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ABSTRACT

Scheduling precedence-constrained tasks is a classical problem that has been studied for more than
fifty years. However, little progress has been made in the setting where there are communication
delays between tasks. Results for the case of identical machines were derived nearly thirty years ago,
and yet no results for related machines have followed. In this work, we propose a new scheduler,
Generalized Earliest Time First (GETF), and provide the first provable, worst-case approximation
guarantees for the goals of minimizing both the makespan and total weighted completion time of tasks
with precedence constraints on related machines with machine-dependent communication times.

1 Introduction

In this paper we study scheduling precedence-constrained tasks onto a set of heterogeneous machines with communica-
tion delays between the machines in order to minimize the makespan or the total weighted completion time. Initially,
work on this topic was motivated by the goal of scheduling jobs on multi-processor systems, e.g., [1]. Today this
problem is timely due to the prominence of large-scale, general-purpose machine learning platforms. For example, in
systems such as Google’s TensorFlow [2], Facebook’s PyTorch [3] and Microsoft’s Azure Machine Learning (AzureML)
[4], machine learning workflows are expressed via a computational graph, where jobs are made up of tasks, represented
as vertices, and precedence relationships between the tasks, represented as edges. This “precedence graph” abstraction
allows data scientists to quickly develop and incorporate modular components into their machine learning pipeline (e.g.,
data preprocessing, model training, and model evaluation) and then easily specify a workflow. The graphs that specify
the workflows in platforms such as TensorFlow, PyTorch and AzureML can be made up of hundreds or even thousands
of tasks, and the jobs may be run on systems with thousands of machines. As a result, the performance of the platforms
depends on how these precedence-constrained tasks are scheduled across machines.

The goal of scheduling jobs composed of precedence-constrained tasks has been studied for more than fifty years,
starting with the work of [5]. The simplest version of this scheduling problem focuses on scheduling a single job with n
precedence-constrained tasks on m identical parallel machines with the goal of minimizing the makespan: the time
until the last task completes. More generally, the goal of minimizing the total weighted completion time is considered,
where the total weighted completion time is a weighted average of the completion time of each task in the job5. For the
goal of minimizing the makespan, Graham showed that a simple list scheduling algorithm can find a schedule of length
within a multiplicative factor of (2− 1/m) of the optimal. This result is still the best guarantee known for this simple
setting. Since then, research has sought to generalize the setting considered in two important ways: (i) to non-identical
machines and (ii) to the case where communication is needed between tasks.
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the job, with all other tasks given weight zero.
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Addressing these two issues has been one of the major goals of the field since Graham’s initial result fifty years ago.
Since that time, considerable progress has mostly been made on generalizations to heterogeneous machines. The focus
has been on (uniformly) related machines, a model where each machine i has a speed si, each task j has a size wj , and
the time to run task j on machine i is wj/si. Under the related machine model, a sequence of results in the 1980s and
1990s culminated in a result that showed how to use list scheduling algorithms in combination with a partitioning of
machines into groups with “similar” speeds in order to achieve an O(logm)-approximation algorithm for makespan [6].
This result was also extended in the same work to total weighted completion time by proposing a time-indexed linear
programming technique. The extension yields an O(logm)-approximation for total weighted completion time. The idea
of using a group assignment rule to partition machines into groups of machines with similar speeds and then to assign
tasks to a group is a powerful one and has shown up frequently in the years since; it recently led to a breakthrough
when the idea of partitioning machines was adapted further and combined with a variation of list scheduling to obtain a
O(logm/ log logm)-approximation algorithm for both makespan and total weighted completion time [7].

Despite the progress made in generalizing from identical machines to heterogeneous machines, there has been little
progress toward the goal of incorporating communication delays. Machine-dependent communication delays are crucial
for capturing issues such as data locality and the difference between intra-rack and inter-rack communication. We
note that if communication delays are machine independent, they can simply be viewed as part of the processing time,
making the problem much easier. The state-of-the-art result in the case of communication delays is [8], which studies
machine-dependent communication costs in the setting of identical machines. In this context, a greedy algorithm called
Earliest Time First (ETF) has been shown to produce schedules with a makespan bounded by (2− 1/m)OPT(i) + C,
where OPT(i) is the optimal schedule length when ignoring communication time and C is the maximum amount of
communication of a chain (path) in the precedence graph. However, the analysis for the case of identical machines in
[8] is quite complex and it has proven difficult to generalize to the related machines setting. As a result, there has been
no progress outside the context of identical machines in the thirty years since [8].

Given the challenge of designing schedulers that are approximately optimal for related machines with machine-
dependent communication time, most work studying the design of scheduling policies in this context has relied on
developing scheduling heuristics and evaluating these heuristics numerically, e.g., [9, 10, 11, 12, 13, 14]. For a recent
survey see [15, 16] and the references therein.

Contributions. In this paper we propose a new scheduler, Generalized Earliest Time First (GETF), and prove that
it computes a makespan that is at most of length O(logm/ log logm)OPT(i) + C in the case of related machines
and machine-dependent communication times, where C is the amount of communication time in a chain (path) in
the precedence graph. Additionally, we generalize our result to the objective of total weighted completion time
and show that GETF produces a schedule S whose total weighted completion time is at most O(logm/ log logm)

wOPT(i) +
∑
j ωjC(S, j), where wOPT(i) is the optimal total weighted completion time, ωj is the weight in the

objective, and C(S, j) is the communication requirement in a chain in the precedence graph. These two results address
long-standing open problems. Note that the makespan result matches state-of-the-art bounds for the special cases
(i) when there is zero communication time and (ii) when the machines are identical. In the case of total weighted
completion time, no previous result exists for the case of identical machines with communication time, but the result
matches the best known bound for the case with related machines and zero communication time.

The key technical advance that enables our new result is a dramatically simplified analysis of ETF in the setting of
identical machines. The state-of-the-art result in this setting is [8], which is established using a long, complex argument.
In contrast, the core idea in our proof of Theorem 4.1 is a short, simple proof of a Separation Principle which can be
used to provide a novel proof of the approximation ratio for ETF in the case of identical machines. The proof is simple
and general enough that it can be extended from identical machines to related machines by adapting recent advances
from [7].

Related literature. In recent years, the design and optimization of large-scale general-purpose machine learning
platforms has been an overarching goal, bridging many communities in both industry and academia. The emergence of
platforms such as TensorFlow, PyTorch and AzureML illustrate the power of such systems to democratize tools from
machine learning, making them accessible and scalable for anyone.

