
Information Scrambling in Quantum Neural Networks

Huitao Shen,1 Pengfei Zhang,2, 3, 4 Yi-Zhuang You,5 and Hui Zhai2, ∗

1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Institute for Advanced Study, Tsinghua University, Beijing, 100084, China

3Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA
4Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, California 91125, USA

5Department of Physics, University of California, San Diego, California 92093, USA

Quantum neural networks are one of the promising applications for near-term noisy intermediate-scale quan-
tum computers. A quantum neural network distills the information from the input wavefunction into the output
qubits. In this Letter, we show that this process can also be viewed from the opposite direction: the quantum
information in the output qubits is scrambled into the input. This observation motivates us to use the tripartite
information, a quantity recently developed to characterize information scrambling, to diagnose the training dy-
namics of quantum neural networks. We empirically find strong correlation between the dynamical behavior of
the tripartite information and the loss function in the training process, from which we identify that the training
process has two stages for randomly initialized networks. In the early stage, the network performance improves
rapidly and the tripartite information increases linearly with a universal slope, meaning that the neural network
becomes less scrambled than the random unitary. In the latter stage, the network performance improves slowly
while the tripartite information decreases. We present evidences that the network constructs local correlations in
the early stage and learns large-scale structures in the latter stage. We believe this two-stage training dynamics
is universal and is applicable to a wide range of problems. Our work builds bridges between two research sub-
jects of quantum neural networks and information scrambling, which opens up a new perspective to understand
quantum neural networks.

The neural network lies at the heart of the recent blos-
som of deep learning [1]. Mathematically, the neural net-
work is a trainable mapping from the input feature to the
output target. The input feature is typically represented as
a high-dimensional vector. The information is distilled from
the input by the neural network and is encoded into a lower-
dimensional output vector. Recently, the quantum general-
ization of neural networks have been proposed and actively
studied [2–16]. In quantum neural networks, both inputs and
outputs are quantum wavefunctions. The classical mapping is
replaced by a quantum channel composed by unitary evolu-
tions and measurements. The quantum channel is parameter-
ized and trained in classical optimization loops. As a result,
these quantum neural networks are also called “parameterized
quantum circuits”. This hybrid quantum-classical framework
can process both classical and quantum data [17]. It is consid-
ered as one of the most promising applications for near-term
noisy intermediate-scale quantum devices [18]. Moreover, it
has been suggested that these quantum neural networks have
more expressive power than their classical counterparts [14].

Similar to classical neural networks, quantum information
in the input wavefunction is distilled and encoded into the
output. This process is illustrated by the forward arrow in
Fig. 1(a). Intriguingly, for quantum neural networks, this pro-
cess can also be viewed from the opposite direction. By defer-
ring measurements until the end of the quantum channel [19],
the information encoded in the output qubits just before the
measurement is spread into the entire system by unitary trans-
formations, as illustrated by the backward arrow in Fig. 1(a).
Such processes that information is scrambled from a small
system to a large one is now known as the information scram-
bling. The subject of information scrambling is now well-
studied in contexts such as thermalization, chaos and infor-

mation dynamics in quantum many-body systems and even
black-hole physics [20–22]. In particular, the out-of-time-
order correlation function is proposed as a powerful tool to
diagnose information scrambling [23–27].

Quantum neural networks and quantum information scram-
bling so far are two separated research topics. The purpose
of this Letter is to bridge the gap and make their connection:
Information encoding in a quantum neural network and the
information scrambling are the same process viewed from op-
posite directions.

There have been information-theoretic studies of classical
neural networks. For example, the mutual information be-
tween hidden layers’ intermediate results and the input or
the output was studied and a universal training dynamics was
found [28–30]. However, in classical neural networks, the
mapping at every layer is usually not invertible and the in-
formation is generally not preserved. Due to the informa-
tion loss during the process, the mutual information always
decreases with the network depth. In contrast, the unitarity
of the quantum evolution preserves the information perfectly.
The mutual information between the input and the output of
any unitary transformation is always maximal. In order to
obtain nontrivial diagnosis in quantum neural networks, the
key is to consider the mutual information between subsystems
of the input and the output. This naturally leads to the tripar-
tite information—a quantity that characterizes the information
scrambling [31, 32].

