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Abstract
In recent years, machine learning has been used to
create data-driven solutions to problems for which
an algorithmic solution is intractable, as well as
fine-tuning existing algorithms. This research ap-
plies machine learning to the development of an
improved finite-volume method for simulating
PDEs with discontinuous solutions. Shock cap-
turing methods make use of nonlinear switching
functions that are not guaranteed to be optimal.
Because data can be used to learn nonlinear rela-
tionships, we train a neural network to improve
the results of a fifth-order WENO method. We
post-process the outputs of the neural network to
guarantee that the method is consistent. The train-
ing data consists of the exact mapping between
cell averages and interpolated values for a set of
integrable functions that represent waveforms we
would expect to see while simulating a PDE. We
demonstrate our method on linear advection of
a discontinuous function, the inviscid Burgers’
equation, and the 1-D Euler equations. For the lat-
ter, we examine the Shu-Osher model problem for
turbulence-shockwave interactions. We find that
our method outperforms WENO in simulations
where the numerical solution becomes overly dif-
fused due to numerical viscosity.

1. Introduction
For some initial-boundary value problems (IBVP) in fluid
mechanics, the solution of the partial differential equations
(PDE) include discontinuous initial data or a discontinu-
ity that forms in finite time, i.e. shockwaves. Numerical
methods for solving these PDE must be specially tailored
to properly resolve these discontinuities (LeVeque et al.,
2002).

These shock-capturing methods are designed with the goal
of sharply resolving a shock without inducing spurious os-
cillations, while also giving accurate solutions in smooth
regions of the flow. One major breakthrough in this effort
was the development of high-resolution methods (Harten,
1983) , as these methods were capable of achieving second-
order accuracy without introducing spurious oscillations

around shocks. These methods gave rise to a class of high-
resolution methods called essentially non-oscillatory (ENO)
schemes (Harten et al., 1987) that measure the smoothness
of the solution on several stencils, and then compute the
flux based on the smoothest stencil to avoid interpolating
through the discontinuity. These schemes are nonlinear
(even when the PDE are linear) since the interpolation co-
efficients depend on the solution. These ideas were then
modified to create WENO-JS (weighted ENO-Jiang Shu)
methods (Jiang & Shu, 1996), which again compute the
smoothness on several stencils. However, instead of taking
only the smoothest stencil, these methods take a weighted
average of the fluxes predicted on each stencil to emphasize
the smoother ones. When each stencil is equally smooth,
the weights are designed to cause the method to converge
to the constant coefficient scheme that maximizes the or-
der of accuracy over the union of the sub-stencils, which
gives these methods a high order of accuracy for smooth
solutions.

Many efforts have built on the original WENO-JS schemes
by modifying the smoothness indicators (Ha et al., 2013;
Kim et al., 2016; Rathan & Raju, 2018b), modifying the
nonlinear weights (Borges et al., 2008; Castro et al., 2011;
Rathan & Raju, 2018a), and using WENO-JS as part of a hy-
brid scheme (Li & Qiu, 2010; Peer et al., 2009). While some
of these references build off of each other rather than start-
ing from WENO-JS, we will base our method on WENO-JS
because our strategy for developing the method does not
resemble other methods. However, our methodology could
easily adopt various improvements that have been made to
WENO-JS.

One commonality that has persisted since the original ENO
scheme is a reliance on human intuition in shock-capturing
method design, particularly in the nonlinear aspects of the
schemes, i.e. smoothness indicators and weighting func-
tions. While they have been well studied, there is no reason
to believe that they are optimal. Efforts have been made to
develop optimal spatial discretization methods by minimiz-
ing wave propagation errors (Kim & Lee, 1996; Lele, 1992;
Liu, 2013; Tam & Webb, 1993) and minimizing error over
certain frequency ranges (Zhang & Yao, 2013), and some
of these techniques have even been combined with shock-
capturing schemes (Fang et al., 2013; Wang & Chen, 2001).
However, designing the optimization problem still requires
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human intuition with regards to balancing competing goals,
rather than attempting to learn an optimal scheme from data
in an unbiased way.