Since the emergence of such systems, there has been a torrent of work that seeks to optimize the scheduling and
assignment of the precedence-constrained graphs in such systems. Heuristics have emerged for managing straggler
tasks, e.g., [10, 17, 9, 18]; scheduling tasks with different computational properties, e.g., jobs with MapReduce-type
structures [19, 20, 21, 22, 23, 24], scheduling approximation jobs [9, 25, 18], and managing communication times
[16, 26]. Many of these heuristics have led to system designs that have had a significant industrial impact.

Such designs typically address the challenges associated with precedence constraints in ad hoc ways based on simplifying
assumptions about the structures of the graphs. In contrast, there is a long history of analytic work seeking to design
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schedulers for precedence-constrained tasks with provable worst-case guarantees. As we have already mentioned, the
initial results on this topic for makespan were provided by Graham, who gave a (2− 1/m)-approximation algorithm
based on list scheduling for P |prec|Cmax [5]. A decade later, it was shown by [27] that it is NP-hard to approximate
P |prec|Cmax within a factor of 4/3. This left a gap which has been essentially closed recently, when [28] proved
that it is NP-hard to achieve an approximation factor less than 2, given the assumption of a new variant of the Unique
Game Conjecture introduced by [29]. In the case of total weighted completion time objective P |prec|

∑
j ωjCj , the

negative results carry over from the makespan objective since makespan objective can be viewed as a special case
of total weighted completion time objective. Moreover, under the assumption of the stronger version of the Unique
Game Conjecture, it is shown in [29] that it is even hard to approximate within a factor of 2 − ε for the problem
with one machine. On the positive side, a 7-approximation was given in [30], and [31, 32] later improved it to a
4-approximation. The current best known result is a (2 + 2 ln 2 + ε)-approximation by [7] via a time-indexed linear
programming relaxation technique.

The results mentioned above all focus on identical machines with zero communication delays. When related machines
are considered, the problem becomes more challenging. An early result on this topic is [6], which proposed a Speed-
based List Scheduling (SLS) algorithm that obtains an approximation of O(logm) for Q|prec|Cmax. A time-indexed
linear programming technique has been proposed in the same work that gives a O(logm) bound for Q|prec|

∑
j ωjCj .

Recently, an improvement to O(logm/ log logm) for both objectives was proven in [7]. The best known lower bound
for the problem of related machines is from [33], which shows that it is impossible for a polynomial time algorithm
to approximate the minimal makespan to any constant factor assuming the hardness of an optimization problem on
k-partite graphs.

In contrast, when communication delay is considered, much less is known. To our knowledge, no approximation ratio
is known for P |prec, ci,j |Cmax, and this open problem was noted by [34]. The only algorithm with a guaranteed
worst-case performance bound in this setting is ETF [8], which provides a bound of (2 − 1/m)OPT(i) + C on the
makespan in the case of identical machines. Prior to our paper, no algorithm with a worst-case approximation guarantee
for either makespan or total weighted completion time is known for the case of related machines with communication
delays, i.e., Q|prec, ci,j |Cmax and Q|prec, ci,j |

∑
j ωjCj .

2 Problem formulation

We study a model that generalizes Q|prec, ci,j |
∑
j ωjCj by including machine-dependent communication times. Our

goal is to derive bounds on the total weighted completion time and the makespan, which is an important special case of
the total weighted completion time that uses a particular choice of ωj .

Specifically, we consider the task of scheduling a job made up of a set V of n tasks on a heterogeneous system composed
of a set M of m machines with potentially different processing speeds and communication speeds. The tasks form a
directed acyclic graph (DAG) G = (V,E), in which each node j represents a task and an edge (j′, j) between task
j and task j′ represents a precedence constraint. We interchangeably use node or task, as convenient. Precedence
constraints are denoted by a partial order ≺ between two nodes of any edge, where j′ ≺ j means that task j can only
be scheduled after task j′ completes. Let wj represent the processing demand of task j. The amount of data to be
transmitted between task j′ and task j is represented by the edge weight wj′,j of (j′, j).

The system is heterogeneous in two aspects: processing speed and communication speed. For processing speed, we
consider the classical related machines model: a machine i has speed si, and it takes wj/si uninterrupted time units for
task j to complete on machine i. Specifically, computer resources such as CPUs and GPUs have varying speeds; hence
schedulers must be able to handle heterogeneous servers. The communication speed si′,i between any two machines
i′, i is heterogeneous across different machine pairs. We index the machine to which task j is assigned by h(j). If
i = h(j) and i′ = h(j′), then communication time between task j′ and j in the DAG is wj′,j/si′,i.

For simplicity, we consider a setting where the machines are fully connected to each other, so any machine can
communicate with any other machine. This is without loss of generality as one can simply set the communication speed
between any two disconnected machines to 0. We also assume that the DAG is connected. Again, this is without loss
of generality because, otherwise, the DAG can be viewed as multiple DAGs and the same results can be applied to
each. As a result, our results trivially apply to the case of multiple jobs. Additionally, our model assumes that each
machine (processing unit) can process at most one task at a time, i.e., there is no time-sharing, and the machines are
assumed to be non-preemptive, i.e., once a task starts on a machine, the scheduler must wait for the task to complete
before assigning any new task to this machine. This is a natural assumption in many settings, as interrupting a task and
transferring it to another machine can cause significant processing overhead and communication delays due to data
locality, e.g., [35].
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Algorithm 1 Generalized Earliest Time First (GETF)
INPUT: group assignment rule f(·), tie-breaking rule
OUTPUT: schedule S with machine assignment mapping h(·) and starting time mapping t(·)

1: R← {1, 2, . . . , n}
2: while R 6= ∅ do
3: A = {j : j ∈ R,@j′ s.t. j′ ∈ R and j′ ≺ j}
4: For j ∈ A, t′j = earliest starting time on machine m′j s.t. m′j ∈ f(j)
5: B = {j : j = arg minj′∈A t(j

′)}
6: Choose j from B to start on machine m′j with a starting time t′j based on the given tie-breaking rule
7: h(j) = m′j , t(j) = t′j
8: R← R \ {j}
9: end while

The goal of the scheduler in our model is to minimize the total weighted completion time of the job, denoted by∑
j ωjCj , where Cj is the completion time of task j and ωj is the weight associated with task j. We also consider the

makespan, denoted by Cmax, which is the time when the the final task in the DAG completes. Note that the problem we
consider is an offline scheduling problem. This is a classical problem with relevance to modern ML platforms, which
use batch scheduling of precedence constrained tasks in their pipelines, e.g. [2]. It is also known to be challenging.
Specifically, minimizing the makespan (and hence also minimizing the total weighted completion time) of jobs with
precedence constraints is known to be NP-complete [36]. Thus, we aim to design a polynomial-time algorithm that
computes an approximately optimal schedule. We say that an algorithm is a ρ-approximation algorithm if it always
produces a solution with an objective value within a factor of ρ of optimal in polynomial time.

