ϕ, one assumes that
a system’s interesting properties are given by a set of atomic
propositions AP over system variables V . An execution σ “
v0v1 . . . of the system leads to a unique (infinite) trace over
the truth evaluations of AP , given by hpσq fi hpv0qhpv1q
Here hpvtq P 2AP denotes the truth value of all atomic
propositions in AP at time step t using the state vt. At the
start of the system’s execution, the DRA corresponding to ϕ
is initialized to its initial state q0. As the system execution
progresses, the evaluations hpvtq for t “ 0, 1, . . . dictate how
the DRA evolves via the transition function δ. The execution
σ satisfies ϕ iff the DRA accepts hpσq.

B. Markov Chains
A Markov chain M with state space S, transition probabil-

ity defined as the conditional distribution T p.|sq : S Ñ r0, 1s
such that

ř

s1PS T ps
1|sq “ 1, @s P S, and the initial

distribution ιinit such that
ř

sPS ιinitpsq “ 1. An infinite
path, denoted by the superscript ω, of the Markov chain
M is a sequence of states π “ s0s1 ¨ ¨ ¨ P Sω such that
T pst`1|stq ą 0 for all t and ιinitps0q ą 0. The proba-
bility space over such paths is the defined as follows. The
sample space Ξ is the set of infinite paths with initial state
s P S, i.e., Ξ “ Pathspsq. ΣPathspsq is the least σ-algebra
on Pathspsq containing Cylpωq, where Cylpωq “ tω1 P
Pathspsq | ω is a prefix of ω1u is the cylinder set. To specify
the probability measure over all sets of events in ΣPathspsq,
we provide the probability of each cylinder set as follows

PrM rCylps0 . . . snqs “ ιinitps0q
ź

0ďtďn

T pst`1 | stq. (1)

Once the probability measure is defined over the cylinder sets,
the expectation operator EM is also uniquely defined. In the
sequel, we remove the subscript M whenever the Markov
chain is clear from the context.

The transition probabilities T form a linear operator which
can be represented as a matrix, hereafter denoted by T

T :“

»

—

—

—

–

T11 T12 . . . T1|S|
T21 T22 . . . T2|S|

...
. . .

...
T|S|1 T|S|2 . . . T|S||S|

fi

ffi

ffi

ffi

fl

: MS ÑMS ,

where Tij “ T psj |siq. Let ~bt denote a distribution, or
belief, over states of the Markov chain at some time t:
~bt “

`

btps1q btps2q . . . btps|S|q
˘

. The operator T maps
a belief at time t, bt, to a belief bt`1 at t` 1: ~bt`1 “ ~btT .

Definition 3: Let π “ s0s1 . . . be a path in the global
Markov chain. The occupation time of set A Ď S is

fA :“
8
ÿ

t“1

1pst P Aq, (2)

where 1pφq “
"

1 the statement φ holds.
0 otherwise,

is the indicator

function. Thus fA counts the number of times the set A is
visited after t “ 0. The first return time, τA, denotes the first
time after t “ 0 that set A is visited τA :“ mintt ě 1|st P Au.
The return probability describes the probability of set A being
visited in finite time when the start state is s, Lps,Aq :“
PrpτA ă 8|s0 “ sq.

If A is a singleton set, i.e, A “ ts1u for some s1 P S, then
fs1 , τs1 and Lps, s1q will respectively denote the occupation
time, first return time and return probability.

Definition 4 (Communicating Classes): The state s P S
leads to state s1 P S, denoted s Ñ s1, if Lps, s1q ą 0.
Distinct states s, s1 are said to communicate, denoted s Ø s1

when Lps, s1q ą 0 and Lps1, sq ą 0. Moreover, the rela-
tion “Ø” is an equivalence relation, and equivalence classes
Cpsq “ s1 : sØ s1 cover S, with s P Cpsq [29].

Definition 5 (Irreducibility and Absorbing Sets): If
Cpsq “ S for some s P S, the Markov chain, M, is
irreducible–all states communicate. In addition, Cpsq is
absorbing if

ř

s2PCpsq T ps
2|s1q “ 1, @s1 P Cpsq.

Definition 6 (Restriction of M to an Absorbing Set): Let
C Ď S be an absorbing set. By Definition 5, if initial state
s0 lies in C, then for any path π “ s0s1 . . . , the state st lies
in C for all t ě 0. Hence, the Markov chain can be studied
exclusively in the smaller set C. The restriction of M to C
is denoted by MS|C . An absorbing set is minimal if it does
not contain a proper absorbing subset.

Definition 7 (Recurrence and Transience): The state s P S
is called recurrent if E rfs|s0 “ ss “ 8 and transient if
E rfs|s0 “ ss ă 8, with fs given by (2).

Recurrence and transience are class properties. Recurrent
classes are also minimally absorbing classes. Furthermore, let
ms “ E rτss. State s P S is positive recurrent if ms ă 8, and
null recurrent if ms “ 8. All states in a recurrent class are
either positive recurrent or all null recurrent. For a finite state
discrete-time Markov chain, all recurrent classes are positive
recurrent [29].

Definition 8 (Invariant and Ergodic Probability Measures):
Let ν P MS be a probability measure (p.m.) on S. ν is an
invariant p.m. if ~νT “ ~ν.

Definition 9 (Occupation Measures): Define the t-step ex-
pected occupation measure with initial state s0 as

T ptqpA|s0q :“
ÿ

sPA

1

t

t´1
ÿ

k“0

T kps|s0q, A Ď S, t “ 1, 2, . . .

where T k denotes the composition of T with itself k´1 times.
A pathwise occupation measure is defined as follows

πptqpAq “
1

t

t
ÿ

k“1

1psk P Aq, A Ď S, t “ 1, 2,

Proposition 1 ([29]): The expected value of the path-wise
occupation measure is the t´step occupation measure

E
”

πptqpAq|s0

ı

“ T ptqpA|s0q, @t ě 1.

Proposition 2 ([29]): For every s, s1 P S the following
limit exists:

lim
tÑ8

T ptqps1|sq “ lim
tÑ8

1

t

t´1
ÿ

k“0

T kps1|sq

“

#

ρs1|s if s1 is recurrent,
0 if s1 is transient.

Let C “ tsc1 , sc2 , . . . , sc|C|u Ď M be a recurrent class and
sc, s

1
c P C. Then, the limit ρs1c|sc “ νpscq is independent

of s1c and the collection νpsc1q, νpsc2q, . . . , νpsc|C|q gives the
unique invariant probability measure of the restriction of M
to the class C.

Definition 10 (Limiting Matrix): From Proposition 2, the
matrix representation of T ptq is given by the Cesaro sum [30],

T ptq “
1

t

t´1
ÿ

k“0

T k, t “ 1, 2, . . .

and the limiting matrix Π :“ limtÑ8 T
ptq exists for all finite

Markov chains.
Proposition 3: Given the limiting matrix Π, the quantity

I ´ T `Π is non-singular and its inverse

Z :“ pI ´ T `Πq´1

is called the fundamental matrix [9], [29], [31].

C. Labeled Partially Observable Markov Decision Process

Definition 11 (Labeled-POMDP): A labeled-POMDP,
PM, consists of:
‚ Finite states Smod “ tsmod1 , . . . , smod

|Smod|
u of the au-

tonomous agent(s) and world model,
‚ Finite actions Act “ tα1, . . . , α|Act|u available to the

robot,
‚ Observations O “ to1, . . . , o|O|u,
‚ Finite, state-dependent, and deterministic atomic propo-

sitions AP “ tp1, p2, . . . p|AP |u,
‚ A Transition function T psmodj |smodi , αq,
‚ A reward, rpsmodi q P R, for each state smodi P Smod.

For each action the probability of making a transition from
state smodi P Smod to state smodj P Smod under action α P
Act is given by T psmodj |smodi , αq. For each state smodi , an
observation o P O is generated independently with probability
Opo|smodi q. The starting world state is given by the distribution
ιinitps

mod
i q. The probabilistic components of a POMDP model

must satisfy the following:
$

’

&

’

%

ř

smodPSmod T psmod|smodi , αq “ 1, @smodi P Smod, α P Act
ř

oPO Opo|s
modq “ 1, @smod P Smod

ř

smodPSmod ιinitps
modq “ 1.

For each state smodi , a labeling function hpsmodi q P 2AP

assigns a truth value to all atomic propositions in AP in each
state.

While rewards may generally be a function of both state and
the agent’s action, it is assumed that rewards are a function of
state only. While this assumption is not required, such a reward

scheme will be sufficient for synthesizing controllers that sat-
isfy LTL formulas over POMDPs. If the world state transitions
from smodi to smodj , then reward rpsmodj q is issued. The world’s
initial state, smodpt “ 0q, gathers reward rpsmodpt “ 0qq.

Finally, the world model is assumed to be time invariant:
Smod, Act, O, AP , T , O, h, and r do not vary with time. At
this point, we are ready define a path in a POMDP.

Definition 12 (Path in a POMDP): An infinite path in a
(labeled) POMDP, PM, with states s P S is an infinite
sequence π “ s0o0α1s1o1α2 ¨ ¨ ¨ P pS ˆOˆActqω , such that
@t ě 0 we have T pst`1|st, αt`1q ą 0, Opot|stq ą 0, and
ιinitps0q ą 0. Any finite prefix of π that ends in either a state
or an observation is a finite path fragment.

Given a POMDP, we can define beliefs or distributions over
states at each time step to keep track of sufficient statistics
with finite description [32]. The beliefs for all s P S can be
computed using the Bayes’ law as follows:

b0psq “
ιinitpsqOpo0 | sq

ř

oPO ιinitpsqOpo | sq
, (3)

btpsq “
Opot | s, αtq

ř

s1PS T ps | s
1, αtqbt´1ps

1q
ř

sPS Opot | s, αtq
ř

s1PS T ps | s
1, αtqbt´1ps1q

, (4)

for all t ě 1. It is also worth mentioning that (4) is referred
to as the belief update equation.

D. Stochastic Finite State Control of POMDPs

It is well established that designing optimal policies for
POMDPs based on the (continuous) belief states require
uncountably infinite memory or internal states [33], [34]. This
paper focuses on a particular class of POMDP controllers,
namely, stochastic finite state controllers. These controllers
lead to a finite state space Markov chain for the closed loop
controlled system, allowing tractable analysis of the system’s
infinite executions in the context of satisfying LTL formulae.
For a finite set A, let MA denote the set of all probability
distributions over A.

