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Abstract

The joint detection of GW170817/GRB 170817 confirmed the long-standing theory that binary neutron star
mergers produce short gamma-ray burst (sGRB) jets that can successfully break out of the surrounding ejecta. At
the same time, the association with a kilonova provided unprecedented information regarding the physical
properties (such as masses and velocities) of the different ejecta constituents. Combining this knowledge with the
observed luminosities and durations of cosmological sGRBs detected by the Burst Alert Telescope onboard the
Neil Gehrels Swift Observatory, we revisit the breakout conditions of sGRB jets. Assuming self-collimation of
sGRB jets does not play a critical role, we find that the time interval between the binary merger and the launch of a
typical sGRB jet is 0.1 s. We also show that for a fraction of at least ~30% of sGRBs, the usually adopted
assumption of static ejecta is inconsistent with observations, even if the polar ejecta mass is an order of magnitude
smaller than that in GRB 170817. Our results disfavor magnetar central engines for powering cosmological
sGRBs, limit the amount of energy deposited in the cocoon prior to breakout, and suggest that the observed delay
of ∼1.7s in GW170817/GRB 170817 between the gravitational wave and gamma-ray signals is likely dominated
by the propagation time of the jet to the gamma-ray production site.

Unified Astronomy Thesaurus concepts: Gamma-ray bursts (629); Relativistic jets (1390); Neutron stars (1108);
Gravitational wave sources (677); Astrophysical black holes (98)

1. Introduction

Multi-messenger astronomy has experienced a profound step
forward with the observations of the binary neutron star (BNS)
merger event, GW170817, in both gravitational waves (GWs)
and electromagnetic waves (Abbott et al. 2017). The detection
of a short gamma-ray burst (sGRB; Nakar 2007; Berger 2014),
GRB 170817, from the BNS merger has renewed the
community’s interest in these enigmatic explosions (see, e.g.,
Nakar 2019 for a recent review on sGRBs from BNS mergers).
GRB 170817 has forced us to revisit several important
properties of GRB jets, such as their angular structure (e.g.,
Granot et al. 2017; Lamb & Kobayashi 2017; Kathirgamaraju
et al. 2018; Beniamini et al. 2020b), as well as possible
implications for some as-of-yet mysterious properties of
“standard” GRB afterglow observations such as X-ray plateaus
(Oganesyan et al. 2020; Beniamini et al. 2020a). More
importantly, it has highlighted our need to understand how
jets propagate through external media.

As jets propagate out of the central engine of the sGRB, they
interact with ejecta made of material launched dynamically
during the compact binary merger as well as ejecta driven by
the neutrinos released from the neutron star or the accretion
disk formed post-merger. The sGRB jet propagation and ejecta
interaction (possibly also determining their angular structure)
has been studied numerically in numerous works (Aloy et al.
2005; Nagakura et al. 2014; Just et al. 2016; Lazzati et al. 2017;
Xie et al. 2018; Geng et al. 2019; Gill et al. 2019a,
Kathirgamaraju et al. 2019; Salafia et al. 2020). Such studies
are inherently complex, as the relativistic nature of the outflow
naturally leads to a large range of temporal and spatial scales.
Analytically, the situation may be significantly simplified by

considering limiting cases for the dynamics of the ejecta, being
either static (Begelman & Cioffi 1989; Marti et al. 1994;
Matzner 2003; Bromberg et al. 2011) or homologously
expanding (Duffell et al. 2018).
Comparison of model predictions with observed data can

help determine the physical properties of breakout, such as the
time it takes the jet to break through the ejecta and the time
interval between the BNS merger and the launch of the GRB
jet. Similar techniques have been employed successfully in the
past, mainly for long GRBs breaking out of their surrounding
stellar envelopes, for which the static ejecta limit naturally
applies (Bromberg et al. 2012; Petropoulou et al. 2017;
Sobacchi et al. 2017). Previous studies comparing sGRB data
to theory have focused mainly on the static limit by employing
either a limited data set of sGRBs with both measured
luminosities and durations (Murguia-Berthier et al.
2014, 2017) or a significantly more expanded data set, but
with durations only (Moharana & Piran 2017).
Pinning down the timescales involved in the formation and

breakout of the jet is at the intersection of several key fields of
current study, such as jet formation and propagation, the nature
of the central engine (and possibly constraints on the neutron
star equation of state, e.g., Lazzati & Perna 2019), and the
properties of the radioactive ejecta that may be the dominant
source of r-process production in the universe (see Hotokezaka
et al. 2018 for a recent review).
We show here that the static versus homologous expansion

limits for the ejecta propagation can be smoothly combined to
form a description that holds also for intermediate situations in
terms of the time delay between ejecta and jet launching and
intermediate velocities of the ejecta (see also Hamidani et al.
2020; Lyutikov 2020). We then use the current sample of
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sGRBs with redshift determination (for which the luminosity
and duration can be well determined) to place statistical
constraints on the time interval between the moment of the
BNS merger and the launching of the GRB jet and on the time
it takes the jet to break out of the ejecta.

The paper is organized as follows. In Section 2 we introduce
the sample of sGRBs considered in this work. In Section 3 we
introduce the two limiting cases (Section 3.1, 3.2) for
calculating the properties of jet breakout that have previously
been considered in the literature. We then present a treatment
that smoothly connects the two regimes (Section 3.3) and show
how sGRBs with known durations and luminosities can be
used to infer physical properties of the ejecta with respect to the
jets. We discuss a variety of implications of these results in
Section 4, and finally conclude in Section 5.

Throughout the paper, we adopt a cosmology with
W = 0.31M , W =L 0.69, and H0=69.6 km s−1 Mpc−1.

2. Sample

We use publicly available data from the GRB archive5 of the
Neil Gehrels Swift Observatory (Gehrels et al. 2004). We select
sGRBs (i.e., bursts with observed <T 290 s) detected by the
Swift Burst Alert Telescope (BAT) from 2005 to 2019 with
redshift information (either spectroscopic or photometric). Our
sample consists of 27 bursts (~1 4 of the Swift–BAT sGRB
sample). To estimate the isotropic γ-ray luminosity we use the
BAT fluence, Φ, in the 15–150 keV energy range
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where dL(z) is the luminosity distance of a burst at redshift z
and N(E) is the differential photon spectrum considered in the 1
keV–10MeV energy range, and described by the so-called
Band function (Band et al. 1993) with a = -0.5, b = -2.25,
and rest-frame peak energy =E 800 keVp (Nava et al. 2011).