In this Letter, we study the training dynamics of quantum
neural networks using the tripartite information. We simul-
taneously monitor both the network performance and the tri-
partite information during training and observe empirical re-
lations between them. Based on the behavior of these two
quantities, the training process can be decomposed into two
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FIG. 1. (a) Schematic of a quantum circuit with brick-wall geome-
try. Here the network has n = 5 qubits and depth l = 4. All these
two-qubit gates form a giant unitary transformation Û that distills
the information from the input qubits and encode it into one output
qubit. The inverse process that the information of one output qubit
is scrambled into input qubits by Û†. A is the output subsystem, C
andD are input subsystems in the definition of the tripartite informa-
tion. (b) Illustration for the operator-state mapping in the definition
of tripartite information. Each leg may represent multiple qubits.

stages. We call the first stage as “local construction stage”,
and the second stage as “global relaxation stage”. In the fol-
lowing, we present detailed analysis of the training dynamics
and provide evidences to support our claim.

Tripartite Information of Quantum Neural Networks. Con-
sider a unitary operator Û in the n-qubit Hilbert space Û =∑2n

i,j=1 Uij |i〉〈j|, where {|i〉, i = 1, . . . , 2n} denotes a com-
plete set of bases in the Hilbert space. It can be regarded
as a tensor with n input and n output legs. As illustrated
in Fig. 1(b), we divide the output legs (qubits) to two non-
overlapping subsytemsA andB and similarly divide the input
legs (qubits) to C and D.

The operator can be mapped to a state in the 2n-qubit
Hilbert space as |U〉 =

∑2n

i,j=1 Uij/
√
2n|i〉|j〉. Since |U〉

is a pure state, the entanglement entropy of its subsystem
is well-defined, e.g. S(A) ≡ −tr(ρA log2 ρA) with ρA ≡
trB,C,D(|U〉〈U |) being the reduced density matrix of subsys-
temA. The mutual information between the output subsystem
A and the input subsystem C is I(A,C) ≡ S(A) + S(C) −
S(A ∪ C). Similar definition can be made for I(A,D) and
I(A,C ∪ D). In this way, the tripartite information of the

unitary Û is defined as [31, 32]

I3(A,C,D) ≡ I(A,C) + I(A,D)− I(A,C ∪D), (1)

Because C ∪ D are all input qubits, it can be proved that
I(A,C∪D) = 2|A|, where |A| is the number of qubits in sub-
systemA. Therefore, it is crucial to consider the mutual infor-
mation between subsystems of both input and output qubits.

The strong subadditivity of the entanglement entropy leads
to I3(A,C,D) ≤ 0 for a unitary gate. The absolute value
of the tripartite information I3(A,C,D) measures how much
information of the subsystemA is shared byC andD simulta-
neously after the unitary transformation, thus quantifies how
scrambled a unitary is. For example, for an identity unitary
transformation Uij = δij , ifA is entirely contained inC orD,
it is straightforward to show that I3(A,C,D) = 0. As an op-
posite limit, for uniform Haar random unitary, local measure-
ments can not extract any information. It follows on average
I(A,C) and I(A,D) are exponentially small and therefore
I3(A,C,D) = −2|A|, which is the maximal absolute value
of I3 [32].

Having introduced the tripartite information for a general
unitary transformation, we now turn to tripartite information
of quantum neural networks. Here we only consider parame-
terized quantum circuits with brick-wall geometry. As shown
in Fig. 1(a), each square represents an independent two-qubit
unitary gate in the SU(4) group, and is parameterized using
its 15 Euler angles [33]. During training, these parameters are
optimized with classical optimization algorithms. All these
two-qubit gates form a quantum circuit represented by a giant
unitary transformation Û .

The datasets to be studied in this work have several impor-
tant features. First, the input wavefunctions all have time re-
versal symmetry, and consequently can be represented as real
vectors. Therefore we restrict two-qubit gates to SO(4) with
6 Euler angles each. Second, the output target is either a real
number within [−1, 1] or a binary label within {0, 1}, only one
readout qubit is needed at the end of the quantum circuit. For
simplicity, we always let n be odd and fix the readout qubit to
be the qubit at the center, i.e. (n+ 1)/2-th qubit.

