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Abstract

We give a general construction of a setup that verifies bulk reconstruction, conservation of

relative entropies, and equality of modular flows between the bulk and the boundary, for

infinite-dimensional systems with operator-pushing. In our setup, a bulk-to-boundary map

is defined at the level of the C∗-algebras of state-independent observables. We then show that

if the boundary dynamics allow for the existence of a KMS state, physically relevant Hilbert

spaces and von Neumann algebras can be constructed directly from our framework. Our con-

struction should be seen as a state-dependent construction of the other side of a wormhole

and clarifies the meaning of black hole reconstruction claims such as the Papadodimas-Raju

proposal. As an illustration, we apply our result to construct a wormhole based on the

HaPPY code, which satisfies all properties of entanglement wedge reconstruction.
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1 Introduction

The AdS/CFT correspondence [38] relates type IIB superstring theory in the bulk of an

asymptotically AdS spacetime to a conformal field theory on its boundary, and is probably

our best understood theory of quantum gravity. In this context, the bulk and boundary

theories are both expected to be described in terms of the algebras of local observables of

the CFT. More precisely, local operators of the emerging d-dimensional bulk theory can be

expressed as operators of a (d−1)-dimensional boundary CFT smeared over the entire spatial

slice or compact spatial subregions [21, 22]. Much progress has been made in recent years

on understanding the semiclassical limit of AdS/CFT with the framework of Quantum Error

Correction [2]. Indeed, local bulk operators on a fixed geometry can be represented on the

boundary in many different ways, and this redundancy makes it natural to view the space of

effective field theory states on a fixed geometry in the bulk as a code subspace of the physical

Hilbert space of states.

Quantum Error Correction has shed light on deep connections between bulk reconstruc-

tion, (relative) entanglement entropy, which can be viewed as an information-theoretic quan-

tity in the scope of quantum error correction, and the bulk geometry via the Ryu-Takayanagi

formula [14, 23, 27, 28, 45]. For finite-dimensional Hilbert spaces, a rigorous synthetic state-

ment was proven in [24], and establishes the equivalence between bulk reconstruction, the

Ryu-Takayanagi formula, and the equivalence between bulk and boundary relative entropies.

This statement is very well-suited to describe some finite-dimensional toy models of AdS/CFT

like finite tensor networks. In particular, the HaPPY code has proven to be a very successful

tensor network model of holographic quantum field theories [43].

However, in a more realistic setting, we expect the bulk and boundary Hilbert spaces to be

infinite-dimensional.1 In [31, 32], the connection between entanglement wedge reconstruction

and relative entropy equivalence between the bulk and the boundary was extended to infinite-

dimensional Hilbert spaces with (infinite-dimensional) von Neumann algebras as operator

algebras acting on them. Under conditions that amount to a bulk equivalent of the Reeh–

Schlieder theorem, [31] showed the equivalence between bulk reconstruction and the equality

of bulk and boundary relative entropies. The Ryu-Takayanagi formula stays out of reach, as

it must rely on regulating schemes in the infinite-dimensional case. This result, which we will

study in detail, works well for simple toy models such as the one studied in [32], but has the

disadvantage of being formulated with a bulk reconstruction at the level of the states, rather

1This claim can be justified in several ways. First, the Reeh-Schlieder theorem, which is at the foundation
of Quantum Field Theory, can only be satisfied in infinite dimensions. Furthermore, some important physical
phenomena, like spontaneous symmetry breaking, can only be accounted for in infinite dimensions. Finally, a
very recent breakthrough [29] shows that not all quantum correlations can be reproduced by finite-dimensional
systems.
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than the operators. This formulation is not enough to study more realistic tensor network

models relevant to holography (such as the HaPPY code), which are much better-suited to

operator pushing than state pushing. Operator pushing means that operators acting on the

bulk algebra are directly mapped to boundary operators, whereas state pushing would map

bulk states to boundary states. If one wants to consider infinite-dimensional counterparts of

such codes, it seems necessary to formulate an infinite-dimensional statement directly at the

level of the operators.

Mathematically, this means that instead of looking at von Neumann algebras of operators

acting on explicit Hilbert spaces, one will instead approach with a broader notion of C∗-

algebras, which allows one to formulate bulk reconstruction directly without any reference to

a Hilbert space.2 In this paper, we prove that if bulk reconstruction is satisfied at the level

of the operators while the dynamics of a physical system satisfy some conditions relevant

to a physical setting, then it is possible to construct physically relevant Hilbert spaces with

a bulk-to-boundary mapping that satisfies bulk reconstruction out of thermal vacua.3 This

theorem will be referred to as Theorem 1.1.

Theorem 1.1. Let Acode and Aphys be two C∗-algebras, and let ι ∶ Acode Ð→ Aphys be an

isometric C∗-homomorphism. Let σt be a strongly continuous one-parameter group of isome-

tries of Aphys such that σt(ι(Acode)) ⊂ ι(Acode), and ω be a KMS state on Aphys with respect

to σt at inverse temperature β. Then there exist Hilbert space representations (πphysω ,Hphys)
and (πcodeω ,Hcode) of Aphys and Acode such that:

1. there exists a Hilbert space isometry u ∶ Hcode Ð→ Hphys such that

∀A ∈ Acode, πphysω (ι(A))u = uπcodeω (A).

2. there exists a vector ∣Ω⟩code ∈ Hcode and a vector ∣Ω⟩phys ∈ Hphys such that

∀A ∈ Aphys, ω(A) = ⟨Ωphys∣πphysω (A) ∣Ωphys⟩ ,
∀A ∈ Acode, ω(ι(A)) = ⟨Ωcode∣πcodeω (A) ∣Ωcode⟩ .

3. if Mcode = πcodeω (Acode)′′ and Mphys = πphysω (Aphys)′′4, then ∣Ωcode⟩ is cyclic and sepa-

rating with respect to Mcode and ∣Ωphys⟩ is cyclic and separating with respect to Mphys.

2It is possible to define von Neumann algebras without the specification of Hilbert spaces. In this case,
where von Neumann algebras are referred to as W ∗-algebras, they are defined as C∗-algebras which possess a
predual. However, this characterization is equivalent to asking that a C∗-algebra already defined on a Hilbert
space is its own bicommutant, and therefore captures more of the Hilbert space structure.

3The notion of thermality will be encoded in the KMS condition throughout the paper. A definition of
the KMS condition is given in Section 3.

4We denote a double commutant of M by M ′′.
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Moreover,

∀O ∈Mcode ∀O′ ∈M ′

code, ∃Õ ∈Mphys ∃Õ′ ∈M ′

phys such that

∀ ∣Θ⟩ ∈ Hcode
⎧⎪⎪⎨⎪⎪⎩

uO ∣Θ⟩ = Õu ∣Θ⟩ , uO′ ∣Θ⟩ = Õ′u ∣Θ⟩ ,
uO† ∣Θ⟩ = Õ†u ∣Θ⟩ , uO′† ∣Θ⟩ = Õ′†u ∣Θ⟩ .

4. if ∣Φ⟩ and ∣Ψ⟩ are two vectors in Hcode with ∣Ψ⟩ cyclic and separating with respect to

Mcode, then u ∣Ψ⟩ is cyclic and separating with respect to Mphys and the equality of the

relative entropy holds:

SΨ∣Φ(Mcode) = SuΨ∣uΦ(Mphys).

5. if ∆Ωphys is the modular operator of ∣Ω⟩phys with respect to Mphys and ∆Ωcode is the

modular operator of ∣Ω⟩code with respect to Mcode, then

∀A ∈ Aphys, πphysω (σt(A)) = ∆
−
it
β

Ωphys
πphysω (A)∆

it
β

Ωphys
,

∀A ∈ Acode, πphysω (σt(ι(A)))u = u∆
−
it
β

Ωcode
πcodeω (A)∆

it
β

Ωcode
.

The idea of the proof of Theorem 1.1 is to show that our conditions satisfy the hypotheses

of the theorem in [31], thereby guaranteeing bulk reconstruction at the Hilbert space level, and

allowing us to conclude that relative entropies within these Hilbert spaces will be conserved.

We also prove that modular evolution will also be conserved.

Our construction crucially depends on the existence of expectation value functionals on

the boundary algebra satisfying the KMS condition, which encodes the notion of thermal

equilibrium. We use these functionals as the building blocks of our Hilbert spaces, whose

elements should be seen as excitations of a thermal bath. We utilize the Gelfand–Naimark–

Segal (GNS) representation to build the Hilbert spaces; in the case of thermal states in

AdS/CFT, the GNS representation reduces to the thermofield double (TFD) construction.

Therefore, one could see our construction as a general machinery to construct the other side

of an AdS/CFT wormhole for a system with operator pushing.

As expected in the full quantum gravity regime, this construction is state-dependent, in

the sense that it entirely relies on our choice of a thermal expectation value functional. In

fact, it has clear links with the Papadodimas-Raju proposal in [40–42]: the commutant of the

von Neumann algebra of boundary observables is calculated in the same way, and corresponds

to the von Neumann algebra of observables on the other boundary.

Theorem 1.1 is introduced with holographic tensor networks such as the HaPPY code in

mind. Therefore, we apply our construction to the HaPPY code as an example and show that
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the infinite dimensional HaPPY code is compatible with entanglement wedge reconstruction

and relative entropy equivalence between the bulk and the boundary. We summarize the

dictionary between our abstract theorem and the HaPPY code in Table 1.