Definition 13 (Stochastic Finite State Controller (sFSC)):
Let PM be a POMDP with observations O, actions Act, and
initial distribution ιinit. A stochastic finite state controller
(sFSC) for PM is given by the tuple G “ pG,ω, κq where
‚ G “ tg1, g2, . . . , g|G|u is a finite set of internal states (I-

states).
‚ ω : G ˆ O Ñ MGˆAct is a function of internal sFSC

states gk and observation o, such that ωpgk, oq is a
probability distribution over G ˆ Act. The next internal
state and action pair pgl, αq is chosen by independent
sampling of ωpgk, oq. By abuse of notation, ωpgl, α|gk, oq
will denote the probability of transitioning to internal
sFSC state gl and taking action α, when the current
internal state is gk and observation o is received.

‚ κ : MS Ñ MG chooses the starting internal FSC
state g0, by independent sampling of κpιinitq, given
initial distribution ιinit of PM. κpg|ιinitq will denote the
probability of starting the FSC in internal state g when
the initial POMDP distribution is ιinit.

A deterministic FSC can be written as a special case of the
sFSC just defined.

Figure 1. POMDP controlled by an sFSC

Figure 1 shows a schematic diagram of how an sFSC
controls a POMDP. Closing the loop with the sFSC, the
POMDP evolves as follows.

1) Set t “ 0. POMDP initial state s0 is drawn indepen-
dently from the distribution ιinit. The stochastic function
κpιinitq is used to determine or sample the initial sFSC
I-state g0.

2) At each time step t ě 0, the POMDP emits an observa-
tion ot according to the distribution Op.|stq.

3) The sFSC chooses its new state gt`1 and action αt`1

using the distribution ωp.|gt, otq.
4) The action αt`1 is applied to the POMDP, which tran-

sitions to state st`1 according to distribution T p.|st, αq.
5) t “ t` 1, Go to 2.

E. Markov Chain Induced by an sFSC

Closing the loop around a POMDP with an sFSC, as in
Figure 1, yields the following transition system.

Definition 14 (Global Markov Chain): Let POMDP PM
have state space S and let G be the I-states of sFSC G.
The global Markov chain MPM,G

SˆG with execution σ “

trs0, g0s, rs1, g1s, . . . u, rst, gts P S ˆG evolves as follows:
‚ The probability of initial global state rs0, g0s is

ιPM,G
init prs0, g0sq “ ιinitps0qκpg0|ιinitq

‚ The state transition probability, TPM,G , is given by

TPM,G prst`1, gt`1s |rst, gts q “
ÿ

oPO

ÿ

αPAct

Opo|stqωpgt`1, α|gt, oqT pst`1|st, αq

Note that the global Markov chain arising from a finite state
space POMDP also has a finite state space.

III. LTL SATISFACTION OVER POMDP EXECUTIONS

This section formalizes how the infinite traces produced by
POMDP executions can be verified against an LTL formula
ϕ. This process is carried out by constructing a product of the
labeled POMDP, PM, and the DRA modeling ϕ.

Definition 15 (Product-POMDP): Consider the labeled
POMDP PM as described in Definition 11 and an
LTL formula ϕ with a DRA as defined in Definition 1

denoted Aϕ with the Rabin acceptance condition given
in Definition 2. Then, the product-POMDP, PMϕ, has
state space S “ Smod ˆQ, the same action set Act, and
observations O. Furthermore,
‚ The transition probabilities of PMϕ are given by

Tϕ
`

xsmodj , qly|xs
mod
i , qky, α

˘

“

"

T psmodj |smodi , αq if δpqk, hpsmodi qq “ ql,
0 otherwise.

‚ The initial state probability distribution is given by

ιϕinit
`

xsmod, qy
˘

“

"

ιinitps
modq if δpq0, hps

modqq “ q,
0 otherwise.

‚ The observation probabilities are Oϕpo|xsmod, qyq “

Opo|smodq.
‚ If rewards rpsmodq are defined over the POMDP PM,

new rewards over the product states are defined as
rϕpxsmod, qyq “ rpsmodq.

From the Rabin acceptance pairs Ω of Aϕ, define the
accepting pairs ΩPMϕ

“ tpRepeatPMϕ

i , AvoidPMϕ

i q, 0 ď
i ď |Ω|u for the product-POMDP as follows. A product state
s “ xsmod, qy of PMϕ is in RepeatPMϕ

i iff q P Repeati and
s is in AvoidPMϕ

i iff q P Avoidi. Note that |ΩPMϕ

| “ |Ω|.

A. Inducing an sFSC for PM from that of PMϕ

To control the POMDP, PM, it is necessary to derive a
policy for PM from a policy computed for PMϕ.

Definition 16 (Induced sFSC): Let sFSC G “ pG, κ, ωq
control product-POMDP PMϕ. The sFSC Gmod “

pGmod, κmod, ωmodq that controls PM is induced as follows.
‚ I-states of the induced sFSC is given by Gmod “ G.
‚ The initial state of the induced sFSC is given by
κmodpgk|ι

ϕ
initq “ κpgk|ι

ϕ
initq.

‚ The probability of transitioning between I-states and
issuing an action α is given by ωmodpgl, α|gk, oq “
ωpgl, α|gk, oq.

B. Verifying LTL Satisfaction via the Product-POMDP
Now, we consider the criterion for an (infinite) execution of

PM to satisfy ϕ. Let σϕ “ s0s1 . . . , st “ xs
mod
t , qty be an

execution of the product-POMDP under some sFSC G.
Definition 17 (Accepting execution): We say that σϕ is an

accepting execution if, for some pRepeatPMϕ

i , AvoidPMϕ

i q P

ΩPMϕ

, σϕ intersects with RepeatPMϕ

i infinitely often, while
it intersects AvoidPMϕ

i only a finite number of times.
The notion of verifying LTL properties using product tran-

sition systems in well known in the literature [3], [10] and the
following lemma can be derived for the product-POMDP.

Lemma 1: Let σϕ “ s0s1 . . . , with st “ xsmodt , qty be an
execution of PMϕ and the corresponding execution of PM
be given by σ “ smod0 smod1 Then, σ satisfies ϕ, i.e., σ (
ϕ, if and only if π “ q0q1 . . . is an accepting run on Aϕ.

Proof: The proof follows from the construction of the
product-POMDP. The run σϕ can be projected onto its
POMDP and DRA components as runs σ and π. Next, the
trace generated by σ, given by hpσq “ hpsmod0 qhpsmod1 q . . .
leads to the same unique path π in the DRA Aϕ. Thus, if π
is an accepting run in the DRA, then σ (ϕ.

IV. AN OPTIMIZATION PROBLEM FOR LTL SATISFACTION

In this section, we formulate the problem of synthesizing
sFSCs for POMDPs with LTL specification into an optimiza-
tion problem.

A. Measuring the Probability of LTL Satisfaction

This section culminates in Proposition 4, which presents
the principal problem that must be solved to find the sFSC
maximizing the probability of LTL specifications on PM.

Section III-B described how the accepting executions of the
product-POMDP, PMϕ, under a given sFSC controller, have
a one-to-one correspondence to the executions of the original
POMDP, PM, that satisfy ϕ.

Recall from Section II-E that a product-POMDP, PMϕ,
controlled by an sFSC, G, induces a Markov chain, denoted as
MPMϕ,G

SˆG , evolving on the finite state space SˆG “ pSmodˆ
QqˆG. Using the probability measure defined over the paths
of the global Markov chain (Section II-B), the probability of
satisfaction of ϕ over the controlled system is defined as:

Definition 18 (Probability of satisfaction of ϕ): For
product-POMDP PMϕ controlled by sFSC G, the probability
of satisfaction of ϕ, defined over PathspMPMϕ,G

SˆG q, is:

PrpPMϕ (ϕ|Gq “ Pr MPMϕ,G
SˆG

”

σg P PathspMPMϕ,G
SˆG q

s.t. KS pσ
gq is accepting.s . (5)

where KS p.q projects paths σg of the induced Markov chain

σg “ rs0, g0s rs1, g1s . . .
“

“

xsmod0 , q0y, g0

‰ “

xsmod1 , q1y, g1

‰

. . .

to the associated product-POMDP execution

KS pσ
gq “ xsmod0 , q0yxs

mod
1 , q1y . . .

Since the global Markov chain is unique given PM, ϕ, and
G, hereafter the subscript on the probability operator in the
r.h.s. of (5) will be dropped, and expectation will be defined
using the probability measure over the global Markov chain.

Finally, define PrpPM (ϕ|Gq fi PrpPMϕ
(ϕ|Gq as the

probability that the original uncontrolled model satisfies ϕ.
Recall that the global Markov chain MPMϕ,G

SˆG induced by
the sFSC G controlling the product-POMDP, PMϕ, evolves
over the global state space SˆG, where the product-POMDP
state space is given by S “ pSmodˆQq. Since the state space
is finite, every state is either positive recurrent or transient.

Consider a product state s P S. If there exists g P G such
that the global state rs, gs is recurrent in MPMϕ,G

SˆG , s is said to
be recurrent under G. For a set A “ trsi, gis, . . . u P pS ˆGq
the projection KS is KS pAq “ tsi, . . . u (taken uniquely).

Let RG denote the set of all recurrent states of MPMϕ,G
SˆG .

Partition the recurrent states into disjoint recurrent classes
RecSetsG “ tR1, R2, . . . RNu such that

R1 YR2 Y ¨ ¨ ¨ YRN “ R,
Ri XRj “ H, i ‰ j.

(6)

The partitioning is required to be maximal. Formally, this
means that for each Rk, Rl P RecSets

G , si Ø sj , @si, sj P
Rk, and si Ü sj , si P Rk, sj P Rl, k ‰ l. The first

equation states that within each recurrent class, Rk, all states
are reachable from one another. The second equation states
that no two distinct recurrent classes can be combined to make
a larger recurrent class, thus making the partitions maximal.

