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ABSTRACT

Radial velocity (RV) detection of planets is hampered by astrophysical processes on the surfaces of

stars that induce a stochastic signal, or “jitter”, which can drown out or even mimic planetary signals.

Here, we empirically and carefully measure the RV jitter of more than 600 stars from the California

Planet Search (CPS) sample on a star-by-star basis. As part of this process we explore the activity-RV

correlation of stellar cycles and include appendices listing every ostensibly companion-induced signal

we removed and every activity cycle we noted. We then use precise stellar properties from Brewer

et al. (2017) to separate the sample into bins of stellar mass and examine trends with activity and with

evolutionary state. We find RV jitter tracks stellar evolution and that in general, stars evolve through

different stages of RV jitter: the jitter in younger stars is driven by magnetic activity, while the jitter

in older stars is convectively-driven and dominated by granulation and oscillations. We identify the

“jitter minimum” – where activity-driven and convectively-driven jitter have similar amplitudes – for

stars between 0.7 M� and 1.7 M� and find that more massive stars reach this jitter minimum later

in their lifetime, in the subgiant or even giant phases. Finally, we comment on how these results can

inform future radial velocity efforts, from prioritization of follow-up targets from transit surveys like

TESS to target selection of future RV surveys.
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1. INTRODUCTION

Since the first discoveries of planets orbiting other

stars over a quarter century ago (Campbell et al. 1988;

Latham et al. 1989; Wolszczan & Frail 1992; Mayor &

Queloz 1995), more than 4000 exoplanets have been con-

firmed, with a multitude of planet candidates waiting to

be confirmed1. In the early days of planet detections,

the radial velocity method was the primary method

of discovery. With the advent of the Kepler mission

(Borucki et al. 2010), the field exploded and the transit

method has become the dominant discovery method.

In spite of this, the importance of radial velocity mea-

surements has not diminished. Rather, radial velocities

(RVs) have become increasingly important because of

their role in transit follow-up. In addition to the con-

firmation of planet detections via rejection of the over-

jluhn@psu.edu

1 http://exoplanetarchive.ipac.caltech.edu

whelmingly large amount of false positives, by combin-

ing the radius from transit detections with the mass from

confirmed RV detections we can begin to make infer-
ences about the bulk composition of exoplanets (Weiss

& Marcy 2014; Dressing et al. 2015). However, radial ve-

locity resources are already struggling to keep up with

transit discoveries. Despite the recent retirement of the

Kepler spacecraft, additional planets are still being dis-

covered with data from both the original Kepler mission

as well as the extended K2 mission (Howell et al. 2014).

Further, with TESS currently performing its 2 year pri-

mary mission (Ricker et al. 2014) and having recently

been approved for an extended mission through 2023,

the number of transiting planets can only be expected

to continue to grow faster than RV teams can reasonably

follow them up.

It is therefore critical that we understand the as-

trophysical drivers of stellar RV variability, or “jit-

ter”, so as to better understand which types of stars

present poor cases for RV follow-up due to the in-
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creased stochastic stellar signals. In the era of next-

generation extremely precise spectrographs (HPF, EX-

PRES, ESPRESSO, NEID), that can achieve sub-m/s

instrumental precision, the largest hurdle to finding

Earth-like planets that remains is the intrinsic stellar

jitter. With a stronger astrophysical understanding of

RV jitter, we can avoid wasting time and resources on

targets whose RV variations are not likely to permit ef-

ficient Doppler work. Intrinsic stellar jitter represents a

fundamental limit for finding the smallest planets, those

that are of most interest to the exoplanet community,

and by knowing what physical characteristics are driv-

ing stellar RV jitter, we can find ways to overcome it,

be it observationally, computationally, or statistically.

Radial velocity surveys have largely avoided stars that

show signs of high levels of chromospheric activity, e.g.

the Eta-Earth Survey (Howard et al. 2009). For sun-like

dwarf stars, measurements of chromospheric emission in

the Calcium H & K lines, such as logR′HK and SHK

(Noyes et al. 1984; Duncan et al. 1991), have been shown

to correlate with intrinsic stellar RV variations (Camp-

bell et al. 1988; Saar et al. 1998; Santos et al. 2000;

Wright 2005). In these cases, the magnetic activity in

the star that manifests as chromospheric emission serves

as a proxy for the presence of spots or faculae on the stel-

lar photosphere, which suppress or enhance the convec-

tive blueshift, and also introduce rotationally modulated

inhomogeneities. As a star ages on the main sequence, it

loses angular momentum via magnetic winds and spins

down. The result is a decrease in magnetic dynamo, a

decrease in magnetically-powered features on the sur-

face of the star, and therefore a lowered chromospheric

emission (Wilson 1963; Kraft 1967; Skumanich 1972).