To define tripartite information, we always fix the output
subsystem A to be the central readout qubit. To respect the
symmetry that A is located at the center, we always choose
C to be the central |C| input qubits in the circuit, and D to
be the remaining input qubits. Note that under this definition,
D in general contains two disconnected regions. In this way,
the tripartite information I3(A,C,D) characterizes how much
information of the output qubit is scrambled on the input side
between the central region C and the outer region D.

Magnetization Learning. The first task is to supervisedly
learn the average magnetization of a many-body wavefunc-
tion of n half spins. The dataset consists of N input-target
pairs {(|Gα〉,Mα

z ), α = 1, . . . , N}, where the input wave-
function |Gα〉 is the ground state wavefunction of the parent
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Hamiltonian with random long-ranged spin-spin interactions:

Ĥ =

n∑

i,j=1

(Jijσ
z
i σ

z
j +Kijσ

x
i σ

x
j ) +

n∑

i=1

(giσ
x
i + hσzi ), (2)

where σµi represents the µ-th Pauli matrix on the i-th qubit,
µ = x, y, z and i = 1, . . . , n. Jij ,Kij , gi and h are all random
numbers. The target is the average magnetization computed
as Mα

z ≡ 〈Gα|M̂z|Gα〉, where the magnetization operator
is M̂z ≡

∑n
i=1 σ

z
i /n. In sampling the random Hamiltonian,

we ensure Jij ≤ 0 such that the ground state wavefunctions
are either “ferromagnetic” or “paramagnetic” measured un-
der Mz . h is a small pinning field randomly drawn from a
distribution with zero mean, which is used to trigger the spon-
taneous Z2 symmetry breaking in the ferromagnetic phase.

The quantum neural network takes the input wavefunction
|Gα〉 and applies the unitary transformation Û on it. The mag-
netization is readout by measuring σx of the central qubit. The
task was such design to challenge the quantum neural network
to learn how to summarize the average magnetization in the
σz-basis and present the result in the σx-basis. This is essen-
tially a regression task and the loss function to be minimized
during training is the absolute error of the magnetization:

L =
1

N

N∑

α=1

∣∣∣〈Gα| Û†σx(n+1)/2Û |Gα〉 −Mα
z

∣∣∣ . (3)

We simulate the above hybrid quantum-classical quantum
neural network training algorithm. The distributions of ran-
dom parameters in the Hamiltonian Eq. (2) are chosen such
that Mα

z in the dataset roughly distributes uniformly within
[−1, 1]. All two-qubit unitaries in the quantum neural net-
work are initialized randomly. The parameters are optimized
with the AMSGrad gradient descent algorithm [34]. The gra-
dients can be computed directly thanks to the linearity of the
quantum channel and are measurable in a realistic quantum
neural network [7, 9, 35].

Two-stage Training. In Fig. 2, we show both the training
and validation loss, along with the tripartite information, as
functions of the training epoch. Both training and validation
losses decrease monotonically when the training proceeds, in-
dicating that the network can learn to compute the magnetiza-
tion reasonably well without overfitting.

At the early stage of the training, the rapid improvement
of the quantum neural network performance, characterized by
a fast decrease of both training and validation losses, is ac-
companied by an almost linear increase of the tripartite in-
formation. In other words, the quantum neural network be-
comes less scrambled compared with the initial random uni-
tary. This training stage terminates when the tripartite infor-
mation reaches its local maximum, as indicated by the vertical
dotted line in Fig. 2. In the next stage, the tripartite informa-
tion decreases again, meaning that the network scrambles in-
formation faster. The network performance also improves, but
with a much slower rate compared with that in the first stage.

We call the training stage before I3 reaching the local maxi-
mum the “local construction stage”, and the latter stage where

(a)

(b)

FIG. 2. (a) Training (solid) and validation (dashed) loss as func-
tions of the training epoch. Different colors represent different ran-
dom initializations. The network has n = 9 qubits and depth
l = 6. The training and validation dataset contains N = 2500 and
500 wavefunction-magnetization pairs respectively, sampled from
random Hamiltonian ensemble, where random parameters are dis-
tributed uniformly within Jij/J ∈ [−1, 0], Kij/J ∈ [−1, 1],
gi/J ∈ [−3, 3] and h/J ∈ [−0.02, 0.02] . J is the energy unit. The
learning rate is λ = 10−2. (b) Tripartite information I3(A,C,D)
as a function of the training epoch for different initializations. Here
and in the rest of the paper the input subsystem size |C| = 5 unless
otherwise specified. The dotted vertical line indicates the boundary
between two training stages.

