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Chance-Constrained Trajectory Optimization for
Safe Exploration and Learning of Nonlinear

Systems
Yashwanth Kumar Nakka, Anqi Liu, Guanya Shi, Anima Anandkumar, Yisong Yue, and Soon-Jo Chung

Abstract—Learning-based control algorithms require collec-
tion of abundant supervision for training. Safe exploration
algorithms enable this data collection to proceed safely even
when only partial knowledge is available. In this paper, we
present a new episodic framework to design a sub-optimal pool of
motion plans that aid exploration for learning unknown residual
dynamics under safety constraints. We derive an iterative convex
optimization algorithm that solves an information-cost Stochastic
Nonlinear Optimal Control problem (Info-SNOC), subject to
chance constraints and approximated dynamics to compute a safe
trajectory. The optimization objective encodes both performance
and exploration, and the safety is incorporated as distributionally
robust chance constraints. The dynamics are predicted from a
robust learning model. We prove the safety of rollouts from our
exploration method and reduction in uncertainty over epochs
ensuring consistency of our learning method. We validate the
effectiveness of Info-SNOC by designing and implementing a pool
of safe trajectories for a planar robot.

I. INTRODUCTION

Robotic systems deployed in a real-world scenario often
operate in partially-known environments. Modeling the com-
plex dynamic interactions with the environment requires high-
fidelity technique that are often computationally expensive.
For example, spherical harmonics are used to model the
effects of non-uniform gravity field on a spacecraft. Machine-
learning models can remedy this difficulty by approximating
the dynamics from data [1]–[4]. The learned models typically
require off-line training with labeled data, often not available
or hard to collect in many applications. Safe exploration is
an efficient approach to collect ground truth data by safely
interacting with the environment. Recent research on safe
exploration [5] uses a deterministic approach in an episodic
framework to collect labeled data by querying the domain of
interest for informative data.

Planning for safe exploration is challenging when a prob-
abilistic machine learning model is used to approximate
unknown dynamics, because: 1) the uncertainties from the
learned dynamic model lead to stochastic nonlinear dynamics,
2) the safety constraints are formulated as chance constraints
that are generally non-convex, 3) performance objective may
be a min–max stochastic optimal control problem, e.g. max-
imum exploration with minimum control effort and 4) the
propagation errors and safety violations need to be quantified,
when the controller is computed with estimated dynamics.
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Fig. 1. An end-to-end episodic framework for safe exploration using chance-
constrained trajectory optimization. In the framework, an initial estimate of the
dynamics is computed using a known safe control policy [5]. A probabilistic
safe trajectory and policy that satisfies safety chance-constraints is computed
using Info-SNOC for the estimated dynamics. This policy is used for rollout
with a stable feedback controller to collect data.

In this paper, we systematically address the aforementioned
challenges by proposing an end-to-end episodic framework
that unifies learning, planning, and exploration for active and
safe data collection for continuous-time dynamical systems,
as shown in Fig. 1. The key contributions of the present
paper are summarized as follows: a) We use a multivariate
robust regression model [6] under a covariate shift constraint
to compute the multi-dimensional uncertainty estimates of the
unknown dynamics; b) We propose a novel iterative solution
method to Information Stochastic Nonlinear Optimal Control
(Info-SNOC) problem to plan a pool of sub-optimal safe
and informative trajectories with the learned approximation
of the dynamics. We build on the recent method [7] to solve
the chance-constrained SNOC problem by projecting it to
the generalized polynomial chaos (gPC) space; and c) We
prove the safety of rollouts from our exploration method
and reduction in uncertainty over epochs ensuring consistency
of our learning method under mild assumptions. Rollout is
defined as executing the computed safe trajectory and policy
using a stable feedback controller. To ensure real-time safety,
the feedback controller is augmented with a safety filter [8].

Related Work: Safe exploration has been extensively studied
in the reinforcement learning domain [9]. For continuous
dynamical system, the problem has been studied using the
following three frameworks: learning-based model-predictive
control (MPC), dual-control, and active dynamics learning.
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Learning-based MPC [5], [10]–[12] has been studied exten-
sively for controlling the estimated system. These techniques
are also applied for planning an information trajectory to learn
online. The effect of uncertainty in the learned model on the
propagation of dynamics is estimated using methods such as
bounding box and linearization. We use the method of gener-
alized polynomial chaos (gPC) [7] expansion for propagation,
which has asymptotic convergence to the original distribution,
and provides guarantees on the constraint satisfaction. In MPC,
safety is guaranteed by recursively checking feasibility and
appending a safe policy to an exploring policy at the end of
each rollout. In contrast, we formulate safety as joint chance
constraints for given risk of constraint violation.

Estimating unknown parameters while simultaneous opti-
mizing for performance has been studied as a dual control
problem [13]. Dual control is an optimal control problem
formulation to compute a control policy that is optimized
for performance and guaranteed parameter convergence. In
some recent work [14], [15], the convergence of the estimate
is achieved by using persistence of excitation condition in
the optimal control problem. Our method uses Sequential
Convex Programming (SCP) [16]–[18] to compute the per-
sistent excitation trajectory. Recent work [19] uses nonlinear
programming tools to solve optimal control problems with
an upper-confidence bound [20] cost for exploration without
safety constraints. We follow a similar approach but formu-
late the planning problem as an SNOC with distributionally
robust linear and quadratic chance constraints for safety. The
distributionally robust chance constraints are convexified via
projection to the gPC space. The algorithm proposed in this
paper can be used in the MPC framework with appropriate
terminal conditions for feasibility and to solve dual control
problems with high efficiency using the interior point methods.