Over the past decades, machine learning has become ubiq-
uitous in data analysis and is increasingly seen as having
potential to improve (or reformulate) numerical methods for
PDEs. Lagaris et al. (Lagaris et al., 1998) parameterized
the solution to a PDE as a neural network and optimized
the weights to minimize the residual of the solution. Yu et
al. (Yu et al., 2018) trained a neural network to classify the
local smoothness and apply artificial viscosity based on this
classification. Bar-Sinai et al. (Bar-Sinai et al., 2019) used
simulation data to embed coarse graining models into fi-
nite difference schemes involving neural networks, allowing
them to achieve low error on relatively coarse grids. Pfau
et al. (Pfau et al., 2018) parameterized the eigenfunctions
of eigenvalue problems as a neural network and cast the
training as a bilevel optimization problem to reduce bias,
resulting in significantly decreased memory requirements.
Hsieh et al. (Hsieh et al., 2019) attempted to learn domain
specific fast PDE solvers by learning how to iteratively im-
prove the solution using a deep neural network, resulting in
a 2-3 times speedup compared to state of the art solvers.

In the current work, we attempt to train a neural network to
improve WENO5-JS. Our goal is to get closer to the opti-
mal nonlinear finite-volume coefficients while introducing
a minimal amount of bias. Unlike other references, we do
not directly change the smoothness indicators or nonlinear
weights of the method. Instead, we use a neural network
to perturb the finite-volume coefficients determined using
the original smoothness indicators and nonlinear weights
of WENO5-JS. We attempt to learn an optimal function for
this perturbation using data generated from waveforms that
are representative of solutions of PDEs. These modifica-
tions result in a finite-volume scheme that diffuses fine-scale
flow features and discontinuities less severely than WENO5-
JS. We start in the next section by giving a more detailed
description of the proposed algorithm.

2. Numerical Methods
2.1. Description of WENO-NN

Although we focus on WENO5-JS in this paper, our ap-
proach could generally be used to enhance any shock cap-
turing method (or perhaps any numerical method). The
proposed algorithm involves pre-processing the flow vari-
ables on a stencil using a conventional shock capturing
method and feeding those results into a neural network. The
neural network then perturbs the results of the shock captur-
ing method. Post-processing is then applied to the output
of the neural network to guarantee consistency (Bar-Sinai
et al., 2019) (or, more generally, could be used to enforce

Algorithm 1 WENO-NN Algorithm
Begin with cell averages ūj−2:j+2

Scale the cell averages
Compute coefficients c̃j−2:j+2 with WENO5-JS
Compute change in coefficients ∆c̃j−2:j+2 with neural
network
Compute new coefficients ĉj−2:j+2 = c̃j−2:j+2 −
∆c̃j−2:j+2

Compute final coefficients cj−2:j+2 by transforming
ĉj−2:j+2

Compute cell edge value uj+1/2 = cj−2:j+2 · ūj−2:j+2

other desirable properties). Hence, the augmented numer-
ical scheme takes on many properties of the original. For
example, applying the method to WENO5-JS results in an
upwind-biased finite volume method with coefficients that
depend on the local solution. The steps of the algorithm for
enhancing WENO5-JS can be seen in algorithm ??.

We use WENO5-JS to pre-process the input data, so that
the input to the neural network is the set of finite-volume
coefficients found by WENO5-JS. We found that including
this pre-processing step significantly improved performance.
Once the nonlinear weights wi are determined according
to the WENO5-JS algorithm, the coefficients for each cell
average are computed as

c̃−2 =
1

3
w1,

c̃−1 = −7

6
w1 −

1

6
w2,

c̃0 =
11

6
w1 +

5

6
w2 +

1

3
w3,

c̃1 =
1

3
w2 +

5

6
w3,

c̃2 = −1

6
w3.