Our main results use three important concepts. First, our results provide bounds in terms of OPT(i) and wOPT(i),
which are the optimal makespan and the optimal total weighted completion time if the communication delays were zero,
respectively. Note that OPT(i) and wOPT(i) are a lower bound of the corresponding objectives of the problem when
communication delays are not included. Second, we provide bounds in terms of the communication time of a terminal
chain of the schedule. A chain in the DAG is a sequence of immediate predecessor-successor pairs, whose first node
is a node with no predecessor and last node is a leaf node with no successors. Third, we provide bounds in terms of
the communication time of a terminal chain of a subset of the DAG that is naturally formed in the scheduling process.
Formally, for any given schedule, a terminal chain C of length N can be constructed in the following fashion. We start
with one of the tasks that ends last in the given schedule, denoted as cN . Among all the immediate predecessors of node
cN , we pick one of the tasks that finishes last and define it as cN−1. In such a way, we can construct a chain of tasks
c1 ≺ c2 ≺ . . . ≺ cN until the first node c1 in the chain does not have a predecessor. There may be many such terminal
chains, and our results apply to any arbitrary terminal chain for the given schedule.

3 Generalized Earliest Time First (GETF) Scheduling

In this section, we introduce a new algorithm – Generalized Earliest Time First (GETF) – for scheduling tasks with
precedence constraints in settings where servers have heterogeneous service rates and communication times. For
GETF, we provide provable worst-case approximation guarantees for both the goal of minimizing the makespan and
minimizing the total weighted completion time.

At its core, GETF is a greedy algorithm. Like ETF, it seeks to run tasks that can be started earliest, thus minimizing
the idle time created by the precedence constraints in a greedy way. However, this simple heuristic does not take into
account the potential difference between the service rates of different machines. For this, GETF is similar to SLS. It
uses a group assignment function f(·) to determine sets of “similar” machines and then assigns tasks to different groups
of machines. Within the groups of similar machines, GETF uses the ETF greedy allocation rule.

GETF is parameterized by a group assignment function f(·) and a tie-breaking rule, and proceeds in two stages. At
every iteration, GETF finds a set A of all the tasks that are ready to process and are not yet scheduled. For every task
in A, GETF calculates the earliest starting time if it was only allowed to schedule on machines in the assigned group.
Then, GETF computes B, the set of tasks in A with the earliest starting times, and chooses one of the tasks to process
on a machine based on the tie-breaking rule. The pseudocode for GETF is presented in Algorithm 1 and Figure 1 in
section 3.3 illustrates the operation of GETF on a simple example (Example 1).

GETF can be instantiated with different group assignment and tie-breaking rules. To understand how these rules work,
consider a situation where the m machines are divided into K groups M1,M2, . . . ,MK by a group assignment rule.
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Let f(j) denote the group of machines to which task j can be assigned, j = 1, . . . , n. Given this notation, a schedule
under GETF consists of two mappings: a mapping h(·) from each task to its assigned machine and a mapping t(·) from
each task to its starting time. Further, for any schedule with h(·) produced by GETF, h(·) of the produced schedule
should be consistent with group assignment function f(·), i.e., h(j) ∈ f(j) for each task j.

The choice of the group assignment rule has a significant impact on the performance of GETF. Indeed, different group
assignment functions are used for the goals of minimizing the makespan and total weighted completion time. While our
results hold for any tie-breaking rule, different tie-breaking rules could provide meaningful improvements in real-world
workloads. As it could be helpful to keep a specific tie-breaking rule in mind while considering the algorithm and
proofs, the reader may find it helpful to consider random tie-breaking. Our technical results are based on the specific
group assignment functions described in the following subsections.

3.1 A Group Assignment Rule for Makespan

The group assignment rule fmksp(·) for the goal of minimizing the makespan that we focus on is adapted from SLS,
which is designed for the setting without communication time. Specifically, machines of similar speeds are grouped
together as follows.

First, all the machines with speed less than a 1
m fraction of the speed of the fastest machine are discarded. Then, the

remaining machines are divided into K groups M1,M2, . . . ,MK where K = dlogγme, γ = logm/ log logm. Note
that K = O(logm/ log logm). Given the removal of the slowest machines, we can assume that any remaining machine
has speed within a factor of 1

m of the fastest machine. Without loss of generality, we assume the speed of the fastest
machine is m and the group Mk contains machines with speeds in range [γk−1, γk).

It may seem strange that some machines are discarded, but note that the total speed of discarded machines is not
bigger than the speed of the fastest machine. So, if we consider the scheduling problem with zero communication time,
removing these machines at most doubles the makespan in the worst case.

After dividing machines into K groups in the preprocessing step, we need to assign the machines. This step is more
involved than the division. The design of the group assignment rule fmksp(·) is based on the solution of a linear program
(LP), which is a relaxed version of the following mixed integer linear program (MILP).

min
xi,j ,Cj ,T

T∑
i

xi,j = 1 ∀j (1a)

wj
∑
i

xi,j
si
≤ Cj ∀j (1b)

Cj′ + wj
∑
i

xi,j
si
≤ Cj j′ ≺ j (1c)

1

si

∑
j

wjxi,j ≤ T ∀i (1d)

Cj ≤ T ∀j (1e)
xi,j ∈ {0, 1} ∀i, j (1f)

While the MILP is only designed to produce a group assignment rule, its optimal solution does not necessarily provide
a feasible schedule. In the MILP, xi,j = 1 if task j is assigned to machine i; otherwise xi,j = 0. For each task j, Cj
denotes the completion time of task j. Constraint (1a) ensures that every task is processed on some machine. For any
task j, processing time wj

∑
i
xi,j

si
is bounded by its completion time as in constraint (1b). Constraint (1c) enforces the

precedence constraints between any predecessor-successor pair (j′, j). Constraint (1d) guarantees that the total load
assigned to machine i is wj

∑
i
xi,j

si
and it should not be greater than the makespan. Finally, constraint (1e) states that

the makespan should not be smaller than the completion time of any task.

Since we cannot solve the MILP efficiently, we relax it to form an LP by replacing constraint (1f) with xi,j ≥ 0.
Let x∗, C∗, T ∗ denote the optimal solution of this LP. Note that T ∗ provides a lower bound on OPT(i), the optimal
makespan for the same problem with zero communication time.
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For a set Mk ⊆M of machines, let s(Mk) denote the total speed of machines in Mk, i.e.,

s(Mk) =
∑
i∈Mk

si.