The paper is organized as follows. We discuss the SNOC
problem with results on deterministic approximations of
chance constraints along with preliminaries on robust re-
gression in Sec. II. The Info-SNOC algorithm along with
exploration policy is presented in Sec. III. In Sec. IV, we
derive the end-to-end safety guarantees. In Sec. V, we apply
the Info-SNOC algorithm to the nonlinear three degree-of-
freedom spacecraft robot model [21]. We conclude the paper
in Sec. VI with brief discussion on the results of the analysis
and the application of the Info-SNOC method.

II. PRELIMINARIES AND PROBLEM DEFINITION

A. Robust Regression For Learning

Learning dynamics is regarded as a regression problem
under covariate shift. Covariate shift is a special case of dis-
tribution shift between training and testing data distributions,
where the conditional output distribution given the input vari-
able remains the same while the input distribution is different
between training and testing. We refer to them as the source
distribution Prs(x) and the target distribution Prt(x). An
exploration step in active data collection for learning dynamics
is a covariate shift problem. We use x and y to represent input
and output of the learning model. Robust regression is derived
from a min–max adversarial estimation framework, where the

estimator tries to minimize a loss function and the adversary
tries to maximize the loss under statistical constraints. The
minimax framework derives a model that is robust to the worst-
case possible data by generating a conditional distribution that
is “compatible” with finite training data, while minimizing a
loss function defined on a testing data distribution. Robust
regression can handle multivariate outputs and the correlations
efficiently by incorporating neural networks and predicting a
multivariate Gaussian distribution directly, whereas traditional
methods like Gaussian process regression suffer from high-
dimensions and require heavy tuning of kernels [22].

The resulting Gaussian distributions provided by this learn-
ing framework are given below. For more technical details,
we refer the readers to the prior work [6], [22]. The output
Gaussian distribution takes the form N(µ,Σ), where

Σ(x, θ) =

(
2

Prs(x)

Prt(x)
θyy + Σ−1

0

)−1

(1)

µ(x, θ) = Σ(x, θ)

(
−2

Prs(x)

Prt(x)
θxyφf (x) + µ0Σ−1

0

)
with a non-informative base distribution N0(µ0,Σ0), θ is
the model parameter learned from data, and φf (x) is the
feature function. The features φf (x) can be learned using
neural networks directly from data. The density ratio Prs(x)

Prt(x)
is estimated from data beforehand.

B. Optimal and Safe Planning Problem

In this section, we present the finite-time chance-constrained
stochastic optimal control problem formulation [7] used to
design an informative trajectory. The optimization has con-
trol effort and terminal cost as performance objectives, and
the safety is modelled as joint chance constraints. The full
stochastic optimal control problem is as follows:

J∗ = min
x(t),ū(t)

E
[∫ tf
t0
J(x(t), ū(t))dt+ Jf (x(t), ū(t))

]
(2)

s.t. ẋ(t) = f(x(t), ū(t)) + ĝ(x(t), ū(t)) (3)
Pr(x(t) ∈ F) ≥ 1− ε, ∀t ∈ [t0, tf ] (4)
ū(t) ∈ U ∀t ∈ [t0, tf ] (5)
x(t0) = x0 E(x(tf )) = µxf

, (6)

where any realization of the random variable x ∈ X ⊆ Rn, x0

and xf are initial and terminal state distributions respectively,
the control ū ∈ U ⊆ Rm is deterministic, ĝ is the learned
probabilistic model, and E is the expectation operator. The
modelling assumptions and the problem formulation will be
elaborated in the following sections.

1) Dynamical Model: The ĝ term of (3) is the estimated
model of the unknown g term of the original dynamics:

˙̄p = f(p̄, ū) + g(p̄, ū)︸ ︷︷ ︸
unknown

, (7)

where the state p̄ ∈ X is now considered deterministic, and
the functions f : X × U → Rn and g : X × U → Rn are
Lipschitz with respect to p̄ and ū.

Assumption 1. The control set U is convex and compact.
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Remark 1. The maximum entropy distribution with the known
mean µx and covariance matrix Σx of the random variable x is
the Gaussian distribution N (µx,Σx). We follow this notation
for mean and covariance matrix for remainder of the paper.
The learning algorithm computes the mean vector µg(µx, ū)
and the covariance matrix Σg(µx, ū) estimates of g(x, ū) that
are functions of mean µx of the state x and control ū. Due to
Remark 1, the unknown bias term is modeled as a multivariate
Gaussian distribution ĝ(µx, ū) ∼ N (µg,Σg). The estimate ĝ
in (3) can be expressed as

ĝ = B(µx, ū)θ + µg(µx, ū), (8)

where θ ∼ N (0, I) i.i.d and B(µx, ū)B>(µx, ū) = Σg(µx, ū).
Using (8), (7) can be written in standard Ito stochastic differ-
ential equation (SDE) form as given below, where θdt = dW.

dx = f(x, ū)dt+ µg(µx, ū)dt+B(µx, ū)dW (9)

The existence and uniqueness of a solution to the SDE for a
given initial distribution x0 and control trajectory ū such that
Pr(|x(t0) − x0)| = 0) = 1 with measure Pr, is guaranteed
by the following assumptions: (a) Lipschitz Condition: There
exists a constant K1 > 0 such that ∀t ≥ t0 any realization
(a, ūa) and (b, ūb) ∈ X × U

‖f(a, ūa)− f(b, ūb)‖+ ‖µg(a, ūa)− µg(b, ūb)‖
+‖B(a, ūa)−B(b, ūb)‖F ≤ K1‖(a, ūa)− (b, ūb)‖.