(1)

These five coefficients are the inputs to the neural network,
which outputs a change in each coefficient, ∆c̃i. Our neural
network uses 3 hidden layers, each with 3 neurons. We
deliberately make the network as small as possible to reduce
the computational cost of evaluating it. We are able to use
such a small network because assuming that the WENO5-JS
coefficients are a useful model input is a strong prior, so
WENO5-JS performs a significant amount of the required
processing. L2 regularization is applied to the output of
the neural network to penalize deviations from WENO5-JS,
which encourages the network to only change the answer
supplied by WENO5-JS when an improved result is ex-
pected. The new coefficients are computed by subtracting
the change in coefficients from the old coefficients.
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Additionally, the size of the input space is reduced by scaling
cell averages within the stencil as

ūs =
ū−min ū

max ū−min ū
. (2)

If all the cell averages have the same value, the scaling
equation fails so the value at the cell edge is simply set to
the cell average value.

To guarantee that WENO-NN is consistent, we apply an
affine transformation to these coefficients that guarantees
that they sum to one (Bar-Sinai et al., 2019). We derive this
transformation by solving the optimization problem

min
c∈R5

∑2
n=−2(cn − ĉn)2

s.t.
∑2
n=−2(cn) = 1,

(3)

which can be reformulated with the substitution ∆c = c− ĉ
to pose the problem as finding the minimum norm solution
to an under-constrained linear system

min
∆c∈R5

∑2
n=−2(∆cn)2

s.t.
∑2
n=−2(ĉn + ∆cn) = 1,

(4)

which has the analytical solution

∆ci =
1−

∑2
n=−2 ĉn

5
. (5)

One can use the same approach to enforce arbitrarily high
orders of accuracy since the optimization problem has an
analytical solution for any constraint matrix of sufficiently
high rank

min
∆c∈R5

∑2
n=−2(∆cn)2

s.t. A(ĉ + ∆c) = b.
(6)

This optimization problem has analytical solution ∆c =
AT (AAT )−1(b−Aĉ) when AAT is invertible.

We verify that our constraint is satisfied by looking at the
convergence rate of WENO-NN for a smooth solution. For
this test case, we will simply use WENO-NN and WENO5-
JS to take the derivative of u(x) = sin(4πx) + cos(4πx),
and compare the results to the analytical solution ∂u

∂x

∗
=

−4π sin(4πx) + 4π cos(4πx) using the error metric

E =

√
||∂u∂x −

∂u
∂x

∗||2
N

. (7)

In Figure 1, we can see that WENO-NN achieves first order
accuracy, which confirms that the constraint is satisfied.

10-2 10-1

∆x

10-7

10-5

10-3

10-1

101

E

WENO-NN
WENO5-JS

Figure 1. Convergence of WENO-NN and WENO5-JS for smooth
solutions

We also see that, as expected, WENO5-JS converges at
fifth order as ∆x → 0. However, when discontinuities
are present it is not possible to achieve better than first
order accuracy with any finite volume method (LeVeque
et al., 2002). Despite this fact, it is advantageous to use
WENO5-JS over WENO3-JS in such situations, as WENO5-
JS still tends to give lower error in discontinuous problems
(Shu, 1998), which is why we chose to use WENO5-JS
for processing the cell average values despite the fact that
WENO-NN ends up being first-order accurate. Similarly,
we see that for some discontinuous problems, WENO-NN
gives lower error than WENO5-JS. If a higher order of
accuracy is desired in smooth regions of the flow, one could
develop a hybrid method using WENO-NN and any high-
order method.

2.2. Other Numerical Methods Used

For all simulations shown, we use a third-order TVD Runge-
Kutta scheme (Gottlieb & Shu, 1998) as our time-stepping
method

u(1) = u(n) + ∆tL(u(n)),

u(2) =
3

4
u(n) +

1

4
u(1) +

1

4
∆tL(u(1)),

u(n+1) =
1

3
u(n) +

2

3
u(2) +

2

3
∆tL(u(2)).

(8)

For flux-splitting, we use a Lax-Friedrichs flux splitting
procedure (Shu, 2003)

f±(u) = 1
2 (f(u)± αu),

α = max
u
|f ′(u)|.

(9)
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Figure 2. Comparing error trends between (A) exact generated data and (B) simulation results

In this expression, f(u) is defined as the flux of a 1-D hyper-
bolic conservation law ∂u

∂t + ∂f(u)
∂x = 0. When solving the

1-D Euler equations, we apply the flux splitting to the char-
acteristic decomposition of the system. For our numerical
Riemann solver, we use the Lax-Friedrichs method (Chu,
1979).