For stars whose RV jitter is dominated by magnetic ac-

tivity, it is clear that older, “quieter” stars are the most

amenable to RV observations.

However, work by Bastien et al. (2014b) has shown

that even among “quiet” stars, RV jitter can be quite

large. In fact, the RV jitter in their sample showed

a clear increase with decreasing log g. That is, as a

star evolves off the main sequence into the subgiant

regime, its jitter increases substantially. This depen-

dence on evolutionary state among subgiants was seen

as early as Wright (2005) and Dumusque et al. (2011)

and was even predicted both in Kjeldsen & Bedding

(1995), who used an analytic formula to describe the

RV jitter due to p-mode oscillations of evolved stars,

and again in Kjeldsen & Bedding (2011), who provided

a scaling for RV jitter due to granulation.2 Indeed, the

relation seen in Bastien et al. (2014b) used a photomet-

ric measurement that probes granulation power, sug-

gesting that for these stars the primary driver of RV

variations was granulation. The increase in granulation-

induced RV variation with evolution is explained by the

increase in size of a granular region as the surface grav-

ity, and therefore surface pressure, decreases as the star

expands (Schwarzschild 1975). As a result, the total

number of granular regions across the face of the star

decreases dramatically and so the degree to which the

radial velocities from regions of rising and sinking gas

balance out over the disk-integrated face of the star de-

creases because each individual granular region is more

strongly weighted (Trampedach et al. 2013). Similarly,

p-mode oscillation amplitudes increase as a star evolves

and so oscillation-induced RV variation should also in-

crease with evolution.

As we show below, over the course of a stellar lifetime

we therefore have periods where the RV jitter is dom-

inated by different phenomena: the activity-dominated

and the convection-dominated regimes. Convection is at

least partially responsible for RV jitter even in this so-

called “activity-dominated” regime since convection is a

requirement for generating a magnetic dynamo, which

is ultimately responsible for the RV variations (Parker

1955; Haywood et al. 2016). However, as both the

granulation and oscillation components of RV jitter in-

crease with evolutionary state, we treat these as different

phases of the “convection-dominated” regime and com-

pare it to the “activity-dominated regime”, where RV

jitter decreases with evolution. It is reasonable then to

expect that there is a “sweet spot” in a star’s evolution

where the combination of these two contributions are

minimized. There is as of yet no published study which

marries these two regimes and empirically investigates

the evolutionary dependence of RV jitter. The goal of

this work is to meticulously determine the astrophysical

jitter due to stellar phenomena of more than 600 Cali-

fornia Planet Search (CPS) (Howard et al. 2010) stars

for which we have reliably-derived stellar parameters.

Previous empirical investigations of RV jitter using

the CPS sample (Wright 2005; Isaacson & Fischer 2010,

e.g) have taken different approaches toward measuring

RV jitter. For instance, Wright (2005) accounted for

long term linear trends present in the radial velocities

by measuring the jitter about a linear fit for every star,

but first removed stars from the sample that had known

2 Further evidence of an evolutionary dependence on intrinsic
RV variations was seen among giant stars by Hatzes & Cochran
(1998) and with a much larger sample in Hekker et al. (2008).
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companions or showed evidence of companions. Isaacson

& Fischer (2010) removed neither planets nor long term

linear trends and instead noted that they were most in-

terested in the floor of RV jitter as many stars would

have jitter that included unsubtracted components. In

this work, our sample is small enough to treat each star

on a case-by-case basis to ensure that the RV jitter ad-

equately reflects the intrinsic stellar RV jitter, yet still

large enough to observe bulk trends across a wide range

of stellar parameters. We are therefore able to analyze

each star individually to account for cases of compan-

ions, long term linear trends, and other effects that can

typically inflate the reported RV jitter. Additionally,

we have the benefit of many more years of observations,

which is crucial for subtracting companions and long

term linear trends, allowing for more accurate measure-

ments of RV jitter.

In Section 2 we describe the sample selection and ra-

dial velocity observations made by Keck-HIRES. We

also describe the stellar properties used in this analy-

sis, specifically focusing on the surface gravities and the

activity metrics we use in our analysis. In Section 3,

we describe our calculation of RV jitter, including de-

tailed steps on our careful vetting process and theoret-

ical scaling of the convective components of RV jitter.

Section 4 highlights the main results of our empirical jit-

ter calculations, investigating relations between activity,

evolution, and mass. Section 5 contains a discussion of

our results and places them in the context of RV sur-

veys. We summarize our main results and conclusions

in Section 6.