(10)

(b) Restriction on Growth: There exists a constant K2 >
0 , ‖.‖F is the Frobenius norm such that ‖f(a, ūa)‖2 +
‖µg(a, ūa)‖2 + ‖B(a, ūa)‖2F ≤ K2(1 + ‖(a, ūa)‖2).
Assumption 2. The approximate system (9) is controllable in
the given feasible space.

2) State and Safety Constraints: Safety is defined as a
constraint on the state space x, x(t) ∈ F at time t. The safe
set F is relaxed by formulating a joint chance constraint with
risk of constraint violation as

Pr(x ∈ F) ≥ 1− ε. (11)

The constant ε is called the risk measure of a chance con-
straint in this paper. We consider the polytopic constraint set
Flin = {x ∈ X : ∧ki=1a

>
i x + bi ≤ 0} with k flat sides and

a quadratic constraint set Fquad = {x ∈ X : x>Ax ≤ c}
for any realization x of the state. The joint chance constraint
Pr(∧ki=1a

>
i x + bi ≤ 0) ≥ 1 − ε can be transformed to the

following individual chance constraint:

Pr(a>i x+ bi ≤ 0) ≥ 1− εi, (12)

such that
∑k
i=1 εi = ε. Here we use εi = ε

k . The individual
risk measure εi can be optimally allocated between the k
constraints as discussed in [23]. A quadratic chance constraint
is given as

Pr(x>Ax ≥ c) ≤ ε, (13)

where A is a positive definite matrix. The chance constrained
formulation of the sets in (12,13) is computationally intractable
due to the multi-modal probability density function of x and
multi-dimensional integrals. We use a tractable conservative
approximation by formulating distributionally robust chance

constraint [24] for known mean µx and variance Σx of the
random variable x.

Lemma 1. The linear distributionally robust chance constraint
infx∼(µx,Σx) Pr(a>i x + bi ≤ 0) ≥ 1 − ε` is equivalent to the
deterministic constraint:

a>µx + b+

√
1− ε`
ε`

√
a>Σxa ≤ 0. (14)

Proof: See [24].

Lemma 2. The semi-definite constraint on the variance Σx

1

c
tr(AΣx) ≤ εq (15)

is a conservative deterministic approximation of the quadratic
chance-constraint Pr((x− µx)>A(x− µx) ≥ c) ≤ εq .

Proof: See [7].
The risk measures ε` and εq are assumed to be given.

3) Cost Functional: The integrand cost functional includes
two objectives: 1) Exploration: to achieve maximum value
of information for learning the unknown dynamics g, and 2)
Performance: to achieve fuel optimality. The cost functional
J = JC + JI is split into JC and JI corresponding to the
performance cost and the information cost for exploration,
respectively. The cost functional JC is of the following form,
and is convex in ū.

JC = ‖ū‖s where s ∈ {1, 2,∞} (16)

We use the following Gaussian Upper Confidence Bound
(UCB) [20] based information cost for exploration, for each
ith element µgi in µg and ith diagonal element σ2

i in Σg .

JI = −
n∑
i=1

(
µgi(µx, ū) + γ1/2σi(µx, ū)

)
(17)

The information cost JI in (17) is a functional of the mean
µx of the state x and control ū at time t. The coefficient
γ is chosen based on the confidence interval. Minimizing
the cost JI , we maximize the information [20] available in
the trajectory x to learn the unknown model g. The cost
functional includes the mean estimate µg to implicitly trade off
between exploration–exploitation during the trajectory design.
The terminal cost functional Jf is quadratic in the state x,
Jf = x(tf )>Qfx(tf ), where Qf is a positive semi-definite
function. For rest of the paper we consider the following
individual chance-constrained problem,

(x∗, ū∗) =argmin
x(t),ū(t)

E
[∫ tf
t0

((1− ρ)JC + ρJI)dt+ Jf

]
s.t.{(9), (12), (13), (5), (6)}

(18)

that is assumed to have a feasible solution with ρ ∈ [0, 1].

