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Abstract 17 

 18 

Metabarcoding has become a common approach to the rapid identification of the species 19 

composition in a mixed sample. The majority of studies use established short-read high-throughput 20 

sequencing platforms. The Oxford Nanopore MinIONTM, a portable sequencing platform, represents a 21 

low-cost alternative allowing researchers to generate sequence data in the field. However, a major 22 

drawback is the high raw read error rate that can range from 10% to 22%.  23 

To test if the MinIONTM represents a viable alternative to other sequencing platforms we used 24 

rolling circle amplification (RCA) to generate full-length consensus DNA barcodes (658bp of 25 

cytochrome oxidase I - COI) for a bulk mock sample of 50 aquatic invertebrate species. By applying 26 

two different laboratory protocols, we generated two MinIONTM runs that were used to build 27 

consensus sequences. We also developed a novel Python pipeline, ASHURE, for processing, 28 

consensus building, clustering, and taxonomic assignment of the resulting reads.  29 

We were able to show that it is possible to reduce error rates to a median accuracy of up to 99.3% 30 

for long RCA fragments (>45 barcodes). Our pipeline successfully identified all 50 species in the 31 

mock community and exhibited comparable sensitivity and accuracy to MiSeq. The use of RCA was 32 

integral for increasing consensus accuracy, but it was also the most time-consuming step during the 33 

laboratory workflow and most RCA reads were skewed towards a shorter read length range with a 34 

median RCA fragment length of up to 1262bp. Our study demonstrates that Nanopore sequencing can 35 

be used for metabarcoding but we recommend the exploration of other isothermal amplification 36 

procedures to improve consensus length. 37 

 38 

 39 

Introduction 40 

 41 

DNA metabarcoding uses high-throughput sequencing (HTS) of DNA barcodes to quantify the 42 

species composition of a heterogeneous bulk sample. It has gained importance in fields such as 43 

evolutionary ecology (Lim et al. 2016), food safety (Staats et al. 2016), disease surveillance (Batovska 44 

et al. 2018), and pest identification (Sow et al. 2019). Most metabarcoding studies to date have used 45 

short-read platforms such as the Illumina MiSeq (Piper et al. 2019). New long-read instruments such 46 

as the Pacific Biosciences Sequel platform could improve taxonomic resolution (Tedersoo et al. 2017; 47 

Heeger et al. 2018) through long high-fidelity DNA barcodes. Long read nanopore devices are 48 

becoming increasingly popular because these devices are low-cost and portable (Menegon et al. 2017). 49 

Nanopore sequencing is based on the readout of ion current changes occurring when single-stranded 50 

DNA passes through a protein pore such as alpha-hemolysin (Deamer et al. 2016). Each nucleotide 51 

restricts ion flow through the pore by a different amount, enabling base-calling via time series analysis 52 
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of the voltage across a nanopore. (Clarke et al. 2009). The first commercially available instrument, 53 

Oxford Nanopore Technologies’ MinIONTM, is a portable, low-cost sequencing platform that can 54 

produce long reads (10 kb to 2 Mb reported; Nicholls et al. 2019). The low capital investment costs 55 

(starting at $1,000 US) have made this device increasingly popular among scientists working on 56 

molecular species identification (Parker et al. 2017, Kafetzopoulou et al. 2018, Loit et al. 2019), 57 

disease surveillance (Quick et al. 2016), and whole-genome reconstruction (Loman et al. 2015). 58 

However, a major drawback is the high raw read error rate which reportedly ranges from 10-22% (Jain 59 

et al. 2015, Sović et al. 2016, Jain et al. 2018, Kono and Arakawa, 2019, Krehenwinkel et al. 2019), a 60 

concern when investigating the within-species diversity or the diversity of closely related species. 61 

However, with consensus sequencing strategies, nanopore instruments can also generate high 62 

fidelity reads for shorter amplicons (Simpson et al. 2017, Pomerantz et al. 2018, Rang et al. 2018). 63 

Clustering of corresponding reads is accomplished by using a priori information such as reference 64 

genomes (Vaser et al. 2017), primer indices marking each sample (Srivathsan et al. 2018), or spatially 65 

related sequence information, which can be encoded using DNA amplification protocols such as loop-66 

mediated isothermal amplification (LAMP) (Mori & Notomi, 2009) or rolling circle amplification 67 

(RCA) (McNaughton et al. 2019). RCA is based on the circular replication of single-stranded DNA 68 

molecules. A series of such replicated sequences can be used to build consensus sequences with an 69 

accuracy of up to 99.5% (Li et al. 2016, Calus et al. 2017, Volden et al. 2018). 70 