2. OBSERVATIONS

2.1. Sample Selection and Stellar Properties

The California Planet Search (CPS) has monitored

the radial velocities of more than 2500 stars for as many

as 20 years with typical precision of ∼ 1 m/s, provid-

ing both a long time baseline to analyze stellar jitter

and high instrumental precision. Our sample is com-

posed of stars observed as part of the CPS with stellar

parameters from Brewer et al. (2016) (erratum (Brewer

et al. 2017) cited as B17 hereafter). From this sam-

ple of over 1600 stars, we have identified those stars

with masses above 0.7 M�. This lower mass limit is

mainly a result of the B17 sample, which has a lower

temperature limit of ∼ 4700 K. To ensure robust mass

measurements, we choose only those stars for which the

spectroscopically-derived surface gravities agree with

the isochrone-derived surface gravities – both given in

B17 – to within 5% (J. M. Brewer, private communica-

tion). We further narrow this sample down by requiring

more than 10 observations from Keck/HIRES to ensure

enough measurements to measure RV variability. The 10

observation requirement was chosen in order to properly

disentangle center-of-mass motions due to orbital com-

panions from the intrinsic stellar variability (see Sec-

tion 5.2.2 for more details on this requirement). Our

final sample is made up of 617 stars. An HR diagram of

our sample is shown in Figure 1. We point out a paucity

of stars between log g ≈ 3.5 and 3.8, which has two pos-

sible causes. First, an observational bias: the original

CPS sample targeted mostly main sequence stars before

a large number of the subgiants and giants were added to

the sample as part of the “retired” A-star survey (John-

son et al. 2006). The region of few stars is therefore

likely near the boundaries of these two samples: post-

main sequence stars that are at the edges of the “sub-

giant” region. We note that since the “Retired” A-star

survey specifically targeted intermediate mass stars, we

expect our sample of evolved stars to be biased toward

those masses (≥ 1.1 M�).

The second, and likely more important, effect is astro-

physical: stars simply spend a very small portion of their

lives in this region of the HR diagram, zipping through

it in relatively no time at all compared to their main se-

quence or even giant branch lifetimes (Kippenhahn et al.

2012). For more massive stars (several solar masses),

this corresponds to the classical Hertzsprung Gap, where

there is a very low chance of observing stars. Since our

sample is lower mass, these stars lie in the bottom edge

of the Hertzsprung Gap and we therefore expect from

the outset to see only a few stars here. The stars in our

sample range in mass from 0.7 M� ≤ M? ≤ 2.14 M�,

effective temperatures from 4702 K ≤ Teff ≤ 6603 K,

and surface gravities from 2.70 ≤ log g ≤ 4.69.

Central to this work is a set of reliably measured

stellar parameters. We choose those from B17, who

used 1 dimensional LTE model spectra to fit to a

star’s observed spectrum to determine effective tem-

peratures, metallicities, surface gravities, and elemen-

tal abundances. In conjunction with Hipparcos paral-

laxes and V-band magnitudes, these spectral measure-

ments were used to derive masses, radii, and luminosi-

ties3. Their iterative fitting technique and improved line

3 Although Gaia DR2 is now available with updated paral-
laxes, the effect this has on the stellar properties is minimal as
these are generally bright targets with well-measured Hipparcos
data. Among our sample, Gaia and Hipparcos distances agree
to a median of 3%. The largest offset comes from giant stars
(log g < 3.5, 156 stars in our sample) that are distant, faint, and
cool where the median difference is 8%. The spectroscopic param-
eters (Teff , log g, v sin i, and abundances) calculated in B17 are all
independent of the distance. The luminosity is dependent on dis-
tance, which affects the mass (and radius, but our analysis does
not use radii). In general we find that the difference tends toward
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Figure 1. HR diagram showing our sample. Points are
colored by log g for reference. Note the thinning of stars in
our sample between log g ≈ 3.5 and 3.8, which likely comes
from the short evolutionary time stars spend in this regime.
However, it could also arise from the selection biases of the
CPS and “retired” A-star surveys.

list correct for systematic discrepancies in log g between

spectroscopy and asteroseismology (Huber et al. 2013;

Bastien et al. 2014a) and their spectroscopic methods

are now consistent with the values of log g obtained from

asteroseismology for stars within the asteroseismic cali-

bration range (Brewer et al. 2015). Outside of this cal-

ibration range, Brewer et al. (2015) have taken great

care to show that they see no systematic trends with

effective temperature or metallicity that had been seen

in previous work (Valenti & Fischer 2005). Specifically

for low mass stars, where asteroseismic data is unavail-

able, comparisons were made with a sample of stars with

gravity constraints from transiting exoplanets.