C. Generalized Polynomial Chaos (gPC)

The problem (18) is projected into a finite-dimensional
space using the generalized polynomial chaos algorithm pre-
sented in [7]. We briefly review the ideas and equations. We
refer the readers to [7] for details on computing the functions
and matrices that are mentioned below. In the gPC expansion,
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any L2 bounded random variable x(t) is expressed as product
of the basis functions matrix Φ(θ) defined on the random vari-
able θ and the deterministic time varying coefficients X(t) =[
x10 · · · x1` · · · xn0 · · · xn`

]>
. The functions φi

i ∈ {0, 1, . . . , `} are chosen to be Gauss-Hermite polynomials
for this paper. Let Φ(θ) =

[
φ0(θ) · · · φ`(θ)

]>
.

x ≈ Φ̄X; where Φ̄ = In×n ⊗ Φ(θ)> (19)

A Galerkin projection is used to transform the SDE (9) to the
deterministic equation,

Ẋ = f̄(X, ū) + µ̄g(µx, ū) + B̄(µx, ū). (20)

The exact form of the function f̄ is given in [7]. The moments
of the random variable x, µx and Σx can be expressed
as polynomial functions of elements of X . The polynomial
functions defined in [7] are used to project the distributionally
robust linear chance constraint in (14) to a second-order cone
constraint in X as follows:

(a> ⊗ S)X + b+

√
1− ε`
ε`

√
X>UNN>U>X ≤ 0, (21)

where the matrices S,U , and N are functions of the expecta-
tion of polynomials Φ, that are given in [7]. The quadratic
chance constraint in (15) is transformed to the following
quadratic constraint in X:

n∑
i=1

∑̀
k=1

ai〈φk, φk〉x2
ik ≤ εqc, (22)

given that A is a diagonal matrix with ith diagonal element
as ai, where 〈., .〉 is an inner product operation. Similarly,
we project the initial and terminal state constraints X(t0)
and X(tf ). In the next section, we present the Info-SNOC
algorithm by using the projected optimal control problem.

III. INFO-SNOC MAIN ALGORITHM

In this section, we present the main algorithm of the
paper by projecting (18) to the gPC space. We formulate
a deterministic optimal control problem in the gPC space
and solve it using Sequential Convex Programming (SCP)
method [7], [17], [18]. The gPC projection of (18) is given
by the following equation

(X∗, ū∗) = argmin
X(t),ū(t)

[∫ tf
t0

((1− ρ)JC + ρJI)dt+ EJdf
]

s.t. {(20), (21), (22), (5)}
X(t0) = X0, X(tf ) = Xf .

(23)

In SCP, the projected dynamics (20) is linearized about a fea-
sible nominal trajectory and discretized to formulate a linear
equality constraint. Note that the constraints (21) and (22) are
already convex in the states X . The terminal constraint Jf
is projected to the quadratic constraint Jdf = X>f Φ̄>Qf Φ̄Xf .
The information cost functional JI from (17) is expressed as a
function of X by using the polynomial representation [7] of µx
in terms of X . Let S = (X, ū)> and the cost JI is linearized

around a feasible nominal trajectory So = (Xo, ūo)> to derive
a linear convex cost functional JdI :

JdI =

n∑
i=1

(
− µgi(So)− γ1/2σi(S

o) (24)

− ∂µgi

∂S

∣∣∣
So

(S − So)− γ1/2 ∂σi

∂S

∣∣∣
So

(S − So)
)
.

We use the convex approximation JdI as the information cost
in the SCP formulation of the optimal control problem in (23).
In the gPC space, we split the problem into two cases: a) ρ = 0
that computes a performance trajectory, and b) ρ ∈ (0, 1] that
computes information trajectory to have stable iterations. The
main algorithm is outlined below.

Algorithm 1 Info-SNOC using SCP [18] and gPC [7]
1: Initial Safe Set Data, Feasible Nominal Trajectory(xo, ūo)

2: gPC Projection as discussed in Sec. II-C
3: Linearize the gPC cost and dynamics, see [7]
4: epoch = 1
5: while Learning Criteria Not Satisfied do
6: Robust Regression
7: (xp, ūp) = SCP((xo, ūo), ρ = 0), using (23)
8: (xi, ūi) = SCP((xp, ūp), ρ ∈ (0, 1]), using (23)
9: Sample (xi, ūi) for (p̄d, ūd)

10: Rollout using sample (p̄d, ūd) and uc
11: Data collection during rollout
12: epoch ← epoch + 1
13: end while

Algorithm: An initial estimate of the model (8) learned from
data generated by a known safe control policy, and a nominal
initial trajectory (xo, uo) is used to initialize Algorithm 1.
The stochastic model and the chance constraints are projected
to gPC state space, which is in line 2 of Algorithm 1. The
projected dynamics is linearized around the nominal trajectory
and used as a constraint in the SCP. The projection step is only
needed in the first epoch. The projected system can be directly
used for epoch > 1. The current estimated model is used to
solve (23) using SCP, in line 7 with ρ = 0, for a performance
trajectory. The output (xp, ūp) of this optimization is used as
initialization to the Info-SNOC problem obtained by setting
ρ ∈ (0, 1]. The information trajectory (xi, ūi) is then sampled
for a safe motion plan in line 9, that is used for rollout, in
line 10, to collect more data for learning. The SCP step is
performed in the gPC space X . After each SCP step, the gPC
space coordinates X are projected back to the random variable
x space. The algorithm outputs a trajectory of random variable
x with finite variance at each epoch.