Define x∗Mk,j
as the total fraction of task j assigned to machines in set Mk:

x∗Mk,j
=
∑
i∈Mk

x∗i,j .

For any task j, define `j as the largest group index such that at least half of the tasks are fractionally assigned to
machines in groups M`, . . . ,MK :

`j = max
`
` s.t.

K∑
k=`

x∗Mk,j
≥ 1

2
.

We note that any choice of constant above works for the purpose of our worst case analysis of GETF, but the choice can
potentially have an impact on its empirical performance. Thus the choice of the parameter should be further optimized
when applied in practice. Each task j is assigned to the group fmksp(j) that maximizes the total speed of machines in
that group among candidates Mlj , . . . ,MK , i.e.,

fmksp(j) = arg max
Mk:`j≤k≤K

s(Mk).

3.2 A Group Assignment Rule for Total Weighted Completion Time

The group assignment rule ftwct(·) for the goal of minimizing the total weighted completion time is similar in spirit
to fmksp(·) but is based on modified solutions of a different LP. We divide machines into groups in the same way as
in Section 3.1. Without loss of generality, we assume that wj

si
≥ 1 for any task j to be processed on any machine

i. Thus, we can divide the time horizon into the following time-indexed intervals of possible task completion times:
[1, 2], (2, 4], (4, 8], . . . , (τQ−1, τQ] where Q = log (

∑
j

wj

mini si
) and τq = 2q for 0 ≤ q ≤ Q. Then, the MILP that

forms the basis for the group assignment rule can be formulated as follows:

min
xi,j,q,Cj

∑
j

ωjCj∑
i

∑
q

xi,j,q = 1 ∀j (2a)

wj
∑
i

1

si

∑
q

xi,j,q ≤ Cj ∀j (2b)

Cj′ + wj
∑
i

1

si

∑
q

xi,j,q ≤ Cj j′ ≺ j (2c)

q∑
t=1

∑
i

xi,j,t −
q∑
t=1

∑
i

xi,j′,t ≤ 0 ∀q, j′ ≺ j (2d)∑
q

τq−1
∑
i

xi,j,q < Cj ∀j (2e)

1

si

∑
j

wj

q∑
t=1

xi,j,t ≤ τq ∀i, q (2f)

xi,j,q ∈ {0, 1} ∀i, j, q (2g)

Again, the MILP is only designed to find a group assignment rule and thus its optimal solution does not necessarily
produce a feasible schedule. Here, xi,j,q = 1 if task j is assigned to machine i and it completes in the qth interval
(τq−1, τq]. For each task j, Cj denotes the completion time of task j and ωj represents its weight in the objective of
total weighted completion time. Constraint (2a) enforces that each task will be assigned to some machine. Constraint
(2b) guarantees that the completion time of a task is not smaller than its processing time. Constraints (2c) and (2d)
together enforce the precedence constraint for every predecessor-successor pair. Constraint (2e) guarantees that the
completion time of task j is not smaller than the left boundary of the qth interval (τq−1, τq]. The total load assigned to
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machine i up to qth interval is 1
si

∑
j wj

∑q
t=1 xi,j,t, and it should not be greater than the upper bound τq as enforced

in constraint (2f).

To define the group allocation rule, we relax constraint (2g) to form an LP. As in the previous section, let x∗, C∗ denote
the optimal solution for this LP. Note that

∑
j ωjC

∗
j provides a lower bound for wOPT(i). For any task j, define q(j)

as the the minimum value of q such that both
∑q
t=1

∑
i x
∗
i,j,t ≥ 1

2 and C∗j ≤ 2q are satisfied. Intuitively, q(j) can be
viewed as a rough estimate of the completion time of task j. Define α(j) as the total fraction of task j over any machine
in the first q(j) intervals with respect to solution x∗:

αj =

q(j)∑
t=1

∑
i

x∗i,j,t.

We construct a set of feasible solutions x̃ based on the optimal solution x∗ for the LP:

x̃i,j =

q(j)∑
q=1

x∗i,j,q
αj

∀i, j. (3)

Notice that the group assignment rule ftwct(·) is of the same form as fmksp(·), with x̃ replacing x∗. For task j, define ˜̀
j

as before but with respect to x̃ instead of x∗:

˜̀
j = max

`
` s.t.

K∑
k=`

x̃Mk,j ≥
1

2
.

The group assignment rule ftwct(·) for the goal of minimizing the total weighted completion time follows as below:

ftwct(j) = arg max
Mk:˜̀j≤k≤K

s(Mk).

3.3 A Comparison of GETF and SLS

(a) (b)

(c) (d)

Figure 1: An illustration of GETF running on Example 1. (a)-(d) show the first four iterations.

The description of GETF above highlights that it combines the greedy heuristic of ETF with the speed-based assignment
heuristic of SLS. This enables GETF to provide guarantees for settings with both heterogeneous processing rates and
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(a) (b)

(c) (d)

Figure 2: An illustration of SLS running on Example 1. (a)-(d) show the first four iterations.

communication delays. In contrast, SLS does not provide guarantees in settings with communication time. This is a
result of the fact that SLS is based on list scheduling and does not always schedule the earliest task first, thus making it
impossible to bound the overall idle time in between tasks.

To illustrate the difference between GETF and SLS, we provide a simple example of scheduling a job made up of four
tasks.

Example 1. We consider a job made up of four tasks, 0, 1, 2, 3 with processing demands 1, 1, 1, and 3 that are to be
scheduled on a set of two identical machines with the same processing speed equal to 1. The weight for the edges in the
graph are listed as below: w0,2 = w0,3 = w1,2 = 2, w1,3 = 1. We assume si,j = 1 for i 6= j; otherwise si,i = 2 for
i = 0, 1.

The schedules of GETF and SLS are illustrated in Figures 1 and 2. Note that, since the servers are identical, the group
assignment rule does not play a role in these examples. Given a priority list (0, 1, 2, 3), a possible schedule produced by
SLS puts tasks 0 and 2 on machine 0 and assigns the rest of tasks to machine 1 as demonstrated in Figure 2. A terminal
chain for the given schedule is task 1 followed by task 3, and the idle time of length 2 between the end of task 1 and
the start of task 3 on machine 1 is not bounded by the communication time between task 1 and 3. In contrast, task 3
starts earlier on machine 0 in a schedule produced by GETF, see Figure 1. List scheduling does not always schedule
the earliest task at each step, thus making the idle time on machine 1 not necessarily bounded by communication time
between task 1 and task 3. Our proofs in Section 4.1 highlight that maintaining a tight bound on the communication time
between tasks is crucial to achieving a good approximation ratio in settings with machine-dependent communication
time.