A key portion of our analysis is an investigation of

RV jitter trends by mass. There has been ongoing de-

bate surrounding the reported masses of the intermedi-

ate mass subgiants targeted by RV surveys such as the

“reitred” A-star survey (Johnson et al. 2006). For a de-

tailed summary of this debate, see Stello et al. (2017)

and references therein. Indeed, Stello et al. (2017) mea-

sure asteroseismic masses for 8 stars and find that planet

discoveries appear to have systematically overestimated

the masses of stars above 1.6 M�. Despite this worri-

some conclusion, given the good agreement of the sur-

face gravities from B17 with asteroseismology, we ex-

pect that the derived masses should also agree with

larger distances in the Gaia catalog and therefore stars are more
luminous than in Hipparcos. The effect is that for these stars the
median 8% distance error leads to an observed 16% luminosity er-
ror and subsequently an expected 16% mass error (given the fixed
log g).

asteroseismically-derived masses. Finally, more recent

work by Ghezzi et al. (2018) show that despite a small

overestimate in evolved star masses, it is not nearly as

large as the 50% overestimate as suggested by Lloyd

(2011, 2013).

2.2. Spectra and Radial Velocity Measurements

Observations were taken at Keck Observatory using

the High Resolution Echelle Spectrometer (HIRES) with

resolution R ≈ 55, 000. The CPS employs a standard

observing procedure for bright stars that ensures uni-

form SNR and instrumental/algorithmic velocity preci-

sion on all bright FGK targets. Typical values for a

V = 8 magnitude star is a signal to noise ratio of 190

at 5800 Å for an exposure of 90 s. Radial velocities

are calculated using the iodine-cell calibration technique

and the forward-modeling procedure described in Butler

et al. (1996) and later Howard et al. (2011). Our veloc-

ity dataset is largely the same as the sample in Butler

et al. (2017), although the radial velocities were calcu-

lated using a different pipeline.

For several stars that were known planet hosts, we

included in the planet-fitting procedure non-Keck RV

measurements as published with the initial discovery or

most recent orbital analysis. Table 1 lists the stars for

which we included additional velocities as well as the

telescopes and spectrographs where the measurements

were taken. We mainly use previously published radial

velocities for only the stars for which we are unable to

reproduce the published planetary models with the Keck

data alone during our vetting process and so Table 1 is

therefore not an exhaustive list of all previously pub-

lished velocities for all 617 stars in this sample.

2.3. The activity metric

The primary activity metric used in this work is the

Mount Wilson S-index, SHK, which measures the emis-

sion in the cores of the Ca II H & K lines relative to

the nearby continuum (Duncan et al. 1991). When a

star experiences increased magnetic activity, the flux in

the cores of these lines measurably increases. Since the

cores of these lines are formed in the chromosphere, SHK

measures the amount of chromospheric emission and is

a well-studied index of chromospheric activity of a star.

The wavelength coverage of Keck-HIRES contains the

Ca II H & K lines. As a result, we benefit from having

measurements of SHK made simultaneously with each

radial velocity observation4 using the method outlined

4 After the 2004 Keck/HIRES upgrade. There is an offset be-
tween the pre- and post-upgrade SHK values that is different for
each star. Since the majority of the observations in this sample
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Table 1. Summary of Additional Non-Keck HIRES velocities

Star Telescope Instrument Nobs Ref

HD 1502 Harlan J. Smith Telescope TCS 25 Johnson et al. (2011)

HD 1502 Hobby-Eberly Telescope HRS 20 Johnson et al. (2011)

HD 159868 Anglo-Australian Telescope UCLES 47 Wittenmyer et al. (2012)

HD 192699 Lick Observatory Hamilton spectrometer 34 Johnson et al. (2007b)

HD 114613 Anglo-Australian Telescope UCLES 223 Wittenmyer et al. (2014)

HD 38801 Subaru High Dispersion Spectrograph 11 Harakawa et al. (2010)

HD 181342 CTIAO 1.5 m CHIRON 11 Jones et al. (2016)

HD 181342 CTIAO 2.2 m FEROS 20 Jones et al. (2016)

HD 181342 Anglo-Australian Telescope UCLES 5 Wittenmyer et al. (2011)

HD 5608 OAO 1.88 m HIDES 43 Sato et al. (2012)

HD 10697 Harlan J. Smith Telescop TCS 32 Wittenmyer et al. (2009)