Definition 19 (ϕ-feasible Recurrent Set): For sFSC G, a
(maximal) recurrent set or class Rk is a ϕ-feasible recurrent
set if DpRepeatPMϕ

i , AvoidPMϕ

i q such that,

KS pRkq XRepeat
PMϕ

i ‰ H, and
KS pRkq XAvoid

PMϕ

i “ H.
(7)

Let ϕ-RecSetsG fi
Ť

Rk, such that Rk is ϕ-feasible.
The problem of maximizing the probability of satisfaction

can be solved as follows.
Proposition 4: The satisfaction probability of an LTL for-

mula can be maximized by optimizing the following objective

max
G

ÿ

RPϕ-RecSetsG
Prrπ Ñ Rs, (8)

where π Ñ R implies the path entering the recurrent set.
Proof: Recall that recurrence implies absorption, i.e., if

the Markov chain path enters a state in a recurrent set, the
path is forever confined to that set. This implies the following
long term behavior of path probabilities:

Prrπ Ñ pRk YRlqs “ Prrπ Ñ Rks ` Prrπ Ñ Rls, k ‰ l,
(9)

wherein we used (6). Over infinite executions, the path must
end up in some recurrent set,

ÿ

RkPRecSetsG

Prrπ Ñ Rks “ 1.

Furthermore, conditions (7) imply the existence of a recurrent
state in RepeatPMϕ

i , while simultaneously avoiding those
states from AvoidPMϕ

i that are recurrent under sFSC G.
Therefore, if

ÿ

RPϕ-RecSetsG
Prrπ Ñ Rs “ 1,

then the LTL specifications are satisfied. Hence, maximizing
the

ř

RPϕ-RecSetsG Prrπ Ñ Rs term implies maximizing the
probability of satisfying the LTL specifications.

To further understand the solution to (8), note that there are
two main components in the choice of an sFSC, G:

1) Structure: The sFSC has two structural components:
a) The number of I-states, |G|, which impacts the size

of the global Markov chain state space.
b) The set of parameters in ω and κ with non-zero

values. This set determines the global state space
connectivity graph, whose nodes represent states of
the global Markov chain, and whose directed edges
indicates that a one-step transition can be made
from rs, gs to rs1, g1s. The underlying graph com-
pletely and unambiguously determines the global
Markov chain recurrent and transient classes.

Thus, the structure affects both the partitioning
RecSetsG and also the ϕ-feasibility of these sets.

2) Quality: The values of non-zero parameters of ω and κ
determine the probability with which the global Markov
chain paths reach some R P RecSets.

Figure 2. Assigning rewards for frequent visits to RepeatPMϕ
. The

diagram depicts a product-POMDP state space. The edges depend on an
action, α P Act, chosen arbitrarily here. There is only one Rabin pair
pRepeatPMϕ

1 , AvoidPMϕ

1 q. In order to incentivize visiting RepeatPMϕ

1 ,
the state s5 P S is assigned a reward of 1, while all other states are assigned
a reward of 0.

B. Reward Design for LTL Satisfaction

This section introduces an any time algorithm to optimize
over both the sFSC quality and structure. This algorithm is
based on the fact that finite state Markov chains evolve in two
distinct phases: a transient phase, and a steady state phase in
which the execution has been absorbed into a recurrent set.
Therefore, rewards are designed with the following goals:
‚ During the transient phase, the global state is absorbed

into a ϕ-feasible recurrent set quickly.
‚ During the steady state phase, the sytem visits the states

in RepeatPMϕ

r frequently.
1) Incentivizing Frequent Visits to RepeatPMϕ

r : In classi-
cal POMDP planning, an agent collects rewards as it visits
different states. To quickly accumulate useful goals rewards
collected at later times are discounted. While there exist tem-
poral logics that allow explicit verification/design for known
finite time horizon [10], it may be hard to predict the horizon
for a given POMDP and LTL formula a-priori. In such
scenarios, a discounted reward scheme, which does not affect
feasibility, thus offers a viable solution.

Consider, a particular product-POMDP with Rabin accep-
tance pair pRepeatPMϕ

r , AvoidPMϕ

r q. The aim is to visit
states in RepeatPMϕ

r often. To achieve this, we assign the
following “repeat” reward scheme (see Figure 2):

rβr psq “

"

1 if s P RepeatPMϕ

r ,
0 otherwise.

(10)

The discounted reward problem takes the form:

ηβprq “ lim
TÑ8

E

«

T
ÿ

t“0

βtrβr pstq |ι
ϕ
init

ff

, 0 ă β ă 1, (11)

where β is the discount factor. Note that in (11), while the
objective incentives early visits to states in RepeatPMϕ

r in
order to accrue maximum rewards, it has two drawbacks:

1) The objective becomes exponentially less dependent,
with decay rate β, on visits to RepeatPMϕ

r at later
time steps. Thus, frequent visits are incentivized mainly
during the initial time steps.

2) Due to partial observability, the transition from a tran-
sient to a recurrent phase cannot be reliably detected.
Hence, visits to AvoidPMϕ

r cannot be precluded in
steady state.

To tackle the first problem, if a stationary policy that is
independent of the initial product-POMDP distribution can be
found, then the expected visiting frequency will remain the
same for later time steps, including during steady state, when
the global Markov chain evolves in a recurrent set. A sub-
optimal solution for the second problem is discussed next.

2) The Steady State Probability of Visiting AvoidPMϕ

:
This section develops a method to compute the probability
of visiting a state in AvoidPMϕ

. If this quantity can be
computed, then a discounted reward criterion can be optimized
under the constraint that this probability is zero, or extremely
low. In order to compute the probability of visiting AvoidPMϕ

regardless of the global Markov chain execution phase (tran-
sient or steady state), we first define a transition rule that
makes every state in AvoidPMϕ

r a sink. To this end, consider
the following modified product-POMDP. For @α P Act, let

Tϕmodpsk|sj , αq “

$

&

%

0 if sj ‰ sk and sj P AvoidPMϕ

r

1 if sj “ sk and sj P AvoidPMϕ

r

Tϕpsk|sj , αq otherwise.
(12)

Then, assign a different, “avoid” reward scheme

ravr psq “

"

1 if s P AvoidPMϕ

r ,
0 otherwise.

(13)

For sFSC G, consider the expected long term average reward

ηavprq “ lim
TÑ8

1

T
Emod

«

T
ÿ

t“0

ravk pstq
ˇ

ˇ

ˇ
ιPMϕ

init

ff

, (14)

where the expectation is take over the global Markov chain
arising from the transition distribution Tϕmod of (12).

Lemma 2: Let π P PathspMPMϕ,Gq be a global Markov
chain path arising from the execution of the original unmodi-
fied product-POMDP. Then

Pr
”

π Ñ pAvoidPMϕ

r ˆGq
ˇ

ˇ

ˇ
ιϕ,Ginit

ı

“ ηavprq. (15)

Proof: See Appendix A.
Lemma 2 provides a tractable way to compute the probability
of visiting Avoidr. Note the conditional dependence on ιϕinit
in (14). Recall that to satisfy an LTL formula, it is only
required to guarantee that the probability of visiting an avoid
state is zero in steady state. Requiring this probability to
be zero during the transient period may render a solution
infeasible.

Unfortunately, using the formulation presented so far it is
not possible to know if a particular POMDP path has entered
steady state behavior. At most, it is possible to know the
probability of being in steady state by taking the sum of all
beliefs over recurrent states that form the steady state behavior.

Next, assume that the controller has access to an oracle that
can declare the end of the transient period during which visits
to AvoidPMϕ

r may be allowed. The oracle can also indicate
when the system enters a sub-Markov chain where Avoidr is
never visited. Of course, no such oracle exits, but we show
below that a product-POMDP and reward assignment can be
designed such that the controller implicitly incorporates an
oracle function.

3) Partitioned sFSC and Steady State Detecting Global
Markov Chain: Suppose that the sFSC I-states, G, are divided
a-priori into two sets–transient states Gtr and steady states
Gss– such that G “ Gtr YGss, and Gtr XGss “ H .

As explained below, this state partitioning can indicate if
the execution of the global Markov chain has zero probability
of future visits to Avoidϕr .

Let the global state at time t be given by rst, gts. We seek
to create a global Markov chain whose underlying product-
POMDP has the following property

Pr
”

rst1 , gt1s P Avoid
PMϕ

k ˆG
ˇ

ˇDt ď t1, s.t.

rst, gts P Repeat
PMϕ

k ˆGss
ı

“ 0. (16)

In other words, let the product-POMDP visit states in
RepeatPMϕ

k while the sFSC executes in steady state, i.e.,
gt P G

ss. Then, it must be ensured that the probability for the
product-POMDP to visit AvoidPMϕ

k at anytime in the future
is zero. This requirement can be achieved in three steps.

First, constrain the sFSC to prevent a transition from an
I-state in Gss to any other I-state in Gtr. Formally, @α P

Act, o P O,

ωpg1, α|g, oq “ 0, g P Gss, g1 P Gtr. (17)

This constraint ensures that the controller transitions to steady
state only once during an execution, mimicking the fact that
for each infinite path in the Markov chain, the transition to a
recurrent set occurs once.

Second, the method of evaluating the global Markov chain
transition distribution is based on the following definition.

Definition 20 (Steady State Detecting Global Markov Chain):
The steady state detecting global (ssd-global) Markov chain
is defined by its transition distribution function

TPMϕ,G
ssd

`

rs1, g1s |rs, gs
˘

“
$

’

’

’

’

&

’

’

’

’

%

ř

α,o
Opo|sqωpg1, α|g, oqTϕps1|s, αq if g P Gtr, g1 P Gss,

ř

α,o
Opo|sqωpg1, α|g, oqTϕmodps

1|s, αq if g, g1 P Gss

0 if g P Gss, g1 P Gtr,
due to (17).

(18)

Note the use of modified transition function from (12) in
Definition 20. This modification transforms all states in
AvoidPMϕ

r to sinks. This construction prevents visits to
AvoidPMϕ

r during steady state, while allowing the execution
to visit these states in the transient phase.

Third, in addition to the reward schemes of (10) and (13),
assign the following rewards to the I-states:

rGr pgq “

"

1 if g P Gss,
0 if g P Gtr. (19)

C. Casting into an Optimization Problem

Let us define ιssinit as a distribution over the ssd-global
Markov chain states as follows.