The combination of metabarcoding and nanopore sequencing could allow researchers to generate 71 

barcode sequence data for community samples in the field, without the need to transport or ship 72 

samples to a laboratory. So far only a small number of studies have demonstrated the suitability of 73 

MinIONTM for metabarcoding using samples of very low complexity, e.g., comprising of three 74 

(Batovska et al. 2018), 6 -11 (Voorhuijzen-Harink et al. 2019), or nine species (Krehenwinkel et al. 75 

2019).  76 

For this study we used a modified RCA protocol (Li et al. 2016) for nanopore consensus sequencing 77 

of full-length DNA barcodes (658bp of cytochrome oxidase I - COI) from a bulk sample of 50 aquatic 78 

invertebrate species to explore the feasibility of nanopore sequencing for metabarcoding. We also 79 

developed a new Python pipeline to explore error profiles of nanopore consensus sequences, mapping 80 

accuracy, and overall community representation of a complex bulk sample.  81 

 82 

Methods 83 

 84 

Mock community preparation 85 

We constructed a mock community of 50 freshwater invertebrate specimens collected with kick-nets in 86 

Southern Ontario and Germany. Collection details are recorded in the public dataset DS-NP50M on 87 

Barcode of Life Data Systems (BOLD, http://www.boldsystems.org, see Ratnasingham & Hebert 88 
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2007). A small piece of tissue was subsampled from each specimen (Arthropoda: a leg or a section of a 89 

leg; Annelida: a small section of the body; Mollusca: a piece of the mantle) and the DNA was 90 

extracted in 96-well plates using membrane‐based protocols (Ivanova et al. 2006, Ivanova et al. 2008). 91 

The 658 bp barcode region of COI was amplified using the following thermal conditions: initial 92 

denaturation at 94°C for 2 min followed by 5 cycles of denaturation for 40 s at 94°C, annealing for 40 93 

s at 45°C and extension for 1 min at 72°C; then 35 cycles of denaturation for 40 s at 94°C with 94 

annealing for 40 s at 51°C and extension for 1 min at 72°C; and a final extension for 5 min at 72°C 95 

(Ivanova et al. 2006). The 12.5 μl PCR reaction mixes included 6.25 μl of 10% trehalose, 2.00 μl of 96 

ultrapure water, 1.25 μl 10X PCR buffer [200 mM Tris-HCl (pH 8.4), 500 mM KCl], 0.625 μl MgCl 97 

(50 mM), 0.125 μl of each primer cocktail (0.01 mM, C_LepFolF/C_LepFolR (Hernández‐Triana et al. 98 

2014) and for Mollusca C_GasF1_t1/GasR1_t1 (Steinke et al. 2016)), 0.062 μl of each dNTP (10 99 

mM), 0.060 μl of Platinum® Taq Polymerase (Invitrogen), and 2.0 μl of DNA template. PCR 100 

amplicons were visualized on a 1.2% agarose gel E-Gel® (Invitrogen) and bidirectionally sequenced 101 

using sequencing primers M13F or M13R and the BigDye®Terminator v.3.1 Cycle Sequencing Kit 102 

(Applied Biosystems, Inc.) on an ABI 3730xl capillary sequencer following manufacturer's 103 

instructions. Bi-directional sequences were assembled and edited using Geneious 11 (Biomatters). For 104 

specimens without a species-level identification, we employed the Barcode Index Number (BIN) 105 

system that assigns each specimen to a species proxy using the patterns of sequence variation at COI 106 

(Ratnasingham & Hebert, 2013). With this approach, we selected a total of 50 OTUs with 15% or 107 

more K2P COI distance (Kimura, 1980) from other sequences for the mock sample. A complete list of 108 

specimens, including taxonomy, collection details, sequences, BOLD accession numbers, and Nearest 109 

Neighbour distances are provided in Supplementary Table S1.  110 

 111 

Bulk DNA extraction 112 

The remaining tissue of the mock community specimens was dried overnight, pooled, and 113 

subsequently placed in sterile 20mL tubes containing 10 steel beads (5mm diameter) to be 114 

homogenized by grinding at 4000 rpm for 30-90 min in an IKA ULTRA TURRAX Tube Drive 115 

Control System (IKA Works, Burlington, ON, Canada). A total of 22.1 mg of homogenized tissue was 116 

used for DNA extraction with the Qiagen DNeasy Blood and Tissue kit (Qiagen, Toronto, ON, 117 