Operator Algebras Tensor Networks (cf. HaPPY code)

bulk C∗-algebra (Acode) local operators on the bulk nodes

boundary C∗-algebra (Aphys) local operators on the boundary nodes

C∗ isometry (ι) operator pushing map

a strongly-continuous 1-parameter group
of isometries of Aphys

(σt) trapeze Hamiltonian evolution

a KMS state (ω) a thermal vacuum

commutant of the bulk vN algebra (M′

code) the other side of the wormhole

commutant of the boundary vN algebra (M′

phys) the other boundary

Table 1: The dictionary between the operator algebra, used in the formalism constructed
with Theorem 1.1, and holographic tensor networks such as the infinite-dimensional analog
of the HaPPY code.

An outline of our proof of Theorem 1.1 is the following.

• We construct the GNS representations of Acode and Aphys with respect to a KMS (ther-

mal equilibrium) state, and prove that the map ι induces a Hilbert space isometry

between them. This provides the first and second point of Theorem 1.1.

• We carefully check that the hypotheses of the theorem in [31] are verified by the induced

von Neumann algebras and their commutants in order to prove the third and fourth

points of Theorem 1.1. In particular, we use Kaplansky’s density theorem [33] and

the Banach-Alaoglu theorem [1, 5] to show bulk reconstruction, and Tomita–Takesaki

theory to extend it to the commutant von Neumann algebras. We also use the fact that

KMS states are cyclic and separating for both C∗-algebras and von Neumann algebras

in their GNS representations.

• We use Kaplansky’s density theorem and the uniqueness part of the Tomita–Takesaki

theorem [47] to prove that the modular flow of the vector representative of our KMS

state coincides with the extension of the initial C∗-algebra flow to the whole von Neu-

mann algebra. This allows us to prove the fifth and last point of Theorem 1.1.

The rest of this paper is organized as follows. In Section 2, we highlight the differences

between C∗-algebras and von Neumann algebras and discuss what they mean in the physical
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context in terms of state-dependence. Then, in Section 3, we introduce necessary notions

relevant to Theorem 1.1 borrowed from algebraic quantum field theory, with a particular

emphasis on state (in)dependence. In Section 4, we summarize the proven results on infinite-

dimensional entanglement wedge reconstruction in [31] and discuss their applicability in our

context. With this in mind, we then state and prove Theorem 1.1 in Section 5 and discuss its

physical implications. For the special cases when the Hilbert spaces are separable, we discuss

its simplifications in Section 6 and the validity of using the Theorem in [31] in our more general

context. We exhibit the intricate link between our findings and both the thermofield double

construction and the Papadodimas-Raju proposal in Section 7, and highlight the importance

of the state-dependence. We illustrate the physical significance of our construction by using

our theorem to show that bulk relative entropy equals boundary relative entropy in an infinite-

dimensional wormhole analogue of the HaPPY code in Section 8. We discuss the physical

implications of our result in Section 9 and give possible applications, including links with

the firewall paradox, superselection theory and a potentially more state-independent way of

defining relative entropy.

2 Analysis in infinite dimensions

Our setup will make a heavy use of infinite-dimensional operator theory. Here, we provide

a lightning review of the essential operator-algebraic concepts underlying our constructions,

such as topologies on functional spaces, C∗-algebras, and von Neumann algebras.

2.1 Topolgies on B(H)

Let B(H) denote the algebra of bounded operators on H. Then, a topology on B(H) is a

family of subsets of B(H), which are by definition open. This family must contain both the

empty set ∅ and B(H) itself, and be stable under finite intersections and arbitrary unions.

There exist various notions for a topology on B(H) and we list the ones necessary for the

purpose of this paper in Definitions 2.1 to 2.3 following the notation of Jones [30] closely. In

this section, O is an operator in B(H) and ∣ξi⟩ , ∣ηi⟩ are states in H.

Definition 2.1. The norm (or uniform) topology is induced by the operator norm ∣∣O∣∣. It

is the smallest topology that contains the following basic neighborhoods

N (O, ε) = {P ∈ B(H) ∶ ∣∣P −O∣∣ < ε}.
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Definition 2.2. The strong operator topology is the smallest topology that contains the

following basic neighborhoods

N (O, ∣ξ1⟩ , ∣ξ2⟩ , . . . , ∣ξn⟩ , ε) = {P ∈ B(H) ∶ ∣∣(P −O) ∣ξi⟩ ∣∣ < ε ∀i ∈ {1,2,⋯, n}}.

The strong operator topology is the weakest topology on B(H) mapping Eψ ∶ B(H) → H
where Eψ(O) = O ∣ψ⟩ is continuous for all ∣ψ⟩ ∈ H. A sequence of bounded operators {On}
converges strongly if limn→∞On ∣ψ⟩ converges for all ∣ψ⟩ ∈ H.

Definition 2.3. The weak operator topology is the smallest topology that contains the fol-

lowing basic neighborhoods

N (O, ∣ξ1⟩ , . . . , ∣ξn⟩ , ∣η1⟩ , . . . , ∣ηn⟩ , ε) = {P ∈ B(H) ∶ ∣ ⟨ηi∣(P −O)∣ξi⟩ ∣ < ε ∀i ∈ {1,2,⋯, n}}.

The weak operator topology is then the weakest topology with a map Eψ,` ∶ B(H) → C
given by Eψ,`(O) = `(O ∣ψ⟩) that is continuous for all ∣ψ⟩ ∈ H where ` ∈ H∗ and H∗ is the dual

of H. A sequence of bounded operators {On} converges weakly if limn→∞ ⟨χ∣On∣ψ⟩ converges

for all ∣χ⟩ , ∣ψ⟩ ∈ H.

Moreover, we cite the following theorem of Banach and Alaoglu, which will be useful in

the proof of Theorem 1.1.

Theorem 2.4 (Banach-Alaoglu [1, 5]). The unit ball of B(H) is compact for the weak operator

topology.

We will also use the following theorem, which will be helpful when we discuss separability

issues:

Theorem 2.5 (Takesaki [46]). If H is separable (i.e. H has a dense countable part), bounded

parts of B(H) have a countable basis of open sets for the strong and weak operator topologies.

These topologies have some relations: norm convergence implies strong convergence,

which in turn implies weak convergence. It is important to note that the weak and strong

topologies are very different from the norm topology. In particular, they are not metrizable:

no distance can be associated to them. As a result, their definitions involve explicitly the

Hilbert space, unlike the one of the norm topology. As we will see, this fact explains the

structural differences between the world of C∗-algebras and the one of von Neumann algebras.
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2.2 C∗-algebras

As we want our framework to be well-suited to operator pushing, we need to introduce one

of the two main objects of the theory of operator algebras: C∗-algebras. We follow notations

from [46] and [7] closely. A C∗-algebra can be defined as following.

Definition 2.6. A C∗-algebra is a complex algebra A equipped with a norm ∥.∥ with respect

to which it is complete, such that:

∀A,B ∈ A, ∥AB∥ ≤ ∥A∥∥B∥,

and an involution ∗ such that

∀A,B ∈ A,∀λ ∈ C, (A + λB)∗ = A∗ + λB∗,

∀A ∈ A, ∥A∗A∥ = ∥A∥2.

Note that in the definition of a C∗-algebra, no explicit mention is made of an action

on a Hilbert space. The only structure needed is the norm, the algebra structure, and the

involution. This makes C∗-algebras state-independent objects. As such, they will be very

well-adapted to study operator pushing in infinite tensor networks.

We also give a very important density theorem (this time for a C∗-algebra acting on a

Hilbert space):

Theorem 2.7 (Kaplansky [33]). Let A be a C∗-algebra acting on a Hilbert space, and M be

its strong operator closure. Then, the unit ball of A is dense in the unit ball of M for the

strong operator topology.

2.3 Von Neumann algebras

Another important object to consider in our setting will be von Neumann algebras. As we

shall see, it will arise naturally once our Hilbert space is constructed, and we will see it as a

state-dependent object.

Definition 2.8. A ⋆-algebra is an algebra of operators that is closed under hermitian con-

jugation.

Theorem 2.9 ([30], page 12). Let M be a ⋆-subalgebra of B(H) that contains the identity

operator. Let M ′′ be the double commutant of M, i.e. the algebras of operators that commute

with all operators that commute with all operators of M . Then M ′′ = M , where the closure

is taken for the strong operator topology.
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The following theorem is at the root of von Neumann algebra theory:

Theorem 2.10 ([30], page 12). If M is a ⋆-subalgebra of B(H) that contains the identity

operator, then the following statements are equivalent:

• M =M ′′,

• M is closed in the strong operator topology,

• M is closed in the weak operator topology.

Definition 2.11. A von Neumann algebra is an algebra that satisfies the statements in

Theorem 2.10.

Note that given a ⋆-subalgebra of B(H) containing the identity, like, in particular, a C∗-

algebra acting on a Hilbert space, we can generate a von Neumann algebra by taking either

the double commutant or the closure in the strong or weak topology. This is how we shall

proceed in the next section in order to get von Neumann algebras out of GNS representations

of C∗-algebras.

Unlike in the case of a C∗-algebra, these three characterizations (bicommutant, and strong

and weak closures), are heavily dependent on the underlying Hilbert space structure, as strong

and weak topologies are not metrizable and hence cannot be blind to the Hilbert space. As

we shall see later, the construction of our Hilbert spaces will heavily depend on a choice of

state. It follows that the structure of the von Neumann algebras on this Hilbert space will

also heavily depend on this choice. It is in that sense that we will refer to von Neumann

algebras as state-dependent objects.