Convergence and Optimality: The information trajectory
(xi, ūi) computed using SCP with the approximate linear in-
formation cost JdI (24) is a sub-optimal solution of (23) with
the optimal cost value J∗dI . Therefore, the optimal cost of (23)
given by J∗I is bounded above by J∗dI , J∗I ≤ J∗dI . For the Info-
SNOC algorithm, we cannot guarantee the convergence of SCP
iterations to a Karush-Kuhn-Tucker point using the method
in [16], [18] due to the non-convexity of JI . Due to the non-
convex cost function JI , the linear approximation JdI of the
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cost JI can potentially lead to numerical instability in SCP
iterations. Finding an initial performance trajectory, ρ = 0,
and then optimizing for information, ρ ∈ (0, 1], is observed
to be numerically stable compared to directly optimizing for
the original cost functional J = JC +JI . The two advantages
of this approach are: 1) we compute a fuel efficient trajectory
that is also informative, and 2) SCP iterations are stable as we
are searching around a feasible trajectory.

Feasibility: The initial phases of learning might lead to
a large covariance Σg due to the insufficient data, resulting
in an infeasible optimal control problem. To overcome this,
we use two strategies: 1) Explore the initial safe set till we
find a feasible solution to the problem, and 2) Use slack
variables on the terminal condition to approximately reach
the goal accounting for a large variance. The feasibility of
SCP iterations is ensured by using the techniques discussed in
Sec. IV.E of [17].

A. Rollout Policy Implementation

The information trajectory (xi, ūi) computed using the Info-
SNOC algorithm is sampled for a pool of motion plans
(p̄d, ūd). The trajectory pool is computed by randomly sam-
pling the multivariate Gaussian distribution θ and transforming
it using the gPC expansion x(θ) ≈ Φ̄(θ)X . For any realization
θ̄ of θ, we get a deterministic trajectory p̄d = Φ̄(θ̄)X that
is ε safe with respect to the distributionally robust chance
constraints. The trajectory (p̄d, ūd) is executed using the
closed-loop control law uc = uc(p̄, p̄d, ūi) for rollout, where
p̄ is the current state. The properties of the control law uc and
the safety during rollout are studied in the following section.

IV. ANALYSIS

In this section, we present the main theoretical results
analyzing the following two questions: 1) at any epoch i how
do learning errors translate to safety violation bounds during
rollout, and 2) consistency of the multivariate robust regression
as epoch →∞.

Assumption 3. The projected problem (23) computes a feasible
trajectory to the original problem (18). The assumption is gen-
erally true if we choose a sufficient number of polynomials [7],
for the projection operation.

Assumption 4. The following bounds are satisfied with high
probability for the same input (p̄, ū) to the original model
g, and the learned model µg . The tr(Σg) also satisfies the
bounded shown below

‖g(p̄, ū)− µg(p̄, ū)‖22 ≤ c1, tr (Σg) ≤ c2. (25)

As shown in [22], the mean predictions made by the model
learned using robust regression is bounded by c1, which
depends on the choice of the function class for learning. The
variance prediction c2 is bounded by design. With Assump-
tions 3 and 4, the analysis is decomposed into the following
three subsections.

A. State Error Bounds During Rollout

We make the following assumptions on the nominal system
˙̄p = f(p̄, u) to derive the state tracking error bound during
rollout.

Assumption 5. There exists a globally exponentially sta-
ble (i.e., finite-gain Lp stable) tracking control law uc =
uc(p̄, p̄d, ūd) for the nominal dynamics ˙̄p = f(p̄, uc). The
control law uc satisfies the property uc(p̄d, p̄d, ūd) = ūd for
any sampled trajectory (p̄d, ūd) from the information trajectory
(xi, ūi). At any time t the state p̄ satisfies the following
inequality, when the closed-loop control uc is applied to the
nominal dynamics,

M(p̄, t)∂f∂p̄ +
(
∂f
∂p̄

)>
M(p̄, t) + d

dtM(p̄, t) ≤ −2αM(p̄, t),

(26)
where f = f(p̄, uc(p̄, p̄d, ūd)), α > 0, M(p̄, t) is a uniformly
positive definite matrix with (λmin(M)‖p̄‖2 ≤ p̄>M(p̄, t)p̄ ≤
λmax(M)‖p̄‖2), and λmax and λmin are the maximum and
minimum eigenvalues.

Assumption 6. The unknown model g satisfies the bound
‖ (g (p̄, uc)− g(p̄d, ūd)) ‖22 ≤ c3.

Assumption 7. The probability density ratio
ρxi(t)

ρxi(0)
≤ r is

bounded, where the functions ρxi(0),ρxi(t) are probability
density functions for xi at time t0 and t respectively.

Lemma 3. Given that the estimated model (8) satisfies the
Assumption 4, and the systems (7) and (9) satisfy Assump-
tions 5, 6, 7, if the control uc = uc(p̄, xi, ūi) is applied to the
system (7), then the following condition holds at time t

Exi(t)(‖p̄− xi‖
2
2) ≤ λmax(M)

2λmin(M)αm
(c1 + c2 + c3)r (27)

+ λmax(M)r
λmin(M) E

(
‖p̄(0)− xi(0)‖2

)
e−2αmt,

where (xi, ūi) is computed from (23) and αm = (α − 1).
The states p̄ ∈ X , and xi ∈ X are feasible trajectories of
the deterministic dynamics (7) and the SDE (9) for the initial
conditions p̄(0) ∈ X and xi(0) ∈ X respectively at t ≥ t0.