Canada) following the manufacturer’s instructions. DNA extraction success was verified on a 1% 118 

agarose gel (100 V, 30 min) and DNA concentration was quantified using the Qubit HS DNA Kit 119 

(Thermo Fisher Scientific, Burlington, ON, Canada). 120 

 121 

Metabarcoding using Illumina Sequencing 122 

For reference, we used a common metabarcoding approach with a fusion primer-based two-step PCR 123 

protocol (Elbrecht & Steinke 2019). During the first PCR step, a 421 bp region of the Cytochrome c 124 
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oxidase subunit I (COI) was amplified using the BF2/BR2 primer set (Elbrecht & Leese 2017). PCR 125 

reactions were carried out in a 25 µL reaction volume, with 0.5 µL DNA, 0.2 µM of each primer, 12.5 126 

µL PCR Multiplex Plus buffer (Qiagen, Hilden, Germany). The PCR was carried out in a Veriti 127 

thermocycler (Thermo Fisher Scientific, MA, USA) using the following cycling conditions: initial 128 

denaturation at 95 °C for 5 min; 25 cycles of: 30 sec at 95 °C, 30 sec at 50 °C and 50 sec at 72 °C; and 129 

a final extension of 5 min at 72 °C. One µL of PCR product was used as the template for the second 130 

PCR, where Illumina sequencing adapters were added using individually tagged fusion primers 131 

(Elbrecht & Steinke 2019). For the second PCR, the reaction volume was increased to 35 µL, the cycle 132 

number reduced to 20, and extension times increased to 2 minutes per cycle. PCR products were 133 

purified and normalized using SequalPrep Normalization Plates (Thermo Fisher Scientific, MA, USA, 134 

Harris et al. 2010) according to manufacturer protocols. Ten µL of each normalized sample was 135 

pooled, and the final library cleaned using left-sided size selection with 0.76x SPRIselect (Beckman 136 

Coulter, CA, USA). Sequencing was carried out by the Advances Analysis Facility at the University of 137 

Guelph using a 600 cycle Illumina MiSeq Reagent Kit v3 and 5% PhiX spike in. The forward read was 138 

sequenced for an additional 16 cycles (316 bp read). 139 

The resulting sequence data were processed using the JAMP pipeline v0.67 140 

(github.com/VascoElbrecht/JAMP). Sequences were demultiplexed, paired-end reads merged using 141 

Usearch v11.0.667 with fastq_pctid=75 (Edgar 2010), reads below the read length threshold (414bp) 142 

were filtered and primer sequences trimmed both by using Cutadapt v1.18 with default settings 143 

(Martin 2011). Sequences with poor quality were removed using an expected error value of 1 (Edgar & 144 

Flyvbjerg 2015) as implemented in Usearch. MiSeq reads, including singletons, were clustered using 145 

cd-hit-est (Li & Godzik, 2006) with parameters: -b 100 -c 0.95 -n 10. Clusters were subsequently 146 

mapped against the mock community data as well as against the BOLD COI reference library. 147 

 148 

Metabarcoding using Nanopore sequencing 149 

We used a modified intramolecular-ligated Nanopore Consensus Sequencing (INC-Seq) approach (Li 150 

et al. 2016) that employs rolling circle amplification (RCA) of circularized templates to generate linear 151 

tandem copies of the template to be sequenced on the nanopore platform. An initial PCR was prepared 152 

in 50μl reaction volume with 25μl 2× Multiplex PCR Master Mix Plus (Qiagen, Hilden, Germany), 153 

10pmol of each primer (for 658 bp COI barcode fragment – Supplementary Table S2), 19μl molecular 154 

grade water and 4μl DNA. We used a Veriti thermocycler (Thermo Fisher Scientific, MA, USA) and 155 

the following cycling conditions: initial denaturation at 98°C for 30 secs, 35 cycles of (98°C for 30 156 

secs, 59°C for 30 secs, 72°C for 30 secs), and a final extension at 72°C for 2 min. Amplicons were 157 

purified using SpriSelect (Beckman Coulter, CA, USA) with a sample to volume ratio of 0.6x and 158 

quantified. Purified amplicons were self-ligated to form plasmid like structures using Blunt/TA Ligase 159 

Master Mix (NEB, Whitby, ON, Canada) following manufacturer’s instructions. Products were 160 
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subsequently treated with the Plasmid-SafeTM ATP-dependent DNAse kit (Lucigen Corp, Middleton, 161 