3. Machine Learning Methodology
We construct our training data directly from known func-
tions that we expect to represent the waveforms that WENO-
NN will encounter in practice. For each datapoint, we start
with some function u(x) and a discretized domain of n cells.
The cell average is evaluated on each cell as

ū(xi) =
1

∆x

∫ xi+
∆x
2

xi−∆x
2

u(x)dx, (10)

and because we chose the form of u(x) we can evaluate
the cell average analytically. We also evaluate the function
value on the cell boundary as u(xi+∆x/2) analytically. We
then move along the domain and form the dataset based on
the stencil size. So for WENO-NN, one datapoint involves 5
cell averages as the input with the function value on the cell
boundary as the output. The functions we use when creating
the dataset are step functions, sawtooth waves, hyperbolic-
tangent functions, sinusoids, polynomials, and sums of the
above.

When adding a new entry to the dataset, we first check to
see if it is close to other points already present in the L2

sense. Sufficiently close points are not added to the dataset
to prevent redundant data that will slow down the training
process. The resulting dataset has 75241 entries.

When training the network, we use the Adam optimizer
(Kingma & Ba, 2014), split the data into batches of 80
points to estimate the gradient, and optimize for 10 epochs
using the Keras package in python (Chollet et al., 2015). We
trained the network from many different randomly chosen
initial guesses of the parameters, and chose the best one
based on performance in simulating the linear advection of
a step function. We apply L2 regularization with a constant
of λ = 0.1 to the neural network output, and find that when
splitting the data into a training set of 80% of the data and
a validation set of the other 20% of the data our in-sample
error is 0.569 and the out-of-sample error is 0.571, averaged
from 100 trials of training on the dataset, so overfitting
within the generated dataset is not a concern. This difference
is so small because the model we are training is of relatively
low complexity, and is essentially underfitting the generated
dataset. We use mean squared loss as our objective function
to minimize.

Despite the fact that we do not see overfitting within the
generated dataset, we still observe overfitting when we apply
the method to an actual simulation. Figure 2 shows the
average training error, average validation error, and average
error when using the method to simulate a PDE for different
regularization values λ of the neural network output. The
training and validation error are computed using the mean
square error,

Edata =

∑N
i=1(yi − y∗i )2

N
, (11)

while the simulation error is computed by using the learned
numerical method to linearly advect a step function and
computing the L2 error at the end of the simulation,
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Esimulation =

√∫ L

0

(ū(x, T )− ū∗(x, T ))2dx. (12)

One can see that adding regularization causes error to in-
crease in both the training and validation datasets but de-
creases the error in the simulation results. Hence, we can
see that we are overfitting to the training data, but because
the validation data does not show this, we can conclude that
the dataset does not exactly match the distribution we are
trying to approximate.

4. Results
4.1. Advection Equation

These results will focus on comparing WENO5-JS to
WENO-NN. Every WENO-NN result we show in this paper
was generated using the same neural network with the same
weights. As such, our numerical method is broadly applica-
ble to problems not discussed in this paper, in contrast with
many machine learning solutions that are problem-specific.
The first test case we look at is the linear advection of a step
function on a periodic domain. Mathematically, this IBVP
is posed as

∂u

∂t
+ c

∂u

∂x
= 0,

u(0, x) =

{
1, if x ≥ L/2,
0, otherwise,

u(t, 0) = u(t, L).

(13)

For this simulation, we set c = 1 and L = 2. We split the
domain into 100 cells, use a CFL number of 2/3, and run
the simulation for 50 periods for a total time of T = 100.
Figure 3 shows the solution of this PDE for WENO5-JS and
WENO-NN at t = 0, 20, 50 and 100. The solution at t = 0
is also the exact solution at all the other times plotted.