ιssinitprs, gsq

“

" 1
|Gss||RepeatPMϕ

r |
if s P RepeatPMϕ

r , g P Gss,

0 otherwise.
(20)

Using the rewards (10), (13) and (19), for an sFSC of fixed size
and partitioning G “ tGtr, Gsu, the following conservative
optimization criterion is derived:
Conservative Optimization Criterion

max
ω,κ

ηβprq

subject to ηssdav prq “ 0
ωpg1, α|g, oq “ 0 g1 P Gtr, g P Gss
ř

pg1,αqPGˆAct

ωpg1, α|g, oq “ 1 @g P G, o P O

ωpg1, α|g, oq “ 1 @g, g1 P G, o P O, α P Act
ř

gPG

κpgq “ 1.

(21)
In (21), frequent visits to RepeatPMϕ

r are incentivized by
maximizing

ηβprq “ lim
TÑ8

E

«

T
ÿ

t“0

βtrβr pstqr
G
r pgtq |ι

ϕ
init

ff

, 0 ă β ă 1,

while steady state visits to AvoidPMϕ

r are forbidden via the
first constraint in (21)

ηssdav prq “ lim
TÑ8

1

T
Essd

«

T
ÿ

t“0

rpstqr
G
r pgtq |ι

ss
init

ff

“ 0,

The constraints relate to the I-state partitioning introduced
above and the probabilities of admissible sFSC parameters.
Note that ηssdav is computed using the ssd-global Markov
chain transition distribution from (18), but the expression ηβ
uses the unmodified Markov chain transition distribution. The
product terms rβr rGr and rrGr ensure that only those visits to
RepeatPMϕ

r are rewarded when the controller I-state lies in
Gss, implying that it can now guarantee no more visits to
AvoidPMϕ

r

Note that the choice of initial condition (20) implies that in
steady state,

@rs, gs P pRepeatPMϕ

r ˆGssq, rs, gs Û pAvoidPMϕ

r ˆGq.
(22)

Compare (22) to (16), which can be re-written as

Pr
”

π Ñ rs, gs P pRepeatPMϕ

r ˆGq
ı

ą 0

ùñ rs, gs Û pAvoidPMϕ

r ˆGq.

The condition of the latter statement is only required to
hold for those states in pRepeatPMϕ

r ˆGq under the current

ω and κ. If some repeat state is not visited by the con-
troller during steady state, then the proposed choice of ιssinit
adds additional feasibility constraints, which may severely
reduce the obtainable reward, ηβr , and possibly render the
problem infeasible. This is why (21) is called a Conservative
Optimization Criterion. While sub-optimal, this criterion has
some significant advantages. In the sequel, we show that the
Conservative Optimization Criterion can be framed as a policy
iteration algorithm, with efficient policy improvement steps.
Moreover, the improvement steps can also add I-states to the
sFSC, which help to escape the local maxima encountered
during optimization of the total reward ηβprq. The added sFSC
I-states allow the generation and differentiation of many new
observation and action sequences. This implies that many new
paths in the global Markov chain can be explored for the
purpose of improving the optimization objective. We begin
by leveraging the Poisson Equation method to convert the
Conservative Optimization Criterion into a bilinear program.

V. THE POISSON EQUATION FOR THE GLOBAL
MARKOV CHAIN

The discussion in this section is restricted to time homoge-
nous, discrete time, finite state space Markov chains [35]. The
main focus is the ssd-global Markov chain of Definition 20,
which can differentiate whether states in Avoidϕ,Gr can be
visited. Recall that the ssd-global Markov chain is generated
by partitioning the sFSC I-states into transient and steady
state sets, Gtr, and Gss. The transition probabilities TPMϕ,G

ssd

were then computed using (18). In addition, recall the average
reward function rav prs, gsq “ ravr psqr

G
r pgq. A vectorized

representation is needed for ordering the global state space
S ˆG denoted as ~rav .

Definition 21 (Poisson Equation [29]): The Poisson Equa-
tion (PE) for TPMϕ,G

ssd is

(a) ~g “ TPMϕ,G
ssd ~g and (b) ~g` ~h´ TPMϕ,G

ssd
~h “ ~rav.

(23)
where the matrix form (18) of TPMϕ,G

ssd has been used. If
(23) holds, the pair p~g,~hq is called a solution to the PE with
charge ~rav .

More generally, the reward rav can be replaced with any
measurable function, f : SˆGÑ R. The PE is developed in
[29], [35], and the conditions for existence and uniqueness of
its solutions can be found in [36].

When a Markov chain has a single recurrent class and
possibly some transient states, the PE solves the long term
average cost criterion for a given initial state s0,

ηav “ lim
TÑ8

E

«

1

T

T
ÿ

t“0

ravptq

ˇ

ˇ

ˇ

ˇ

ˇ

s0

ff

for the reward ravptq. In fact, the value for the scalar ηav is
the solution to the following slightly different version of the
PE (23):

ηav ` ~h´ T
PMϕ,G
ssd

~h “ ~rav. (24)

Note that (24) is obtained from (23)(b) by replacing the vector
~g by the scalar ηav . For a finite Markov chain with a single
recurrent class, this has a unique solution for ηav .

The multi-chain PE as introduced in (23) is used when
the average reward accounts for the probability of absorption
into the different Ri in the computation of the average cost
given the initial distribution ιinitpsq. Further discussion of the
PE in the context of dynamic programming is provided in
Section VI-A2.

For the finite state closed loop global Markov chain under
study in this work, a solution for the PE always exists.

Lemma 3 ([29]): (a) For a finite state space Markov chain
with transition matrix TPMϕ,G

ssd and charge rav , a solution pair
p~g,~hq to the PE always exists. (b) Moreover, ~g is unique and
is given by

~g “ Πssd~r
av, (25)

where Πssd is the limiting matrix introduced in Definition 10.
(c) The solution ~g in (25), when paired with ~h “ H~rav solves
the PE, where H is called the deviation matrix given by

H “ pI ´ TPMϕ,G
ssd `Πssdq

´1

l jh n

fundamental matrix, Z

pI ´Πssdq.

(d) ~h is not unique. If p~g,~hq is a solution then any pg,~h `
Πssd

~hq is also a solution.
The PE yields the quantity g, which can be used to compute

the probability of visiting AvoidPMϕ,G
r for the ssd-global

Markov chain in the following theorem. This probability can
be used to enforce the constraint ηssdav “ 0 in the optimization
problem (21).

Theorem 1: The probability that the ssd-global Markov
chain visits pAvoidPMϕ

r ˆ Gssq for an initial distribution
ι1init PMSˆG is given by

Pr
”

π Ñ pAvoidPMϕ

r ˆGssq
ˇ

ˇι1init

ı

“ ~ι1
T

init~g.

Proof: Note that under TPMϕ,G
ssd , each state in

pAvoidPMϕ

r ˆ Gssq is a sink by construction and therefore
recurrent. Applying Lemma 2 gives

Pr
“

π Ñ pAvoidPMϕ

r ˆGssq |ι1init
‰

“ lim
TÑ8

1
TE

„

T
ř

t“0
ravprst, gtsq |ι

1
init

“ ~ι1
T

init Πssd
~1SˆG
pAvoidPMϕ

r ˆGq

“ ~ι1
T

init Πssd ~r
av

“ ~ι1
T

init ~g,

where line 1 implies line 2 due to (15) in Lemma 2 and (14),
and line 3 follows from the fact that ~rav can be re-written as
an indicator vector ~rav “ ~1SˆG

pAvoidPMϕ
r ˆGssq

.
Theorem 1 will be used in the sequel to enforce the

constraint, ηssdav prq “ 0 in optimization (21).

VI. BOUNDED POLICY ITERATION FOR LTL REWARD
MAXIMIZATION

We employ an stochastic dynamic programming [37] ap-
proach to solve the Conservative Optimization Criterion. In
the general setting of an arbitrary reward function and infinite
state space, the existence of an optimal solution for the average
case is not guaranteed [38]. However, for the set of problems of

interest in this paper, the global Markov chain is a discrete time
system that evolves over finite state space, in which case the
average reward does have an optimum. Additionally, as will be
seen in Section VI-D, the optimal solution for the average case
is not required for the algorithm proposed herein. Only the
evaluation of the average reward value function under a given
sFSC is required to guarantee LTL satisfaction. Therefore, the
Bellman equation for the average reward case is sufficient for
this work. Next, the relevant dynamic programming equations
for both discounted and average rewards are summarized for
the specific case of POMDPs controlled by sFSCs.

A. Dynamic Programming Variants for POMDPs with sFSCs

For POMDPs controlled by sFSCs, the dynamic program is
developed in the global state space SˆG. The value function
is defined over this global state space, and policy iteration
techniques must also be carried out in the global state space.

1) Value Function for Discounted Reward Criterion: For a
given sFSC, G, and the unmodified product-POMDP, the value
function V β is the expected discounted sum of rewards under
G, and can be computed by solving a set of linear equations:

V β prsi, gksq “ rβ prsi, gisq`

β
ÿ

oPO,αPAct
gkPG,sjPS

Opo|siqωpgl, α|gk, oqT
ϕpsj |si, αqV

β prsj , glsq .

For the global Markov chain, the above can be written in vector
notation as follows

~V β “ ~rβ ` βTPMϕ ~V β . (26)

Remark that (26) is the Bellman Equation for
the discounted reward criterion. The value function
of the POMDP states, for a given I-state g of
the sFSC, can be described in vector notation as
~V βg “

“

V β prs1, gsq V
β prs2, gsq . . . V

β
`

rs|S|, gs
˘‰T

.
Given a distribution or belief, ~b, over the the product states,
a particular I-state’s value at the belief is the expectation

V βg pbq “
~bT ~V βg . (27)

If ιϕinit is the initial distribution of the product-POMDP then,
the best sFSC I-state can be selected as

κpg|ιϕinitq “

#

1 if g “ argmax
g1

V βg1 p~ι
ϕ
initq

0 otherwise.

In other words, the sFSC is started in the I-state with maximum
expected value for the belief.

Definition 22 (Value Function): The value function gives
the value at any belief b using the following

V βpbq “ max
gPG

V βg pbq. (28)

Clearly, (27) shows that the value of a particular I-state is a
linear function of the belief state. The value function itself is
piece-wise linear by taking the pointwise maximum of all the
I-state values at each belief state.