We also compare the results we derive from our Swift sGRB
sample to the first GRB to be detected in GWs, namely GRB
170817. Since this burst was preceded by a GW trigger, it
enabled the detection of a very weak prompt GRB signal with
no afterglow signal until days after the event; if there was no
GW trigger (i.e., under regular circumstances) there could not
have been a redshift determination. Furthermore, for the
purposes of this study, we are interested in the luminosities
of GRBs along their jet cores. Since GRB 170817 was detected
off-axis, its core luminosity is very poorly constrained (Troja
et al. 2019). For these reasons, we do not include GRB170817
in our analysis of deriving upper limits on the time interval
between the moment of the BNS merger and the launching of
the GRB jet, but return to discuss some specific implications
for GRB 170817 in Section 4. We use the duration data from
Goldstein et al. (2017) and the constraints on the on-axis
luminosity from Troja et al. (2019), accounting for a typical on-
axis efficiency, h »g 0.15 seen in other cosmological sGRBs
(see the definition in Section 3.1), when discussing this specific
burst.

3. Jet Breakout Times

The breakout of the jet through the BNS merger ejecta
involves three dynamical timescales, namely the time interval
between the BNS merger and the launch of the jet, also referred
to here as the “waiting time” (tw), the duration of the jet engine
operation (te), and the time it takes a GRB jet to break out from
the BNS merger ejecta (tj,b). Since the ejecta is launched
dynamically during the BNS merger, it is launched within
several milliseconds from the moment of the merger. As this
timescale is much shorter than any of the other timescales of
interest considered in this situation, the launching of the ejecta
can be considered as concurrent with the BNS merger. The
breakout time tj,b has been calculated in the following limits.

1. Static ejecta. In this limit, which applies when
t t t,j,b e w, the merger ejecta can be considered to be

roughly static throughout the breakout (see e.g., Begel-
man & Cioffi 1989; Marti et al. 1994).

2. Homologous ejecta expansion. In this limit, which is
relevant when t t t,j,b e w, the evolution becomes self-
similar, namely the jet breakout time is proportional to
the engine timescale up to some dimensionless number
that is a function of the jet’s total energy. In this situation,
jets typically break out more easily from the ejecta
(Duffell et al. 2018, henceforth denoted as D18).

In addition to the timescales mentioned above (tw, te, tj,b),
there are other important timescales to be considered, which are
related to the accompanying observable γ-ray signal. These are
the observer’s frame6 duration of the GRB (tGRB), the delay
time between the GW and γ-ray signals (td), the propagation
time of the relativistic ejecta (moving at Lorentz factor Γ) to the
γ-ray-emitting radius gR , given by » Ggt R c2R

2, and the
angular timescale associated with the γ-ray-emitting shell
( » Gq gt R c2 2). The latter is the time difference between the
arrival of photons emitted on-axis to the observer and those
emitted at an angle of G1 (which due to relativistic beaming is
approximately the highest latitude that is visible to the
observer). A schematic illustration of the different timescales
of the problem is shown in Figure 1.
The delay time between the GW signal and γ-ray signals is

the sum of the following three timescales: the time between the
BNS merger and jet launch, the time it takes the jet to break
out, and the time it takes the jet to reach the γ-ray-emitting

Figure 1. Schematic illustration (not to scale) of the relevant timescales setting
the observed duration of the burst, tGRB, and the delay time, td, between the
burst and a BNS merger occurring at t=0. Propagation to the γ-ray-emitting
radius gR delays the arrival times of the first and last GRB photons in the same
way, thus not contributing to the net GRB duration.

5 https://swift.gsfc.nasa.gov/archive/grb_table/

6 For simplicity, we omit the dependence on cosmological redshift in the
expressions throughout this paper. The latter can be trivially included by
multiplying all observed timescales by a factor of + z1 .
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radius,

= + +t t t t . 2d w j,b R ( )

The observed duration of the GRB is given by the difference
between the engine and jet breakout times (yielding the amount
of time during which a successful jet is passing through gR )
plus the spreading due to the angular timescale from gR :

= - + qt t t t . 3GRB e j,b ( )

In the following sections, we examine the two limiting
regimes (i.e., static ejecta and homologous expanding ejecta).
For both regimes, we use the observed distribution of GRB
durations and luminosities to set limits on tw. This allows us to
determine the validity of the approximations corresponding to
both regimes and to place overall limits on tw, which hold also
for any intermediate regime.

3.1. Jet Breakout through Static Ejecta

We begin by considering the static ejecta limit. In this case,
the breakout time of a successful jet is given by the time it takes
the jet to overpass the merger ejecta

b
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where bej is the velocity of the ejecta and bh is the velocity of
the jet’s head. As noted above, self-consistency of this regime
requires t tj,b w or, equivalently, b b 2h ej (see Equation (4)).
The velocity of the jet’s head is related to the ratio between the
jet’s isotropic-equivalent luminosity, Le, and the (isotropic-
equivalent) mass outflow rate of the ejecta, Mej , as follows

(Marti et al. 1994; Matzner 2003; Bromberg et al. 2011;
Murguia-Berthier et al. 2017):
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A full derivation of Equations (5) and (6) is given in
Appendix A. In particular we note that even in a mildly
relativistic regime, with b = 0.25h , Equation (6) holds to better
than a 5% accuracy. In addition, this analytical methodology
has been shown by Murguia-Berthier et al. (2017) to closely
match the results from numerical simulations (with values of bh

varying by at most 30% between the two). To obtain the
numerical value in the last expression, we have inserted values
typical for an sGRB jet. The conversion between the isotropic
γ-ray luminosity LGRB and the engine power Le can be obtained
using the γ-ray efficiency, h ºg L LGRB e, which is h »g 0.15
(Beniamini et al. 2015). This conversion implicitly assumes
that the degree of jet collimation within the BNS merger ejecta
is the same as after the jet has broken out. We discuss the
validity of this assumption and its implications in Section 4.2.
We have also assumed that the jet is interacting with the polar
component of the merger ejecta. The mass and velocity of the
latter can be inferred from the “blue” component of the
kilonova (Kasen et al. 2017). It is considered to be associated
with the “squeezed” tidal tails, which can be approximated to
be roughly isotropically spread up to a polar angle of p~ 4
(see, e.g., Kasen et al. 2017). Mej can therefore be

approximated by = +W
-M M f t tej ej

1
w j,b( ) , where

ò q q= »
p

Wf d sin 0.3
0

4
is the solid angle covered by the

blue component (assuming a two-sided jet) and +t tw j,b is the
time between the BNS merger and the jet breakout; it is used as
a proxy of the ejecta expansion time before the jet breakout.
Equations (4), (5), and (6) allow us to calculate tw as a

function of LGRB and tj,b. The time interval between the BNS
merger and the launch of the jet, tw, is found to increase with
increasing values of either LGRB or tj,b as we show below. LGRB
can be directly constrained from observations for GRBs with
redshift determination, while tj,b can be estimated in the
following way. We first note that t te j,b is required in order to
avoid most of the jet energy to be deposited in the cocoon
instead of the GRB jet (Ramirez-Ruiz et al. 2002). In this case,
the GRB duration (in the engine’s rest frame) is set by
Equation (3) (see also Figure 1). This relation can be better
understood in the following limits.