3 Tools from algebraic quantum field theory

In a holographic quantum error correcting code, a code subspace is the space of states of a

quantum field theory in curved spacetime on a fixed background geometry. As such, in the

semiclassical regime, we expect bulk physics to be described by the tools developed since the

1960s in algebraic quantum field theory [19]. We introduce some of these notions in a physics-

friendly way relevant to our concerns (Theorem 1.1 and its proof), with a particular emphasis

on state dependence. We write in Theorem 3.10 a modified version of the Tomita–Takesaki

theorem in [47] which incorporates thermality.
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3.1 C∗-algebras, von Neumann algebras, and state dependence

In algebraic quantum field theory, the basic object of interest is a net of algebras of ob-

servables.5 More precisely, to each open region of spacetime, one can associate an algebra

of bounded operators, which is seen as the algebra of observables of the theory. One then

requires that algebras of regions included in each other are included in each other, which

means that they will inherit a net structure. The complexity of the theory is encoded in the

structure of these inclusions, rather than the algebras themselves – indeed, at least in the

von Neumann context, local algebras all are hyperfinite factors of type III1.

Usually, in algebraic quantum field theory, the local algebras are required to be C∗-

algebras. One should remember that a C∗-algebra can be defined and constructed without

ever resorting to a Hilbert space. In fact, this apparently innocent fact will turn out to be

helpful in the case of the HaPPY code in Section 8.

With this in mind, we can naturally regard C∗-algebras as algebras of state-independent

observables. This brings advantages as C∗-algebras are easier to construct, but it is not

enough for considering holographic theories to omit entirely the aspect of von Neumamm

algebras. Importantly, von Neumann algebras are defined through either a completion under

strong or weak topologies, or a bicommutant, which capture the properties of the underlying

Hilbert space representations. It follows that a von Neumann algebra intrinsically depends

on the Hilbert space it acts on: it is a state-dependent object. Ultimately, we expect entan-

glement wedge reconstruction to exhibit at least some state-dependent features, which is the

key reason why we expect von Neumann algebras to be the right objects to look at in the

full quantum gravity regime. Hence we will see our C∗-algebras as a first step towards the

von Neumann algebras.

3.2 The GNS representation

For quantum mechanical systems we naturally represent quantum states as density matrices.

This is innately from the perspective quantum mechanics from finite-dimensional Hilbert

spaces, where the trace is easy to be manipulated. For infinite-dimensional Hilbert spaces,

it is more natural to present the state in a more abstract manner, as an expectation value

functional on the algebra of observables. This is equivalent to the density matrix picture

in finite-dimensional cases, as a density matrix ρ is uniquely determined by the associated

expectation value functional A↦ Tr(ρA). More rigorously, one can define as the following.

Definition 3.1. Let A be a C∗-algebra. A state on A is a linear functional ω on A such

that for A ∈ A, ω(A†A) is a nonnegative real number, and ω(Id) = 1.

5See Section 6 for the definition of net and details.
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This definition enables us to define a state on an algebra of observables without having a

Hilbert space. In order to build a Hilbert space directly from the C∗-algebra, we can use the

Gelfand-Naimark-Segal (GNS) representation, following [44]. Given a state ω, an intuitive

idea to define the inner product is to take

⟨B,A⟩ ∶= ω(B†A) (3.1)

for A and B in A. However, this may not be possible as there can exist observables for which

ω(A†A) = 0. Instead, one needs to consider the quotient A/I where

I ∶= {A ∈ A, ω(A†A) = 0}. (3.2)

This gets rid of the degeneracy and endows it with the structure of a Hilbert space onto

which A acts by left multiplication. Utilizing these observations, the GNS representation can

be presented more precisely as the following.

Theorem 3.2 ([44]). Let A be a C∗-algebra and ω a state on A. The space Hω ∶= A/I
is a Hilbert space for the inner product (3.1), on which A acts by left multiplication. This

representation is called the GNS representation of A.

A key feature of the GNS representation πω of a state ω is that it purifies ω into the

vector state ∣[Id]⟩ = ∣Ω⟩. Indeed, for all A ∈ A, the vector state is given by

ω(A) = ⟨[Id]∣πω(A) ∣[Id]⟩ . (3.3)

We shall see that this purification is nothing more than a generalization of the thermofield

double construction, which is well-known by quantum information theorists. We will discuss

this correspondence in more detail in section 7.

The vector state ∣Ω⟩ has a nice property with respect to the C∗-algebra A: it is cyclic.

It means that the action of A on the state spans a norm-dense subset of the Hilbert space.

Note that it is straightforward that this cyclic property will extend to the bicommutant of

the C∗-algebra on the GNS Hilbert space, which is the von Neumann algebra it generates.

3.3 KMS states

We now restrict our attention to a particular set of states, called KMS states. KMS states

characterize thermal equilibrium with respect to a time evolution. In order to give some

intuition, let us start with an n-dimensional system, the algebraAn of n-dimensional matrices,
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and a Hamiltonian H which generates the time evolution:

σt(A) ∶= eiHtAe−iHt. (3.4)

Then the Gibbs state

ρ ∶= e−βH

Tr(e−βH) (3.5)

is the unique state representing thermal equilibrium at inverse temperature β. However, in

infinite dimensions, traces are not always well-defined, which is why the Gibbs condition is

no longer available.

One can prove that in finite dimensions, the Gibbs condition is equivalent to the more

abstract KMS condition, which holds up to the infinite-dimensional case:

Definition 3.3. Let A be a C∗-algebra, ω a state on A, and σt be a one-parameter group

of automorphisms of A. For β > 0, ω is a KMSβ state if for A and B in A, there exists a

function FAB, analytic on the strip {0 < Imz < β} and continuous on its closure, such that

FAB(t) = ω(Aσt(B)) and FAB(t + iβ) = ω(σt(A)B).

For finite-dimensional settings, KMS states are naturally expected to exist. However, it

is important to note that KMS states do not necessarily exist for all temperatures in the

infinite-dimensional case, and are not necessarily unique when they exist. A change in the

structure of the space of KMS states, which may or may not be unique, when lowering the

temperature, is called spontaneous symmetry breaking, or a phase transition.

In this paper, KMS states and their GNS representations exhibit various interesting prop-

erties for our purposes in understanding holographic constructions. First, the GNS represen-

tation allows one to represent a KMS (thermal) state as a vector state on a Hilbert space,

which deeply resonates with the thermofield double (TFD) constructions used in AdS/CFT

[25]. We discuss this in more detail in Section 7. Second, the vector representative ∣Ψ⟩ of a

KMS state in its GNS representation is a separating vector for the C∗-algebra A: if A ∈ A
satistfies A ∣Ψ⟩ = 0, then A = 0.6 In fact, we get something even more broad: this property

holds for the whole von Neumann algebra closure A′′. This is a very strong property which

will turn out to be a key point in the proof of Theorem 1.1. In particular, it will allow us to

derive the bulk-boundary entropy relations.

6Recall that cyclic and separating vectors play an important role for von Neumann algebras and that
they were one of the most important ingredients in [31] for obtaining an exact correspondence between
entanglement wedge reconstruction and relative entropy conservation.
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3.4 Tomita–Takesaki theory

When mention is made of thermality and the KMS condition in operator algebras, the crucial

underlying tool is Tomita–Takesaki theory, which we now introduce following [3, 30, 48].

Definition 3.4. A vector ∣Ψ⟩ ∈ H is said to be cyclic with respect to a von Neumann algebra

M when the set of vectors O ∣Ψ⟩ for O ∈M is dense in H.

Definition 3.5. A vector ∣Ψ⟩ ∈ H is separating with respect to a von Neumann algebra M

when zero is the only operator in M that annihilates ∣Ψ⟩. That is, O ∣Ψ⟩ = 0 Ô⇒ O = 0 for

O ∈M .

Given a von Neumann algebra M ⊂ B(H) and a vector ∣Ψ⟩ ∈ H, we may define a map

eΨ ∶M → H ∶ O ↦ O ∣Ψ⟩. H is the closure of the image of eΨ iff ∣Ψ⟩ is cyclic with respect to

M . Also, ker eΨ = {0}7 iff ∣Ψ⟩ is separating with respect to M .

Definition 3.6. Let ∣Ψ⟩ , ∣Φ⟩ ∈ H and M be a von Neumann algebra. The relative Tomita

operator is the operator SΨ∣Φ that acts as

SΨ∣Φ ∣x⟩ ∶= ∣y⟩

for any sequence {On} ∈M such that the limits ∣x⟩ = limn→∞On ∣Ψ⟩ and ∣y⟩ = limn→∞O†
n ∣Φ⟩

both exist.

The relative Tomita operator SΨ∣Φ is well-defined on a dense subset of the Hilbert space

if and only if ∣Ψ⟩ is cyclic and separating with respect to M .8 Note that SΨ∣Φ is a closed

operator.

Theorem 3.7 ([30], page 94). Let ∣Ψ⟩ , ∣Φ⟩ ∈ H both be cyclic and separating with respect to

a von Neumann algebra M . Let SΨ∣Φ and S′
Ψ∣Φ

be the relative Tomita operators defined with

respect to M and its commutant M ′ respectively. Then

S†
Ψ∣Φ

= S′Ψ∣Φ, S
′ †
Ψ∣Φ

= SΨ∣Φ. (3.6)

Definition 3.8. Let SΨ∣Φ be a relative Tomita operator and ∣Ψ⟩ ∈ H be cyclic and separating

with respect to a von Neumann algebra M . The relative modular operator is

∆Ψ∣Φ ∶= S†
Ψ∣Φ
SΨ∣Φ.