4 Results

Our main results bound the approximation ratio of GETF in settings with related machines and heterogeneous
communication time for the goals of minimizing the makespan and minimizing the total weighted completion time.

4.1 Makespan

In the case of minimizing the makespan, our main result provides a bound in terms of the communication time of a
terminal chain of the schedule. Specifically, let C : c1 ≺ c2 ≺ . . . ≺ cN be a terminal chain for the schedule and define
C as the communication time over such a chain in the worst case, i.e.

C =

N∑
j=2

wcj−1,cj

s̄(cj−1, cj)
,
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where s̄(cj−1, cj) is defined as the slowest speed between h(cj−1), the machine assigned to cj−1 and any machine in
the group f(cj), i.e.,

s̄(cj−1, cj) = min
i∈f(cj)

sh(cj−1),i.

Note that C can be computed efficiently and minimized over all the terminal chains using dynamic programming and
that the tie-breaking rule can have an impact on C due to its impact on terminal chains.

Theorem 4.1. For any schedule S produced by GETF with group assignment rule, fmksp(·)

Cmax(S) ≤ O(logm/ log logm)OPT(i) + C,

where OPT(i) is the optimal schedule length obtained if communication time for all pairs were zero.

Theorem 4.1 represents the first result for makespan in the setting of related machines and heterogeneous communication
time, addressing a problem that has been open since ETF was introduced for identical machines thirty years ago.
Additionally, it matches the state-of-the art results for the case without communication time, where the best known
approximation ratio is O(logm/ log logm) [7], and the case with communication time but identical machines, where
the best known approximation ratio is (2− 1

m )OPT(i) + C [8].

Concretely, in the special case of identical machines, the group assignment rule fmksp(·) is no longer required when
implementing GETF since all machines share the same speed and so there is only one group of machines. Thus, GETF
reduces to ETF. The theorem makes use of C ′ which is defined as

C ′ =
1

m

N∑
j=2

m∑
i=1

wcj−1,cj

sh(cj−1),i
.

Note that C ′ differs from C since it is an average over the terminal chain. The result we obtain in this case is the
following, which matches the current state-of-the-art result of [8].

Proposition 4.2. Consider a setting with m identical machines. For any schedule S produced by GETF,

Cmax(S) ≤
(

2− 1

m

)
OPT(i) + C ′,

where OPT(i) is the optimal schedule length obtained if communication time for all pairs were zero.

4.2 Total Weighted Completion Time

Similarly to the makespan case, we provide a bound with respect to the communication time of chains. However, since
total weighted completion time depends on the completion time of every task (instead of just one task as in the case
of makespan), the communication time of terminal chains of many subsets of the DAG show up in the bound. More
formally, assume that the tasks are indexed with respect to their order in the schedule determined by GETF, denoted
by S. At iteration j, task j is to be scheduled. Let G(S, j) denote a DAG formed by a set of the tasks that have been
scheduled so far and the corresponding edges within these tasks. Define S(j) to be a subset of the given schedule S up
to iteration j, i.e., it is a schedule for DAG G(S, j). This definition ensures that task j is one of the tasks that ends last
in the schedule S(j). Now, let C(S, j) : c1 ≺ c2 ≺ · · · ≺ cNj be a terminal chain that ends with task j = cNj in the
schedule S(j), and define C(S, j) as the communication time over such a chain in the worst case, i.e.,

C(S, j) =

Nj∑
j′=2

wcj′−1,cj′

s̄(cj′−1, cj′)
.

This definition of C(S, j) generalizes the notion of C used in Theorem 4.1 for makespan and plays a similar role in the
theorem below.

Theorem 4.3. For any schedule S produced by GETF with group assignment rule ftwct(·),∑
j

ωjCj ≤ O(logm/ log logm)wOPT(i) +
∑
j

ωjC(S, j),

where wOPT(i) is the optimal total weighted completion time obtained if communication time for all pairs was zero.

9



Theorem 4.3 is the first result on total weighted completion time for the setting of related machines with heterogeneous
communication time and it matches the bounds in cases where previous results exist. In particular, if the weights
are chosen so as to recover makespan, then the bound matches that of Theorem 4.1. Similarly, results for identical
machines can be recovered as done in the case of makespan. However, note that the group assignment rule used for
GETF here is different than that in Theorem 4.1. The rule used in Theorem 4.3 applies more generally but, while both
group assignment rules yield the same worst-case performance bound for makespan, we expect that the rule used in
Theorem 4.1 will lead to a smaller makespan in most practical settings as it is designed for the purpose of minimizing
the makespan.

5 Proofs

In this section, we present our proofs of Theorems 4.1 and 4.3. The general form of both arguments is similar; however,
the case of total weighted completion time is more involved. The first step of our argument is to show a general
upper bound, which is valid for GETF regardless of choices of group assignment function f(·), and tie-breaking rule.
This Separation Principle can be used to easily establish the result for makespan in the case of identical machines
(Proposition 4.2), and represents a significant simplification compared to existing proofs of that result in the literature.
We then tighten the general bound by taking advantage of the choices of f(·) described in Section 3 for makespan and
total weighted completion time. Finally, we establish a connection between the makespan and total weighted completion
time in the same settings by introducing a time-indexed LP that enables us to bound the total weighted completion time.

5.1 A Separation Principle

The Separation Principle presented here is a key component of our proof of Theorem 4.1. The core of nearly all proofs
in this area is the construction of a chain, which is then used to bound the overall makespan. This idea goes back to the
first list scheduling algorithms proposed by [5]. The key to our argument is to bound the amount of communication time
between any predecessor-successor pairs in a terminal chain. However, as we discuss in Section 3, it is not possible to
do this under list scheduling algorithms.

Our approach also differs considerably from the approach used to study ETF in [8], where the authors divide [0, Cmax]
into two sets of time intervals, one for the time when all the machines are busy and the other that one chain covers.
Extending this approach to related machines does not appear possible. In contrast, in our argument, the construction of
a terminal chain is simple and so we can identify the set of time intervals between tasks in the terminal chain and take
advantage of the greedy nature of GETF to bound these times directly.

A key feature of the the Separation Principle below is that it separates the analysis of the terminal chain from the
analysis of the group assignment rule, which provides another valuable simplification of the previous proof approaches.

Theorem 5.1 (Separation Principle). For any choice of group assignment function f(·) and tie-breaking rule, GETF
produces a schedule S of makespan

Cmax(S) ≤ P +

K∑
k=1

Dk + C,

where
P =

∑
cj∈C

wcj
sh(cj)

,

Dk =

∑
j:k∈f(j) wj

s(Mk)
,

C =

N−1∑
j=1

wcj ,cj+1

s̄(cj , cj+1)
.