1. qt tj,b . In particular, since qt tGRB then t tGRB j,b
regardless of te.

2. qt tj,b . In this limit, » -t t tGRB e j,b. For any distribu-
tion of te that has a non-negligible dispersion (i.e., not
characterized by a dispersion in te much smaller than its

Figure 2. Required (upper limits on the) waiting times (i.e., time intervals
between the BNS merger and the launch of the jet—colored solid lines) needed
to account for the observed sGRB durations and luminosities within the static
ejecta scenario for »t tGRB j,b. A dashed blue line marks =t tw j,b. Below this
line, i.e., for <t tw j,b, the assumption of a static medium begins to break down.
We overplot the data of observed Swift short GRBs with known redshift
(corrected for the central engine frame) as black circles and the values for the
core of GRB 170817 in red (no circle).
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average, s tt ee
¯ ), GRBs with a duration t tGRB j,b

would require »t te j,b, which would be fine-tuned and
rare (Bromberg et al. 2013). Specifically, there should be
approximately one GRB with »t t0.1GRB j,b ( t0.01 j,b) for
every 10 (100) GRBs with »t tGRB j,b.

Therefore, independently of the unknown value of qt , for most
GRBs the observed tGRB corresponds to an upper limit on tj,b.
The derived upper limits are most conservative if one assumes
qt 0. This is because qt is an extra component in the GRB

duration that is completely independent of the breakout.
Therefore, a non-zero tθ only increases the difference between
the GRB duration and the jet breakout time; see Equation (3).
By assuming »t tGRB j,b one typically overestimates the true
value of tj,b and, in turn, of tw, since the latter increases with tj,b.
For the purpose of placing upper limits on tw (denoted below as
tw,u) assuming »t tGRB j,b is therefore conservative. As a result,
GRBs with short durations and low GRB luminosities place the
strongest limits on tw (see Murguia-Berthier et al. 2017 for a
similar approach). We demonstrate this point quantitatively in
Appendix B.

Using the assumption that »t tGRB j,b, as described above,
we calculate the value of tw,u for a static medium as a function
of tGRB and LGRB. These values are plotted in Figure 2. The
distribution of tw,u that is needed to explain the population of
the observed 27 GRBs in our sample has a median of

»t 0.09 sw,u and a standard deviation of s = 0.7tlog10 w,u( ) . As
shown in Figure 2, a large fraction of bursts (those below the
diagonal dashed line) have no self-consistent solutions with

»t tGRB j,b and t tw j,b under the static medium scenario. Even
if we account for the uncertainty in our model parameters and
allow Mej to be reduced by a full order of magnitude from our
canonically assumed value, we still cannot find consistent
solutions for eight out of the 27 GRBs (∼30%). Since this
inconsistency cannot be easily resolved by changing the ejecta
properties within reasonable bounds, it suggests that, at least in
some cases, the homologous expansion limit may be a more
realistic assumption than the static medium limit. We shall
explore the implications of this approach in the next section.

3.2. Jet Breakout through Homologously Expanding Ejecta

This limit has recently been studied analytically and
numerically by D18. Assuming that degree of jet collimation
does not change during the jet breakout process, these authors
have found that jets are successful when E E0.1j ej where

b»E M c0.5ej ej ej
2 2 is the kinetic energy of the ejecta and Ej

denotes the isotropic-equivalent energy of the jet.7 D18 have
identified two breakout regimes. For energies in the range

 E E E0.1 3ej j ej, jets barely break out and a significant
amount of energy is deposited in a cocoon. This regime is
dubbed “late breakout”. For higher energies, E E3j ej, jets
break out easily, and this regime is dubbed “early breakout”.
Relating the latter condition to observational properties, we find
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where we have taken » »E t L t Lj e e e GRB/hg. The jet breakout
time is given by (D18)

h
b

= =

=
-

=
-

g

h bg

t t
E

E

M c

L

t
t t

0.3 0.15 “early”

9

1

9

1
“late”. 8

E

E

L t

M c

j,b e
ej

j

ej ej
2

GRB

j,b
e

10

e

20j

ej

GRB e

ej ej
2

( )

( )
( )

In particular, notice that in the early breakout regime, the jet
breakout time becomes independent of the engine duration, and
is a function of the jet luminosity only (see also D18 and
Lyutikov 2020). The early breakout relation implies that

<t t0.1j,b e, since >E E3j ej in this case. Thus, the jet breakout
time is sub-dominant in determining the GRB duration, i.e.,

» - »t t t tGRB e j,b e (where we have neglected the potential
contribution of qt , see Section 3.1 for details).
We can test the validity of the condition given by

Equation (7) by directly comparing with sGRB duration and
luminosity data. The comparison of both the early breakout and
late breakout conditions to the data is shown in Figure 3. The
majority of sGRBs (20/27), satisfy the condition given by
Equation (7) and reside in the early breakout regime. This is
consistent with our previous finding that the majority of sGRBs
are successful in breaking out of the BNS merger ejecta
(Beniamini et al. 2019). A minority of bursts (5/27) nominally
reside in the parameter space for late breakouts. However, these
may still be consistent with early breakouts given reasonable
changes in the properties of the ejecta (e.g., an ejecta mass
lower by a factor of ∼4 or with a velocity lower by a factor of
∼2). Two bursts (GRB 150101B and GRB 050509B) are close
to the limit of jet failure. These are much less likely to have

Figure 3. Required engine times (colored solid lines) needed to operate the
observed sGRB durations and luminosities for the limit of homologously
expanding ejecta. Above the solid line, jets break easily out of the ejecta (i.e.,
“early breakout”). Between the dashed and solid lines, jets barely break out
(i.e., “late breakout”), while below the dashed line, jets no longer break out
from the ejecta. Both lines are calculated from Equation (7) using the
appropriate expression for tj,b in each regime (see Section 3.2 for details).
Symbols have the same meaning as in Figure 2.