7In other words, eΨ is an injective map.
8SΨ∣Φ is well-defined if and only if limn→∞On ∣Ψ⟩ = 0 Ô⇒ limn→∞O

†
n ∣Ψ⟩ = 0. See footnote 14 of [48] for

a proof of why this is true. SΨ∣Φ is densely defined because ∣Ψ⟩ is cyclic with respect to M .
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If ∣Φ⟩ is replaced with O′ ∣Φ⟩, where O′ ∈M ′ is unitary, then the relative modular operator

remains unchanged [48]:

∆Ψ∣Φ = ∆Ψ∣O′Φ. (3.7)

Definition 3.9. Let M be a von Neumann algebra on H and ∣Ψ⟩ be a cyclic and separating

vector for M . The Tomita operator SΨ is

SΨ ∶= SΨ∣Ψ,

where SΨ∣Ψ is the relative modular operator defined with respect to M . The modular operator

∆Ψ = S†
ΨSΨ and the antiunitary operator JΨ are the operators that appear in the polar

decomposition of SΨ such that

SΨ = JΨ∆
1/2
Ψ .

Theorem 3.10 (modified Tomita–Takesaki [47]). Let M be a von Neumann algebra on H
and let ∣Ψ⟩ be a cyclic and separating vector for M , let β ∈ R. Then

• JΨMJΨ =M ′.

• ∆
−
it
β

Ψ M∆
it
β

Ψ =M ∀t ∈ R.

Moreover, A z→ ∆
−
it
β

Ψ M∆
it
β

Ψ defines the only one-parameter group of automorphisms of M

with respect to which Ψ is a KMSβ state.

One of the findings of [28] is that bulk modular flow is dual to boundary modular flow.

We will also show this in our setup, as well as the fact that modular evolution at a given

temperature will be directly traced back to Hamiltonian evolution.

3.5 Araki’s relative entropy

Previous works on entanglement entropy and AdS/CFT [8, 10, 14, 28] have used S(ρ, σ) =
Tr (ρ log ρ−ρ logσ) as the definition of relative entropy. However, there exists a more powerful

definition, due to Araki, which involves Tomita–Takesaki theory, and can be extended to

general von Neumann algebras. We use this definition in the rest of the paper. At the end,

we briefly discuss an even broader definition of relative entropies, which could directly be

used for states on C∗-algebras.

Definition 3.11 ([3]). Let ∣Ψ⟩ , ∣Φ⟩ ∈ H and ∣Ψ⟩ be cyclic and separating with respect to a

von Neumann algebra M . Let ∆Ψ∣Φ be the relative modular operator. The relative entropy
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with respect to M of ∣Ψ⟩ is

SΨ∣Φ(M) = − ⟨Ψ∣ log ∆Ψ∣Φ∣Ψ⟩ .

The relative entropy SΨ∣Φ(M) is nonnegative and it vanishes precisely when ∣Φ⟩ = O′ ∣Ψ⟩
for a unitary O′ ∈M ′.

4 Infinite-dimensional entanglement wedge reconstruc-

tion

Utilizing notions of von Neumann algebras and Araki’s formalism of relative entropy, in

this section we introduce the current knowledge about entanglement wedge reconstruction in

AdS/CFT and discuss new insights and implications from our Theorem 1.1.

In the semiclassical limit where the bulk theory can be approximated as a quantum

field theory on a fixed curved spacetime background, the bulk-to-boundary map can be

described as a quantum error correcting code [2]. In this context, it has been shown for

finite-dimensional Hilbert spaces that exact bulk reconstruction is equivalent to the Ryu–

Takayanagi formula, the conservation of relative entropies, and the conservation of modular

flow between the bulk and the boundary. In particular, the equivalence has been proven

rigorously by Harlow [24] for any finite-dimensional system. In infinite dimensions, we expect

the Ryu–Takayanagi formula to have to be regulated in some way, but at least it was proven

in [31] that the equivalence between bulk reconstruction and the conservation of relative

entropies still holds under some additional assumptions, which we recite below.

Theorem 4.1 (Kang-Kolchmeyer [31]). Let u ∶ Hcode → Hphys be an isometry between two

Hilbert spaces. Let Mcode and Mphys be von Neumann algebras on Hcode and Hphys respectively.

Let M ′

code and M ′

phys respectively be the commutants of Mcode and Mphys. Suppose that the set

of cyclic and separating vectors with respect to Mcode is dense in Hcode. Also suppose that if

∣Ψ⟩ ∈ Hcode is cyclic and separating with respect to Mcode, then u ∣Ψ⟩ is cyclic and separating

with respect to Mphys. Then the following two statements are equivalent:

1. Bulk reconstruction

∀O ∈Mcode ∀O′ ∈M ′

code, ∃Õ ∈Mphys ∃Õ′ ∈M ′

phys such that

∀ ∣Θ⟩ ∈ Hcode
⎧⎪⎪⎨⎪⎪⎩

uO ∣Θ⟩ = Õu ∣Θ⟩ , uO′ ∣Θ⟩ = Õ′u ∣Θ⟩ ,
uO† ∣Θ⟩ = Õ†u ∣Θ⟩ , uO′† ∣Θ⟩ = Õ′†u ∣Θ⟩ .
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2. Boundary relative entropy equals bulk relative entropy

For any ∣Ψ⟩, ∣Φ⟩ ∈ Hcode with ∣Ψ⟩ cyclic and separating with respect to Mcode,

SΨ∣Φ(Mcode) = SuΨ∣uΦ(Mphys), and SΨ∣Φ(M ′

code) = SuΨ∣uΦ(M ′

phys),
where SΨ∣Φ(M) is the relative entropy.

In [31], it was further proven that the conservation of relative entropies follows from bulk

reconstruction under milder assumptions:

Theorem 4.2 (Kang-Kolchmeyer [31]). Let u ∶ Hcode → Hphys be an isometry between two

Hilbert spaces. Let Mcode and Mphys be von Neumann algebras on Hcode and Hphys respectively.

Let M ′

code and M ′

phys respectively be the commutants of Mcode and Mphys.

Suppose that

• There exists some state ∣Ω⟩ ∈ Hcode such that u ∣Ω⟩ ∈ Hphys is cyclic and separating with

respect to Mphys.

• ∀O ∈Mcode ∀O′ ∈M ′

code, ∃Õ ∈Mphys ∃Õ′ ∈M ′

phys such that

∀ ∣Θ⟩ ∈ Hcode
⎧⎪⎪⎨⎪⎪⎩

uO ∣Θ⟩ = Õu ∣Θ⟩ , uO′ ∣Θ⟩ = Õ′u ∣Θ⟩ ,
uO† ∣Θ⟩ = Õ†u ∣Θ⟩ , uO′† ∣Θ⟩ = Õ′†u ∣Θ⟩ .

Then, for any ∣Ψ⟩, ∣Φ⟩ ∈ Hcode with ∣Ψ⟩ cyclic and separating with respect to Mcode,

• u ∣Ψ⟩ is cyclic and separating with respect to Mphys and M ′

phys,

• SΨ∣Φ(Mcode) = SuΨ∣uΦ(Mphys), SΨ∣Φ(M ′

code) = SuΨ∣uΦ(M ′

phys),

where SΨ∣Φ(M) is the relative entropy.

This result is a suitable generalization of exact relations between bulk reconstruction and

relative entropy equivalence between bulk and boundary in the finite-dimensional case to

any (finite or infinite) von Neumann algebras without strong assumptions, but it still has

limitations: it heavily relies on the existence of the isometry map u between Hilbert spaces. In

holographic codes defined by operator pushing rather than state pushing, such as the HaPPY

code, it is actually difficult to directly construct such a map u between Hilbert spaces. In this

paper, we will develop a machinery to construct Hilbert spaces and an isometry u directly out

of a thermal state and an operator pushing map, and show that this construction is enough

to deduce both bulk reconstruction and the conservation of relative entropies, hence giving

a more general realization of the statement of Theorem 4.2.
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5 Main theorem and proof

In this section, we state our main theorem (see Theorem 1.1) and motivate its setup along

with its proof.

5.1 The main theorem and its physical implications

Our main theorem, given by Theorem 1.1, starts from having the bulk with its operator

algebra as a C∗-algebra, but not necessarily having a Hilbert space. The theorem then

provides as a result a Hilbert space construction, its vector states on the bulk, and the

relative entropy equivalence between the boundary and the bulk. In short, this relaxes the

conditions required for the entanglement wedge reconstruction from Theorems 4.1 and 4.2

from [31] and emphasizes the role of state-dependence.

Theorem 1.1. Let Acode and Aphys be two C∗-algebras, and let ι ∶ Acode Ð→ Aphys be an

isometric C∗-homomorphism. Let σt be a strongly continuous one-parameter group of isome-

tries of Aphys such that σt(ι(Acode)) ⊂ ι(Acode), and ω be a KMS state on Aphys with respect

to σt at inverse temperature β. Then there exist Hilbert space representations (πphysω ,Hphys)
and (πcodeω ,Hcode) of Aphys and Acode such that:

1. there exists a Hilbert space isometry u ∶ Hcode Ð→ Hphys such that

∀A ∈ Acode, πphysω (ι(A))u = uπcodeω (A).

2. there exists a vector ∣Ω⟩code ∈ Hcode and a vector ∣Ω⟩phys ∈ Hphys such that

∀A ∈ Aphys, ω(A) = ⟨Ωphys∣πphysω (A) ∣Ωphys⟩ ,
∀A ∈ Acode, ω(ι(A)) = ⟨Ωcode∣πcodeω (A) ∣Ωcode⟩ .

3. if Mcode = πcodeω (Acode)′′ and Mphys = πphysω (Aphys)′′, then ∣Ωcode⟩ is cyclic and separat-

ing with respect to Mcode and ∣Ωphys⟩ is cyclic and separating with respect to Mphys.

Moreover,

∀O ∈Mcode ∀O′ ∈M ′

code, ∃Õ ∈Mphys ∃Õ′ ∈M ′

phys such that

∀ ∣Θ⟩ ∈ Hcode
⎧⎪⎪⎨⎪⎪⎩

uO ∣Θ⟩ = Õu ∣Θ⟩ , uO′ ∣Θ⟩ = Õ′u ∣Θ⟩ ,
uO† ∣Θ⟩ = Õ†u ∣Θ⟩ , uO′† ∣Θ⟩ = Õ′†u ∣Θ⟩ .