WI, USA) to remove remaining linear molecules. Final products were again purified with SpriSelect at 162 

a 0.6x ratio and quantified using the High Sensitivity dsDNA Kit on a Qubit fluorometer (Thermo 163 

Fisher Scientific, MA, USA). Rolling Circle Amplification (RCA) was performed for six 2.5 μL 164 

aliquots of circularized DNA plus negative controls (water) using the TruePrimeTM RCA kit 165 

(Expedeon Corp, San Diego, CA, USA) following manufacturer’s instructions. After initial 166 

denaturation at 95°C for three minutes, RCA products were incubated for 2.5 to 6 hours at 30°C. The 167 

DNA concentration was measured after every hour. RCA was stopped once 60-70 ng/ul of double-168 

stranded DNA was reached. Subsequently, RCA products were incubated for 10 min at 65°C to 169 

inactivate the enzyme. We performed two experiments under varying RCA conditions (Protocol A and 170 

B, detailed in Table 1), such as RCA duration (influences number of RCA fragments), fragmentation 171 

duration, and fragmentation methods.  172 

Protocol A followed Li et al. (2016) by incubating 65μL of pooled RCA product with 2μL (20 units) of 173 

T7 Endonuclease I (NEB, M0302S, VWR Canada, Mississauga, ON, Canada) at room temperature for 174 

10 min of enzymatic debranching, followed by mechanical shearing using a Covaris g-TUBETM (D-175 

Mark Biosciences, Toronto, ON, Canada) at 4200 rpm for 1 min on each side of the tube or until the 176 

entire reaction mix passed through the fragmentation hole. Protocol B is a more modified approach to 177 

counteract the overaccumulation of smaller DNA fragments. Here we did only 2 min of enzymatic 178 

debranching with no subsequent mechanical fragmentation. To verify the size of fragments after 179 

shearing, sheared products for both protocols were run on a 1% agarose gel at 100 V for 1 hour. DNA 180 

damage was repaired by incubating 53.5μL of the product with 6.5μL of FFPE DNA Repair Buffer 181 

and 2μL of NEBNext FFPE Repair mix (VWR Canada, Mississauga, ON, Canada) at 20°C for 15. The 182 

final product was purified using SpriSelect at a 0.45x ratio and quantified using a Qubit fluorometer. 183 

For sequencing library preparation, we used the Nanopore Genomic Sequencing Kit SQK-LSK308 184 

(Oxford Nanopore, UK). First, the NEBNext Ultra II End Repair/dA Tailing kit (NEB, Whitby, ON, 185 

Canada) was used to end repair 1000 ng of sheared genomic DNA (1 microgram of DNA in 50μl 186 

nuclease-free water, 7μl of Ultra II End-Prep Buffer, 3μl Ultra II End-Prep Enzyme Mix in a total 187 

volume of 60μl). The reaction was incubated at 20°C for 5 min and heat-inactivated at 65°C for 188 

another 5 min. Resulting DNA was purified using SpriSelect at a 1:1 ratio according to the SQK-189 

LSK308 protocol. Then it was eluted in 25μl of nuclease-free water and quantified with a recovery aim 190 

of >70 ng/μl. Blunt/TA Ligase Master Mix (NEB, Whitby, ON, Canada) was used to ligate native 191 

barcode adapters to 22.5μl of 500 ng end-prepared DNA at room temperature (10 min). DNA was 192 

purified using a 1:1 volume of SpriSelect beads and eluted in 46μl nuclease-free water before the 193 

second adapter ligation. For each step, the DNA concentration was measured. The library was purified 194 

with ABB buffer provided in the SQK�LSK308 kit (Oxford Nanopore, Oxford Science Park, UK). 195 

The final library was then loaded onto a MinION flow cell FLO-MIN107.1 (R9.5) and sequenced 196 
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using the corresponding workflow on MinKNOW™. Base-calling was performed using Guppy 3.2.2 197 

in CPU mode with the dna_r9.5_450bps_1d2_raw.cfg model. 198 

We designed a new Python (v3.7.6) pipeline, termed ASHURE (A safe heuristic under Random 199 

Events) to process RCA reads and to build consensus sequences (Suppl Fig 1). Detailed information is 200 

available on GitHub: https://github.com/BBaloglu/ASHURE. The pipeline uses the OPTICS algorithm 201 

(Ankerst et al. 1999) for clustering and t-distributed stochastic neighbor embedding (Maaten & Hinton, 202 