7 D18 used the same notation (i.e., Ej) to denote the beaming-corrected
energy, i.e., q=E E 2j,D18 j 0

2 , where Ej,D18 is the value denoted as Ej in D18
and q0 is the jet opening angle, hence the difference in the appearance of the
equation.
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undergone early breakouts, even taking into account variations
in the ejecta parameters. We discuss those GRBs in more detail
in Section 4.1.

By construction, in the limit of homologously expanding
ejecta, the waiting time tw must be sufficiently short that it can
be neglected. Thus, tw cannot be directly constrained. None-
theless, we know that the waiting times must be shorter than the
engine times which, for early breakouts, are comparable to the
GRB durations. This condition translates to <t 0.2 sw , where
0.2s is the median of the duration distribution of sGRBs in our
sample. This upper limit on the waiting time is consistent with
our results in Section 3.1, but slightly less constraining. In the
next section, we derive limits on the waiting time that are
applicable to a generic medium.

3.3. Jet Breakout through a Generic Medium

Combining the results for the jet breakout time obtained in
the two regimes of static ejecta and homologously expanding
ejecta, we can derive limits on the waiting time for a generic
medium. For this, let us recall first that the static approximation
is formally valid for t tw j,b, while the homologous expansion
limit is valid for t tw j,b. Thus, for a generic medium, the jet
breakout time must vary continuously between the solutions
obtained in these two limits. Using Equations (4)–(6) and (8),
the two limits yield identical jet breakout times at a critical
waiting time »t t 5w,c j,b . Remarkably tw,c is a function of tj,b
only, and it is independent of the other physical parameters.
The results are shown in Figure 4 where we plot t tj,b w( ) under
both approximations. For a generic medium, we can smoothly
connect the two regimes by taking

= +t t t , 9j,b j,b,hom j,b,stat ( )

where tj,b,hom, tj,b,stat are the jet breakout times in the
homologous expansion and static ejecta limits, respectively.

Using the expression for tj,b above we can now obtain upper
limits on tw (i.e., tw,u) for a generic medium in a similar way to
the one outlined in Section 3.1. For a given GRB luminosity,
there is a lower limit on the jet breakout time (corresponding to
breakout from a homologously expanding medium, see
Figure 4). This limit decreases with increasing luminosity.
The result, shown in Figure 5, is that for sufficiently short
durations and/or low luminosities no self-consistent solutions
exist (without changing the ejecta properties and/or the γ-ray
efficiency). Within this generic medium scenario, we find again
that for the same two out of 27 GRBs in our sample, GRB
050509 and GRB 150101B, no solutions ae available
(consistent with our findings in Section 3.2). We return to
discuss those bursts in more detail in Section 4.1. Since
breakout is more difficult (i.e., tj,b becomes longer) when tw
becomes longer, these two bursts likely correspond to shorter
waiting times than found for the rest of the sGRB population.
Nonetheless, to be more conservative, we ignore these bursts
when calculating the upper limits on tw below. For the majority
(25/27) of GRBs however, we can self-consistently treat the jet
breakout. This leads to upper limits on the waiting times. The
median upper limit obtained for those bursts is t 0.1 sw,u (for
the dependence of this result on kilonova ejecta properties, see
Section 4.2).

4. Discussion

We have considered the breakout of GRB jets from the BNS
merger ejecta. The observed properties of cosmological GRBs,
as well as constraints on the merger ejecta from the kilonova
counterpart to GW170817, allow us to put limits on the time
intervals between the launching of the BNS merger ejecta
components and the launching of the relativistic jet. For a
generic description of the BNS merger ejecta (which smoothly
connects the regimes of static and homologously expanding
ejecta), we derive a rough upper limit of t 0.1 sw .

Figure 4. Jet breakout time (tj,b) as a function of the time interval between the
launch of the BNS merger ejecta and the jet (tw) for a generic medium. Results
are plotted for b h= = = =gWM M f0.01 , 0.25, 0.3, 0.15ej ej . Colored
curves show the results for different values of the GRB luminosity (see the
inset legend). For one case ( =L 10GRB

51 erg s−1), we also show t tj,b w( ) in the
limits of static ejecta (diagonal dotted line) and homologously expanding ejecta
(horizontal dashed line). The two curves intersect at »t t 5w,c j,b .

Figure 5. Same as Figure 2 but for a generic medium and for »t tGRB j,b. Using
a generic medium introduces a lower limit on the jet breakout time
(corresponding to the homologously expanding medium regime; see Figure 4)
and restricts the allowed parameter space compared to Figure 2.
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Furthermore, we argue that for a fraction of sGRBs (at least
∼30%) the assumption of static ejecta, through which the jet
punches, is inconsistent with their observed luminosities and
durations, even if the polar component of the ejecta mass is a
factor of 10 lower than that estimated for the kilonova
accompanying GW170817. At the same time, we find that
the assumption of homologously expanding ejecta (corresp-
onding to the limit t 0w ) is consistent with the observed
properties (tGRB, LGRB) of our sGRB sample. The derived upper
limit on the waiting time has several interesting implications
which we discuss below.

4.1. Exceptional GRBs

As mentioned in Sections 3.2 and 3.3 and two bursts (GRB
150101B and GRB 050509B) are close to jet failure, even
when considering the limit of negligible waiting time ( t 0w ),
for which breakout becomes easiest. These are much less likely
to have undergone early breakouts, even taking into account
variations in the ejecta parameters.

One possibility is that the prompt GRB in those cases
represents a jet that failed to break through the merger ejecta. In
such a scenario a γ-ray signal may still result due to the shock
breakout from the cocoon created by the jet–merger ejecta
interaction. In the case of GRB150101B, Burns et al. (2018)
have found evidence for a short hard spike followed by a soft
tail, similar to the GRB counterpart of GW170817, suggesting
shock breakout as a possible explanation for the observed γ-
rays. Furthermore, GRB150101B exhibited a bright optical
counterpart consistent with a blue kilonova (Troja et al. 2018)
with >M M0.02ej  and b > 0.15ej . These values are consistent
with a late shock breakout as an explanation for this burst.
Nevertheless, it is important to note that GRB 150101B does
not appear to satisfy the closure relationship between the
energy, duration, and temperature of shock breakout flares
(Nakar & Sari 2010). Assuming this relation, we would expect
the peak energy of GRB 150101B to be »2 MeV, whereas the
observed peak energy is of the order of 550keV for the initial
spike and much lower, ∼23keV, for the soft tail (Burns et al.
2018). In the case of GRB 050509, the breakout estimate for
the temperature yields »k T 1.5 MeVB . Since n nF is seen to be
rising within the observed Swift -15 150 keV band (Bloom
et al. 2006), only a lower limit on the peak energy can be
obtained and the possibility of a shock breakout association
satisfying the closure relation cannot be ruled out. A major
shortcoming of the shock breakout interpretation for both these
bursts, however, is that their γ-ray luminosities,
~ ´ -3 10 erg s50 1, are large compared to expectations from
shock breakout (Nakar & Sari 2010). Since the shock breakout
mechanism releases only a very small fraction of the total
energy (see Section 4.5), this interpretation would require much
larger engine luminosities to work. This requirement, in turn,
would make it much less likely for the jets of those GRBs to
have failed to break through the ejecta in the first place (more
powerful jets can more easily break out).