4. if ∣Φ⟩ and ∣Ψ⟩ are two vectors in Hcode with ∣Ψ⟩ cyclic and separating with respect to
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Mcode, then u ∣Ψ⟩ is cyclic and separating with respect to Mphys and the equality of the

relative entropy holds:

SΨ∣Φ(Mcode) = SuΨ∣uΦ(Mphys).

5. if ∆Ωphys is the modular operator of ∣Ω⟩phys with respect to Mphys and ∆Ωcode is the

modular operator of ∣Ω⟩code with respect to Mcode, then

∀A ∈ Aphys, πphysω (σt(A)) = ∆
−
it
β

Ωphys
πphysω (A)∆

it
β

Ωphys
,

∀A ∈ Acode, πphysω (σt(ι(A)))u = u∆
−
it
β

Ωcode
πcodeω (A)∆

it
β

Ωcode
.

This result may seem complicated and unintuitive but it has a straightforward implication

in physics. The first point of Theorem 1.1 means that the C∗-isometry ι is implementable

in the considered representations. It follows that there exists a unitary operator which

implements it at the level of the Hilbert spaces. The second point of Theorem 1.1 shows that

the constructed representations transform our KMS state and its pullback into vector states.

The third point of Theorem 1.1 shows that within this framework, bulk reconstruction is

verified while the fourth point shows the conservation of relative entropies. Finally, the last

point of Theorem 1.1 relates bulk and boundary modular flows, in the spirit of JLMS [28].

Unlike its previous analogues, our result does not assume any pre-existing map between

Hilbert spaces, and allows us to work directly at the level of the operators. Its physical

meaning is also enhanced, as it makes a natural use of the boundary dynamics to construct

the Hilbert spaces and von Neumann algebras. The boundary Hilbert spaces of states should

be thought of as excitations of a thermal bath represented by the KMS state. The bulk

Hilbert space can also have a similar interpretation, as the last item shows that the bulk and

boundary modular flows coincide, therefore allowing ∣Ω⟩code, which is thermal with respect

to its bulk modular flow, to be thought of as thermal with respect to the flow of the system

as a whole.

Note that a crucial assumption is the existence of a KMS state, which is not shown to

be guaranteed for general quantum dynamical systems. However, it seems natural in physics

that the dynamics are constructed is such a way that thermal equilibrium is possible at any

finite temperature. In the particular case of trapeze dynamics on an infinite-dimensional

HaPPY code which we will study later, the existence of such a state will come about quite

naturally.

A physically more interesting question is whether the boundary KMS state is unique.

In a theory with broken symmetry, we expect to have more than one choice of KMS state,

yielding inequivalent GNS representations. However, our construction arbitrarily picks one

of these representations, making the reasoning state-dependent from the very beginning. As
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we will only restrict ourselves to the setting of exact entanglement wedge reconstruction, this

point will not need to be mentioned. However, in the full quantum gravity regime, we expect

different Hilbert spaces, maybe corresponding to different entanglement wedges, to come into

play simultaneously in an ensemble superposition. Such a picture is likely to be crucial for

the emergence of gravity and the resolution of the black hole information paradox. We will

return to this fascinating problem at the end of this paper and, hopefully, in future work.

5.2 Construction of the Hilbert spaces and the Hilbert space isom-

etry

Before proving the last point of the theorem, we will construct the representations πphysω

and πcodeω , and the mapping u. The representation construction is extremely simple once the

algebraic quantum field theory techniques have been introduced: one simply needs to take

πphysω and πcodeω to be the GNS representations of Aphys and Acode with respect to the state ω

for πphysω , and the pullback state ι∗ω for πcodeω , defined for A ∈ Acode by

ι∗ω(A) ∶= ω(ι(A)). (5.1)

Now let us define an isometric mapping u ∶ Hcode Ð→ Hphys. We know that

{πcodeω (A) ∣Ω⟩code , A ∈ Acode}

is norm dense in Hcode. Let us define u on this subspace by

u(πcodeω (A) ∣Ω⟩code) = πphysω (ι(A)) ∣Ω⟩phys . (5.2)

By the definition of the norm on the GNS representation, it is clear that this mapping is

isometric. As it is a norm isometry, it extends to the whole Hilbert space as it maps Cauchy

sequences to Cauchy sequences. Moreover, for A ∈ Acode,

πphysω (ι(A))u = uπcodeω (A). (5.3)

Indeed, let A,O ∈ Acode.

πphysω (ι(A))uπcodeω (O) ∣Ω⟩code = πphysω (ι(A))πphysω (ι(O))u ∣Ω⟩code
= πphysω (ι(AO))u ∣Ω⟩code
= uπcodeω (A)πcodeω (O) ∣Ω⟩code .

Since the set {πcodeω (O) ∣Ωcode⟩} being dense in Hcode, we have proved equation (5.3).
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5.3 Proof of the theorem

Section 5.2 proves the first point of Theorem 1.1 and the second point simply follows from

the definition of the GNS representation. We are left with the third and fourth points of

Theorem 1.1 to complete the proof.

In order to prove our claim about bulk reconstruction and relative entropies, we need

to carefully check that the hypotheses of Theorem 4.1 (from [31]) are satisfied. First, we

need to prove that ∣Ω⟩phys = u ∣Ω⟩code is cyclic and separating with respect to Mphys. This is

a consequence of the fact that we are working in the GNS representation of a KMS state:

as stated in section 2.4, GNS vector representatives of KMS states are always cyclic and

separating both for the C∗-algebra and the induced von Neumann algebra. ∣Ω⟩code is also

cyclic and separating for Mcode. Indeed, it is easy to check, as Im(ι) is stabilized by σt, that

ι∗ω is KMS for the time evolution defined on Acode

σct(A) ∶= ι−1(σt(ι(A))). (5.4)

This time evolution is still an isometry, as Im(ι) is stabilized by σt. Therefore, ∣Ωcode⟩ is cyclic

and separating for the von Neumann algebraMcode, by the same argument from section 2.4.

Then, for any O ∈ Acode, πphysω (ι(O)) satisfies the requirements of Õ. Then, if O ∈Mcode,

let Oα ∈ Acode such that (πcodeω (Oα)) is of uniformly bounded norm and converges strongly

towards O. The existence of such a net9 is guaranteed by Kaplansky’s density theorem.

Then, πphysω (ι(Oα)) is of uniformly bounded norm, therefore, by the Banach-Alaoglu theorem,

one can restrict one’s attention to a subnet without loss of generality and suppose that

πphysω (ι(Oα)) is weakly convergent towards Õ ∈ Mphys. Then, for all ∣Θ⟩ ∈ Hcode and ∣χ⟩ ∈
Hphys,

⟨χ∣uπcodeω (Oα) ∣Θ⟩ = ⟨χ∣πphysω (ι(Oα))u ∣Θ⟩ . (5.5)

By going to the limit, we obtain

uπcodeω (O) = Õu. (5.6)

Moreover, Hermitian conjugation being weakly continuous, (πphysω (ι(O†
α))) = πphysω (ι(Oα))†

(as ι is a C∗-homomorphism) converges weakly towards Õ† ∈Mphys. Then,

uπcodeω (O†) = Õ†u. (5.7)

9By net, we here mean that Oα is indexed with α in a directed set. We return to the fact we have to use
of nets rather than sequences in the next subsection.
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This proves that bulk reconstruction is possible for Mcode and Mphys.

Let us now turn to the commutants. For this, we will need the following lemma.

Lemma 5.1. Let Jcode ∶= JΩcode and Jphys ∶= JΩphys. Then,

Jphysu = uJcode. (5.8)

Proof. It is a direct consequence of the findings of [31]. Note that

Jphys = Sphys∆
−

1
2

phys and Jcode = Scode∆
−

1
2

code. (5.9)

By [31, p.17], we know that

u∆code = ∆physu and uScode = Sphysu. (5.10)

We also have that

u∆
−

1
2

code = ∆
−

1
2

physu. (5.11)

Indeed, ∆phys and ∆code have a functional calculus, and in [31, p.18] it is proved that u

commutes with all the projection valued measures. Then, the result is obvious.

Now, let O′ ∈ M ′

code. Thanks to the Tomita–Takesaki theorem, there exists O ∈ Mcode

such that

O′ = JcodeOJcode. (5.12)

Then, let us define the operator

Õ′ ∶= JphysÕJphys, Õ′ ∈M ′

phys. (5.13)

Then these operators with the isometry satisfy the following relation:

Õ′u = JphysÕJphysu = JphysÕuJcode = JphysuOJcode = uJcodeOJcode = uO′. (5.14)

Note that this construction also maps O† to Õ†.

Therefore, the bulk reconstruction hypothesis of Theorem 4.2 from [31] is satisfied. Hence,

the third point is proven.

Furthermore, the cyclic and separating conditions assure that we can conclude that rela-

tive entropies are conserved, which enables us to complete the proof of the fourth point.
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Let us now prove the first equality of the fifth and last point. For all t,

σt(Aphys) = Aphys.

By uniqueness of the GNS representation up to unitaries, and since ω is invariant by σt, it

follows that for all t, there exists a unitary operator Ut on Hphys such that

πphysω (σt(A)) ∣Ωphys⟩ = U †
t πω(A) ∣Ωphys⟩ .