2014) for dimensionality reduction and visualization. Sequence alignments were conducted using 203 

minimap2 (Li, 2018) and SPOA (Vaser et al. 2017). Correlation coefficients were determined through 204 

ASHURE using both the Numpy (van der Walt et al. 2011) and the Pandas package (McKinney 2010). 205 

The Pipeline also includes comparisons of consensus error to several parameters, such as RCA length, 206 

UMI error, and cluster center error as well as accuracy determination. The error was calculated by 207 

dividing edit distance to the length of the shorter sequence that was compared. 208 

We also calculated median accuracy and number of detected species using the R2C2 (Rolling Circle 209 

Amplification to Concatemeric Consensus) post-processing pipeline C3POa (Concatemeric Consensus 210 

Caller using partial order alignments) for consensus calling (Volden et al. 2018). C3POa generates two 211 

kinds of output reads: 1) Consensus reads if the raw read is sufficiently long to cover an insert 212 

sequence more than once and 2) Regular “1D” reads if no splint sequence could be detected in the raw 213 

read (Adams et al. 2019). We only used consensus reads for downstream analysis. Unlike ASHURE, 214 

C3POa does not report information on the RCA fragment length, hence we were not able to make 215 

direct comparisons for different thresholds. 216 

 217 

Results 218 

Mock community 219 

Many collected specimens could not be readily identified to species level. Consequently, we employed 220 

the Barcode Index Number (BIN) system which examines patterns of sequence variation at COI to 221 

assign each specimen to a species proxy (Ratnasingham & Hebert, 2013). We retrieved 50 BINs 222 

showing >15% COI sequence divergence from their nearest neighbor under the Kimura 2�parameter 223 

model (Kimura, 1980). The resulting freshwater macrozoobenthos mock community included 224 

representatives of 3 phyla, 12 orders, and 27 families. COI sequences have been deposited on NCBI 225 

Genbank under the Accession Numbers MT324068-MT324117. Further specimen details can be found 226 

in the public dataset DS-NP50M (dx.doi.org/10.5883/DS-NP50M) on BOLD.  227 

 228 

Metabarcoding using Illumina Sequencing 229 

All samples showed good DNA quality. Illumina MiSeq sequencing generated an average of 204 797 230 

paired-end reads per primer combination. Raw sequence data are available under the NCBI SRA 231 

accession number SRR9207930. We recovered 49 of 50 OTUs present in our mock community (Fig. 232 
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1D). We obtained a total of 845 OTUs (OTU table including sequences, read counts, and assigned 233 

taxonomy is available as Supplementary Table S3) mostly contaminants that were in part also obtained 234 

with nanopore sequencing.  235 

 236 

Metabarcoding using Nanopore sequencing 237 

Nanopore sequencing with the MinION delivered 746,153/2,756 and 499,453/1,874 1D/1D2 reads for 238 

Protocols A and B (SRA PRJNA627498), respectively. The 1D approach only sequences one template 239 

DNA strand, whereas with the 1D2 method both complementary strands are sequenced, and the 240 

combined information is used to create a higher quality consensus read (Cornelis et al. 2019). Because 241 

of the low read output for 1D2 reads, our analyses focused on 1D data. Most reads were skewed 242 

towards a shorter read length range (Figure 2) with a median RCA fragment length of 1262bp for 243 

Protocol A and 908 bp for Protocol B.   244 

 245 

With flexible filtering (number of targets per RCA fragment = 1 or more), ASHURE results provided a 246 

median accuracy of 92.16% for Protocol A and 92.87% for Protocol B (see Table 2, Figures 1A-B). 247 

Using ASHURE, we observed a negative, non-significant correlation between consensus median error 248 

and the number of RCA fragments (Pearson’s r for Protocol A: -0.247, Protocol B: -0.225). For both 249 

protocols, we found a positive, non-significant correlation between consensus median error and primer 250 

error (Pearson’s r for Protocol A: 0.228, Protocol B: 0.375) and between consensus median error and 251 

cluster center error (see Figures 3B-C; Pearson’s r for Protocol A: 0.770, Protocol B: 0.274). We 252 

obtained median accuracy values of >95% for 1/5th of the OTUs in Protocol A and half of the OTUs in 253 

Protocol B for flexible filtering. Increasing the number of RCA fragments to 15 or more came with the 254 

trade-off of detecting fewer OTUs (from 50 to 36 for Protocol A and 50 to 38 for Protocol B). At the 255 

same time, median accuracy values increased to 97.4% and 97.6% for Protocol A and B, respectively. 256 