HD 10697 Hobby-Eberly Telescope HRS 40 Wittenmyer et al. (2009)

HD 210702 Lick Observatory Hamilton spectrometer 29 Johnson et al. (2007a)

HD 210702 OAO 1.88 m HIDES 36 Sato et al. (2012)

HD 214823 Observatoire de Haute-Provence 1.93 m SOPHIE 13 Dı́az et al. (2016)

HD 214823 Observatoire de Haute-Provence 1.93 m SOPHIE+ 11 Dı́az et al. (2016)

HD 12484 Observatoire de Haute-Provence 1.93 m SOPHIE 65 Hébrard et al. (2016)

HD 150706 Observatoire de Haute-Provence 1.93 m ELODIE 48 Boisse et al. (2012)

HD 150706 Observatoire de Haute-Provence 1.93 m SOPHIE 53 Boisse et al. (2012)

HD 16702 Observatoire de Haute-Provence 1.93 m ELODIE 22 Dı́az et al. (2012)

HD 26965 La Silla Observatory 3.6 m ESO telescope HARPS 229 Dı́az et al. (2018)

HD 28185 Hobby-Eberly Telescope HRS 34 Wittenmyer et al. (2009)

HD 28185 6.5 m Magellan II telescope MIKE 15 Minniti et al. (2009)

HD 28185 1.2 m Leonhard Euler Telescope CORALIE 40 Santos et al. (2001)

HD 45652 Observatoire de Haute-Provence 1.93 m ELODIE 14 Santos et al. (2008)

HD 45652 1.2 m Leonhard Euler Telescope CORALIE 19 Santos et al. (2008)

HD 45652 Observatoire de Haute-Provence 1.93 m SOPHIE 12 Santos et al. (2008)

HD 47186 La Silla Observatory 3.6 m ESO telescope HARPS 66 Bouchy et al. (2009)

HD 9446 Observatoire de Haute-Provence 1.93 m SOPHIE 79 Hébrard et al. (2010)

HD 95128 Lick Observatory Hamilton spectrometer 208 Gregory & Fischer (2010)

HD 125612 La Silla Observatory 3.6 m ESO telescope HARPS 58 Lo Curto et al. (2010)

HD 142091 Lick Observatory Hamilton spectrometer 46 Johnson et al. (2008)

HD 1605 Subaru High Dispersion Spectrograph 14 Harakawa et al. (2015)

HD 1605 OAO 1.88 m HIDES 61 Harakawa et al. (2015)

HD 1666 Subaru High Dispersion Spectrograph 11 Harakawa et al. (2015)

HD 1666 OAO 1.88 m HIDES 67 Harakawa et al. (2015)

in Isaacson & Fischer (2010). Our reported values of

SHK is simply the median of the SHK time series. Fur-

ther, by examining the SHK time series, we can more

closely investigate correlations between radial velocity

and activity. Particularly, given the typical cadence of

observations, we can identify stars with activity cycles

which can be especially pernicious for planet hunters

as they can induce planet-like RV variations. For this

work, we wish to include the RV signals due to activ-

ity cycles as they are intrinsic stellar variability and it

is therefore crucial to identify stars with apparent ac-

tivity cycles to avoid subtracting out the stellar signal

we seek by mistaking it for center-of-mass motion. We

follow a similar philosophy for stars with evidence of ac-

come post-upgrade, we opt to use solely those values. See Sec-
tion 3.5 for more details on the upgrade.

tivity signals similar to possible rotation periods. These

are generally tougher to identify given the sampling of

observations for the typical star in our sample.

We also briefly examined the logR′HK values for these

stars, also from B17. This activity metric accounts for

the different continuum levels near the Ca II lines for

different spectral types as well as the base photospheric

contribution (Noyes et al. 1984). However, it has not

been calibrated for subgiant and giant stars and is there-

fore only a useful metric for the main sequence stars.

Since a large portion of this work investigates the re-

lation between RV jitter and the evolutionary stage of

the star, we mostly ignore logR′HK as an activity metric

and instead use SHK. Values of logR′HK were mainly

used in conjunction with SHK when vetting jitter mea-

surements (see Section 3.2) because of known relations

between logR′HK activity RV jitter (e.g., Wright 2005).
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3. CALCULATING RV JITTER