Then the unitary Ut therefore extends σt to the whole von Neumann algebra Mphys through

Az→ U †
tAUt. We now need to show that ∣Ω⟩phys defines a KMS state with respect to the whole

von Neumann algebra for this new time evolution. For this, we will need to use Kaplansky’s

density theorem and a standard argument, closely following the proof of Proposition 12 of

[44]: Let A,B ∈ Mphys such that ∥A∥ ≤ 1 and ∥B∥ ≤ 1. By Kaplansky’s density theorem,

there exists nets (Aα), (Bα) of operators in πω(Aphys) which strongly converge to A and B

respectively. Let

dα ∶= max(∥(Aα −A) ∣Ωphys⟩ ∥, ∥(A†
α −A†) ∣Ωphys⟩ ∥, ∥(Bα −B) ∣Ωphys⟩ ∥, ∥(B†

α −B†) ∣Ωphys⟩ ∥).
(5.15)

Then, by definition of the nets, lim
α
dα = 0. As ∣Ωphys⟩ is a KMS state on Aphys, there exists

a function Fα which is holomorphic on the strip {0 < Imz < β} and bounded on its closure,

and that satisfies

Fα(t) = ⟨Ωphys∣AαU †
tBαUt ∣Ωphys⟩ , (5.16)

Fα(t + iβ) = ⟨Ωphys∣U †
tBαUtAα ∣Ωphys⟩ , (5.17)

and by the Cauchy–Schwarz inequality,

∥Fα(t) − Fα′(t)∥ ≤ 2(dα + d′α), (5.18)

∥Fα(t + iβ) − Fα′(t + iβ)∥ ≤ 2(dα + d′α). (5.19)

Then, by Hadamard’s three line theorem [20],

sup
0≤Imz≤β

∣Fα(z) − Fα′(z)∣ ≤ 2(dα + dα′). (5.20)

This allows us to conclude that (Fα) is Cauchy for the uniform convergence, so it converges

uniformly to some F which is analytic on {0 < Imz < β} and continuous on its closure.
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Moreover, by going to the limit in (5.16) and (5.17), one finally gets

F (t) = ⟨Ωphys∣AU †
tBUt ∣Ωphys⟩ , (5.21)

F (t + iβ) = ⟨Ωphys∣U †
tBUtA ∣Ωphys⟩ . (5.22)

As for any two elements of Mphys, one can always divide by the maximum of their norm so

that they both lie in the unit ball, we therefore conclude that this proof shows that ∣Ω⟩phys
defines a KMS state on the whole von Neumann algebra Mphys. Then, by the uniqueness

part of the Tomita–Takesaki theorem, we conclude that the automorphism defined by Ut
coincides with the modular evolution at inverse temperature β, which concludes the proof of

the first equality. The second equality of the fifth point follows from the first point together

once again with the fact, proven in [31], that ∆phys and ∆code have a functional calculus10

and that u commutes with all the projection valued measures.

6 Special case: separable Hilbert spaces

For the proof of the Theorem 1.1, we used nets instead of sequences when taking approxi-

mations of operators.11 Nets can rigorously be defined in the following way:

Definition 6.1. A directed set is an ordered set such that every pair of elements admits a

common upper bound. A net of bounded operators is a family of bounded operators indexed

by a directed set.

The necessity for the use of nets comes from the fact that the strong and weak operator

topologies may not have a countable basis of open sets on bounded parts of B(H).

However, if we suppose our C∗-algebras to be separable (i.e. there exists a countable

dense subset for the norm topology), a result of [46] can allow us to use sequences, as the

Hilbert space representations will a fortiori be separable. The result of [31] is proven with

sequences, therefore it assumes separable bulk and boundary Hilbert spaces. However, a

similar proof would still hold if nets are used instead of sequences.

For the cases of separable Hilbert spaces, Theorem 1.1 can be proven using sequences.

Whenever a net (Oα) of approximating operators inside Acode or Aphys is used, replacing α,

which takes values in a directed set, with an integer index n, implies the same conclusions.

In the case of the HaPPY code, the C∗-algebras are separable in the bulk. It follows

that the Hilbert spaces are always separable for the HaPPY code. This is expected, as the

10More precisely, it is proven in [31, p.18] that uu† commutes with the physical projections.
11Nets are a mathematical notion generalizing the use of sequences.
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infinite-dimensional HaPPY code is a countably infinite pentagon tiling, which itself is a

sequence of finite layers. Therefore, proofs with sequences will work in this case.

Nevertheless, we want to emphasize here that the use of nets instead of sequences might

be of importance in some systems, namely those for which the Hilbert space is not separable.

These systems do arise in the context of algebraic quantum field theory in presence of a

continuous superselection rule [13]. However, we expect each boundary superselection sector

to have a separable Hilbert space, provided it does not violate the split property [19].

7 Link with the thermofield double and the two-sided

black hole

In this section, we interpret our abstract construction in physical terms. In particular, we

explicitly show that a GNS representation of a KMS state can be seen as a thermofield double

construction, as well as how the commutants of the von Neumann algebras can be interpreted

as the other side of a wormhole, in a similar spirit to the mirror operators of Papadodimas

and Raju [40–42].

7.1 The thermofield double as a GNS representation

We now introduce the link between our construction and the thermofield double in AdS/CFT.

We first consider the thermofield double construction. In a finite-dimensional Hilbert space

H, a thermal density matrix is defined as

ρβ ∶=
e−βH

Tre−βH
, (7.1)

where ρβ denotes a mixed thermal state at temperature β. The thermofield double construc-

tion then doubles the size of the Hilbert space to construct a purification of the mixed ρβ.

In H ⊗H, which is the doubled Hilbert space, the vector state is constructed as

∣TFD⟩β ∶=∑
i

e−β
Ei
2 ∣ei⟩⊗ ∣ei⟩ , (7.2)

where the ∣ei⟩ denotes an eigenbasis of the Hamiltonian. This thermofield double vector state

defines a purification of the thermal density matrix ρβ. In spirit, what the thermofield double

does in finite dimensions is that it transforms any mixed thermal state into a vector state.

This is exactly what the GNS representation of a KMS state does.
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To be more precise, let us consider the finite-dimensional context with an n-dimensional

Hilbert space Hn. For a Gibbs state, as long as the energy levels are nondegenerate, which

we will suppose for simplicity, the thermal density matrix is invertible, which means that the

ideal of the GNS representation is trivial. The Hilbert space is therefore directly constructed

out of the algebra Mn(C), which is isomorphic to Hn ⊗Hn, and the density matrix ρβ is

now represented as a vector state. As a conclusion, the GNS representation does exactly the

same thing as the thermofield double in the nondegenerate finite-dimensional case.

The interpretation usually given to the thermofield double construction in AdS/CFT is

that it constructs the second boundary of a double-sided AdS wormhole. It is therefore

tempting to give the same meaning to the GNS representation. We shall explore these links

in further detail in the next subsection.

Note that, throughout this discussion, we have carefully omitted to call vector states pure

states. The reason is that purity becomes a trickier concept in infinite dimensions, and not all

vector states are pure. Without going into any detail, we just stress the fact that in infinite

dimensions, not all vector states are extremal points of the convex space of expectation value

functionals on an operator algebra. Our construction therefore has no reason to give pure

states in that sense.

7.2 An explicit realization of the Papadodimas-Raju proposal

In finite dimensions, we have seen that doing a GNS representation of a matrix algebra on

a Hilbert space (i.e. a finite-dimensional factor) with respect to a nondegenerate thermal

state amounts to doubling the number of degrees of freedom in the Hilbert space to realize

the thermal state as a vector state. It is then usual to interpret it as the construction of the

other side of a wormhole.

However, in the infinite-dimensional case, things are not that simple as it is no longer

generally possible to factorize the Hilbert space. Rather than seeing the two sides of the

wormhole as encoded by two tensor factors of the Hilbert space, it is easier to consider them

at the level of the algebras of observables: one side of the wormhole corresponds to the von

Neumann algebras Mcode and Mphys, while the other one corresponds to their commutants

M ′

code and M ′

phys. As we saw in the proof of our main result, these commutants are assured

to be isomorphic to the initial algebras, due to the Tomita–Takesaki theorem. Therefore,

one can see these as encoding an identical copy of the physical system: here, the other side

of the wormhole.

This idea goes back to the work of Papadodimas and Raju, who argue that using modular

conjugation in the exact same fashion as we did can make the black hole interior’s recon-
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struction possible [40–42]. They emphasize that their construction is state-dependent, as

they have to choose a reference state - which would here correspond to our initial choice of

a KMS state. It is therefore interesting to see that the Papadodimas-Raju proposal appears

in a very canonical way through the GNS representation.

Another issue that arises in the Papadodimas-Raju proposal is that the object they take

the commutant of is not actually an algebra. We might have to face similar technical compli-

cations when we try to prove an approximate result on entanglement wedge reconstruction,

instead of an exact one. In particular, we expect very excited states (i.e. operators of high

energy acting on the cyclic and separating KMS state) to be hard to reconstruct with a good

precision, due to the 1
N corrections. This could introduce a new level of state-dependence in

our construction. We leave such investigations on approximate entanglement wedge recon-

struction to future work.

8 An example: infinite-dimensional HaPPY codes

We now apply our result to study an infinite-dimensional analogue of the HaPPY code.

We will use some of the results proven in our companion paper [18], where we conduct an

extensive study of a model of dynamics. However, our setup will be a bit different. We start

by briefly reviewing the model of [18], before introducing our new setup through reverse

engineering. We then define our C∗-algebras and their dynamics, for which we prove the

existence of KMS states at all temperatures. We conclude by constructing our Hilbert spaces

and associated von Neumann algebras, and proving the conservation of relative entropies

with our theorem.

8.1 The infinite-dimensional HaPPY code: a review

Here, we explain how the HaPPY code levels are recursively constructed directly at the level

of the Hilbert spaces in [18]. For a general review of the HaPPY code, see [43].