The above discussion makes us consider an alternative (and
easier to accommodate) scenario for both GRBs. According to
this scenario, γ-rays are still produced within a successful
relativistic jet, as in regular cosmological sGRBs, but the γ-ray
efficiency is much lower than typically used (i.e., hg 0.1 ).
One natural way for this to happen is if these GRBs are viewed
slightly off-axis from the cores of their jets (see e.g., Bartos

et al. 2019; Beniamini et al. 2019; Mandhai et al. 2019;
Dichiara et al. 2020).

4.2. Variation of Jet and Kilonova Ejecta Properties

We have argued that, taking the ejecta properties to be
similar to those inferred from the kilonova accompanying
GW170817, the majority of observed short GRBs would not
have been able to break out through a static ejecta. An
alternative option is that there is a very wide variation in the
BNS ejecta properties of different BNS mergers. We caution
the reader that if indeed the ejecta mass varied very widely
between different events, this would tend to increase our upper
limits on the waiting times discussed above. The required level
of ejecta mass variation under the static ejecta interpretation,
however, would be very large. For example, lowering the ejecta
mass by roughly two orders of magnitude as compared with the
inferred values for GRB170817 is required to enable a
successful breakout of all GRBs in our sample under this
interpretation. The general dependence of our limit on the
waiting time on the ejecta mass and velocity is depicted in
Figure 6. Future observations of kilonovae accompanying GW
events from nearby BNS mergers would enable us to directly
test the validity of this possibility.
Another potential caveat regards the possibility of self-

collimation. For long GRB jets, which are propagating through
the envelope of the collapsed star, self-collimation is expected
to make the effective opening angle of the jet, as it is passing
through the stellar envelope, narrower than its final opening
angle after breakout (Bromberg et al. 2011). For short GRBs,
the smaller amount of ejecta mass and the expanding nature of
the ejecta suggest that self-collimation plays a lesser role,
especially in the homologous expansion limit (D18; Gill et al.
2019b; Hamidani et al. 2020). If, however, the jets were indeed
significantly narrower during their propagation through the
BNS merger ejecta, this would result in an effective increase of
the isotropic-equivalent engine luminosity and, in turn, an

Figure 6. Dependence of the median upper limit on the waiting time on the
ejecta mass and velocity corresponding to the blue component of the kilonova.
The estimates of those values for GW170817 that are used elsewhere in this
paper are marked by a circle.
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increase in L̃ and an increase in our upper limit on tw. To test
the importance of self-collimation, we have considered a
situation in which the effective area of the jet decreases by a
full order of magnitude within the merger ejecta (i.e.,
increasing L̃ by a similar amount). Our limit on the waiting
time changes in that case from <t 0.1 sw to <t 0.25 sw .

Expanding further on the previous point, one may question
how well the analytical treatment adopted in this work
represents the true physical situation. Comparison of analytical
and numerical studies (Mizuta & Ioka 2013; Harrison et al.
2018; Hamidani et al. 2020) suggests that, while the analytical
results match rather well the numerical ones, they tend to
slightly overestimate L̃. This will correspond to a slight
decrease in our upper limit on tw, making our analytical
treatment conservative from this perspective.

4.3. Engine Duration Distribution

In either the static or the homologous expansion case, very
luminous short GRBs have jet breakout times that are much
shorter than the GRB duration. The result is that the GRB
duration is almost the same as the engine duration and implies
that the duration distribution of luminous bursts directly maps
the distribution of engine durations. At the moment, the
numbers of such events are rather low, due to the sparsity of
sGRBs with redshift determination and the intrinsic rarity of
the most luminous bursts. Increasing this sample in the future
would enable us to glean critical information regarding the
nature of the central engine.

Since the difference between the observed and source frame
durations of short GRBs is typically less than a factor of two,
the duration distribution of short GRBs can be studied even for
GRBs with no redshifts. This has the advantage of increasing

the data set significantly, but at the cost of removing
information about the intrinsic luminosity. Moharana & Piran
(2017), using a large sGRB sample (with and without z
measurements) within the framework of Bromberg et al.
(2012), found possible evidence for a plateau in the duration
distribution (dN dtGRB) at »t 0.4 sj,b , followed by a power-
law-like distribution at longer durations, µ -dN dt tGRB

1.4.
Such a plateau is expected if the jet breakout time of the most
commonly observed sGRBs is also »0.4 s. This interpretation
is consistent with t 0.1 sw if the most commonly observed
sGRBs have characteristic luminosities of

~ ´ -L 3 10 erg sch
50 1 (see Figure 4). This is consistent with

the results of Wanderman & Piran (2015), who showed that the
number of sGRBs is dominated by the low end of the observed
luminosity function (i.e., » ´ -L 5 10 erg smin

49 1). The proxi-
mity of Lch to Lmin and, in particular, the fact that Lch is orders
of magnitude smaller than the characteristic break of the
luminosity function, » ´ -L 2 10 erg s52 1

* , suggest that it is
unlikely that Lch plays any significant role in shaping the sGRB
luminosity function (see Beniamini et al. 2019 for details). This
is consistent with the conclusions of Beniamini et al., namely
that the fraction of failed jets cannot explain the broken-power-
law nature of the sGRB luminosity function, contrary to the
case of long GRB jets (Petropoulou et al. 2017).