Computational Complexity and Efficient Approximation:
Solving a system of linear equations by direct methods is
Opn3q where n is the number of equations. (26) represents
|S||G| equations. However, a basic Richardson iteration can
be applied. One starts with an arbitrary value of V β , typically
0, and repeatedly computes ~V β,p0q “ 0, and ~V β,pt`1q “

~rβ `βTPMϕ ~V β,ptq, until ||~V β,pt`1q´ ~V β,ptq||8 ă εβ , where
εβ ą 0. During each iteration, the maximum number of
operations required are Op|S|2|G|2q, however if the ssd-global
Markov chain can be represented as a sparse matrix, then the
complexity is linear.

2) Value Function for Average Reward Criterion: For a
given sFSC G, the value function V β is the expected dis-
counted sum of rewards under G, and can be computed by
solving a set of linear equations:

V av prsi, gksq “ ´η
av prsi, gisq ` r

av prsi, gisq

`
ÿ

oPO,αPAct
gkPG,sjPS

Opo|siqωpgl, α|gk, oqT psj |si, αqV
av prsj , glsq .

Writing the above in vector notation for the ssd-global Markov
chain gives ~V av “ p´~ρav ` ~ravq ` TPMϕ

ssd
~V av. The latter

system of equations constitutes the Bellman equation for the
average reward criterion. Note that this is the same as the
second part of the PE (23)(b), by substituting ~g “ ~ηav .

Computational complexity: Since the value function of the
average reward criterion is identical to the Poisson Equation,
the following considers the complexity of solving the Poisson
Equation. Again, the exact methods of solving the linear
system of equations is cubic is number of equations, which
is 2|S||G| in (23) with as many number of variables, which
comprise of both ~V av and ~g. However, as will be shown
later in this section, direct computation of the full ~g and
~V av vectors will not be required frequently in the algorithm
proposed in this section. The PE will be directly inserted into
the optimization software as a set of constraints in order to
compute the values for the unknown vectors ~g and ~V av .

B. Bellman Optimality / DP Backup - Discounted Case

When the discounted case does not have constraints other
than probability constraints on ω and κ, then at optimality the
discounted value function satisfies the Bellman Optimality
Equation, which is also known as the DP Backup Equation:

V βpbq “ max
αPAct

ˆ

rβpbq ` β
ÿ

oPO
Prpo|bqV βpbαo q

˙

where Prpo|bq “
ř

sPS Opo|sqbpsq, bαo ps
1q “

ř

s T ps
1|s, αq Opo|sqbpsq

ř

o1PO Opo1|sqbpsq , and V βpbαo q is computed
using (28) and (27). The r.h.s. of the DP Backup Equation
can be applied to any value function. The effect is an
improvement (if possible) at every belief state. However, DP
backup is difficult to use directly as it must be computed at
each belief state in the belief space, which is uncountably
infinite.

C. Bounded Policy Iteration for sFSCs
Policy iteration incrementally improves a controller by

alternating between two steps: Policy Evaluation and Policy
Improvement, until convergence to an optimal policy. For the
discounted reward criterion, policy evaluation amounts to solv-
ing (26). During policy improvement, a dynamic programming
update using the DP Backup Equation is used. This results in
the addition, merging, and pruning of I-states of the sFSC.

In [39] a methodology called the Bounded Policy Iteration is
proposed, in which the sFSC is allowed to be stochastic. Next,
we briefly outlines this methodology before showing how
it can be adapted for solving the Conservative Optimization
Criterion given by (21).

We are concerned with maximizing the expected long term
discounted reward criterion over a general POMDP. The state
transition probabilities are given by T ps1|s, αq, and obser-
vation probabilities by Opo|sq. Most of this section follows
from [39] and [40], where the authors showed that (1) Allow-
ing stochastic I-state transitions and action selection (i.e., sFSC
I-state transitions and actions sampled from distributions)
enables improvement of the policy without having to add
more I-states. (2) If the policy cannot be improved, then the
algorithm has reached a local maximum. Specifically, there are
some belief states at which no choice of ω for the current size
of the sFSC allows the value function to be improved. In such
a case, a small number of I-states can be added that improve
the policy at precisely those belief states, thus escaping the
local maximum.

Definition 23 (Tangent Belief State): A belief state b is
called a tangent belief state, if V βpbq touches the DP Backup
of V βpbq from below. Since V βpbq must equal V βg for some
g, we also say that the I-state g is tangent to the backed up
value function V β at b.
Equipped with this definition, the two steps involved in policy
improvement can be carried out as follows.

Improving I-States by Solving a Linear Program: An I-state
g is said to be improved if the tunable parameters associated
with that state can be adjusted so that ~V βg is increased. The
improvement is posed as a linear program (LP) as follows:
I-state Improvement LP: For the I-state g, the following LP
is constructed over the unknowns ε, ωpg1, α|g, oq, @g1, α, o

max
ε,ωpg1,α|g,oq

ε

subject to
Improvement Constraint:

V βprs, gsq ` ε ď rβpsq

` β
ř

s1,g1,α,o

Opo|sqωpg1, α|g, oqT ps1|s, αqV βprs1, g1sq,@s,

Probability Constraints:
ř

pg1,αqPGˆAct

ωpg1, α | g, oq “ 1, @o P O,

ωpg1, α | g, oq ě 0, @g1 P G,α P Act, o P O. (29)

The above LP searches for ω values that improve the I-
state value vector ~V βg by maximizing the parameters ε. If an
improvement is found, i.e., ε ą 0, the parameters of the I-state
are updated by the corresponding maximizing ω.

Algorithm 1 Bounded PI: Adding I-States to Escape Local
Maxima
Input: Set B of tangent beliefs from policy improvement LPs

for each I-state, Nnew the maximum number of I-states
to add.

1: Nadded Ð 0.
2: repeat
3: Pick b P B, B “ Bztbu.
4: Fwd “ H
5: for all pα, oq P pActˆOq do
6: if Prpo|bq “

ř

sPS bpsqOpo|sq ą 0 then
7: Look ahead one step to compute forwarded beliefs

bo,αps
1q “

ř

s T ps
1|s, αq Opo|sqbpsq

ř

o1PO Opo1|sqbpsq .

8: FwdÐ FwdY tbo,αu
9: for all bfwd P Fwd do

10: Apply the r.h.s. of DP Backup to bfwd,
V β,backeduppbfwdq “ maxαPAct

rβpbfwdq `
β
ř

oPO Prpo|bfwdq
`

maxgPG b
o,α
fwdpsqV

β
g psq

˘(

where, bo,αfwd is computed for reach product
state s1 P S as follows bo,αfwdps

1q “
ř

s T ps
1|s, αq

Opo|sqbfwdpsq
ř

o1PO Opo1|sqbfwdpsq
.

11: Note the maximizing action α˚ and I-state g˚.
12: if V β,backeduppbfwdq ą V βpbfwdq then
13: Add new deterministic I-state gnew such that

ωpgnew|g
˚, α˚, oq “ 1 @o P O.

14: Nadded Ð Nadded ` 1
15: if Nadded ě Nnew then
16: return
17: until B “ H.

Escaping Local Maxima by Adding I-States: Eventually no
I-state can be improved with further iterations, i.e., @g P G,
the corresponding LP yields an optimal value of ε “ 0.

Theorem 2 ([39]): Policy Iteration has reached a local
maximum if and only if Vg is tangent to the backed up value
function for all g P G.

In order to escape local maxima, the controller can add more
I-states to its structure. Here the tangency criterion becomes
useful. First, note that the dual variables corresponding to
the Improvement Constraints in the LP provides the tangent
belief state(s) when ε “ 0. At a local maximum, each of the
|G| linear programs yield some tangent belief states. Most
implementations of LP solvers solve the dual variables simul-
taneously and so these tangent beliefs are readily available as
a by-product of the optimization process introduced above.

Algorithm 1 [39] uses the tangent beliefs to escape the local
maximum.

D. Bounded Policy Iteration for LTL Rewards

This section, shows how the bounded policy iteration
methodology described in the previous section can be modified
to solve the Conservative Optimization Criterion (21).

Algorithm 2 outlines the main steps in the bounded policy
iteration for the Conservative Optimization Criterion. Again,
there are two distinct parts of the policy iteration. First,
policy evaluation in which V β is computed whenever some

Algorithm 2 Bounded Policy Iteration For Conservative Op-
timization Criterion
Input: (a) An initial feasible sFSC, G with I-states G “

tGtr, Gssu, such that ηssdav prq “ 0. (b) Maximum size of
sFSC Nmax. (c) Nnew ď Nmax number of I-states

1: improvedÐ True
2: Compute the value vectors, ~V β of the discounted reward

criterion ηβ as in (26), or efficient approximation in
Section VI-A1.

3: while |G| ď Nmax and improved “ True do
4: improvedÐ False
5: for all I-states g P G do
6: Set up the Constrained Improvement LP as in Section

VI-D1.
7: if Improvement LP results in optimal ε ą 0 then
8: Replace the parameters for I-state g
9: improvedÐ True

10: Compute the value vectors, ~V βg of the discounted
reward criterion ηβ as in (26), or efficient approx-
imation in Section VI-A1.

11: if improved “ False and |G| ă Nmax then
12: nadded Ð 0
13: N 1new Ð minpNnew, Nmax ´ |G|q
14: Try to add N 1new I-state(s) to G according to con-

strained DP backup in Section VI-D3.
15: nadded Ð actual number of I-states added in previous

step.
16: if nadded ą 0 then
17: improvedÐ True
18: Compute the value vectors, ~V βg of the discounted

reward criterion ηβ as in (26), or efficient approx-
imation in Section VI-A1.

Output: G

parameters of the controller changes (Steps 2, 10 and 18). The
actual optimization algorithm to accomplish this step is found
in Section VI-D1. Second, after evaluating the current value
function, an improvement is carried out either by changing
the parameters of existing nodes, or if no new parameters can
improve any node, then a fixed number of nodes are added to
escape the local maxima (Steps 14-17). This is described in
Section VI-D3.

The two parts of policy improvement, namely the optimiza-
tion to improve a given node, and addition of new nodes to
escape local maxima are explained in detail in the subsequent
sections.

1) Node Improvement: The first observation is that the
search over κ can be dropped. This simplification occurs
because the initial node is chosen by computing the best
valued node for the initial belief, i.e., κpginitq “ 1, where
ginit “ argmax

g
p~ιϕinitq

T ~V βg .

Once this initial node has been selected, the above objec-
tive differs from the typical discounted reward maximization
problem due the presence of the new constraint ηssdav prq “ 0,
which must be incorporated into the optimization algorithm.