One can see that the solution using WENO-NN provides
a closer visual fit to the exact solution, as WENO5-JS dif-
fuses the discontinuity more significantly than WENO-NN.
WENO5-JS also introduces noticeable overshoot behind the
discontinuity. The neural network has the interesting prop-
erty that the waveform is nearly invariant to its propagation,
while WENO5-JS continues to diffuse the solution. This
behavior can be explained by examining the artificial fluid
properties associated with the modified equation obtained by
Taylor series expansion (assuming linearity of the scheme).
The modified PDE is

∂u

∂t
+ c

∂u

∂x
= ν

∂2u

∂x2
+ δ

∂3u

∂x3
− σ∂

4u

∂x4
+ . . . (14)

The expansions give expressions for the artificial viscosity,

dispersion, and hyperviscosity, ∂ū∂t +
u(x+ ∆x

2 )−u(x−∆x)
2

∆x =

0 after making the substitutions u(x + ∆x
2 ) =∑2

n=−2 cnū(x+n∆x) and u(x− ∆x
2 ) =

∑2
n=−2 cnū(x+

(n− 1)∆x), and are computed as

ν = ∆x
∑2
n=−2 cn

(n−1)2−n2

2 , (15)

δ = ∆x2
∑2
n=−2 cn

(n−1)3−n3

6 , (16)

σ = −∆x3
∑2
n=−2 cn

(n−1)4−n4

24 . (17)

Figure 4 shows these quantities for WENO5-JS. In order to
estimate the contribution of each term, we approximated the
higher-order spatial derivatives using standard finite-volume
methods, and scale each by the magnitude of that derivative.
For example, the influence of artificial viscosity is computed
as

ν̄(x) =
ν(x+ ∆x/2) + ν(x−∆x/2)

2
, (18)

|u′′(x)| = |u
′(x+ ∆x/2)− u′(x−∆x/2)

∆x
|, (19)

Iν(x) = ν̄(x)|u′′(x)| (20)

Hence, we ignore regions of the flow where the coefficient
may signify that artificial viscosity (or other properties)
are being added when they would have a negligible effect
because the derivative is small.

One can see that for WENO-JS there is no viscosity or dis-
persion, as the method is designed such that on each substen-
cil

∑2
n=−2 cn

(n−1)2−n2

2 = 0 and
∑2
n=−2 cn

(n−1)3−n3

6 =
0, so WENO5-JS applies only hyperviscosity. The method
applies a small amount of negative hyperviscosity near the
discontinuity. As time goes on and the discontinuity contin-
ues to diffuse, the influence of hyperviscosity decreases.

Figure 5 shows that unlike WENO5-JS, WENO-NN adds
both artificial viscosity and dispersion to the solution. We
see that near the discontinuity, negative viscosity is being
added, which apparently provides the anti-diffusion that
causes the discontinuity to retain its steepness, while hyper-
viscosity is applied to stabilize the solution.

We obtain a quantitative picture of the error in figure 6. We
plot the L2 error over time (measured to the exact solu-
tion), as well as the total variation, TV =

∑N
i=1 |u(∆xi)−

u(∆x(i− 1))|, to indicate when oscillations have been in-
duced in the solution. We also measured the width over
which the discontinuity is spread by counting the cells that
have an error above a certain threshold (in this case chosen
to be 0.01) and multiplying this number by ∆x/2 since
there are two discontinuities in the simulation.
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0.0 0.5 1.0 1.5
x
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0.4
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1.0
u

(A)

0.0 0.5 1.0 1.5
x

(B)

t= 0

t= 20

t= 50

t= 100

Figure 3. Numerical solutions of the advection equation at t = 0, 20, 50 and 100 using (A) WENO-NN and (B) WENO5-JS. Note that
the curves in (A) for t > 0 are indistinguishable.

Figure 4. Influence of (A) artificial viscosity, (B) dispersion, and (C) hyperviscosity of WENO5-JS

Figure 5. Influence of (A) artificial viscosity, (B) dispersion, and (C) hyperviscosity of WENO-NN
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Figure 6. Comparing (A) L2 error, (B) total variation, and (C) discontinuity width over time for WENO-NN and WENO-JS
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∆x
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10-2

10-1

100

101

Figure 7. L2 error at the end of the simulation for (A) WENO-NN and (B) WENO5-JS

The figure shows that WENO-NN decreases the error by
almost a factor of 2 1. Although the total variation spikes
at the start of the WENO-NN simulation, it is damped out
and returns back to approximately the true value of 2, while
the WENO5-JS total variation steadily climbs to above 2.04.
We see a similar behavior in the discontinuity width, where
WENO-NN reaches its steady value relatively quickly, while
WENO5-JS continues to spread.