I3 decreases as the “global relaxation stage”. The reason for
these names will be clear after we study the training dynam-
ics in detail below. This empirical observation that quantum
neural network performance and the information scrambling
is closely correlated is the main finding of this work. This cor-
relation has been observed in most of our numerical tests with
different network initializations, training algorithms, system
sizes and network depths [36].

We also train quantum neural networks for a different task
of learning the winding number of a product quantum state.
Compared with the magnetization task, the input wavefunc-
tion there is a product state and is essentially classical, and
the target is now a binary label instead of a real number. De-
spite the very different nature of this task, the empirical corre-
lation between the neural network performance and the tripar-
tite information still holds. All details of the winding number
learning task are presented in [35].

Local Construction Stage. We claim that during the first
stage when the tripartite information linearly increases, the
quantum neural network learns local features of the input
wavefunction. For the magnetization learning task, for ex-
ample, because of the existence of ferromagnetic domain in
the training wavefunction, there is some probability that any
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(a)

(b)

FIG. 3. (a) Two-point correlation function C2(i) as a function
of the training epoch and the input qubit i. The initialization is
the same as Initialization 1 in Fig. 2. (b) Tripartite information
I3(A,C,D) as a function of the training epoch for different initial-
izations and learning rates. All solid lines are trained under learning
rate λ = 10−2. The transparent orange lines are trained with the
same initialization as the solid orange line, but with learning rates
λ = 6, 8, 12, 14×10−3. The average slope for the four initialization
shown here is plotted in the inset, as a function of the learning rates.
The error bars represent±σ, where σ is the standard deviation of the
fitted slopes for fixed learning rate but different initializations.

single spin is aligned relatively well with remaining spins in
the system. Simply outputting any single-spin magnetization
of the input wave function is actually a reasonable guess, the
training loss can decease rapidly. For such networks where
only local features are extracted, information does not need to
be scrambled into the whole system. Therefore, the tripartite
information increases during this stage.

To support the above claim, we compute two-point correla-
tions between input qubits and the readout qubit:

C2(i) ≡
1

N

N∑

α=1

〈Gα|σzi Û†σx(n+1)/2Û |Gα〉 . (4)

If one views Û as a time evolution operator, then C2(i) is
simply a two-point function between two different places and
two different times. In Fig. 3(a), we plot C2 as a function
of different input qubits and training epochs at early training
stage. As can be seen, they increase rapidly and then saturate
to large values. The increasing correlation indicates that the
quantum neural network is establishing the correspondence
between local input features and the output qubit. During this
stage, the tripartite information also increases, and the two-
point correlation function saturates when the tripartite infor-
mation reaches the maximum. All these observations are con-
sistent with our claim that during the first local construction

(a)

(b)

FIG. 4. (a) Training loss and tripartite information as functions of
the training epoch. The initialization is the same as Initialization 1 in
Fig. 2. (b) Loss function on the artificial test dataset with “ferromag-
netic domain” of size D.

stage, local features are extracted from the input.
Before concluding this section, we point out another inter-

esting observation that the linear increasing slope of the tri-
partite information is nearly a constant that is independent of
the initialization, shown in Fig. 3(b). Of course, this slope de-
pends on the learning rate of the gradient descent algorithm.
As shown in the inset, the I3-independent slope scales linearly
with the learning rate.

Global Relaxation Stage. We now turn to the second stage
where the tripartite information decreases and the training loss
decreases with a much slower rate. We claim that during this
stage, the quantum neural network learns global features of
the wavefunction. To provide evidence for this claim, we
test the quantum neural network in an artificial test dataset
{(|ψαD〉,Mα

z ), α = 1, . . . , ND}, constructed according to the
following process. First, we sample ground states |Gα〉 from
the random Hamiltonian of Eq. (2). Then we apply the fol-
lowing unitary transformation to flip a region of spins:

|ψαD〉 =
∏

n−D+1
2 ≤i≤n+D

2

σxi |Gα〉. (5)

For “paramagnetic” wavefunctions |Gα〉, this transformation
leaves these wavefunctions still “paramagnetic”. However, for
“ferromagnetic” wavefunctions |Gα〉, the transformation cre-
ates a ferromagnetic domain wall of size D, as sketched in
Fig. 4 . In order to accurately compute the magnetization of
such wavefunctions, the quantum neural network must be able
to learn structures larger than the domain wall sizeD. In [35],
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we present an argument on why in this task, long string oper-
ators should exist in Û†σx(n+1)/2Û when it is expanded under
the basis of product of local Pauli matrices.