With more stringent filtering (number of targets per RCA fragment = 45 or more), median accuracy 257 

improved up to 99.3% for both Protocol A and B but with the trade-off of an overall reduced read 258 

output and a reduced number of species recovered (Table 2). 259 

 260 

We mapped the 845 OTUs found in the MiSeq dataset to the Nanopore reads and removed 261 

contaminants, (69,911 for Protocol A and 31,045 reads for Protocol B) using ASHURE. With Miseq, 262 

we were able to detect 49 out of 50 of the mock species, whereas all 50 mock community species were 263 

detected in both nanopore sequencing protocols A and B. Using the MiSeq dataset, we also removed 264 

contaminants from the consensus reads obtained with C3POa (8,843 for Protocol A and 4,222 reads 265 

for Protocol B). Using C3POa, we retained a lower number of consensus reads than with ASHURE for 266 

Protocol B (see Table 2), but the median consensus accuracy using flexible filtering was similar (94.5-267 

94.7% Protocol A and B). The median accuracy when including all consensus reads was higher for 268 
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C3POa than ASHURE in both Protocol A and B. Overall the two pipelines showed similar 269 

performance in consensus read error profile (Supplementary Figures 2A-D, Supplementary Figure 3). 270 

As for Protocol B, ASHURE detected a higher number of mock community species (see Table 2).  271 

 272 

The read error of all consensus reads (Figures 1A-B) spanned a wide range (0-10% error). Running 273 

OPTICS, a density-based clustering algorithm, on the consensus reads enabled us to identify cluster 274 

centers (Fig. 1C), which possessed comparable accuracy to MiSeq (Fig. 1D). Figures 3A-C show 275 

comparisons of consensus error with RCA length, UMI error, and cluster center error. We found that 276 

cluster center error correlated better with consensus error, particularly for Protocol A (Pearson’s r: 277 

0.770), (see Figure 3C). To visualize why OPTICS can identify high fidelity cluster centers, five OTUs 278 

were randomly selected and clustered at different RCA fragment lengths (Figure 4). T-distributed 279 

stochastic neighbor embedding (t-SNE) was used to visualize the co-similarity relationship of this 280 

collection of sequences in two dimensions (Figures 4B-F). Closely related sequences clustered 281 

together and corresponded to the OTUs obtained by OPTICS. Clustering of raw reads resulted in less 282 

informative clusters, where OTUs were not well separated and cluster membership did not match that 283 

of the true species (Fig. 4C). The clustering of reads with increasing RCA length cut-off resulted in 284 

clusters that had more distinct boundaries (Figures 4D-F). These clusters corresponded to the true 285 

haplotype sequences (Fig. 4F) and contained the de novo cluster centers and true OTU sequences at 286 

their centroids. The OPTICS algorithm successfully extracted the OTU structure embedded in a co-287 

similarity matrix, flagged low fidelity reads that were in the periphery of each cluster, and ordered 288 

high fidelity reads to the center of the clusters (Fig. 4B).  289 

 290 

Discussion 291 

This study introduces a workflow for DNA metabarcoding of freshwater organisms using the 292 

Nanopore MinIONTM sequencing platform. We were able to show that it is possible to mitigate the 293 

high error rates associated with nanopore-based long-read single-molecule sequencing by using rolling 294 

circle amplification with a subsequent assembly of consensus sequences leading to a median accuracy 295 

of up to 99.3% for long RCA fragments (>45 barcodes). 296 

 297 

We were able to retrieve all OTUs of the mock community assembled for this study. Our mock sample 298 

species had at least 15% genetic distance to each other and with ASHURE we were able to retrieve 299 

them both under relaxed and strict filtering conditions. This will likely change if a sample includes 300 

species that are more closely related with average distances of 2-3%. Although both of our 301 

experimental protocols were successful, we observed a higher number of consensus reads, detected 302 

species overall and median accuracy for Protocol B which used a higher number of RCA replicates as 303 

input DNA, had no mechanical fragmentation step, and a reduced duration of enzymatic debranching 304 
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(Table 2). We recommend adopting our Protocol B workflow and using strict filtering in the ASHURE 305 

pipeline, e.g. a minimum of 15 barcodes per RCA fragment. We used the Illumina MiSeq platform to 306 

identify by-products or contaminants as well as for comparison with nanopore sequencing. In terms of 307 

accuracy the MiSeq platform performs slightly better (Figure 1C and D). However, the improved error 308 

rates clearly make the MinIONTM a more cost-effective and mobile alternative. 309 