Proof: See [25].
Lemma 3 states that the expected mean squared error E(‖p̄−

xi‖2) is bounded by λmax(M)(c1+c2+c3)r
2αmλmin(M) as t→∞ when the

control law uc is applied to the dynamics in (7). The bounded
tracking performance leads to constraint violation, which is
studied in the next section.

B. Safety Bounds

The safety of the original system (7) for the linear and
quadratic chance constraints during rollout with a controller
uc discussed in Sec. IV-A is analyzed in Theorems 1 and 2.

Theorem 1. Given a feasible solution (x, ūx) of (18), with the
quadratic chance constraint Pr((x− µx)>A(x− µx) ≥ c) ≤
E((x−µx)>A(x−µx))

c ≤ εq , the trajectory p̄ of the deterministic
dynamics (7) satisfies the following inequality at any time t:

(p̄− µx)>A(p̄− µx) ≤ λmax(A)Ex
(
‖p̄− x‖22

)
, (28)

where E
(
‖p̄− x‖22

)
is bounded as defined in Lemma 3.
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Proof: Consider the expectation of the ellipsoidal set (p̄−
µx)>A(p̄−µx). Using p̄−µx = p̄−x+x−µx, the expectation
of the set can be expressed as follows

E
(
(p̄− µx)>A(p̄− µx)

)
= E

(
(p̄− x)>A(p̄− x)

)
(29)

+E
(
(x− µx)>A(x− µx)

)
+ 2E

(
(p̄− x)>A(x− µx)

)
.

Using the following equality:

E
(
(p̄− x)>A(x− µx)

)
= −E

(
(x− µx)>A(x− µx)

)
,

and E
(
(x− µx)>A(x− µx)

)
≥ 0 in (29), we obtain the

constraint bound in (28). Using the propagation bounds (27)
in (28), we can show that the constraint violation bound is a
function of learning bounds c1, c2, and c3.

Note that if the learning method converges, i.e., c1 → 0,
c2 → 0, and c3 → 0, then p̄ → µx. The quadratic constraint
violation in (28) depends on the tracking error and the size of
the ellipsoidal set described by A.

Theorem 2. Given a feasible solution (x, ūx) of (18) with
infx∼(µx,Σx) Pr(a>x + b ≤ 0) ≥ 1 − ε`, the trajectory p̄ of
the deterministic dynamics (7), with control uc, satisfies the
following inequality at any time t:

inf
x∼(µx,Σx)

Pr
(
a>p̄+ b ≤ δ(x)

)
≥ 1− ε`, (30)

where δ(x) = ‖a‖2Ex(‖(p̄− x)‖2)− ‖a‖2
√

1−ε`
ε`

√
c4,

Ex(‖(p̄−x‖2) is bounded as defined in (27) and tr(Σx) = c4.

Proof: From Lemma 1, the feasible solution (x, ux)
satisfies the equivalent condition P(µx,Σx) ≤ 0, where
P(µx,Σx) = a>µx+b+

√
1−ε`
ε`

√
a>Σxa for the risk measure

ε`, mean µx and covariance Σx. Consider the similar condition
for the actual trajectory p̄(t), P(µp̄,Σp̄), as shown below.

P(µp̄,Σp̄) = a>µp̄ + b+

√
1− ε`
ε`

√
a>Σp̄a

= a>µx + a>(µp̄ − µx) + b+

√
1− ε`
ε`

√
a>Σp̄a

+

√
1− ε`
ε`

√
a>Σxa−

√
1− ε`
ε`

√
a>Σxa (31)

Note that since the system (7) is deterministic, we have µp̄ = p̄
and Σp̄ = 0. Using P(µx,Σx) ≤ 0, the right hand side of the
above inequality reduces to the following:

P(µp̄,Σp̄) ≤ a>(p̄− µx)−
√

1− ε`
ε`

√
a>Σxa. (32)

Using the decomposition Σx = G̃>G̃, Cauchy-Schwarz’s
inequality, and Jensen’s inequality, we have a>(µp̄ − µx) ≤
‖a‖2‖(p̄ − µx)‖2 ≤ ‖a‖2Ex(‖(p̄ − x)‖2). Using the sub-
multiplicative property of `2-norm in the inequality above, we
have P(µp̄,Σp̄) ≤ ‖a‖2

(
E(‖(p̄− x)‖2)−

√
1−ε`
ε`
‖G̃‖F

)
.

Assuming that tr(Σx) = c4 in the above inequality, we have

P(µp̄,Σp̄) ≤‖a‖2E(‖(p̄− x)‖2)− ‖a‖2
√

1− ε`
ε`

√
c4.

The above inequality is equivalent to the probabilistic linear
constraint in (30). The bound δ(x) = ‖a‖2E(‖(p̄ − x)‖2) −

‖a‖2
√

1−ε`
ε`

√
c4 is a function of the learning bounds in (25)

by substituting the tracking bound in (27).
The linear constraint is offset by δ leading to constraint

violation of the original formulation (12). Note that, if c1 → 0,
c2 → 0, c3 → 0, and c4 → 0 then δ → 0. In order to
ensure real-time safety during trajectory tracking, we use a
high gain control for disturbance attenuation with safety filter
augmentation for constraint satisfaction.