In Fig. 4(b), we show losses on test datasets with D = 3
and 5, as functions of the training epoch. In the later stage of
the training, although the training loss is decreasing slowly,
the tripartite information can decrease rather drastically, ac-
companied with the rapid decreases of losses on these test
datasets. Moreover, the larger the average domain wall size
is, the later the test loss begins to decease. This means that the
tripartite information deceasing is associated with the perfor-
mance improvement on data with large domain structures. It
naturally explains why the unitary has to become more scram-
bled during this stage. Since such data are rare in the training
dataset, it also explains why the improvement of performance
with respect to training loss is slow.

Discussion and Outlook. In summary, we apply an
information-theoretic measure of the quantum information
scrambling, namely the tripartite information, to diagnose the
learning process of quantum neural networks. We find strong
correlation between this metric and the loss function, and
identify a two-stage training dynamics of quantum neural net-
works. We show that the neural network establishes local cor-
relations in the early stage and builds up global structures in
the later stage. We believe this two-stage scenario is applica-
ble to a wide range of quantum machine learning problems.

We would also like to shed some physical insights onto this
two-stage dynamical process. First, it is reminiscent of the
annealing process. For instance, when cooling a spin sys-
tem towards a ferromagnetic ground state, a fast process is
to reach local equilibrium by forming ferromagnetic domains,
and a slow process is to remove the domain walls and to reach
global equilibrium. Second, the process can also be under-
stood in terms of operator growth in the context of many-body
quantum chaos. In fact, the formation of string operators in
magnetization learning task is already discussed above. The
time scales when the two stages end are direct analogs of the
dissipation time and the scrambling time there, and the latter is
believed to be longer than the former in a generic many-body
system.

Finally we believe that the connection between the informa-
tion scrambling and the quantum neural network is profound.
The connection can find broader applications in quantum ma-
chine learning much beyond the neural network structure dis-
cussed here, including revealing the underlying mechanism
of quantum machine learning and guiding quantum machine
learning architecture design.
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In this supplemental material, we present more results of magnetization learning, results of winding number learning, and
details of gradient calculation and measurement.

I. MAGNETIZATION LEARNING

In this section, we provide more details of magnetization learning and present an argument on why in magnetization learning,
long string operators should exist in Û†σx(n+1)/2Û when it is expanded under the basis of product of local Pauli matrices.

A. Learning Task Details

Figure 1 shows the distribution of magnetization Mα
z in the training and validation datasets. The magnetization distributions

within the training and validation set are similar. There are roughly equal number of wavefuntions that are “ferromagnetic”
(|Mz| ≥ 0.5) or “paramagnetic” (|Mz| < 0.5).

For the AMSGrad algorithm [1], momentum parameters are always β1 = 0.9 and β2 = 0.999 throughout this work.

B. Explicit Construction of Unitary that Learns Magnetization

Generally, it is impossible to find an unitary Û such that

Û†σx(n+1)/2Û = M̂z, (1)

because the L.H.S. and the R.H.S. of the above equality have different eigenvalues. As a result, we can only expect the above
equality to hold at the level of expectation

〈ψ|Û†σx(n+1)/2Û |ψ〉 = 〈ψ|M̂z|ψ〉 , (2)

FIG. 1. Distribution of magnetization Mα
z in the training and validation sets.
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within a subset of states {|ψ〉} that are of interest 1. In this section, we present an explicit construction of Û†σx(n+1)/2Û to the

magnetization learning problem when the subset of states are eigenstates of M̂z ≡
∑n
i=1 σ

z
i /n. The purpose of this construction

is to use an explicit example to demonstrate why it is usually necessary to have string operators in Û†σx(n+1)/2Û for a quantum
neural network that learns magnetization.