Note that the upper bound in this result is valid regardless of the choice of group assignment rule and tie-breaking rule.
P is the sum of processing times along a terminal chain and Dk can be viewed as total load assigned to machines in
group Mk. Both P and Dk, k = 1, 2, . . . ,K, are not dependent on the communication constraint, which enables us to
take advantage of any good choice of group assignment rule f(·) for general DAG scheduling, even in the case of zero
communication time.

Proof. Our proof proceeds in four steps:
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(i) Define a terminal chain C. Recall that a chain C, c1 ≺ c2 ≺ . . . ≺ cN is a terminal chain when task cN
completes at the end of the overall schedule.

(ii) Partition the overall makespan into K + 1 parts. The idea of this step is to decouple [0, Cmax] into one part
where the tasks in the terminal chain are being processed and K other parts associated with each machine
group. Dependent on the choices of group assignment rule, we can further bound these K + 1 parts.

(iii) Bound the idle time in between tasks. The greedy nature of GETF makes it possible to bound the length of the
idle time intervals between tasks by communication delays of task pairs.

(iv) Combine (ii) and (iii) to bound the overall makespan in terms of the communication time of the terminal chain.

(i) Define a terminal chain C. To find a terminal chain of length N , we start with one of the tasks that ends last, denoted
as cN . According to the definition of h(·) and t(·), task cN is assigned to machine h(cN ) in group f(cN ) with a starting
time t(cN ). Among all the immediate predecessors of task cN , we pick one of the tasks that finishes last and define it as
cN−1. In such a fashion, we construct a chain C of tasks c1 ≺ c2 ≺ . . . ≺ cN of length N such that c1 does not have
any predecessor.

(ii) Partition [0, Cmax] into K + 1 parts, T0, T1, . . . , TK . Recall that K = O(logm/ log logm) is the number of
groups for machines by the group assignment rule as we describe in the previous section. Let T0 denote the union of
the time intervals during which tasks of chain C are being processed. Consider the time interval between the end of
task cj−1 and the start of task cj for j = 2, 3, . . . , N , and assign it to Tk where Mk = f(cj). As a set of time intervals,
Tk can be possibly empty or have more than one time interval. Essentially, Tk is a set of time intervals that tasks in
the terminal chain C assigned to machines in group Mk have to wait before being processed. In such a fashion, we
define T1, T2, . . . , TK since f(·) maps each task to one of the K machine groups. The length of the union of Ti for
i = 0, 1, . . . ,K is the makespan.

(iii) Bound the idle time in between tasks. Consider a task cj assigned to machine h(cj). For each machine i ∈ f(cj),
let E(cj−1, cj , i) denote a union of disjoint empty time intervals on machine i between the end time of task cj−1 and
the start time of task cj . Between the end time of task cj−1 and the start time of task cj , there can be multiple tasks
being processed on machine i in serial, possibly resulting in more than one idle time interval on machine i during that
time interval E(cj−1, cj , i). Precedence constraints between task pairs can also possibly make a successor wait before
it gets started. Regardless of the reason for idle time between tasks, each task can not possibly start earlier on any
machine in the assigned group due to the greedy feature of GETF. Thus the length of E(cj−1, cj , i) is bounded above
by the communication time between task cj−1 and task cj , i.e.,

|E(cj−1, cj , i)| ≤
wcj−1,cj

sh(cj−1),i
∀i ∈ f(cj).

This is true because if it were not the case then task cj could have started earlier on machine i. Note that the end
time of task cj could possibly be earlier if it were allowed to be scheduled on a faster machine with a slightly bigger
communication delay, since the processing speeds of machines in the same group vary.

Let ei be idle time on machine i in group Mk during the time interval Tk, and let ēk be maximum idle time on any
machine in group Mk during the time intervals Tk, i.e., ei ≤ ēk for all i ∈Mk. Thus,

K∑
k=1

ēk ≤
N∑
j=2

wcj−1,cj

mini′∈f(cj) sh(cj−1),i′

≤
N∑
j=2

wcj−1,cj

s̄(cj−1, cj)
. (4)

(iv) Bound the makespan. For 1 ≤ k ≤ K, the total speed of machines in group Mk is

s(Mk) =
∑
i∈Mk

si.

Denote the total length of the intervals in Tk by tk. There must be at least a sum of (tk − ei) si units of processing
done on each machine i in group Mk during the time intervals Tk. Thus for 1 ≤ k ≤ K,∑

i∈Mk

(tk − ei) si ≤
∑

j:f(j)=Mk

wj .
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Therefore,

tk ≤
∑
j:f(j)=Mk

wj

s(Mk)
+

∑
i∈Mk

eisi

s(Mk)
. (5)

We now bound Cmax:

Cmax =

K∑
k=1

tk + t0

≤
K∑
k=1

(∑
j:f(j)=k wj

s(Mk)
+

∑
i∈Mk

eisi

s(Mk)

)
+

∑
cj∈C

wcj
sh(cj)

(6a)

≤ P +

K∑
k=1

Dk +

K∑
k=1

ēk

∑
i∈Mk

si

s(Mk)

= P +

K∑
k=1

Dk +

K∑
k=1

ēk

≤ P +

K∑
k=1

Dk + C, (6b)

where (6a) is due to (5) and (6b) is due to (4).

5.2 Proof of Theorem 4.1

In order to apply the Separation Principle to prove Theorem 4.1, we need to prove bounds on P and
∑K
k=1Dk in

the case of the group assignment rule defined in Section 3. For this, we consider the scheduling problem with zero
communication time. Note that the design of group assignment function fmksp(·) is based on the optimal solution x∗
of the relaxed LP for a scheduling problem with zero communication time, hence the upper bounds for both P and∑K
k=1Dk are associated with the optimal objective of the relaxed LP in the setting with zero communication time as

well.

The bounds of P and
∑K
k=1Dk are given in the following two lemmas, which are adapted from results in [7]. Theorem

4.1 follows directly from these two lemmas, the Separation Principle, and the fact that T ∗ ≤ OPT(i), where T ∗ is the
optimal solution to the LP.
Lemma 5.2. P ≤ 2γT ∗.