C. Consistency
Data is collected during the rollout of the dynamical system

to learn a new model for next epoch. For epoch e, predictor
gex is a multivariate Gaussian distribution N (µex,Σ

e
x) and g̃x is

the empirical true data. We assume that set Xe ⊂ X generated
by the optimization problem in (18) for the first e iterations
is a discretization of X . Assuming that there exists a global
optimal predictor g∗x in the function class G that can achieve
the best error at each epoch e:

max
x∈Xe

‖g̃x − g∗x‖2 = ε∗, (33)

the consistency of the learning algorithm is defined as

∀x ∈ Xe,
∑
e

‖gex − g∗x‖2 ≤ η (34)

and proven in the following theorem.

Theorem 3. If the maximum prediction error at epoch e is
εe, i.e. maxx∈Xe

‖g̃x − µex‖2 , εe , the learning error of
Algorithm 1 converges with probability 1−δ for any η defined
as in (34) after E epochs. Here E is the smallest integer that

satisfy
√
E
∑E
e=1 γe ≤ η with γe = ε2e−1 + dC2 + ε∗2. δ is

defined as

δ , |Xe|(Cd
d∏
p

∆p)
−1 1

(2π)
d
2 |Σe−1

x |
1
2
e−

1
2C

2 ∑
p ∆p , (35)

where d is the output dimension, and ∆p ,
∑d
q=1mqp > 0,

∀1 ≤ p ≤ d, if M = (Σe−1
x )

−1 and M = (mpq).

Proof: The squared error of gex from the optimal predictor
g∗x is r2

e = ‖gex − g∗x‖22. We first decompose gex and bound it
using the inequality Pr(gex − µe−1

x ≥ Ce) < δe, ∀x ∈ Xe,
since gex ∼ N (µe−1

x ,Σe−1
x ) as follows:

r2
e = ‖gex − g∗x‖22 ≤ ‖µe−1

x + Ce− g∗x‖22, (36)

where δe = (Cd
∏d
p ∆p)

−1 1

(2π)
d
2 |Σe−1

x |
1
2

exp(− 1
2C

2
∑
p ∆p),

∆p is defined in [26], and e is unit vector in d dimensions.
This is the tail probabilities inequality of multivariate Gaussian
distributions. The error r2

e is then bounded using the empirical
prediction error ‖µe−1

x −g̃x‖22 and the best prediction error (33)
as follows:

r2
e =‖µe−1

x − g̃x‖22 + dC2 + ε∗2 ≤ ε2e−1 + dC2 + ε∗2.

For converged robust regression learning in epoch e, we have
x ∈ Xe, |‖µe−1

x ‖22 +tr(Σe−1
x )−‖g̃x‖22| ≤ ωe [22]. The bound

on re is made more concrete as

r2
e ≤|‖µe−1

x ‖22 − ‖g̃x‖22|+ dC2 + ε∗2

≤ωe + tr(Σe−1
x ) + dC2 + ε∗2

(37)
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where ωe is a hyper-parameter that is associated with model
selection in robust regression in epoch e [22]. Using Cauchy-
Schwartz inequality, we have (

∑E
e=1 re)

2 ≤ E
∑
e r

2
e . If√

E
∑E
e=1 r

2
e ≤ η, we have

∑E
e=1 re ≤ η achieved. Therefore,

to guarantee the learning consistency re and tr(Σe−1
x ) needs

to be upper bounded in planning. The Info-SNOC approach
automatically outputs trajectories of finite variance.

V. SIMULATION AND DISCUSSION

Problem Setup: We test the framework in Fig. 1 on the three
degree-of-freedom robotic spacecraft simulator [21] dynamics
with an unknown friction model and an over-actuated thruster
configuration that is used for a real spacecraft. The dynamics
of ~x = (x, y, θ)T with respect to an inertial frame is given as

~̈x = f(θ,H, u) + g(ẋ, ẏ, θ̇), f =

[
R(θ) 0

0 1

]
Hu, (38)

where R(θ) ∈ SO(2). The states (x, y) ∈ R2 denote position,
and θ ∈ [0, 2π) orientation. The function g is unknown, and
assumed to be linear viscous damping in the simulations. The
control effort u ∈ R8 is constrained to be 0 ≤ u ≤ 1, and
H(m, I, l, b) ∈ R3×8 is the control allocation matrix where
m = 17 kg and I = 2 kgm2 are the mass and the inertia
matrix, and l = b = 0.4 m is the moment arm. The unknown

(a) Performance trajectory vs. Infor-
mation trajectory.

(b) Trace of terminal variance w.r.t
time.

(c) Total fuel used at each time step. (d) 20 trials of rollout using a safety
augmented stable controller.

Fig. 2. Info-SNOC trajectory pool and rollout for Scenario 1.

function g = diag([−0.02,−0.02,−0.002])ẋ is modeled as
a multivariate Gaussian distribution to learn from data using
robust regression. Note that even though the numerical values
of the damping function are small, due to small data and
propagation of dynamics, the terminal variance of the learned
dynamical model is large. To get an initial estimate of the
model, we explore a small safe set around the initial condition
till the optimal control problem (18) becomes feasible.