4.4. Extension of the Analysis to GRBs with no Redshift
Determination

As pointed out in Section 4.3, considering GRBs with
undetermined redshift has the advantage of significantly
increasing the sample size, but at the cost of leaving the
luminosity highly uncertain. For this reason, we consider now
the 14 yr Swift sGRB sample that consists of 119 sGRBs
without redshift determination only as a consistency check to
the main results presented in Section 3.3. For this purpose, we
make the simplifying assumption that all Swift GRBs without
redshift determination originate from the same redshift z0. As
test values we consider z0=0.55, which is the median redshift
of GRBs in our sample, and z0=0.9, which is roughly the
peak of the sGRB redshift distribution found by Wanderman &
Piran (2015). The limits on tw can then be obtained in a similar
way to that described in Section 3.3. The results are

t 0.09 sw,u ( t 0.12w,u s) for z0=0.55 (z0=0.9). The
proximity of these values to the upper limits derived from the
sample of bursts with redshift suggests that our results can be
reasonably extended to the general sGRB population.

4.5. Shock Breakout Energy

The energy released during the breakout phase is limited by
the thermal energy stored in the cocoon, ETh. The latter is
limited by the (collimation-corrected) energy deposited in the

cocoon before the moment of breakout, qE L tTh 2 e j,b
0
2

. Using
the relation t t L,w j,b GRB( ) derived in Equations (4)–(8), we find
that ´E 4 10Th

49 erg for t 0.1 sw and
h= » g

-L L10 erg se
53 1

* . If the engine power is reduced or
the waiting time is shorter, the upper limits on ETh would
become more constraining. As a comparison, in the homo-
logous case, the thermal energy of the cocoon is (for both the
early and late breakout scenarios) q´E 5 10 0.1 ergTh

47
0

2( )
(see Beniamini et al. 2019 for details). Furthermore, since
initially the cocoon is highly optically thick (Nakar &
Sari 2010), only a small fraction of this energy is expected to

Figure 7. GRB luminosity along the core of the jet and waiting times that
correspond to delay times between GW and γ-rays that are consistent with
observations in GRB 170817. The curves correspond to combinations of these
properties that ensure <t 0.1 sw (as found in this paper) and + <t t 1.7 sw j,b

(as required by the observed delay). From top to bottom contours depict jet core
isotropic-equivalent GRB luminosities with equal logarithmic intervals (labels
indicate Llog10 GRB( )). A dashed horizontal line marks + =t t t 2w j,b d .
Afterglow fitting of GRB170817 strongly favors ´ -L 1.3 10 erg sGRB

51 1,
which is the region below the solid green line, implying that + <t t t 2w j,b d .
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be released as prompt γ-rays during the breakout phase.
Overall, we expect the quasi-isotropic shock breakout signal
accompanying sGRBs to be typically rather weak.

4.6. The Delay Time of GRB170817

The observed delay of ~t 1.7 sd between the GW and the γ-
ray signal from GRB 170817 (Abbott et al. 2017) can be
expressed as the sum of tw, tj,b, and tR (see Equation (2) and
Figure 1). A natural question then arises: which of the three
timescales dominates the observed td? Since the first two
timescales are a function of the jet luminosity, the answer
depends critically on the luminosity of GRB 170817 along
its core.

In Figure 7 we plot the allowed parameter space given by the
requirements + <t t 1.7 sj,b w and <t 0.1 sw . We caution the
reader that the latter constraint is found from a statistical
analysis of the entire sGRB sample. It is of course possible that
for any specific event, the waiting time may be longer. Indeed
several groups have demonstrated that they can reproduce the
observed signatures of GRB 170817 with numerical simula-
tions involving longer (∼1 s) delays (Mooley et al. 2018; Xie
et al. 2018). In addition, Gill et al. (2019b) have shown that
such longer delays could be favourable for explaining the
observed properties of the associated kilonova emission in that
event. Nonetheless, we expect the analysis outlined here to be
representative of future GW-detected sGRBs. Mooley et al.
(2018) have demonstrated that GRB 170817 involved a
powerful jet that broke out of the merger ejecta. Given the
energy at the core of GRB 170817 inferred from afterglow
fitting (Troja et al. 2019), its GRB isotropic-equivalent
luminosity (along its core) is estimated to be

´ -L 1.3 10 erg sGRB
51 1 (region below the solid green line

in Figure 7), clearly in contradiction with + >t t t 2j,b w d
(region above the horizontal dashed line in Figure 7). This
implies that + <t t t 2j,b w d for GRB170817, which translates
to » » Ggt t R c2d R

2. It is worth noting that, due to angular
spreading, this situation can naturally lead to a pulse duration
which is also of the order of » Gq gt R c2 2. This is realized in
prompt emission models for which other timescales involved in
the prompt GRB phase, such as the cooling time and engine
variation timescale, are shorter than or equal to qt . Models of
this kind include the internal shocks model (Sari & Piran 1997;
Daigne & Mochkovitch 1998) and several magnetic reconnec-
tion-based models where dissipation takes place far from the
central engine (e.g., Kumar & Narayan 2009; Zhang &
Yan 2011; Beniamini & Granot 2016; Beniamini & Gian-
nios 2017; Beniamini et al. 2018). Interestingly, the duration of
GRB170817 was of the same order as the time delay. If future
events continue to show a similar trend, this will be a strong
indication in favor of GgR c2 2 dominating the observed time
delay (see Zhang 2019 for a detailed discussion on this point).

As opposed to regular cosmological GRBs, which are
observed on-axis, GRB 170817 was observed off-axis (Mooley
et al. 2018). As a result, the propagation and angular timescales
(µ GgR 2) are likely to be larger than for on-axis GRBs. The
extent of this effect depends on the nature of the mechanism
producing the prompt emission. For example, in photospheric
models, µ Gg

-R Le
3 leading to G µ Gg

-R L2
e

5. For typical
expected profiles of power and Lorentz factor in the jet (e.g.,
Kathirgamaraju et al. 2018; Beniamini & Nakar 2019), the
latter is an increasing function of polar angle, suggesting longer
propagation and angular timescales for GRBs seen off-axis.

Regardless of the specific prompt emission model, a
measurement of the delay, td, leads to a lower limit on the
Lorentz factor of the prompt producing material due to the
following argument. Radiation is decoupled from the jet
material when the Thomson optical depth tT becomes of order
unity. This happens at the so-called photospheric radius, which
can be determined by setting t = 1T as: G-R L10ph

14
e,47

3
cm, where =L L10e

47
e,47 ergs−1 is the jet’s isotropic-

equivalent power of the material that dominates the emission
toward the observer (which in the case of GRB 170817 was
outside of the jet core; e.g., Finstad et al. 2018) and Γ is the
Lorentz factor of the same material (see, e.g., Giannios 2012).
Using the observed time delay td and noting that g R Rph, we
can derive a lower limit on the bulk Lorentz factor of the
material that is independent of the prompt emission model:
G - L t4 1.7se, 47

1 5
d

1 5( ) . Note that the exact numeric value is
not so sensitive to the jet power of the material dominating the
observed emission. Furthermore, this material need not
necessarily lie directly along the line of sight. The argument
outlined here would hold for material from an intermediate
angle q q q< <0 obs, such that it is Doppler boosted toward the
observer, i.e., q q- G < 1obs( ) .