Proof. Recall that x∗M ′,j =
∑
i∈M ′ x

∗
i,j and `j as the largest group index such that at least more than half of tasks are

assigned to machines in groups M`, . . . ,MK . For every task j and any machine i ∈ f(j), by definition of the largest
index `j ,

`j∑
k=1

x∗Mk,j
>

1

2
. (7)

Thus, ∑
i′∈M

x∗i′,j
si′

=

K∑
k=1

∑
i′∈Mk

x∗i′,j
si′

(8a)

≥
`j∑
k=1

∑
i′∈Mk

x∗i′,j
si′

≥ 1

2
γ−`j (8b)

≥ 1

2γsi
, (8c)
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where (8b) is due to (7) and the fact that processing speed of machine i′ in group Mk for task j is at most γ`j for
k ≤ `j , and (8c) is due to the fact that processing speed of machine i in group f(j), whose group index is not smaller
than `j , is at least γ`j−1. Using this, we can bound P as follows:

P =
∑
cj∈C

wcj
sh(cj)

≤ 2γ
∑
cj∈C

wcj
∑
i′∈M

x∗i′,cj
si′

(9a)

≤ 2γ
∑
cj∈C

C∗cj (9b)

≤ 2γT ∗, (9c)

where (9a) is due to (8), (9b) is due to constraint (1d) of the LP and (9c) is due to constraint (1c) of the LP.

Lemma 5.3.
∑K
k=1Dk ≤ 2KT ∗.

Proof. For any task j, by definition of `j ,
∑K
k=`j

x∗Mk,j
≥ 1

2 . Thus,

1

2s(f(j))
≤

K∑
k=`j

x∗Mk,j

s(f(j))

≤
K∑
k=`j

x∗Mk,j

s(Mk)
(10)

≤
K∑
k=1

x∗Mk,j

s(Mk)
.

Inequality (10) is due to the fact that the assigned group f(j) maximizes the total speeds of machines in that group
among the candidates M`j , . . . ,MK . Thus,

K∑
k=1

Dk =

K∑
k=1

∑
j:f(j)=Mk

wj

s(Mk)
=
∑
j∈V

wj
s(f(j))

≤ 2
∑
j∈V

wj

K∑
k=1

x∗Mk,j

s(Mk)

= 2

K∑
k=1

1

s(Mk)

∑
j∈V

wjx
∗
Mk,j

≤ 2

K∑
k=1

T ∗ (11)

= 2KT ∗.

The total load assigned to machines in group Mk is
∑
j∈V wjx

∗
Mk,j

while its total speed is S(Mk). Summing over
machines in group Mk on both sides for constraint (1d) leads to (11).

5.3 Proof of Proposition 4.2

We now show how the Separation Principle can be used to provide a new, simpler proof of the state-of-the-art
approximation ratio of ETF in the case of identical machines. Recall that the group assignment function is not required
for GETF in this case.

To prove Proposition 4.2, we use the same approach as we used for proving the Separation Principle. However, we can
tighten the analysis in the final step of the argument. Specifically, the proof can be broken into three steps, instead of
four:
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(i) Define a terminal chain C. This step is identical to the definition of a terminal chain in the proof of the
Separation Principle.

(ii) Bound the idle time in between tasks. As the machines are identical in terms of processing speed, commu-
nication speed between different machine pairs are still heterogeneous due to the possible geolocations of
machines.

(iii) Combine (i) and (ii) to bound the overall makespan in terms of the communication time of the terminal chain.

Compared with the proof of the Separation Principle, Step (i) defines a terminal chain in the exactly same way. In Step
(ii), bounding the idle time in the case of identical machines is also similar. Step (iii) requires more work. Here, we
further tighten the bound by eliminating the processing time of the terminal chain to improve the constant factor.

(i) Define a terminal chain C. This step is identical to the definition of a terminal chain in the proof of the Separation
Principle.

(ii) Bound the idle time in between tasks. Let I(cj−1, cj) be the time interval between the end time of task cj−1 and the
start time of ci for j = 2, 3, . . . , N . As we explained in the Separation Principle, there can possibly be multiple idle
time intervals on a machine during the time interval I(cj−1, cj). For each machine i ∈M , define E(cj−1, cj , i) as a
union of disjoint empty time intervals on machine i during the time interval I(cj−1, cj). For any machine i, the length
of E(cj−1, cj , i) is bounded above by the communication time between task cj−1 and task cj , i.e.,

|E(cj−1, cj , i)| ≤
wcj−1,cj

sh(cj−1),i
∀i ∈M, j = 2, 3, . . . , N.

Otherwise task cj could have started earlier on machine i.

(iii) Bound the makespan. During the time intervals I(cj−1, cj) for j = 2, 3, . . . , N , there must be at least∑N
j=2

∑m
i=1(|I(cj−1, ji)| − |E(cj−1, cj , i)|) processing units done, and it is bounded by a sum of the processing

units for all the tasks except those in the terminal chain. This leads to the following bound:

N∑
j=2

m∑
i=1

(|I(cj−1, cj)| − |E(cj−1, cj , i)|) ≤
n∑
j=1

wj −
N∑
j=1

wcj . (12a)

Finally, applying (12a), we have

Cmax =

N∑
j=2

|I(cj−1, cj)|+
N∑
j=1

wcj

≤ 1

m

n∑
j=1

wj +
m− 1

m

N∑
j=1

wcj+

1

m

N∑
j=2

m∑
i=1

|E(cj−1, cj , i)|

≤
(

2− 1

m

)
opt(i) + C ′. (13a)

The total processing time
∑n
j=1 wj divided by the number of machines m is the smallest possible makespan, i.e.,

1
m

∑n
j=1 wj ≤ OPT(i). At the same time, the makespan of any schedule should at least cover the processing time of

any chain C in the DAG. These two facts lead to the last inequality (13a).

5.4 Proof of Theorem 4.3

To establish the bound on the total weighted completion time for the group assignment rule ftwct(·), we first apply the
Separation Principle to separate the requirements on communication and processing times. Second, we break the tasks
into subsets based on the task completion times and, for each subset, we form an LP for those tasks alone. For each
such LP, we construct a feasible solution x̃, C̃ and T̃ to bound processing time of the tasks. The feasibility of x̃, C̃ and
T̃ enables us to take advantage of Lemmas 5.2 and 5.3 with only a loss of an additional constant factor.

Given a schedule S for a DAG G, we use the same notation as in Section 4.2, G(S, j), to denote subsets of DAG. For
each DAG G(S, j), there is a terminal chain C(S, j) with task j as the ending task in the schedule S(j). Similarly,
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define P (S, j) as a sum of the processing time along the terminal chain C(S, j),

P (S, j) =
∑

cj∈C(S,j)

wcj
sh(cj)

, (14)

and let Dk(S, j) denote the total load assigned to machines in group Mk in DAG G(S, j),

Dk(S, j) =

∑
j:j∈G(S,j),k∈f(j) wj

s(Mk)
. (15)

For every DAG G(S, j) associated with schedule Sj for 1 ≤ j ≤ n, we are able to apply Separation Principle and then
combine these inequalities as follows:∑

j

ωjCj ≤
∑
j

ωj

(
P (S, j) +

∑
k

Dk(S, j)

)
+
∑
j

ωjC(S, j).