Our primary goal in this work is to study the radial

velocity variations induced by intrinsic stellar variabil-

ity. As such, it is crucial that we remove any Keple-

rian signal caused by a companion that may be present

in the data (“planetary noise”). To ensure that the re-

ported RV jitter is in fact due to intrinsic variability and

not other effects (companions, instrument errors, etc.),

we found it necessary to undergo a vetting process on a

star-by-star basis to remove any non-intrinsic variations,

as described below. Therefore, each star with a jitter

measurement here has cleared our vetting process and

represents what we interpret to be astrophysical stellar

jitter. Only a few stars in our initial sample contained

RVs that led us to remove the stars from our sample (see

Section B.12 for a description of these stars). Because

we expect that our corrections to the RV time series

(subtracting a planet or long term linear trend, etc.)

will not have captured all center-of mass motions that

we wish to subtract off (i.e. there are as-yet-unidentified

planets or simply poorly constrained planets contribut-

ing noise to our measurements), we certainly have not

isolated true stellar jitter for all of our stars and rather

the measured jitter presented here represents our best

estimate of the true astrophysical stellar jitter.

All Keplerian fits to RV data in this work were done

using the IDL RVLIN package (Wright & Howard 2009),

which is capable of performing multi-planet fits as well

as incorporating RV data from multiple telescopes and

solving for telescope offsets. Much of the vetting pro-

cess involves subjective decisions to choose whether we

believe a Keplerian fit or not. We do not impose an

objective criterion (such as χ2 goodness of fit cutoff or

false alarm probability of periodogram peaks), as we find

that no one criterion can adequately establish whether

the fit is indeed due to an orbital companion. We instead

use several metrics (both statistical and astrophysical)

in conjunction with each other to holistically judge if

the fit from RVLIN could indeed be due to an orbital

companion.

We are deliberately conservative when deciding if RV

variations are due to companions. In all cases where

we subtract the best-fit RV signal of a companion, we

list that companion and the best-fit orbital parameters

in Table 2. Our conservative approach to subtracting

companions means many stars will have an RV “jitter”

value here that is inflated by orbital companions that we

did not deem sufficiently securely detected to remove.

As a result, it is the jitter floor that we have robustly

identified, and many stars lying above this floor may

in reality be low-jitter stars with as-yet unannounced

planetary systems that are inflating the measured jitter.

Our procedure for judging a fit is roughly as follows.

First, we perform the by-eye test. We examine both the

time series fit and the phase-folded fit to each star. The

reduced χ2 value gives us a numerical value on which

to anchor our judgment. However, the reduced χ2 can

be severely affected by the number of data points as

well as systematic errors and can be convincingly low

in cases where the best-fit orbit actually traces a stel-

lar activity cycle. For this reason, we also look at both

the times series of the activity metric SHK, described

in Section 2.3 and the median of the time series. Since

more active stars are expected to have larger RV vari-

ations, we are generally more suspicious of active stars

with planet fits. We also look at the log g of the star.

From Bastien et al. (2014b) and Kjeldsen & Bedding

(1995) and their follow-up Kjeldsen & Bedding (2011)

(also Wright (2005); Dumusque et al. (2011)), we expect

RV jitter to increase as stars evolve during the subgiant

phase. Finally, we look at the resulting RV jitter from

the fit. Using our experience and intuition, we can piece

all of these elements together to decide whether or not

we believe a planetary fit. Again, we generally only

subtract a companion if all evidence suggests the RV

variations are due to center of mass Keplerian motion.

3.1. Removing Known Planets

We first take our sample and search for known planet

hosts.For each planet-hosting star, we start with the

published best-fit parameters for each planet. These

serve as the initial parameters that we input to RVLIN,

which calculates new orbital parameters. We choose not

to simply subtract a Keplerian with the published best-

fit orbital parameters because previously undetected

planets can change the best-fit planet model or because

we have additional RV observations taken after initial

publication and so we expect our new best fit results to

be slightly improved. In the majority of cases, we do

not find a large change in orbital parameters, although

there are a few that now have better-constrained peri-

ods, especially for long period companions.

Once RVLIN has produced a best-fit for a system with

a known planet or planets, we investigate the phase

curves of each planet and examine the residuals (and

their periodogram) after subtracting all planets from

the system. If we feel based on the periodogram that

there is a chance that an additional unpublished planet

remains in the data, we revise the fit, adding a period

guess from the periodogram for that planet. By com-

paring the χ2 goodness of fit, phase curves, and result-

ing RV jitter, we approve or disfavor the extra planets

as needed. Note that in 15 cases our analysis revealed

previously unpublished planets around subgiants (Luhn
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et al. 2019), several of which were additional companions

to known planet hosts.