Using Theorem 1, the above constraint can be rewritten as
ηssdav prq “ 0 ðñ

`

~ιssdinit
˘T
~g “ 0, where ~g uniquely solves

the PE (23). This allows the node improvement to be written
as a bilinear program. Again, one node g is improved at a time
while holding all other nodes constant as follows.
I-state Improvement Bilinear Program:

max
ε,ωpg1,α|g,oq,~g,~Vav

ε

subject to
Improvement Constraints:

V βprs, gsq ` ε ď rβpsq ` β
ř

s1,g1,α,o

`

Opo|sq

ˆωpg1, α|g, oqTPMϕ

ps1|s, αqV βprs1, g1sq
˘

, @s

Poisson Equation (if g P Gss):
~V av `~g “ ~rav ` TPMϕ

mod
~V av

~g “ TPMϕ

mod ~g

Feasibility Constraints (if g P Gss):
`

~ιssinit,g
˘T
~g “ 0

FSC Structure Constraints (if g P Gss):
ωpg1, α|g, oq “ 0 if g1 P Gtr

Probability Constraints:
ř

g1,α

ωpg1, α|g, oq “ 1, @o,

ωpg1, α|g, oq ě 0, @g1, α, o.

(30)

Note that a node in Gtr does not have to guarantee that
product-POMDP states are not allowed to visit AvoidPMϕ

r

and hence the extra Poisson and Feasibility Constraints that
appear above need only be applied to I-state g P Gss.
Furthermore, the sFSC structure constraints ensure that once
the execution has transitioned to steady state, the I-states in
Gtr can no longer be visited.

The Poisson Constraints introduce bilinearity in the opti-
mization. This is because the term TPMϕ

mod , which is linear in
ωpg1, α|g, oq, is multiplied by the unknowns ~V av and ~g in the
two sets of constraints that form the PE.

2) Convex Relaxation of Bilinear Terms: Bilinear problems
are in general hard to solve [41], unless they are equiva-
lent to positive semidefinite or second order cone programs,
which make the problem convex. Neither of these convexity
assumptions hold for the bilinear constraints in (30). However,
several convex relaxation schemes exist for bilinear problems.
In this paper, we utilize a linear relaxation resulting from the
Reformulation-Linearization Technique (RLT) [42], which is
summarized below, to obtain a possibly sub-optimal solution
at each improvement step.

While RLT can be applied to a wide range of problems
including discrete combinatorial problems, it is introduced
here for the case of Quadratically Constrained Quadratic
Problems (QCQPs) over unknowns x P Rn, y P Rm. The

notation follows from [43]. A QCQP can be written as

max xTQox` a
T
o x` b

T
o y

subject to
xTQkx` a

T
k x` b

T
k y ď ck for k “ 1, 2, . . . , p,

lxi
ď xi ď uxi

for i “ 1, 2, . . . , n,
lyj ď yj ď uyj for j “ 1, 2, . . . ,m.

RLT is carried out as follows, for each xi, xj such that
the product term xixj is non zero in either the objective
or the constraints, a new variable Xij is introduced, which
replaces the product xixj in the problem. In addition, the
bounds lxi , lxj , uxi , uxj are utilized to produce four new linear
constraints

Xij ´ lxi
xj ´ lxj

xi ě ´lxi
lxj
,

Xij ´ uxixj ´ uxjxi ě ´uxiuxj ,
Xij ´ lxixj ´ uxjxi ď ´lxiuxj ,
Xij ´ uxi

xj ´ lxj
xi ď ´uxi

lxj
.

The above constraints are the McCormick convex en-
velopes [44]. For bilinear programming with bounded vari-
ables, the McCormick convex envelopes are successively used
in algorithms such as branch and bound [45] to successively
obtain tighter relaxations to obtain globally optimal solutions.
An efficient solver that incorporates this methodology is [46].

The bilinearity arises because the rows TPMϕ

mod,g of TPMϕ

mod ,
which are linear terms of the unknowns ωp., .|g, .q, are mul-
tiplied by ~V av and ~g. The other rows of TPMϕ

mod are not
functions of the unknowns and their values are used from
the values in the previous policy evaluation step. The total
number of bilinear terms in both sets of equations is given by
2ˆ |S||O||G||Act|. Moreover, applying the convex relaxation
requires that all terms appearing in bilinear products must have
finite bounds. For the unknowns ωp., .|g, .q, ~g and ~V av these
bounds are given by

~0 ď ωp., .|g, .q ď ~1,
~0 ď ~g ď ~1,

´ ~M1 ď ~V av ď ~M2,

where M1, M2 are large positive constants that are manu-
ally selected. This is because the feasibility set for ~V av is
dependent on the eigenvalues of I ´ TPMϕ

mod,g|G|
[35], which is

difficult to represent in terms of the optimization variables.
During numerical implementation, this issue was not found to
adversely effect the solution quality. This may be due to the
fact that ~V av does not appear in either the objective or in the
feasibility constraints of (30). In fact, for the choice of ω only
constrains the value ~g, whereas given ω and ~g a feasible value
of ~V av can always be found.

3) Addition of I-States to Escape Local Maxima: When no
I-state Improvement LP yields ε ą 0, a local maxima for the
bounded policy iteration has been reached. The dual variables
corresponding to the Improvement Constraints in (30) again
give those belief states that are tangent to the backed up value
function. The process for adding I-states involves forwarding
the tangent beliefs one step and then checking if the value
of those forwarded beliefs can be improved. However, an
additional check for recurrence constraints has to be made,

Algorithm 3 Adding I-states to Escape Local Maxima of
Conservative Optimization Criterion
Input: (a) Set B of tangent beliefs for each I-state. (b) A

function node : B Ñ G identifying the I-state which
yields each tangent belief. (c) Nnew the maximum number
of I-states to add.

1: Nadded Ð 0.
2: repeat
3: Pick b P B, B Ð Bztbu, g Ð nodepbq.
4: Compute the set of forwarded beliefs, Fwd, as in

Steps 4-10 of Algorithm 1.
5: for all bfwd P Fwd do
6: if g P Gtr then
7: candidatesÐ GˆAct.
8: else
9: candidatesÐ Gss ˆAct.

10: candidates Ð PruneCandidates(candidates,
bfwd, ~V av , ~g) using Algorithm 4.

11: if candidatesÐH then
12: Go to step 5.
13: Apply the r.h.s. of DP Backup

to bfwd, V β,backeduppbfwdq “

maxpg,αqPcandidates

rβpbfwdq `

β
ř

oPO Prpo|bfwdq
`

bo,αfwdpsqV
β
g psq

˘(

, where, bo,αfwd
is computed for each product state s1 P S as follows
bo,αfwdps

1q “
ř

s T ps
1|s, αq

Opo|sqbfwdpsq
ř

o1PO Opo1|sqbfwdpsq
.

14: Note the maximizing action α˚ and I-state g˚.
15: if V β,backeduppbfwdq ą V βpbfwdq then
16: Add new deterministic I-state gnew such that

ωpgnew|g
˚, α˚, oq “ 1 @o P O.

17: Assign gnew to correct sFSC partition as follows:

gnew P

"

Gtr if g P Gtr

Gss otherwise.
18: Nadded Ð Nadded ` 1.
19: if Nadded ě Nnew then
20: return
21: until B “ H.

if the involved I-state belongs to the Gss states of the sFSC
controller. In addition, if an I-state is added to the sFSC, it
must also be assigned to either Gtr or Gss, because the next
policy evaluation iteration depends on the I-state partitioning
in the computation of TPMϕ

mod . The procedure for adding I-
states is provided in Algorithm 3.

Algorithm 3 can be understood as follows. Assume that a
tangent belief b exists for some I-state g. Similar to Algo-
rithm 1, instead of directly improving the value of the tangent
belief, the algorithm tries to improve the value of forwarded
beliefs reachable in one step from the tangent beliefs. This is
given in Step 4 of Algorithm 3. Recall from Section VI-C
that when a new I-state is added, its successor states are
chosen from the existing I-states. A similar approach is used
in Algorithm 3. However, a new node may be added to
either Gtr or Gss depending on the I-state that generated the
original tangent belief. Recall that I-states in Gss have two
additional constraints. First, no state in Gss can transition to

Algorithm 4 Pruning candidate successor I-states and actions
to satisfy recurrence constraints.
Input: Set of candidate successor states and actions

candidates Ď Gss ˆAct.
1: for all pg, αq P candidates do
2: Add new state gphantom to Gss to create a larger sFSC

where, ωpg, a|gphantom, oq “ 1, @o P O.
3: Compute TPMϕ

mod and ~ιssinit for the new larger global ssd
Markov chain.

4: Solve PE for the new larger global Markov chain to
obtain solutions ~g, ~V av .

5: if Any Feasibility Constraints in (30) are violated under
the larger sFSC then

6: candidateÐ candidatesztpg, αqu.
7: return candidates

any state in Gtr. This is enforced by limiting the successor
state candidates in Steps 6-9. Secondly, for improving a node
in Gss, the allowed actions and transitions must satisfy the
Poisson Constraints of (30). This further reduces or prunes the
possible successor candidates in Step 10, which is elaborated
as a separate procedure in Algorithm 4. The rest of the
procedure is identical to Algorithm 1, except for Step 20, in
which any newly added I-state is placed in the correct partition
of Gtr or Gss.

Algorithm 4 prevents any new I-states to choose a pair of
action and successor I-state that may violate the Feasibility
Constraints of (30). In order to carry out this procedure,
a phantom I-state, gphantom P Gss is temporarily added
to the current sFSC for a pair pg, αq P candidates. Next,
the modified transition distribution TPMϕ

mod,phantom is computed
using (12), and the PE is solved to obtain a new ~g which can
be used to verify the Feasibility Constraint. If this constraint is
violated. i.e., then pg, αq is removed from the set candidates.
Note that the algorithm works on a copy of the original
sFSC, and the solution of the PE computed at the last policy
evaluation step. The addition of gphantom, and re-computation
of the PE is only used within Algorithm 4.