Both P (S, j) and Dk(S, j) are independent of the communication constraints, which enables us to take advantage of
any group assignment rule.

Using the group assignment rule ftwct(·) helps further tighten the bound. To show this, we first divide the n tasks into
Q sets based on q(j), which can be viewed as a rough estimate of the completion time of task j. For the qth interval,
we define Jq as a set of tasks such that q(j) = q:

Jq = {j : q(j) = q}.
In this way, we have divided the n tasks into Q sets: J1,J2, . . . ,JQ.

Next, for 1 ≤ q ≤ Q, we construct a set of feasible solutions for LP (1), x̃, C̃ and T̃ , for every set of tasks in Jq , based
on the optimal solution of LP (2), i.e., x∗ and C∗. Note that x̃ here is the same as in equation (3). Since precedence
constraints are preserved in constraints of the LPs, we can concatenate these schedules together to obtain a feasible
schedule for all of the tasks.
Lemma 5.4. Consider a set of tasks Jq for a fixed q. A feasible solution for LP (1) is defined by

x̃i,j =

q∑
t=1

x∗i,j,t
αj

∀i, j ∈ Jq (17a)

C̃j = 2C∗j ∀j ∈ Jq (17b)

T̃ = 2q+1. (17c)

Proof. To show feasibility of such a candidate solution, we verify that q, x̃, C̃ and T̃ satisfy all the constraints in LP (1).
Substitute x̃ into the left side of constraint (1a) for any task j ∈ Jq, and it is clear that

∑
i x̃i,j = 1. To validate that

constraint (1b) is satisfied, note that αj ≥ 1/2 by definition and so a direct substitution on the left hand side yields the
right hand side due to (2b). Similarly, constraint (2c) ensures that constraint (1c) is satisfied and constraint (2f) ensures
that constraint (1d) is satisfied. Finally, we obtain C∗j ≤ 2q by definition of q(j) and thus constraint (1e) holds.

Due to the similarity between group assignment rule fmksp(·) and ftwct(·), we can further tighten the bound using
Lemmas 5.2 and 5.3 from Section 5.2 directly. Combining Lemmas 5.2 and 5.4, we conclude that the total load along
any chain C in the DAG formed by Jq is upper bounded by∑

j∈C

wj
sh(j)

≤ 2γT̃

= 2γ · 2q+1.

Next, since the terminal chain C(S, j) can be represented as a concatenation of chains in the DAGs formed by tasks in
Jq for 1 ≤ q ≤ q(j), we have

P (S, j) ≤
q(j)∑
t=1

2γ · 2t+1

≤ 8γ · 2q(j).
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Using Lemmas 5.3 and 5.4 together gives the following inequality:∑
j∈Jq

wj
s(ftwct(j))

≤ 2KT̃

= 2K · 2q+1.

The left side can be viewed as
∑
kDk for a DAG formed by tasks in Jq . Since the tasks in DAG G(S, j) form a subset

of ∪q(j)t=1Jq , the following inequality holds:∑
k

Dk(S, j) ≤
q(j)∑
t=1

∑
j′∈Jq

wj′

s(ftwct(j′))

≤
q(j)∑
t=1

2K · 2t+1

≤ 8K · 2q(j),
which immediately yields

P (S, j) +
∑
k

Dk(S, j) ≤ 8(γ +K) · 2q(j).

Finally, the remaining piece of the proof is to upper bound 2q(j) with a multiplicative factor of its optimal completion
time C∗j in the LP (2). By definition of q(j), for task j either

q(j)−1∑
t=1

∑
i

x∗i,j,t <
1

2
(20)

or
C∗j > 2q(j)−1. (21)

If inequality (20) holds, then
2q(j)−1 = τq(j)−1

≤ 2τq(j)−1

 Q∑
t=q(j)

∑
i

x∗i,j,t

 (22a)

≤ 2

 Q∑
t=q(j)

τt−1
∑
i

x∗i,j,t


≤ 2

(∑
t

τt−1
∑
i

x∗i,j,t

)
≤ 2C∗j . (22b)

Inequality (22a) is due to (20) and the definition of q(j), and constraint (2e) in the LP (2) leads to (22b). If inequality
(21) is true, then

2q(j)−1 < C∗j ≤ 2C∗j .

In both cases, 2q(j)−1 is upper bounded by 2C∗j . Thus, we achieve

P (S, j) +
∑
k

Dk(S, j) ≤ 32(γ +K) · C∗j .

Since
∑
j ωjC

∗
j is lower bounded by wOPT(i), we conclude that∑

j

ωjCj ≤
∑
j

ωj

(
P (S, j) +

∑
k

Dk(S, j)

)
+
∑
j

ωjC(S, j) (23a)

≤ 32(γ +K)
∑
j

ωjC
∗
j +

∑
j

ωjC(S, j) (23b)

≤ O(logm/ log logm) · wOPT(i) +
∑
j

ωjC(S, j), (23c)
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which completes the proof.

6 Concluding Remarks

This paper studies the problem of scheduling tasks with precedence constraints on related machines with machine-
dependent communication times, and addresses two long-standing open problems in the area. We introduce a new
scheduler, GETF, and prove worst-case approximation ratios for it in the case of (i) scheduling to minimize the makespan
and (ii) scheduling to minimize the total weighted completion time. These results represent the first progress on this
problem in the 30 years since [8] provided a bound on the makespan under ETF in the case of identical servers and
communication time. No previous bounds exist for the case of total weighted completion time when communication
time is considered.

A variety of open questions are raised by the work in this paper. Most importantly, while we have provided theoretical
bounds on the performance of GETF, it is also important to investigate how GETF performs in real settings via an
implementation study. GETF could be particularly powerful in the context of large-scale machine learning platforms,
where workflows are typically specified as DAGs. As part of such a study, it would be interesting to understand how to
best choose a tie-breaking rule, how to adjust the group assignment rules for the best performance, and how various
choices for these rules compare with heuristics that have been suggested in the literature. Further, it will be important to
see if it is possible to obtain some theoretical results characterizing how the optimal choices for these rules depend on
properties of real-world workloads. Moreover, it will also be interesting to extend the results of this work to stochastic
settings, e.g., when task sizes are unknown.

On the analytic side, it will be interesting to discover other applications of the Separation Principle. It may be possible
to revisit other scheduling problems for precedence-constrained tasks and obtain more general results because of the
separation this result provides. Further, it is possible to consider other performance measures, such as energy usage and
resource augmentation, using the Separation Principle.
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