For planets that were not discovered with Keck, we

sometimes do not have enough observations from the

Keck data alone to detect the planet’s signal. In these

cases we combine the RV’s in the initial discovery pa-

per and the Keck RV’s to determine the best-fit planet

model (see stars listed in Table 1). In our final calcu-

lation of the RV jitter, we ensure consistency by only

calculating jitter using the Keck velocities.

3.1.1. Transiting Planets

For stars with known transiting planets, we use the

transit time and period as fixed inputs to RVLIN and

allow it to find the remaining best-fit orbital parameters.

Since the planet is known to transit, the star must have

an embedded RV signal from that planet. In many cases

where the planets – and therefore the semi-amplitudes –

are small, the fit from RVLIN would not be convincing

by our procedure defined above. However, in these cases,

the RV jitter is of order the RV semi-amplitude, and so

subtracting out the signal only affects the resulting RV

jitter by a few percent. In these cases, it is likely that

we are not subtracting out the true RV signal from the

transiting planet, however, since there must be a signal

in the data, the only signal we can subtract is the best-

fit, regardless of how well it appears to fit. The fact that

the RV jitter isn’t largely affected in these cases means

that our decision to subtract the signal most likely does

not matter, but we subtract anyway for completeness.

For transiting planets, we also inspect velocities near

the time of transit for any possible Rossiter-McLaughlin

effects (Gaudi & Winn 2007) during transit. In only one

case, HD 189733, is a clear RM signal present. In this

case we remove the velocities taken during transit so that

they do not artificially inflate the measured RV jitter.

3.2. Blind Fits

For all other stars, we perform a blind single-planet

fit using RVLIN. We do this to account for any plane-

tary signals that may be present in the data, but have

so far been missed by planet hunters and have not yet

been published. We then follow up each fit and non-

fit with our vetting process to ensure we are left with

the most accurate stellar jitter possible. Most blind fits

by this method result in rejection of a planet signal via

our vetting process (338 out of 391). In many cases we

were able to quickly discard the fits as spurious because

they end up in portions of parameter space where false

positives to blind Keplerian fits are common (i.e. fits

with e > 0.9 where the fitter “chases” a single outlying

point). However, some require more careful analysis.

In the end, our approach was to only accept those fits

which have coherent periodic signals that seem to de-

mand subtraction.

The other common result of the blind fit is to find

spectroscopic binaries. Since many of these do not have

catalogued orbital parameters (often because the period

of the system is so much longer than the span of the ob-

servations), this often means we are rediscovering these

binaries. Luckily, we are not in danger of missing these

types of systems since the individual measurement un-

certainty is orders of magnitude smaller than the ob-

served RV variations. These systems are usually obvi-

ous by eye as having ∼ km/s variations, unlike planets,

which can be difficult to disentangle from RV jitter in

many cases, especially if the observations are spaced out

over several years.

In several cases, our blind fit failed to converge on a

best fit solution, but the RV time series and the pe-

riodogram showed evidence for potential long period

trends or even sinusoidal variations. In these cases (and

even some shorter period cases), we tried another blind

fit but with an initial period guess to help RVLIN con-

verge on a fit. The vetting process was then repeated

as needed until we obtained a satisfactory fit, or were

convinced by a lack of fit.

In all, we reemphasize that each star has been through

our by-eye vetting process and has been manually con-

firmed, with many stars being visually inspected two to

three times before we were able to conclusively rule out

or accept a planet fit and definitively calculate RV jitter.

Our sample therefore represents the most comprehensive

set of RV jitter measurements from CPS data to date.

Because of our stringent requirements for believing

blind fits, the values of RV jitter presented in this

work represent upper limits. It is likely (and expected)

that many of the stars in our sample still have yet-

unsubtracted orbital companions present in the RV time

series.

3.3. Summary of Companion Subtraction Procedure

In total, we have subtracted 335 companions from 267

stars. Of these 267 stars, 145 were known previously to

host planets, leaving 121 “new” systems, many of which

are stellar companions. All subtracted companions are

listed in Table 2 with the final best-fit parameters that

were used in the subtraction, as well as the reference for

the orbital parameters used as initial guesses in the fit-

ting procedure, if applicable. We again emphasize that

we do not claim that every new planet subtracted is a

confirmed planet, rather we have simply subtracted ev-

ery strong Keplerian signal that appears to be due to

a companion and many are long-period stellar binaries.