We first define the notion of the level n. Given level 1 tile, level 2 tiles are defined to be

all the (pentagon) tiles that share any vertices and/or edges with level 1 tile. Likewise, level

3 tiles are defined to be all tiles (except for tiles that are already in levels 1 or 2) that share

any edges and/or vertices with level 2 tiles.

While the geodesic lines separate individual tiles in the Poincare disc into pentagons,

for the purpose of the tensor network, we can start from the center as the first pentagon

tile. Every tile in the pentagon tiling from the center towards the boundary corresponds
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to precisely one single level. Henceforth, level 1 consists simply of the center pentagon, as

represented in blue in Figure 8.1.

Figure 8.1: This is the HaPPY code at level 2 with bulk and boundary nodes. The black
qubits are the bulk nodes and the white dangling qubits are the boundary nodes. The blue
region corresponds to level 1 bulk, which is represented with a single central node. The yellow
regions are the new additional tiles for the bulk of level 2. (Level n bulk always include level
n − 1 bulk. For example, the blue tile from level 1 is also a part of bulk for level 2 and
beyond.) The green regions are the addendums for the bulk of level 3. The red regions are
the addendums of the bulk of level 4.

Now that we know how levels are defined, we will describe how each level can be used to

produce a state of finitely-many qubits. First, start at level 1. Put a bulk qubit in level 1

tile. Then, draw boundary legs through each edge of level 1 tile.

The level 1 tensor network is defined to be a map from one bulk qubit to five boundary

qubits. We denote by Ñn the number of boundary qubits of level n tensor network. In the

case of level 1, Ñ1 = 5. For example, we can put the bulk qubit in the state ∣↓⟩. Then, level
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1 tensor network maps a given bulk state to a particular state of Ñ1 = 5 boundary qubits,

which we call level 1 boundary state.

The level n tensor network is constructed as following. We first put a bulk qubit in every

tile in level n. Next, we draw a connecting leg through any edge that borders at least one

tile with a bulk qubit. Of course, each edge borders two tiles. If a leg connects two bulk

qubits, then it defines a contraction of two tensor indices. However, if a leg connects a bulk

qubit with a tile in level n+ 1, then it is a “dangling leg” and thus defines a boundary qubit.

For example, the level 2 tensor network is represented in Figure 8.1.

Each choice of bulk state at a given level defines a boundary state at the same level. For

example, let us suppose that all bulk qubits are in the state ∣↓⟩. This defines a state of Ñn

boundary qubits at every level n.

Let Hn for n ∈ N denote the Hilbert space of the bulk qubits at level n. For all n ∈ N, Hn
is identified with (or, mapped into) the subspace of Hn+1 where all the qubits in level n + 1

are in a reference state, which for now we may take to be the state ∣↓⟩. The relationship

between the Hn Hilbert spaces is expressed as

H1 → H2 → H3 → ⋯ ,

where each arrow → denotes the map from a Hilbert space into a Hilbert space of the next

level. We call this Hn the code pre-Hilbert space at level n.

For each Hn, we can use the tensor network at level n to map the bulk qubits at level

n into their corresponding white (boundary) qubits. The white qubits at level n make up

the physical pre-Hilbert space at level n, or H̃n. We represent the isometry produced by the

tensor network with a down arrow, which can be expressed as

Hn
↓
H̃n .

Putting these maps together, we establish the following:

H1 → H2 → H3 → ⋯
↓ ↓ ↓ ↓
H̃1 H̃2 H̃3 ⋯ .

The missing piece is the boundary-to-boundary map, which is the isometric map which

takes a state in H̃n into a state in H̃n+1. This can be constructed by putting tensors in all

tiles in level n + 1 and using the tensor network to map the boundary qubits in level n to
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the boundary qubits in level n + 1. The bulk indices of these tensors (which correspond to

bulk qubits) must be taken care of in a systematic way. For example, if they are all put in

the reference state ∣↓⟩, the boundary map is constructed in such a way that the following

diagram is commutative:

H1 → H2 → H3 → ⋯
↓ ↓ ↓ ↓
H̃1 → H̃2 → H̃3 ⋯ .

For both the code and physical pre-Hilbert spaces, the right arrow (bulk-to-bulk or

boundary-to-boundary map) means that a Hilbert space is isometrically mapped into, and

identified with a subspace of, the Hilbert space of the next level. The problem of such an

approach is that it will typically create very complicated maps between the boundary Hilbert

spaces that will be impossible to be explicitly generated. In [18], we construct an explicit

sequence of maps between boundaries using Bell pairs, in such a way that the entanglement

in the bulk can be tracked.

The code pre-Hilbert space is the disjoint union of all the Hn quotiented by the equiva-

lence relation that relates two states if one is the image of the other by the inclusion map.

Alternatively, the code pre-Hilbert space is the set of states where all but finitely many bulk

qubits are in the reference state. The physical pre-Hilbert space is defined as the disjoint

union of all the H̃n quotiented by the equivalence relation that relates two boundary states

if one is the image of the other by the bulk-to-boundary map, with the bulk in the reference

state. Note that there is no way to define a physical reference state independently from a

bulk reference state. Finally, the bulk and boundary Hilbert spaces are obtained by taking

the norm completions of the pre-Hilbert spaces.12

One of the advantages of this approach is that it reproduces the physics of the bulk all the

way to the AdS radius. This is relevant when considering deep bulk objects like black holes.

On the other hand, it is not clear if the successive mappings of a bulk state will converge in

some sense all the way up to the boundary. As the HaPPY code is a stronger approximation

of the physics close to the boundary than deep in the bulk, since the dominant portion of the

bulk nodes are adjacent to the boundary, the physical interpretation of this picture remains

debatable.

Another problem with this picture is that it is constructed at the level of the Hilbert

spaces. If we want to map Hamiltonian theories all the way up to the boundary, we will

need to perform operator pushing instead of state pushing. In [18], we were successful in

studying operator-pushing for a particular bulk Hamiltonian through the successive levels

12In mathematical terms, we have constructed direct limit Hilbert spaces for the bulk and the boundary,
in a similar fashion as the semicontinuous limit described in [39].
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of the HaPPY code. We will revisit our results in this section, and formulate entanglement

wedge reconstruction at the level of the C∗-algebras of bulk and boundary observables using

Theorem 1.1 in the slightly different setup of reverse engineering. The Hilbert space will then

be constructed through a GNS representation, providing an alternative to the reference state

approach.

8.2 Reverse engineering for the HaPPY code

The main drawback of the setting of [18] is that a bulk operator on a finite number of qubits

at a finite distance from each other will be sent through operator pushing to increasingly

distant qubits as the boundary grows. It will therefore be hard to keep track of explicit

bulk-to-boundary mappings in that context.

Another way of defining an infinite-dimensional entanglement wedge in the HaPPY code,

is to reason the other way around: instead of starting from the center the bulk and extending

the boundary all the way out, one can consider an infinite string of qubits on the boundary

as the Hilbert space of a given entanglement wedge, and reconstruct the bulk layer by layer,

in a way that is consistent with the layer structure of the HaPPY code. We shall call such a

process reverse engineering.

More specifically, we shall restrict ourselves to an entanglement wedge of a trapeze shape

in the bulk, as shown on Figure 8.2. Figure 8.2 illustrates that at any finite cut of the HaPPY

code, such a wedge can be reconstructed by starting from the boundary, superposing trapezes

made of 2-clusters (in red), and constructing the code underneath layer by layer (in blue then

in grey), by adding 2-clusters on the bottom of the legs, and 3-clusters in the middle of 2-

clusters. Our method is to take this idea seriously and to expand this construction up to an

infinite number of bulk layers.

In terms of physics, this just means that we take the viewpoint that the HaPPY code is

more adapted to describe the physics near the boundary than deep in the bulk. A downside is

that black holes and wormholes will not be possible to immediately see within that framework,

as the construction will never reach the center of the bulk.
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Center

(a) An entanglement wedge at a finite cutoff.

(b) The reverse engineering of the HaPPY code.

Figure 8.2: The straight-forward HaPPY code from the center and its reverse engineering
from the boundary for the infinite-dimensional analog of the HaPPY code.
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8.3 Bulk and boundary C∗-algebras and isometric mapping

In order to implement Theorem 1.1 to the infinite-dimensional HaPPY code, we now define

our setup more formally. Consider an infinite string of qubits indexed by the integers, and

construct an infinite graph in the upper half-plane by piling up trapezes made of 2-clusters

on top of each other, and constructing the graph underneath by adding 2-clusters on the

bottom of the legs and 3-clusters in the middle of the 2-clusters. Associate to each bulk and

boundary node the spin 1/2 algebra M2(C). Define a ⋆-algebra Fcode consisting of operators

with finite support on the bulk graph, and a ⋆-algebra Fphys consisting of operators with

finite support on the boundary string of qubits. Operator pushing defines an isometric map

ι from Fcode to Fphys.

Taking the norm completion of Fcode and Fphys gives the C∗-algebras Acode and Aphys. As

ι preserves the norm, it sends Cauchy sequences onto Cauchy sequences, which shows that it

extends to an isometric C∗-homomorphism from Acode to Aphys.13

8.4 Trapeze dynamics and KMS states

We now need to define dynamics on our C∗-algebra, and prove that it admits KMS states.

There is of course many possible choices, and we expect a lot of them to work. For the sake

of convenience, we inspire our choice here from the dynamical model extensively studied in

[18].