4) Finding an Initial Feasible Controller: So far, it has
not been shown how an initial feasible controller may be
found to begin the policy iteration. A feasible sFSC is one
which produces at least one ϕ-feasible recurrent set (Definition
19). This problem can be posed as a bilinear program, as
well. Assume a size |G| and partitioning G “ tGtr, Gssu
of the sFSC has been chosen such that |Gtr| ą 0 and
|Gss| ą 0. Next, consider the PE for the ssd-global Markov
chain, in which the states in AvoidPMϕ

r ˆ Gss are sinks.
However, instead of the charge of the PE being rav , consider
the charge rβ in which the states in RepeatPMϕ

r ˆ Gss

are rewarded. This is given by ~gfeas “ TPMϕ

mod ~gfeas and
~V avfeas ` ~gfeas “ ~rβ ` TPMϕ

mod
~V avfeas. Then, it can be shown

that some state in RepeatPMϕ

r ˆGss is recurrent and can be
reached from the initial distribution with positive probability
if and only if Dg P Gss such that

`

~ιPMϕ

init

˘T
~gfeas,g ą 0.

However, the constraint of never visiting the avoid states still
applies. These procedures and constraints can be collected

together in the following bilinear maximization problem.

max
ω,~V av,~V av

feas,~g,~gfeas

`

~ιPMϕ

init

˘T
~gfeas,g

subject to
Poisson Equation 1:

~V av `~g “ ~rav ` TPMϕ

mod
~V av

~g “ TPMϕ

mod ~g
Poisson Equation 2:

~V avfeas `~gbeta “ ~rβ ` TPMϕ

mod
~V avfeas

~gfeas “ TPMϕ

mod ~gfeas
Feasibility constraints (@g P Gss)

`

~ιssinit,g
˘T
~g “ 0

FSC Structure Constratins:
ωpg1, α|g, oq “ 0 if g P Gtr and g P Gss

Probability constraints:
ř

g1,α

ωpg1, α|g, oq “ 1 @o

ωpg1, α|g, oq ě 0 @g1, α, o

Any positive value of the objective
`

~ιPMϕ

init

˘T
~gfeas,g gives

a feasible controller, and therefore the optimization need not
be carried out to optimality. If the problem is infeasible, then
states in Gss can be successively added to search for a positive
objective.

VII. CASE STUDIES: ROBOT NAVIGATION

In this section, case studies for the bounded policy iteration
algorithm described in Section VI-D are shown. The first
example demonstrates the effectiveness of the algorithm to
optimize the transient phase of the controlled system, while the
second example illustrates the effectiveness in improving the
steady state behavior of the controlled system. The case studies
use a grid world system model, whose graphical representation
is given in Figure 3.

A. Robot Navigation POMDP Set-Up

The world model is represented by an M ˆ N grid,
with M “ 7 fixed and varying N ě 1. A robot can
move from cell to cell. Thus, the state space is given
by S “ tsi|i “ x ` My, x P t0, . . . ,M ´ 1u, y P

t0, . . . , N ´ 1uu. The action set available to the robot is
Act “ tRight, Left, Up, Down, Stopu. The actions
Right, Left, Up and Down, move the robot from its current
cell to a neighboring cell, with some uncertainty. The state
transition probabilities for various cell types (near a wall, or
interior) are shown for action Right in Figure 3. Actions
Left, Up, and Down have analogous definitions. For the
deterministic action Stop, the robot stays in its current cell.
Partial observability arises because the robot cannot precisely
determine its cell location from measurements directly. The
observation space is O “ toi|i “ x `My, x P t0, . . . ,M ´

1u, y P t0, . . . , N ´ 1uu. In the robot’s actual cell position
(dark blue), the sensed location has a distribution over the
actual position and nearby cells (light blue). The robot starts
in Cell 1(yellow): ιinitps1q “ 1. While the robot’s initial state
is known exactly in this example, it is not required. Finally,

Figure 3. Robot navigation POMDP model used in the case studies.

there are three atomic propositions of interest in this grid
world, giving AP “ ta, b, cu. In cell 0, only a is true, while,
respectively, only b and c are true in cells 6 and 3.

B. Case Study I - Stability with Safety

LTL Specification: The LTL specification is given by
ϕ2 “ ♦ l b ^ l c, where b and c, shown in Figure 3 are
requirements for the robot to navigate to cell 6, and stay there,
while avoiding cell 3, respectively.
Results: The difficulty in this specification is that the robot
must localize itself to the top edge of the corridor before
moving rightward to cell 6. Note that a random walk per-
formed by the robot is feasible: there is a finite probability that
actions chosen randomly will lead the robot to cell 6 without
visiting cell 3. The sFSC used to seed the bounded policy
iteration algorithm was chosen to have uniform distribution
for I-state transitions and actions. Figure 4 shows the result
of the bounded policy iteration in detail. It can be seen
that the value of the initial belief increases monotically with
successive policy improvement steps, which includes both the
optimization of (30) and the addition of I-states to escape local
maxima, as discussed in Section VI-D3.

C. Case Study II - Repeated Reachability with Safety

This case study illustrates how the Bounded Policy Iteration,
especially the addition of I-states to the sFSC, improves the
steady state behavior of the controlled system.
System Model and LTL specification: Let N “ 3 and the
LTL specification be given by ϕ1 “ l♦a^l♦b^l c.
Results: For this example, the controller was seeded with
a feasible sFSC of size |G| = 3, with |Gss| “ 2, using the
method described in Section VI-D4. After the first few policy
improvement steps, the initial I-state was found to be in Gss.
By construction, once the sFSC transitions to an I-state in
Gss it can no longer visit states in Gtr, when local maxima
was encountered. Subsequently, all new I-states were assigned
to Gss. The improvement in steady state behavior with the
addition of each I-state is shown in Figure 5, where it can
be seen that the expected frequency of visiting RepeatPMϕ

0

steadily increases with the addition of I-states.

VIII. CONCLUSIONS

We proposed a methodology to synthesize sFSCs for
POMDPs with LTL specification. We used the Poisson Equa-

Figure 4. Transient behavior optimization using Bounded Policy Iteration.
The x-axis denotes the number of policy improvement steps carried out. (top)
The growth of the sFSC size. (middle) The value of the initial belief increases
monotonically with each iteration. This value denotes the expected long term
discounted reward for the given initial belief. (bottom) Since the goal is to
reach cell 6, this sub-figure shows the increase in probability of reaching the
goal state within 20 time steps as the sFSC is optimized.

Figure 5. Effect of Bounded Policy Iteration on steady state behavior.
Bounded Policy Iteration applied to the specification ϕ1. The above graph
shows the improvement in steady state behavior as the size of the sFSC
increases. Only states in Gss were allowed to be added. The y-axis denotes
the expected frequency with which states in RepeatPMϕ

0 were visited for
the product-POMDP.

tion and convex relaxations involving McCormick envelopes
to relax a nonlinear optimization problem for designing sFSCs.
The stochastic bounded policy iteration algorithm was adapted
to the case in which certain states were required to be never
visited. The key benefit of using this variant of dynamic
programming was that it allowed for a controlled growth in
the size of the sFSC, and could be treated as an anytime
algorithm, where the performance of the controller improves
with successive iterations, but can be stopped by the user based
on time or memory considerations.

Future research will explore the extension of the proposed
method to multi-agent POMDPs [47] and partially observable
stochastic games [48], [49].

APPENDIX

Proof of Lemma 2: Consider a finite path fragment π “
s0s1 . . . in each of the two Markov chains given by Tϕ

and Tϕmod respectively. Consider the event of visiting a state
in Avoidϕr for the first time at the k-th time step. A path
that satisfies this can be written as πk “ s0s1 . . . sk . . .
such that s0 . . . sk´1 R Avoidϕr and sk P Avoidϕr . Then,
from the definition of the probability measure of cylinder sets
in (1), the probability measures of the cylinder sets under the
two Markov chains are identical: Pr M

”

CylMpπkq
ˇ

ˇ

ˇ
ιϕ,Ginit

ı

“

ιssinitps0qΠ
k
t“1T

ϕpst|st´1q “ ιssinitps0qΠ
k
t“1T

ϕ
modpst|st´1q “

Pr Mmod

”

CylMmod
pπkq

ˇ

ˇ

ˇ
ιϕ,Ginit

ı

, where CylM P PathspMq

and CylMmod
P PathspMmodq. The first equality and the

second equality follow from the fact that Tϕmodpsj |siq “
Tϕpsj |siq, @si R Avoidϕr from (12). Next, note that the
probability of paths visiting Avoidϕr in the l.h.s. of the lemma
is given by

Pr
”

π Ñ pAvoidPMϕ

r ˆGq
ˇ

ˇ

ˇ
ιϕ,Ginit

ı

“

8
ÿ

k“0

Pr
M

”

CylMpπkq
ˇ

ˇ

ˇ
ιϕ,Ginit

ı

“

8
ÿ

k“0

Pr
Mmod

”

CylMmod
pπkq

ˇ

ˇ

ˇ
ιϕ,Ginit

ı

.

In addition, since each state in Avoidϕr is absorbing un-
der Tϕmod and has a reward 1 under the scheme of (13),
for a given infinite path π of Mmod, the long term av-
erage sum of rewards can be seen to be Rewpπq “

limtÑ8
1
T

”

řT
t“0 r

av
r pstq

ˇ

ˇιPMϕ

init

ı

“

"

1 if π Ñ Avoidϕr
0 otherwise .

This happens because if a path visits any state Avoidϕr it
forever remains in that state accumulating a reward of 1 at
each time step. In the limit as time steps grow to infinity, the
average reward per step converges to 1.

Finally, taking the expectation of the function Rewpπq gives

ηavprq “ Emod rRewpπqs

“ 1. Pr
Mmod

”

π Ñ Avoidϕr

ˇ

ˇ

ˇ
ιϕ,Ginit

ı

`0. Pr
Mmod

”

π Ñ Avoidϕr

ˇ

ˇ

ˇ
ιϕ,Ginit

ı

“

8
ÿ

k“0

Pr
Mmod

”

CylMmod
pπkq

ˇ

ˇ

ˇ
ιϕ,Ginit

ı

.

REFERENCES

[1] V. Krishnamurthy, Partially observed Markov decision processes. Cam-
bridge University Press, 2016.

[2] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Where’s waldo?
sensor-based temporal logic motion planning,” in ICRA, 2007, pp. 3116–
3121.

[3] X. C. Ding, S. L. Smith, C. Belta, and D. Rus, “Ltl control in uncertain
environments with probabilistic satisfaction guarantees,” CoRR, vol.
abs/1104.1159, 2011.