4.7. Nature of the Central Engine

In any GRB central engine, the jet breakout time t t L,j,b w e( )
must be large enough that, by the time the jet breaks out and
starts emitting, its bulk Lorentz factor is sufficiently high to
avoid the compactness problem (i.e., to avoid a very large
optical depth of the emitting material; see the definition of Rph
in Section 4.6).
For magnetar central engines, where the flow is initially

heavily baryon loaded, this is not easily achieved. Since the
power released by the magnetar, E , typically decreases more
slowly in time as compared to the mass outflow rate, M
(Metzger et al. 2011), there is generally a minimum time, td,mag,
before the energy per baryon at the base of the jet (h µ E M  )
becomes sufficiently high (i.e., h  100) to power an ultra-
relativistic GRB (Beniamini et al. 2017). For typical parameters
of the magnetar model, t 3 sd,mag . The main parameter
affecting this timescale is the magnetar’s magnetic field, B.
Only for an extreme value of ~ ´B 3 1016 G does one find

»t 0.2 sd,mag . As shown in Figure 4, this is still too high given
the expected values of tj,b with a waiting time of t 0.1 sw and
a (rather common) ´ -L 3 10 erg sGRB

51 1. Fall-back accre-
tion onto the magnetar may alter the timescale td,mag, but given
the high accretion rates expected for BNS mergers, this effect
tends to reduce the initial energy per baryon and therefore
increase td,mag even more (Metzger et al. 2018). As a result we
conclude that magnetar central engines are severely challenged
as possible engines of short GRBs.
In the context of black hole central engines, a waiting time of
t 0.1 sw suggests a relatively prompt collapse of a neutron

star to a black hole. This suggests that the remnant mass from
the BNS merger should be massive enough to form at least a
hypermassive neutron star (a short-lived neutron star supported
by differential rotation); see also Murguia-Berthier et al.
(2014, 2017). The collapse time to a black hole depends on
the tidal deformability parameter and on the equation of state of
the neutron star (Flanagan & Hinderer 2008; Favata 2014). For
example, Radice et al. (2018) have shown that for GW170817
this time is indeed expected to be 1–10ms, consistent with our
limit on tw.
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Physically, the waiting time can be composed of the sum of
time it takes to form the central black hole and the time it takes
it to accrete a significant amount of mass. Our limit on the
waiting time therefore limits also the accretion time, <t tacc w,u.
Recent simulations of magnetically launched jets from neutron
star merger accretion discs (Christie et al. 2019) find that the jet
power peaks within 0.05 s. This is consistent with the results
found in this paper. Useful intuition on the accretion timescale
can be obtained from an α-viscosity thick disk model for the
accretion. This limit has been applied to different neutron star
merger simulations by Fryer et al. (2015) to constrain the
outcome of the merger as a function of, e.g., the individual
neutron star masses and the equation of state. Using

p a=t r GM2acc
3 2

enc( ) (where we assume that immediately
after the merger there is a thick disk with radius r, enclosing a
mass Menc) and requiring <t tacc w,u we can constrain the α
viscosity parameter of the disk,

a
´

 r

t

M

M
0.01

2 10 cm

0.1s 2.6
. 10

6

3 2

w,u enc

1 2

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )

In the last expression we have considered a radius for the disk
immediately after merger which is of the order of two neutron
star radii (in general this can be considered as a lower limit).
We also took the enclosed mass to be approximately the
minimum total mass required for producing a hypermassive
neutron star (Baumgarte et al. 2000) that would quickly
collapse to a black hole (a significantly smaller mass would
correspond to a long-lived neutron star in contrast with our
limits on the waiting time, as discussed above, while a
significantly higher mass would lead to a prompt collapse and
would result in little amount of mass in the disk that would be
available to power the following GRB). This mass is also
consistent with the total mass of known Galactic BNSs (e.g.,
Beniamini & Piran 2016). Our limits on α from Equation (10)
are consistent with the considerations of Fryer et al. (2015).

5. Conclusions

We have revisited the conditions for breakout of an sGRB jet
from the BNS merger ejecta. Using published results from
analytical and numerical works on this topic, which apply
either to the case of static merger ejecta or homologously
expanding ejecta (e.g., Begelman & Cioffi 1989; Marti et al.
1994; D18), we derive the conditions of successful jet breakout
for a generic medium that smoothly connects these limiting
cases. Using the Swift–BAT sample of sGRBs with measured
redshift, we derive limits on the waiting time, i.e., the time
interval between the BNS merger and the launching of the jet
(assuming that the ejecta is launched immediately after the
BNS merger).

For all the cases we examined (i.e., static ejecta, homo-
logously expanding ejecta, and generic medium), we set an
upper limit of ∼0.1s on the waiting time. Decreasing the ejecta
mass (velocity) by a factor of 10 (2) increases the upper limit
on tw by a factor of ∼4 (2). Our results on the waiting time can
be also extended to the complete Swift sample of sGRBs with
no redshift determination. Our upper limit on the waiting time
is consistent with previous results (e.g., Murguia-Berthier et al.
2014, 2017) obtained with a smaller sample and in the limit of
static merger ejecta. We also show that this typically adopted

limit for the BNS ejecta is inconsistent with at least ~30% of
our sGRB sample.
Although the analytical treatment adopted in this paper is

approximated, and does not take into account some of the finer
details of jet propagation observed in numerical simulations,
such as collimation shocks, it is in good agreement with several
numerical studies (Murguia-Berthier et al. 2017; D18;
Hamidani et al. 2020). We stress that our overall result is
rather intuitive. Given that sGRBs typically last ∼0.2 s and that
the rate of BNS mergers and successful sGRB jets are similar
(Beniamini et al. 2019), it is unlikely that the characteristic
breakout and waiting timescales could be much longer than the
sGRB durations, as this would require a fine-tuning between
the engine activity time and these timescales.
The limit on the interval between the BNS merger and the

launch of the jet has profound consequences for the origin of γ-
ray emission (i.e., cocoon shock breakout versus jet) and the
nature of the sGRB central engine (i.e., magnetar versus black
hole). It restricts the amount of thermal energy stored in the
cocoon (e.g., ´E 4 10 ergTh