1Note that the error oscillates between two different values
because in the exact solution the discontinuity switches between
being on the edge of a cell and 1/3 of a cell width away from
either the left or right of a cell edge since the CFL number is
2/3. To get a smooth curve, we apply a filter to the error and plot
E(i) = e(i)+e(i−1)+e(i−2)

3

In order to determine how WENO-NN performs in different
settings, the spatial and temporal discretizations were varied,
and the L2 error at the end of the simulation was measured.
We again use a domain of length 2 and simulate for 50
periods. These results can be seen in figure 7.

We can see that WENO-NN tends to outperform WENO5-JS
in regions where the spatial discretization is fine, but results
in a larger L2 error for coarse discretizations. To further
compare the methods, figure 8 shows the error against the
runtime for the two methods within a range of CFL values.
We will only look at moderate CFL numbers, between 0.25
and 0.75, as stability becomes a concern for both methods
above this range, and it becomes inefficient to run the sim-
ulation with CFL numbers below this range. We will also
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restrict the cell width to be below 0.025, as coarser meshes
cause the final waveform to be unrecognizable compared to
the exact solution for both methods, so the error comparison
becomes meaningless. We see that when the CFL number
is of a moderate value and the grid is sufficiently refined,
WENO-NN typically achieves lower errors with smaller run
time than WENO5-JS.

101 102 103

Runtime (s)

10-2

10-1

100

E

WENO-NN
WENO5-JS

Figure 8. Comparing the L2 error and runtime of WENO-NN and
WENO5-JS for 0.25 < CFL < 0.75 and ∆x < 0.025

4.2. Inviscid Burgers’ Equation

We next consider the inviscid Burgers’ equation. Unlike
the linear advection equation that included only contact (ini-
tial) discontinuities, the inviscid Burgers’ equation results in
shocks from smooth initial data. The distinction here is im-
portant: for a shock, the dynamics of the PDE will drive the
solution towards a discontinuity, countering any diffusive
effects associated with the numerics. We will again consider
periodic boundary conditions, though we will start the sim-
ulation with a Gaussian as the initial condition. Hence, the
IBVP is posed as

∂u

∂t
+

1

2

∂u2

∂x
= 0, (21)

u(0, x) = exp(−k(x− L

2
)2), (22)

u(t, 0) = u(t, L). (23)

We simulate the problem for a time of T = 4 on a domain of
length L = 2, and a value of k = 20. We first approximate
the exact solution by solving this simulation with ∆x =
3.125 · 10−4 and ∆t = 1.5625 · 10−4 for a total of 6400
cells and 25601 timesteps. What we see is that the L2 error
is roughly the same for WENO5-JS and WENO-NN, as
shown by Figure 9. Hence, we should expect the method to
perform similarly to WENO5 in the presence of a shock.

10-3 10-2 10-1

∆x

10-3

10-2

10-1

E

WENO-NN
WENO5-JS

Figure 9. Comparing error vs. grid spacing of WENO-NN and
WENO5-JS for the inviscid Burgers’ equation

4.3. 1-D Euler Equations

The last test case we will look at is the Shu-Osher problem,
a test case involving the 1-D Euler equations. Note that the
method was also tested on the Sod problem, but because
this test case did not lead to any conclusions not drawn
from either the advection equation or the inviscid Burgers’
equation, these results have been omitted. The Shu-Osher
problem is a model problem for turbulence-shockwave in-
teractions. It involves the following equations and initial
conditions

∂ρ

∂t
+
∂(ρu)

∂x
= 0, (24)

∂ρu

∂t
+
∂(P + ρu2)

∂x
= 0, (25)

∂E

∂t
+
∂((E + P )u)

∂x
= 0, (26)

P = (γ − 1)(E − 1

2
ρu2), (27)