Denote the eigenstates of M̂z as |m, i〉 such that M̂z |m, i〉 = m |m, i〉. Here m ∈ [−1, 1] is the eigenvalue, which is also the
average magnetization. i = 1, . . . , dm represents the state in the degenerate eigenspace and dm is the degeneracy. The states
are orthonormal 〈m, i|m′, i′〉 = δmm′δii′ and complete

∑
m dm = 2n. In general dm > 1 unless m = ±1, where all spins are

polarized to the same direction. For degenerate subspaces, note that the choice of |m, i〉 for fixed m but different i is not unique.
In the following, we construct matrix elements of Û†σx(n+1)/2Û under |m, i〉 basis such that

〈m, i|Û†σx(n+1)/2Û |m, i〉 = m, (3)

for all m and i. Consider the two-dimensional subspace spanned by |m, i〉 and |−m, i〉 for all m and i. Within this subspace, we
set

Û†σx(n+1)/2Û = sin θσx + cos θσz, (4)

where θ = arccosm. It is straightforward to verify the constraint Eq. (3) is satisfied and the eigenvalues are ±1. Under this
construction, half of Û†σx(n+1)/2Û ’s eigenvalues are +1 and half are −1. It is then not hard to see that there must exist some Û

such that Û†σx(n+1)/2Û has the matrix elements under |m, i〉 basis as constructed.
Although the above matrix is constructed explicitly on a particular choice of basis, it is straightforward to verify that the

following basis-independent constraint holds

〈m|Û†σx(n+1)/2Û |m〉 = m, (5)

where |m〉 ≡∑dm
i=1 ci |m, i〉 is any linear combination of eigenstates within the same degenerate eigenspace.

∑dm
i=1 |ci|2 = 1.

Because the choice of basis within a degenerate subspace is not unique, our constructions above are not unique either. Nev-
ertheless, generally |m, i〉 and |−m, i〉 are related to each other by a string of local Pauli matrices whose length is of order of
system size n. A particular choice is that |−m, i〉 = ∏n

j=1 σ
x
i |m, i〉 such that the two states are related by a global spin-flip

operator, which is a string operator of length n. Because of Eq. (4), such string operator must exist in Û†σx(n+1)/2Û .

II. WINDING NUMBER LEARNING

In this section we present the results of winding number learning task, where empirical correlation between the neural network
performance and the tripartite information are also found.

Dataset. The input data consist of N product states of n qubits, where each qubit represents a vector on the xz plane of
the Bloch sphere. The target is the winding number of these vectors by treating the n qubits as vectors on an one-dimensional
Brillouin zone [2]. Formally, the dataset consists of N input-target pairs {(|Hα〉, wα), α = 1, . . . , N}, where the input wave-
function |Hα〉 = ∏n

i=1 |ψα(ki)〉, ki = 2π(i − 1)/(n − 1), and ψα(k) is the ground state of the following random two-band
Hamiltonian in one-dimensional Brillouin zone k ∈ [0, 2π) with chiral symmetry σyH(k)σy = −H(k):

H(k) = hx(k)σ
x + hz(k)σ

z. (6)

Here the coefficient hµ(k), µ = x, z is represented in terms of Fourier components up to p-th harmonic:

hµ(k) =

p∑

n=0

cos(nk)cµn +

p∑

n=1

sin(nk)sµn, (7)

where cµn and sµn are random numbers.
The learning target is the discrete version of winding number:

wα =
1

2π

n∑

i=1

Im ln
[
ei(φ

α(ki)−φα(ki+1))
]
, (8)

1 Note that the subset is in general not a subspace as linear combinations in general break the equality Eq. (2).
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FIG. 2. Distribution of winding number wα in the training and validation sets.

where φα(k) is defined as the argument of the following complex number:

eiφ
α(k) =

hαz (k) + ihαx(k)√
hαz (k)

2 + hαx(k)
2
. (9)

The branch cut for the logarithm in Eq. (8) is along the negative direction of the x axis such that φ(k)− φ(k′) ∈ [−π, π).
Task. In the following, we set the harmonic cutoff p = 1. cµn and sµn are sampled from a uniform distribution between

[−1/3, 1/3] for n = 0 and [−1, 1] for n > 0. We then post-select data with winding number w = 0, 1 and discard those with
w = −1. In this way, the task becomes binary classification. The parameters are chosen such that there are roughly equal
number of data with w = 0 and 1, as shown in Fig. 2.