49 for = -L 10 erg se
53 1),

suggesting that the shock breakout signal accompanying
sGRBs is expected to be rather weak. It also suggests that
central engines of sGRBs are unlikely to be millisecond
magnetars (i.e., with ´B 3 1016 G), since the time interval
of 0.1 s is too short to produce a jet with sufficiently high
energy per baryon at its base to allow its bulk acceleration to
ultra-relativistic speeds. Our results are therefore in favor of a
relatively prompt collapse (i.e., within <100 ms) of a neutron
star to a black hole.
In the context of GRB170817 our work places strong

constraints on the physical origin of the observed γ-ray signals,
assuming that the statistical limit on tw found in this work
applies also for this specific GRB. We find that the observed
delay between the GW and the γ-ray signal is dominated by the
time it takes the jet to reach the location at which it will radiate
(see also Zhang 2019). The consequence of this interpretation
is that the γ-ray duration may naturally (depending on the
prompt emission model; see Section 4.6) be of the same order
of the observed delay, which is the case for GRB170817.
Future observations would indicate if this is the case for other
bursts. This could provide a much needed independent test for
comparing between the many prompt emission models that
remain viable at this point.
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Appendix A
Estimating the Jet Head’s Velocity

The jet head velocity can be found by the requirement of
pressure balance between the shocked jet head material and the
shocked ambient medium (see, e.g., Begelman & Cioffi 1989)

r b r bG + = G +h c P h c P A1j j
2

j,h
2

j ej ej
2

h,ej
2

ej( ) ( ) ( )
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where rh P, , are the dimensionless enthalpy, the density, and
the pressure of the fluid materials in their respective rest
frames. The quantity bG j,h( ) ( bG h,ej( ) ) measures the proper
velocity of the jet (head) relative to the head (BNS merger
ejecta). Assuming both the jet and the ejecta are initially cold,
we can neglect the terms P P,j ej in Equation (A1). Using the
Lorentz transformation we write b b bG = - G Gx,y x y x y( ) ( ) .
Plugging back into Equation (A1), we find

r b
b
b

r b bG - = G -h h1 A2j j j
2

j
2 h

j

2

ej ej ej
2

h ej
2

⎛
⎝⎜

⎞
⎠⎟ ( ) ( )

noting that

p r

p r

bG

G
=

G
=

G

r h c

r h c

L

M c h

L

h

4

4
A3

2
j j j

2 3

2
ej ej ej

2 3

e ej

ej
2

ej ej ej ej

˜
( )

where in the last transition we have plugged in the definition of
L̃ given in Equation (6). Since for b = 0.25ej , we have
G »-h 1.05ej ej

1( ) (where we have used an approximation for the
enthalpy of monoenergetic relativistic gas, introduced by
Mathews 1971, according to which g= + - -h 1 11

3
2( ¯ )

where ḡ is the Lorentz factor of particles in the ejecta and is
of the order of Gej), we can assume to a ~5% accuracy that

»
r

r

G

G
L

h

h

j j j
2

ej ej ej
2

˜ . Plugging back into Equation (A2), we find

b
b
b

b b- = -L 1 A41 2
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leading to
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which is the same as Equation (5).

Appendix B
A Monte Carlo Estimation of the Fraction of Successful

Short GRB Jets

As mentioned in Section 3.1, GRBs with lower luminosities
and shorter durations place the most stringent limits on the
waiting time tw. Here, we complement the qualitative
discussion in Section 3.1 with a Monte Carlo (MC) estimation
of the fraction of events that result in successful sGRBs with a
certain observed γ-ray luminosity LGRB and duration tGRB. For
the purposes of this calculation, we use our general jet breakout
calculation that holds for a generic medium (i.e., not
necessarily static or homologously expanding; see
Section 3.3).

As we are not interested in reproducing the exact distribution
of Swift–BAT bursts in the -L tGRB GRB parameter space, but
rather aim to highlight the effect of the breakout, we employ
the following method. We assume log-uniform priors8 for the
engine time (te) and engine power (Le) distributions and using
Equations (4)–(8) we calculate the luminosity and duration of

each jet that successfully breaks out from the BNS ejecta (i.e.,
with >t te j,b).
Figure 8 shows the density maps of all simulated bursts that

successfully break out from the BNS ejecta, computed for two
values of the waiting time ( =t 1 sw and 0.1s) and using 108

MC realizations for each case. Swift–BAT bursts with
measured redshift (black circles) and GRB170817 (red
symbol) are overplotted. For a given value of tw, bursts with
lower luminosity (or, equivalently, engine power) have longer
breakout times tj,b (see, e.g., Figure 4). Thus, they are less
likely to successfully break out from the BNS merger ejecta
(they require longer engine activity durations corresponding to
a smaller fraction of simulated events). This results in a

Figure 8. Density map of GRB luminosities and durations, as obtained from
108 Monte Carlo realizations, assuming log-uniform priors for the engine time
and engine power, and different waiting times (marked on the plot). Colour
denotes the probability of breakout (in logarithm). Black and red symbols have
the same meaning as in Figure 2. For increasing values of tw, the probability of
obtaining bursts with short duration and low GRB luminosity decreases.

8 The limits on the distributions of te, Le do not affect the probability as long
as (i) we reach sufficiently large te, Le such that the probability of breakout is
essentially 100% and (ii) the adopted ranges are wide enough that all possible
combinations of te, tGRB are realized.
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deficiency of simulated bursts with low LGRB. Furthermore,
longer breakout times mean that a short GRB duration requires
fine-tuning in terms of t te j,b (see Equation (3)). Therefore, the
fraction of successful bursts decreases also with diminish-
ing tGRB.

For increasing values of tw, the probability of obtaining
bursts with short duration and low GRB luminosity decreases
(see the top panel of Figure 8). This effect is largely insensitive
to the assumed priors on the probabilities, as it is due to the low
breakout probability. As an example, for =t 1 sw , there are two
out of 27 bursts that have breakout probabilities of ∼0.01 and
nine out of 27 with breakout probabilities0.1. These are well
below the expected statistical fluctuations from Poisson
statistics, corresponding to a s>5 deviation. Of course, the
exact probabilities depend on the assumed priors, but the
overall conclusion, that low values of tw are required to explain
the observed sGRBs, is largely insensitive to those priors.

We finally note that the top right corners of both panels in
Figure 8 (which for the adopted priors are expected to be the
most populated) are in practice empty of Swift–BAT sGRBs.
This result should not be surprising, as it simply reflects the fact
that the true distributions of the engine properties (i.e., te and
Le) are not expected to be as simple as the statistically
independent log-uniform priors assumed here.
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