 310 

Consensus sequence building is the critical step for achieving high accuracy with MinIONTM reads. 311 

Raw outputs of Nanopore sequencing are improving (Volden et al. 2018) and as read accuracy further 312 

improves, so will the quality of consensus sequences. We show that RCA is integral for increasing 313 

consensus accuracy, but it is also the most time-consuming step during the laboratory workflow, e.g. 314 

with 60-70 ng/ul of input DNA 5-6 hours of RCA were necessary to achieve reasonable results. Our 315 

results display a trade-off between median consensus accuracy and the detection of species, 316 

particularly due to not having enough long reads (see Table 2, Fig. 2). However, despite most reads 317 

being relatively short, we observed an inverse correlation between RCA length and the consensus error 318 

rate (Fig. 3A). For further improvement of consensus sequence accuracy, the proportion of longer 319 

reads needs to be maximized. For more time-sensitive studies on metabarcoding with Nanopore 320 

sequencing, e.g. field-based studies, we suggest modifying the RCA duration based on the complexity 321 

of the sample. However, given some of the RCA weaknesses, we recommend the exploration of other 322 

isothermal amplification procedures such as LAMP (Imai et al. 2017), multiple displacement 323 

amplification, (MDA) (Hansen et al. 2018), or recombinase polymerase amplification, (RPA) (Donoso 324 

& Valenzuela, 2018). 325 

 326 

Previous studies using circular consensus approaches to Nanopore sequencing, such as INC-seq (Li et 327 

al. 2016) and R2C2 (Volden et al. 2018) have already shown improvements in read accuracy. We 328 

compared our pipeline ASHURE with C3POa, the post-processing pipeline for R2C2 with a reported 329 

median accuracy of 94% (Volden et al. 2018). C3POa data processing includes the detection of DNA 330 

splint sequences and the removal of short (<1,000 kb) and low-quality (Q < 9) reads (Volden et al. 331 

2018). With C3POa, a raw read is only used for consensus calling if one or more specifically designed 332 

splint sequences are detected within it (Volden et al. 2018). Instead of splint sequences we used primer 333 

sequences to identify reads for further consensus assembly. Both C3POa and ASHURE showed 334 

similar accuracy for our datasets, but C3POa detected fewer species in our Protocol B experiment. 335 

Using ASHURE, we were only able to detect 43.4% and 7% of the reads with both primers attached in 336 

Protocol A and B, respectively. This points to some issues with the RCA approach and might explain 337 

why C3POa generated fewer numbers of consensus reads in Protocol B, as the number of detected 338 

sequences was very low. Initially we assumed that increasing the unique molecular identifier (UMI) 339 

length for our primers would be useful not only for consensus calling but also for identifying, 340 
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quantifying, and filtering erroneous consensus reads. However, within the small percentage of reads 341 

with both primers attached, we did not find a strong correlation between the UMI error and the 342 

consensus read error (Figure 3B). 343 

 344 

Several MinIONTM studies have implemented a reference-free approach for consensus calling, 345 

however, these studies are limited to tagged amplicon sequencing that allows for sequence-to-346 

specimen association (Srivathsan et al. 2018, Calus et al. 2018; Pomerantz et al. 2018; Srivathsan et al. 347 

2019). Such an approach can be useful for species-level taxonomic assignment (Benítez-Páez et al. 348 

2016) and even species discovery (Srivathsan et al. 2019). Our pipeline uses density-based clustering 349 

which is a promising approach when studying species diversity in mixed samples, particularly with 350 

Nanopore sequencing. The density-based clustering of Nanopore reads allows for a reference-free 351 

approach by grouping reads with their replicates without having to map to a reference database 352 

(Faucon et al. 2017). Conventional OTU threshold clustering approaches have shown to be a challenge 353 

for nanopore data. Either each sequence was assigned to a unique OTU, or OTU assignment failed due 354 

to the variable error profile (Ma et al. 2017), or the optimal threshold depended on the relative 355 

abundance of species in a given sample (Mafune et al. 2017). Density-based clustering is advantageous 356 

because it can adaptively call cluster boundaries based on other objects in the neighborhood (Ankerst 357 

et al. 1999). Clusters correspond to the regions in which the objects are dense, and the noise is 358 

regarded as the regions of low object density (Ankerst et al. 1999). For DNA sequences, such a 359 

clustering approach requires sufficient read coverage around a true amplicon so that the novel clusters 360 

can be detected and are not treated as noise. With sufficient sample size, density-based approaches can 361 