As we did similarly in [18], we construct the dynamics on the HaPPY code out of the

trapeze Hamiltonian. For each trapeze shape in the bulk, we define the interaction term

∏
i∈trapeze

Zi, (8.1)

where Z denotes the spin Pauli matrix. As shown on Figure 8.3, a trapeze interaction maps

nicely to the first boundary layer. It is then pushed to the boundary through a Cantor-

like fractal pattern. In our reverse engineering setting, all bulk trapezes are pushed to the

boundary after a finite number of operations. The result of the Appendix of [18] shows that

it is possible to map a carefully engineered trapeze Hamiltonian in the bulk to a boundary

operator which only correlates finite families of boundary qubits together. The physical

implications of this mapping are discussed in [18]. We shall now prove that the obtained

boundary Hamiltonian allows us to rigorously define a strongly continuous one-parameter

group of isometries on Aphys.
13Note that this construction is the standard construction for uniformly hyperfinite (UHF) algebras.
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Figure 8.3: Pushing a trapeze operator to the first boundary layer.

For n ∈ N, we first define the truncated time evolution σnt on Fphys by

σnt (A) ∶= eiHntAe−iHnt, (8.2)

where Hn is the operator made of all trapeze pushes with support in {−n, ..., n}. Since it is

proven in [18, Appendix A] that qubits in {−n, ..., n} are coupled to only a finite number of

other qubits on the boundary by all the trapeze pushes, we deduce that for A ∈ Fphys, the

sequence (σnt (A)) is stationary. It therefore makes sense to define on Fphys the time evolution

σt(A) ∶= lim
n→∞

σnt (A). (8.3)

This time evolution easily extends to Aphys as it maps Cauchy sequences to Cauchy sequences.

Note that, as the time evolutions σnt are constructed out of Hamiltonians of the form ι(Kn),
where Kn ∈ Abulk, and the ι is the operator-pushing C∗-homomorphism, each σnt stabilizes

ι(Acode), which implies by construction of σt that σt stabilizes ι(Fcode), and therefore Acode
by going to the limit, since ι is an isometry. Moreover, σt is strongly (and even uniformly)

continuous. Let ε > 0 and for A ∈ Aphys, let Af ∈ Fphys such that

∥A −Af∥ ≤
ε

3
. (8.4)

Then, there clearly exists t0 > 0 such that for 0 ≤ t ≤ t0,

∥σt(Af) −Af∥ ≤
ε

3
. (8.5)
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Then, we find that

∥σt(A) −A∥ ≤ ∥σt(A) − σt(Af)∥ + ∥σt(Af) −Af∥ + ∥Af −A∥ = 3ε

3
= ε. (8.6)

We have defined a strongly continuous time evolution σt on Aphys. It now remains to show

that for β > 0, there exists a KMS state for σt at inverse temperature β. Here, we give a

simplified version of a standard argument from the theory of infinite-dimensional quantum

spin systems, which can for instance be found in [44].

For fixed inverse temperature β, one can consider the state on Fphys to be

ωn(A) ∶= Trn,A(Ae−βHn)
Trn,A(e−βHn)

, (8.7)

where Hn is defined as before and the trace Trn,A is taken over the union of the support of

Hn and the support of A. For A ∈ Fphys, the sequence (ωn(A)) is stationary as the pushes

of all trapeze operators only couple finite numbers of boundary qubits together. It therefore

makes sense to define the state

ω(A) ∶= lim
n→∞

ωn(A) (8.8)

for A ∈ Fphys. As this sequence is stationary, this state can be identified with a Gibbs state

when applied to any given A,B in Fphys, and will therefore satisfy the KMS condition on

Fphys. We are left with proving that this can be extended to a KMS state on the whole A,

which requires complex analysis.

Let A,B ∈ Aphys and let (An) and (Bn) be sequences of Fphys which converge in norm

towards A and B respectively. By the KMS condition, for all n ∈ N, there exists a function

FAn,Bn , analytic on the strip {0 < Imz < β} and continuous on its closure, such that

FAn,Bn(t) = ω(Anσt(Bn)) and FAn,Bn(t + iβ) = ω(σt(An)Bn). (8.9)

By using Hadamard’s three-line theorem [20], we find the bound to be

sup
Imz∈[0,β]

∣FAn,Bn(z)∣ ≤ ∥An∥∥Bn∥. (8.10)

Then we notice that

FAn,Bn(z) − FAm,Bm(z) = FAn−Am,Bn(z) + FAn,Bn−Bm(z) (8.11)

and that the sequences (An) and (Bn) are Cauchy, the former bound allows us to conclude

that the sequence (FAn,Bn) is uniformly convergent in the strip {Imz ∈ [0, β]}. Its uniform
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limit is holomorphic on the open strip, continuous on the closed strip, and satisfies the KMS

conditions at inverse temperature β for the state ω, which ends the proof that ω is a KMS

state on Aphys for the time evolution σt.

8.5 The holographic HaPPY wormhole

We have constructed two C∗-algebras Acode and Aphys, and an isometric map ι between

them. Moreover, for the strongly continuous one-parameter group of isometries σt that we

constructed on Aphys, ι(Acode) is stabilized and there exists a KMS state at every inverse

temperature. We can therefore use our main result to conclude that there exist Hilbert

space representations of Aphys and Acode, and a Hilbert space isometry between them, which

satisfies bulk reconstruction, conserves relative entropy and preserves modular flow.

This proof shows the power of our result for holographic error correcting codes which,

like the HaPPY code, are better-suited to operator pushing than state pushing. Through

only the construction of the C∗-algebras of observables and reasonable dynamics, we were

able to construct thermofield double Hilbert spaces, show bulk reconstruction at the level of

the states, and prove the conservation of relative entropies and modular flow between the

bulk and the boundary. Moreover, Tomita-Takesaki theory provides us with a copy of the

involved von Neumann algebras, which are interpreted as local algebras on the other side of

the spacelike slice represented by our system. We have constructed an infinite-dimensional

HaPPY wormhole!

Figure 8.4 shows the two-sided holographic HaPPY wormhole that we constructed. One

of the sides is acted on by the von Neumann algebras Mcode and Mphys, which respectively

correspond to bulk and boundary quasi-local observables. The other side is acted on by the

commutant algebras M ′

code and M ′

phys, defined with respect to the Hilbert spaces Hcode and

Hphys through Tomita-Takesaki theory. Our wormhole satisfies all expected properties of

entanglement wedge reconstruction.

As we discussed before, this construction never really reaches the black hole interior, from

either side of the wormhole. However, it would be interesting to see if the Papadodimas-Raju

proposal can be applied to approximately construct a black hole interior, by acting on both

boundaries at the same time.
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Figure 8.4: The holographic HaPPY wormhole with its two infinite boundaries.

9 Discussion

In this paper, we introduced a new result on holographic quantum error correction in infinite

dimensions. With the only given data of a bulk-to-boundary isometric C∗-homomorphism,

and dynamics on the boundary for which a KMS state can be defined, we constructed Hilbert
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space representations of the bulk and boundary algebras for which a bulk-to-boundary map

can be constructed at the level of the states, and relative entropies and modular time are

conserved between the bulk and the boundary. Our construction is very close in spirit to

the thermofield double construction in AdS/CFT, and should be seen as the construction

of the other boundary of a wormhole. In particular, it clarifies the claims of Papadodimas

and Raju in [40–42]. We showed that our theorem can be applied to construct an infinite-

dimensional HaPPY wormhole. Its main strength is that it is adapted to systems defined in

terms of operator pushing rather than state pushing. In particular, it is very well-suited to

the HaPPY code and other quantum codes based on stabilizers.

In the case that we considered of an eternal black hole, a thermofield double state can

be interpreted as the other side of a wormhole. Such a picture led to some new thoughts

on the black hole information paradox, in particular to the ER=EPR conjecture [37]. In

such a picture, the other side of the wormhole is assimilated to the early radiation of an

evaporating black hole. It would be nice to see if our GNS technology can lead to a more

rigorous understanding of such statements, and to what extent it can help solve problems

related to entanglement monogamy like the firewall paradox.

Another important point is that our construction is state-dependent, in the sense that

the Hilbert spaces we will get can be very different depending on the KMS state we choose.

This is an intrinsically infinite-dimensional subtlety, as KMS states are always unique for

finite-dimensional quantum systems. In the presence of more than one KMS state, i.e. of

a broken symmetry, one can construct inequivalent Hilbert space representations which will

satisfy bulk reconstruction. It would then be interesting to study thermal ensembles of such

representations of the boundary algebra, and to study to what extent they can be assimilated

to a superposition of different geometries. We expect this question to give insight into some

ensemble interpretations of the black hole information paradox, such as the Engelhardt-Wall

construction [16, 17] or α-bits [26]. An interesting tool from algebraic quantum field theory

to use in such a context is the theory of superselection sectors. We hope to return to this

problem in future work.

Finally, even if we expect Hilbert spaces and modular operators to play a key role in a full

theory of quantum gravity due to the state-dependence we have discussed, it would be nice

to know if in the semiclassical regime, there is a way to equate bulk and boundary relative

entropies directly at the level of the C∗-algebras of state-independent observables. Indeed,

there exists a more general definition of relative entropy for states on C∗-algebras which does

not require von Neumann algebras and modular theory, and therefore is completely state-

independent. If ϕ and ψ are positive linear functionals on a C∗-algebra, one can define their
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relative entropy by:

S(ϕ,ψ) = sup
n∈N

sup
x

⎧⎪⎪⎨⎪⎪⎩
ϕ(1) logn −

ˆ
∞

1
n

(ϕ(y(t)†y(t)) + t−1ψ(x(t)x(t)†))dt
t

⎫⎪⎪⎬⎪⎪⎭
, (9.1)

where the supremum is taken over stepfunctions x with values in the C∗-algebra with finite

range, and where y(t) = 1−x(t). It would be interesting to know if the conservation of relative

entropy with this definition between the bulk and the boundary can be proven directly from

bulk reconstruction at the level of C∗-algebras, and even whether a converse statement could

be true.
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