Info-SNOC Results: The learned dynamics is used to design
safe trajectories for fixed time of 40 s using the Info-SNOC
algorithm for Scenarios 1 and 2 as shown in Figs. 2a and 3a,
respectively. The algorithm is initialized using a feasible

(a) Performance trajectory vs. Infor-
mation trajectory.

(b) 20 trials of rollout using a safety
augmented stable controller.

Fig. 3. Info-SNOC trajectory pool and rollout for Scenario 2.

solution for nominal dynamics. The obstacles in both scenarios
are transformed to linear chance constraints as discussed in [7],
with a risk measure of collision ε` = 0.05. The Info-SNOC
algorithm is applied with ρ = 0 with `1 norm control cost
and ρ = 0.5 with UCB cost. We compare the mean of the
trajectories along with 2σ-confidence ellipse around the mean
and observe that for the ρ = 0.5 case, the safe trajectory
explores more state-space compared to the ρ = 0 case, which
corresponds to the performance trajectory. In Scenario 2, there
are multiple possible paths. The solution is biased towards the
nominal trajectory used to initialize the Info-SNOC algorithm.
We choose to use this trajectory to demonstrate the possible
collision during rollout as discussed later. The total control
effort at each time is shown in Fig. 2c. It shows that informa-
tion trajectory uses more energy compared to the performance
trajectory. We also observe that the terminal varianceis large
in both scenarios. This is due to the correlation among the
multiple dimensions in dynamics that is predicted by the
learning algorithm.

Safe Rollout: The safe trajectories in Figs. 2a and 3a are
sampled for exploration following the method discussed in
Sec. III-A, using the controller designed in [21] that satisfies
Lemma 3. The sample trajectories and rollout trajectories are
shown in red and blue respectively in Figs. 2d and 3b. The
sampled trajectory is safe with the risk measure of collision
ε` = 0.05 around the obstacles. The rollout trajectories collide
with the obstacles due to the following two reasons: 1) the
learning bounds (25) lead to bounded tracking performance
and thereby constraint violation as discussed in Theorems 1
and 2, and 2) the state-dependent uncertainty model of the
learned dynamics might predict large variance that can saturate
the actuators. Saturated actuators cannot compensate for the
unmodelled dynamics. In order to ensure safety, we augment
the feedback controller with a real-time safety augmentation
using barrier function based quadratic program [8]. Using this
filter, the blue rollout trajectories are diverted from obstacles,
as seen in Figs. 2d and 3b, avoiding constraint violation.
Theorems 1 and 2 state that as the learning bounds c1 and
c2 decrease, the safety of the rollout trajectory increases.
Validating the Theorems quantitatively, showing safety in
rollout with decreasing c1 and c2 is difficult since the desired
trajectories for rollout are sampled and c1 depends on the
choice of function class complexity.

Consistency: The data collected during rollout is appended
to the earlier data to learn a new model. Figure 4 shows im-
provement in performance (control cost) and terminal variance
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Fig. 4. Learning and performance improvement with epochs for Scenario 1.

reduction with increasing number of epochs. The variance of
the performance trajectory is small compared to the informa-
tion trajectory. The large variance leads to more exploration
in the state space to collect informative data. The terminal
variance of the information trajectory computed using Info-
SNOC decreases from 150 to 84 by applying the framework
in Fig. 1 for 10 epochs. The main assumption for consistency,
which states that the variance of the trajectory computed
using (18) is bounded and decreasing, is satisfied, thereby
demonstrating the correctness of Theorem 3.

Note that the Info-SNOC algorithm can be applied to learn
any nonlinear dynamical model that satisfies the mentioned
regularity assumptions. Although we use the robust regression
method, extension to other learning methods is straightforward
as the planning algorithm is agnostic to the learning method.
The algorithm can be initialized by planning for the nominal
model or by using sampling-based methods such as rapidly
exploring random trees. The algorithm also naturally extends
to the case when learning error is zero, as the problem reduces
to a deterministic optimal control problem.

VI. CONCLUSION

We presented the new Info-SNOC algorithm of trajectory
optimization and safe exploration by solving information-cost
stochastic optimal control using a partially learned nonlinear
dynamical model. The Gaussian upper-confidence bound on
the learned model is used as the information cost, while
the safety is formulated as distributionally robust chance
constraints. The problem is then projected to the generalized
polynomial chaos space and solved using sequential convex
programming. We used the Info-SNOC method to compute
a safe and informative pool of trajectories for rollout using
an exponentially stable controller with a safety filter augmen-
tation for safe data collection. We analyzed the constraint
violation during rollout and present the probability of violation
for both linear and quadratic constraints. We showed that the
safety constraints are satisfied for the dynamics with unknown
model, as the learned model converges to the unknown model.
The consistency of the learning method using the Info-SNOC
algorithm was proven under mild assumptions. The episodic
framework was applied to the robotic spacecraft model to
learn the friction under collision constraints and achieve safe
exploration. We designed a pool of safe trajectories using the
Info-SNOC algorithm for a learned spacecraft model under
collision constraints and discuss an approach for rollout using
a stable feedback control law to collect data. In order to

ensure real-time safety during rollout, we demonstrated how
to augment the feedback control law with a barrier function
based safety filter. We also validated the consistency of robust
regression method by showing reduction in variance of the
estimates over 10 epochs.
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