ρ(0, x) =

{
3.857143, if x ≤ 1

1 + ε sin(5x), otherwise
, (28)

u(0, x) =

{
2.629369, if x ≤ 1

0, otherwise
, (29)

P (0, x) =

{
10.33333, if x ≤ 1

1, otherwise
. (30)

The simulation takes place on a domain of length L = 10
and is run until a final time of T = 2. ε is set to 0.2. We
first obtain an approximately exact solution by discretizing
the solution into 12800 cells and 10240 time-steps and use
WENO5-JS for the simulation. This grid is fine enough
to consider the solution exact. We then solve the problem
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Figure 10. Comparing (A) density, (B) pressure, and (C) velocity of WENO-NN and WENO5-JS to the exact solution for the Shu-Osher
problem
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using 300 cells and 240 time-steps using both WENO5-JS
and WENO-NN, and compare the numerical results to the
exact solution. Figure 10 shows the density, pressure, and
velocity at the end of the simulation.

The most interesting aspect of the solution is the highly
oscillatory section of the density profile, which is considered
to behave similarly to turbulence. Figure 11 shows a zoomed
in view of this section at different grid resolutions.

One can see that the neural network diffuses the oscillations
significantly less than WENO5 for coarse grids, which is an
encouraging result in terms of simulating actual turbulence.
As the mesh is further refined, the WENO-NN appears to
overcompensate, though on the very fine grid both WENO-
J5 and WENO-NN are similar (provided WENO-NN is
stable, then it is constrained to converge as at least first-
order).

5. Discussion and Conclusions
By training a neural network to process the outputs of the
WENO5-JS algorithm, we were able to improve its accu-
racy, particularly in problems where the artificial diffusion
introduced in WENO5-JS was excessive. While WENO-
NN is more expensive per evaluation than WENO5-JS, it
achieved lower errors on coarser grids, which indicates some
potential to be useful more generally. We trace these perfor-
mance improvements to increased flexibility in the neural
network compared to WENO5-JS, as it can add artificial
viscosity and dispersion while WENO5-JS coefficients are
constrained to make these quantities zero. By analyzing
the advection of a step function, we found that WENO-NN
applies negative artificial viscosity near the discontinuity,
which allows it to maintain its sharp profile (this takes place
sometime into the simulation after the initial profile has been
slightly smoothed due to artificial viscosity that prevents
spurious oscillations). We then observe similar behavior in
the Shu-Osher problem, where we see that WENO5-JS dif-
fuses the fine features of the solution more than WENO-NN.
However, we also found that at certain resolutions WENO-
NN applies too much negative artificial viscosity, resulting
in too much amplification of these fine scale features, though
this amplification does not develop into an instability. For
true shocks, as opposed to contact discontinuities, we found
that our method performs very similarly to WENO5-JS.

There is still room for improvement for the method. We
believe that the development of training data could be im-
proved. Perhaps better results could be achieved by formu-
lating the training data in a more systematic way. Some pa-
pers generate the data directly from simulations (Bar-Sinai
et al., 2019). While this approach results in neural networks
that are specific to the equation that they were trained on,
it could lead to methods that outperform methods designed

to work well for general problems. Another drawback of
WENO-NN is that it does not inherit the high-order con-
vergence of WENO5-JS. It would be an improvement to
the method to be able to structure the network such that
its coefficients more quickly converge to those of either
WENO5-JS or the constant coefficient scheme that maxi-
mizes order of accuracy in the presence of smooth solutions.
However, this must be done in a way that does not interfere
with predictions in non-smooth regimes that benefit from
low-order behavior, which is a non-trivial task. Until such
a method is developed, one would need to use WENO-NN
as part of a hybrid scheme if higher order convergence is
desired in smooth regions.

Another outstanding issue with machine-learned schemes
is stability. The WENO-NN scheme used here seemed to
inherit the stability of the underlying WENO5-JS scheme
that it was based on, but this needn’t have been the case, and
we cannot offer proof or an estimate for the maximal CFL.

In future work, we aim to test the method on large-scale,
multidimensional problems, since we would expect the ben-
efits seen in 1-D problems to be more significant when
multiple spatial dimensions are present.
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