allow us to obtain any possible known or novel species clusters with high accuracy and without the 362 

need for a reference database. ASHURE is not limited to RCA data, as it performs a search for primers 363 

in the sequence data, splits the reads at primer binding sites, and stores the information on start and 364 

stop location of the fragment as well as its orientation. The pipeline can be used to process outputs of 365 

other isothermal amplification methods generating concatenated molecules by simply providing 366 

primer/UMI sequences that link each repeating segment. 367 

 368 

Conclusion 369 

This study demonstrates the feasibility of bulk sample metabarcoding with Oxford Nanopore 370 

sequencing using a modified molecular and novel bioinformatics workflow. We highly recommend the 371 

use of isothermal amplification techniques to obtain longer repetitive reads from a bulk sample. With 372 

our pipeline ASHURE, it is possible to obtain high-quality consensus sequences with up to 99.3% 373 

median accuracy and to apply a reference-database free approach using density-based clustering. This 374 

study was based on aquatic invertebrates, but the pipeline can be extended to many other taxa and 375 

ecological applications. By offering portable, highly accurate, and species-level metabarcoding, 376 
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Nanopore sequencing presents a promising and flexible alternative for future bioassessment programs 377 

and it appears that we have reached a point where highly accurate and potentially field-based DNA 378 

metabarcoding with this instrument is possible.   379 
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Table 1: Varying RCA conditions for experimental protocols A and B 380 

Dataset Protocol A Protocol B 

RCA duration (hrs) 5 6 

Number of target sequences per 
RCA fragment 12 15 

Enzymatic branching (min) 5 2 

Mechanical fragmentation 4200 rpm, 2 min  None 

Primer pairs used HCOA-LCO, HCOC2-LCOC2 HCOA2-LCOA2, HCOC2-LCOC2 

 381 

  382 
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Table 2: Consensus reads, median accuracy, and the number of OTUs/species detected at different 383 
thresholds for Protocol A and B analyzed with ASHURE and C3POa.  384 

ASHURE pipeline 

 Protocol A Protocol B 

Consensus read 
criterium # of reads 

Median 
accuracy (%) 

# of OTUs 
detected # of reads 

Median 
accuracy (%) 

# of OTUs 
detected 

unfiltered 269,620 93.6 198 245,827 93.4 188 

post filtering non-target 
data based on MiSeq 

199,709 92.16 50 214,782 92.87 50 

RCA > 15 1,434 97.39 36 2,884 97.62 38 

RCA > 20 292 97.86 28 1,009 98.10 34 

RCA > 25 78 98.22 19 455 98.35 30 

RCA > 30 20 98.46 11 217 98.57 26 

RCA > 35 7 99.05 5 106 98.82 22 

RCA > 40 3 99.52 2 57 99.05 18 

RCA > 45 2 99.60 2 30 99.29 13 

RCA > 50 1 99.68 1 21 98.82 8 

C3POa 

unfiltered 322,884 94.5 180 128,353 94.7 118 

post filtering non-target 
data based on MiSeq 

314,041 94.5 50 124,131 94.7 40 

   385 
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387 

Figure 1: Nanopore sequencing read error per species for (A) Protocol A a388 

with ASHURE using all reads. (C) Nanopore sequencing read error 389 

ASHURE using cluster centers for each RCA condition. (D) MiSeq sequenc390 

 391 

 392 

 393 

 

 and (B) Protocol B obtained 

r obtained with OPTICS in 

encing read error per species. 
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395 

Figure 2: Read length distribution for both sequencing protocols. The numb396 

logarithmic scale on the y-axis.  397 
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 412 

413 

Figure 3: Comparison of consensus error versus (A) RCA length, (B) U414 

center error using the ASHURE pipeline for two RCA conditions. 415 
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 431 

432 

Figure 4: tSNE visualization of reference-free clustering using OPTICS 433 

haplotypes. (A) The number of reads and percentage of error for each filter434 

1 RCA fragment, yellow: reads with 2-4 RCA fragments, green: reads wit435 

blue: reads with 9 or more RCA fragments. tSNE visualization of OPTICS436 

no filtering, (C) one RCA fragment, (D) 2-4 RCA fragments, (E) 5-8 RCA437 

RCA fragments. True haplotypes (blue triangles) and cluster centers ob438 

clustering (red circles) overlap more as the number of RCA fragments439 

correspond to: HAP04 (red), HAP11 (blue), HAP17 (purple), HAP39 (ora440 

dots in (B) indicate outliers.  441 

 442 
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