The quantum neural network takes the input wavefunction |Hα〉 and applies the unitary transformation Û on it. The probability
that the wα = 1 is readout by measuring σx of the central qubit:

pα =
1 + 〈Hα| Û†σx(n+1)/2Û |Hα〉

2
. (10)

Therefore, the loss function to be minimized is the negative binary cross-entropy:

L =
1

N

N∑

α=1

[−wα ln pα − (1− wα) ln(1− pα)] . (11)

A more sensible metric is the prediction accuracy. Let the prediction of the winding number be oα ≡ (1 + sgn(pa))/2. The
prediction accuracy is then

A ≡ 1

N

N∑

α=1

|oα − wα|. (12)

Results. In Fig. 3, we present the training loss and accuracy for the winding number learning task, along with the tripartite
information. We confirm the validation loss and accuracy is similar to that in the training set. The network depth l is larger than
that in the magnetization learning as we suspect the winding learning task is more difficult. However, using a shallower network
will not affect the performance significantly.

First, the quantum neural network manages to learn distinguish wavefunctions with winding number w = 0 and 1, as the final
accuracy is more than 90%. Second, the trend of the loss function and the tripartite information is similar to that in magnetization
learning: At the early stage of the training, the loss decreases rapidly and the tripartite information increases. In the later stage,
the tripartite information decreases again. However, we note the tripartite information is more volatile in the later stage than that
in the magnetization learning. We leave the in-depth understanding of this behavior for future research.

Compared with the magnetization task, the input wavefunction here is a product state and is essentially classical, and the target
is now a binary label instead of a real number. Despite the very different nature of this task, the empirical correlation between
the neural network performance and the tripartite information still holds. This suggests the generality of the two-stage training
dynamics of quantum neural networks.
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(a)

(b)

FIG. 3. (a) Training loss (solid) and accuracy (dashed) as functions of the training epoch. Different colors represent different random initializa-
tions. The network has n = 9 qubits and depth l = 8. The training and validation dataset contains N = 3000 and 500 wavefunction-winding
number pairs respectively, sampled from random wavefunctions defined in the main text. The learning rate is λ = 10−2. (b) Tripartite infor-
mation I3(A,C,D) as a function of the training epoch for different initializations. Here the input subsystem size |C| = 5. The dotted vertical
line indicates the boundary between two training stages.

III. GRADIENTS IN QUANTUM NEURAL NETWORKS

In this section, we report the method of computing gradients of quantum neural networks in this work.

A. In Classical Simulations

A schematic of the quantum neural network with n = 5 qubits and depth l = 4 is shown in Fig. 4. The i-th two-qubit gate in
the d-th layer is denoted as Ûdi . Assuming n is odd, here i = 1, 2 . . . (n− 1)/2. It follows the giant unitary Û is the composition
of Ûdi :

Û =




(n−1)/2∏

i=1

Û li


 . . .




(n−1)/2∏

i=1

Û2
i






(n−1)/2∏

i=1

Û1
i


 ≡

l∏

d=1




(n−1)/2∏

i=1

Ûdi


 . (13)

The order of unitaries within a layer does not matter because these unitaries are applied on non-overlapping qubits.
In general, each two-qubit gate Ûdi is a 4× 4 matrix in the SU(4) group and can be parametrized by 15 parameters. However,

as explained in the main text, in this work we restrict Ûdi to SO(4) with 6 Euler angles: Generally, a matrix in SO(4) can be
parametrized by a vector θ with 6 components [3]:

ÛSO(4) = O34(θ1)O23(θ2)O12(θ3)O34(θ4)O23(θ5)O34(θ6). (14)

Here Oij(θ) ≡ exp(θJij) is a rotation in the ij plane: Jij an antisymmetric matrix with ij (ji) element equal to 1 (−1) and all
other elements zero. As a result there are l(n − 1)/2 independent vectors θdi and thus 6l(n − 1)/2 independent parameters in
total to fully describe the quantum neural network.