[4] M. Svorenova, I. Cerna, and C. Belta, “Optimal control of mdps with
temporal logic constraints,” CoRR, vol. abs/1303.1942, 2013.

[5] S. Karaman and E. Frazzoli, “Sampling-based motion planning with
deterministic µ-calculus spefications,” in CDC, 2009, pp. 2222–2229.

[6] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based
reactive mission and motion planning,” Robotics, IEEE Transactions on,
vol. 25, no. 6, pp. 1370–1381, 2009.

[7] H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu, “Correct, reactive,
high-level robot control,” Robotics & Automation Magazine, IEEE,
vol. 18, no. 3, pp. 65–74, 2011.

[8] A. Holt, E. Holt, E. Klein, and C. Grover, “Natural language for
hardware verification: Semantic interpretation and model checking,” in
ILLC, University of Amsterdam, 1999, pp. 133–137.

[9] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming, 1st ed. New York, NY, USA: John Wiley & Sons,
Inc., 1994.

[10] C. Baier and J.-P. Katoen, Principles of Model Checking (Representation
and Mind Series). The MIT Press, 2008.

[11] E. M. Wolff, U. Topcu, and R. M. Murray, “Robust control of uncertain
markov decision processes with temporal logic specifications,” in CDC,
2012, pp. 3372–3379.

[12] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Trans. Automat. Contr., vol. 57, no. 11,
pp. 2817–2830, 2012.

[13] K. Chatterjee, L. Doyen, and T. A. Henzinger, “Qualitative analysis
of partially-observable markov decision processes,” in Mathematical
Foundations of Computer Science 2010, ser. Lecture Notes in Computer
Science, 2010, vol. 6281, pp. 258–269.

[14] K. Chatterjee, L. Doyen, S. Nain, and M. Y. Vardi, “The complexity
of partial-observation stochastic parity games with finite memory strate-
gies,” Tech. Rep., 2013.

[15] G. Shani, J. Pineau, and R. Kaplow, “A survey of point-based POMDP
solvers,” Autonomous Agents and Multi-Agent Systems, vol. 27, no. 1,
pp. 1–51, 2013.

[16] Y. Wang, S. Chaudhuri, and L. E. Kavraki, “Bounded policy synthesis
for pomdps with safe-reachability objectives,” in Proceedings of the
17th International Conference on Autonomous Agents and MultiAgent
Systems, 2018, pp. 238–246.

[17] S. Haesaert, P. Nilsson, C. I. Vasile, R. Thakker, A. Agha-mohammadi,
A. D. Ames, and R. M. Murray, “Temporal logic control of pomdps
via label-based stochastic simulation relations,” IFAC-PapersOnLine,
vol. 51, no. 16, pp. 271–276, 2018.

[18] S. Carr, N. Jansen, R. Wimmer, A. C. Serban, B. Becker, and U. Topcu,
“Counterexample-guided strategy improvement for pomdps using recur-
rent neural networks,” arXiv preprint arXiv:1903.08428, 2019.

[19] S. Junges, N. Jansen, R. Wimmer, T. Quatmann, L. Winterer, J.-
P. Katoen, and B. Becker, “Finite-state controllers of POMDPs via
parameter synthesis,” Corvallis: AUAI Press, 2018.

[20] M. Cubuktepe, N. Jansen, S. Junges, J.-P. Katoen, and U. Topcu,
“Synthesis in pMDPs: A tale of 1001 parameters,” in International
Symposium on Automated Technology for Verification and Analysis.
Springer, 2018, pp. 160–176.

[21] E. A. Emerson, “Temporal and modal logic,” in HANDBOOK OF
THEORETICAL COMPUTER SCIENCE. Elsevier, 1995, pp. 995–1072.

[22] M. Huth and M. Ryan, Logic in Computer Science: Modelling and
reasoning about systems. Cambridge University Press, 2004.

[23] T. Wongpiromsarn, “Formal methods for design and verification of
embedded control systems : application to an autonomous vehicle,”
Ph.D. dissertation, 2010.

[24] J. Klein, “Linear time logic and deterministic omega-automata,” Ph.D.
dissertation, 2005.

[25] E. Grädel, W. Thomas, and T. Wilke, Eds., Automata, Logics, and Infinite
Games: A Guide to Current Research, ser. Lecture Notes in Computer
Science, vol. 2500. Springer, 2002.

[26] J. Klein and C. Baier, “Experiments with deterministic omega;-automata
for formulas of linear temporal logic,” Theoretical Computer Science,
vol. 363, pp. 182–195, 2005.

[27] J. Klein, “ltl2dstar - ltl to deterministic streett and rabin automata
(www.ltl2dstar.de).”

[28] N. Piterman and A. Pnueli, “Synthesis of reactive(1) designs,” in In Proc.
Verification, Model Checking, and Abstract Interpretation (VMCAI06.
Springer, 2006, pp. 364–380.

[29] O. Hernandez-Lerma and J. B. Lasserre, “Markov chains and invariant
probabilities,” in Progress in mathematics. Birkhauser Verlag, 2003.

[30] J. G. Kemeny and J. L. Snell, Finite Markov Chains. Springer-Verlag,
1976.

[31] D. P. Bertsekas, Dynamic programming and stochastic control. Aca-
demic Press, 1976, no. 10.

[32] K. J. Astrom, “Optimal control of Markov decision processes with
incomplete state estimation,” J. Mathematical Anal. and Appl.,, no. 10,
pp. 174–205, 1965.

[33] A. R. Cassandra, L. P. Kaelbling, and M. L. Littman, “Acting optimally
in partially observable stochastic domains,” in AAAI, 1994, pp. 1023–
1028.

[34] O. Madani, S. Hanks, and A. Condon, “On the undecidability of
probabilistic planning and related stochastic optimization problems,”
Artificial Intelligence, vol. 147, no. 1, pp. 5 – 34, 2003.

[35] A. M. Makowski and A. Shwartz, “On the poisson equation for markov
chains: Existence of solutions and parameter dependence by probabilistic
methods,” Tech. Rep., 1994.

[36] S. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability,
2nd ed. New York, NY, USA: Cambridge University Press, 2009.

[37] D. P. Bertsekas, Dynamic Programming and Optimal Control, Two
Volume Set, 2nd ed. Athena Scientific, 2001.

[38] J. Lasserre, “Conditions for existence of average and blackwell optimal
stationary policies in denumerable markov decision processes,” J. Math.
Analysis and Applications, vol. 136, no. 2, pp. 479 – 489, 1988.

[39] P. Poupart and C. Boutilier, “Bounded finite state controllers,” in NIPS,
2003.

[40] E. A. Hansen, “Sparse stochastic finite-state controllers for pomdps.” in
UAI, 2008, pp. 256–263.

[41] S. Burer and A. N. Letchford, “On nonconvex quadratic programming
with box constraints,” SIAM Journal on Optimization, vol. 20, no. 2, pp.
1073–1089, 2009.

[42] H. Sherali and W. Adams, A Reformulation-Linearization Technique for
Solving Discrete and Continuous Nonconvex Problems. Springer, 1998.

[43] A. Qualizza, P. Belotti, and F. Margot, “Linear programming relaxations
of quadratically constrained quadratic programs,” in Mixed Integer
Nonlinear Programming. Springer, 2012, pp. 407–426.

[44] G. P. McCormick, “Computability of global solutions to factorable
nonconvex programs: Part iconvex underestimating problems,” Math-
ematical programming, vol. 10, no. 1, pp. 147–175, 1976.

[45] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,”
Operations Research, vol. 14, no. 4, pp. 699–719, 1966.

[46] J. Lofberg, “Yalmip: A toolbox for modeling and optimization in
matlab,” in Computer Aided Control Systems Design, 2004 IEEE In-
ternational Symposium on. IEEE, 2004, pp. 284–289.

[47] M. Ahmadi, A. Singletary, J. W. Burdick, and A. D. Ames, “Safe
Policy Synthesis in Multi-Agent POMDPs via Discrete-Time Barrier
Functions,” 58th Conference on Decision and Control, Dec 2019.

[48] F. A. Oliehoek, C. Amato et al., A concise introduction to decentralized
POMDPs. Springer, 2016, vol. 1.

[49] M. Ahmadi, M. Cubuktepe, N. Jansen, S. Junges, J.-P. Katoen, and
U. Topcu, “The partially observable games we play for cyber deception,”
in 2019 American Control Conference, 2019.

	I Introduction
	I-A Literature Review
	I-B Contributions
	I-C Outline

	II Preliminaries
	II-A Linear Temporal Logic
	II-B Markov Chains
	II-C Labeled Partially Observable Markov Decision Process
	II-D Stochastic Finite State Control of POMDPs
	II-E Markov Chain Induced by an sFSC

	III LTL satisfaction over POMDP executions
	III-A Inducing an sFSC for PM from that of PM
	III-B Verifying LTL Satisfaction via the Product-POMDP

	IV An Optimization Problem for LTL Satisfaction
	IV-A Measuring the Probability of LTL Satisfaction
	IV-B Reward Design for LTL Satisfaction
	IV-B1 Incentivizing Frequent Visits to RepeatrPM
	IV-B2 The Steady State Probability of Visiting AvoidPM
	IV-B3 Partitioned sFSC and Steady State Detecting Global Markov Chain

	IV-C Casting into an Optimization Problem

	V The Poisson Equation for the Global Markov Chain
	VI Bounded Policy Iteration for LTL Reward Maximization
	VI-A Dynamic Programming Variants for POMDPs with sFSCs
	VI-A1 Value Function for Discounted Reward Criterion
	VI-A2 Value Function for Average Reward Criterion

	VI-B Bellman Optimality / DP Backup - Discounted Case
	VI-C Bounded Policy Iteration for sFSCs
	VI-D Bounded Policy Iteration for LTL Rewards
	VI-D1 Node Improvement
	VI-D2 Convex Relaxation of Bilinear Terms
	VI-D3 Addition of I-States to Escape Local Maxima
	VI-D4 Finding an Initial Feasible Controller

	VII Case Studies: Robot Navigation
	VII-A Robot Navigation POMDP Set-Up
	VII-B Case Study I - Stability with Safety
	VII-C Case Study II - Repeated Reachability with Safety

	VIII Conclusions
	Appendix
	References