To be concrete, in the following, we use magnetization learning as the example. The winding number learning is similar. The
loss function in magnetization learning is

L =
1

N

N∑

α=1

∣∣∣〈Gα| Û†σx(n+1)/2Û |Gα〉 −Mα
z

∣∣∣ . (15)
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FIG. 4. Schematic of a quantum circuit with brick-wall geometry. Here the network has n = 5 qubits and depth l = 4. All these two-qubit
gates form a giant unitary transformation Û . The i-th two-qubit gate in the d-th layer is denoted as Ûdi

The gradient of L with respect to θdj,a, a = 1, . . . , 6 is

∂L
∂θdj,a

=
1

N

N∑

α=1

sgn
(
〈Gα| Û†σx(n+1)/2Û |Gα〉 −Mα

z

) ∂ 〈Gα| Û†σx(n+1)/2Û |Gα〉
∂θdj,a

. (16)

The gradient of the network output can be further simplified as

∂

∂θdj,a
〈Gα| Û†σx(n+1)/2Û |Gα〉

= 〈Gα| Û†σx(n+1)/2

∂Û

∂θdj,a
|Gα〉+ h.c.

= 〈Gα| Û†σx(n+1)/2

∂

∂θdj,a




l∏

d=1




(n−1)/2∏

i=1

Ûdi




 |Gα〉+ h.c.

= 〈Gα| Û†σx(n+1)/2




(n−1)/2∏

i=1

Û li


 . . .

(
Ûd1 Û

d
2 . . .

∂Ûdj
∂θdj,a

. . . Ûdn−1
2

)
. . .




(n−1)/2∏

i=1

Û1
i


 |Gα〉+ h.c., (17)

where, ∂Ûdj /∂θ
d
j,a can be further simplified using Eq. (14). For example,

∂Ûdj
∂θdj,4

= O34(θ
d
j,1)O23(θ

d
j,2)O12(θ

d
j,3)J34O34(θ

d
j,4)O23(θ

d
j,5)O34(θ

d
j,6). (18)

Gradients with respect to other components a can be computed in the similar way by adding an additional corresponding J
matrices.

In this work, we directly compute the gradient according to Eqs. (16), (17) and (18) in the classical simulation.

B. In Real Quantum Neural Networks

In a real quantum neural network, this gradient could instead be determined through the measurement of the following Her-
mitian operator:

ĝdj,a = σx(n+1)/2

∂Û

∂θdj,a
Û† + h.c.. (19)

It is straightforward to see that

〈Gα| Û†ĝdj,aU |Gα〉 =
∂

∂θdj,a
〈Gα| Û†σx(n+1)/2Û |Gα〉 .
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However, this operator is generally non-local and is hard to measure.
Alternatively, one could perform the following three measurements [4, 5]:

1. Measure the output of the quantum neural network normally with the original parameter θdi . The result is denoted as
o1 ≡ 〈Gα| Û†σx(n+1)/2Û |Gα〉;

2. Measure the output of the quantum neural network with θdj,a replaced by θdj,a + π/4. The result is denoted as o2;

3. Measure the output of the quantum neural network with θdj,a replaced by θdj,a + π/2. The result is denoted as o3.

It follows the desired gradient is

∂

∂θdj,a
〈Gα| Û†σx(n+1)/2Û |Gα〉 = 2o2 − o1 − o3. (20)

The reason is that if we focus on some specific θdj,a, we have

o1 =
〈
. . . O†p,p+1(θ

d
j,a) . . . Op,p+1(θ

d
j,a) . . .

〉
, (21)

o2 =
〈
. . . O†p,p+1(θ

d
j,a + π/4) . . . Op,p+1(θ

d
j,a + π/4) . . .

〉

=
〈
. . .
[
(1 + Jp,p+1)Op,p+1(θ

d
j,a)
]†
. . . (1 + Jp,p+1)Op,p+1(θ

d
j,a) . . .

〉
/2, (22)

o3 =
〈
. . . O†p,p+1(θ

d
j,a + π/2) . . . Op,p+1(θ

d
j,a + π/2) . . .

〉

=
〈
. . .
[
Jp,p+1Op,p+1(θ

d
j,a)
]†
. . . Jp,p+1Op,p+1(θ

d
j,a) . . .

〉
. (23)

Here p(p+ 1) is the rotation plane associated with a. As a result:

2o2 − o1 − o3 =
〈
. . . O†p,p+1(θ

d
j,a) . . . Jp,p+1Op,p+1(θ

d
j,a) . . .

〉
+ h.c. =

∂

∂θdj,a
〈Gα| Û†σx(n+1)/2Û |Gα〉 . (24)

The above method can be easily generalized to SU(4) as well.
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