Because we are focused on the astrophysical interpreta-



8

Table 2. Orbital Parameters of Signals Subtracted from RV Time Series

Name Com msini P a Tp e ω K γ dvdt Orbit Reference

(MJup) (days) (AU) (JD) (deg) (m/s) (m/s) (m/s)

HD 1388 * 28.179 9941.964 9.31 2448143.72 0.565 115.4 300.01 -153.33 0 This work

HD 1461 b 0.028 5.772 0.06 2450366.22 0.229 26.4 3.11 -2.03 0 Rivera et al. (2010)

— c 0.033 13.508 0.11 2439940.70 0.477 204.4 3.10 0.00 0 Dı́az et al. (2016)

HD 4208 b 0.823 828.000 1.67 2451040.00 0.052 339.8 19.12 -4.65 0 Butler et al. (2006)

HD 4203 b 1.774 437.128 1.16 2451913.88 0.519 331.1 52.10 13.44 0.00656 Kane et al. (2014)

— c 3.831 8865.852 8.65 2455823.98 0.075 175.3 35.33 0.00 0 Kane et al. (2014)

HD 4628 b 0.016 14.728 0.11 2455764.15 0.403 313.3 1.72 -1.55 0 This work

HD 4747 * 49.359 12077.336 9.64 2438393.51 0.730 266.8 704.07 -117.86 0 Crepp et al. (2016)

HD 6558 * 17.393 7938.025 8.37 2451362.08 0.210 43.3 155.65 35.44 0 This work

HD 8574 b 1.688 226.696 0.77 2453974.90 0.351 17.3 54.05 -10.75 0 Wittenmyer et al. (2009)

† Stars listed with periods “> 36500” have hit the maximum period limit in RVLIN. In these cases we believe the fit contains curvature
but is a companion with period more than 100 years. We include the fit because we believe it to be subtracting center of mass motions,
despite a poorly-fit and poorly-constrained period.

Note—Table 2 is published in its entirety online in the machine-readable format. A portion is shown here for guidance regarding its form
and content.

tion of RV jitter, a rigorous investigation into the verac-

ity of any planet-mass companions is beyond the scope

of this work. Many of the new planets and stellar com-

panions around the subgiant stars have been analyzed

in more detail in Luhn et al. (2019).

3.4. Jitter Calculation and Jitter Error

Our calculation of RV jitter is a simple RMS calcula-

tion. Once we have obtained our best-fit model to sub-

tract from the velocities, we are left with the residuals,

εi = RVi −RVfit(ti) (1)

In the case where no best-fit model was found or the

best-fit model was rejected, the residuals used in Equa-

tion 1 were simply the unaltered velocities, εi = RVi.

The RV jitter is then simply

j ≡ σRV =

√
1

(N − 1)

∑
(εi − ε)2, (2)

where N is the total number of velocities for the given

star. We note that this is not a true RMS in the strict

sense and is instead a standard deviation uncertainty

calculation. Because the 0 point for each RV time se-

ries is arbitrary, it is necessary to subtract off the mean

rather than simply taking the square root of the sum

of the squared residuals. In the cases where we have

accepted a Keplerian fit and have a large number of ob-

servations, Equation 2 is essentially the same as an RMS

since the mean of a χ2 fit is defined to be 0. In fact in

our sample the RMS and standard deviation agree with

median absolute difference of 0.15 m/s and mean 0.44

m/s. We continue to refer to σRV as an “RMS.” In

past works, notably Wright (2005), the “jitter” is found

by subtracting the mean reported instrumental uncer-

tainty, σinstr, from the RMS term (σRV ) in quadrature.

We do not follow that approach in this work because

we do not assume to know the instrumental systematics

of Keck-HIRES. Subtracting the mean internal error for

each star may correctly remove instrumental noise but it

may also introduce or retain systematics that we do not

fully understand. Instead we use the derived RV RMS

as the reported RV jitter and compare it to the typical

Keck-HIRES instrumental uncertainty of 1-2 m/s (But-

ler et al. 2017).

Additionally, since this work involves investigating

trends with activity, we have many active stars in our

sample, which are typically rotating more quickly, lead-

ing to broadened absorption features. In principle this

is a concern for measuring precise velocities due to the

lack of Doppler content in rapidly rotating stars and

should add additional variability to the RV measure-

ments. However, this is incorporated in the reported

internal errors and despite seeing a gradual increase in

the median reported single-measurement errors for stars

as a function of v sin i, this increase is well below the in-

crease in RV jitter seen with v sin i, indicating that we

have not reached the rotation broadening floor for the

stars in our sample.

For our analysis, we also wish to represent the uncer-

tainty in our measurement of the RMS. In Section 4, we

analyze RV jitter as a function of several stellar prop-
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erties for our sample of stars. Since each star has a

different number of observations, the uncertainty of the

measured RMS will differ for each star. To that end,

we also calculate the error in our measurement of RV

jitter and include the calculation in Appendix A. We

note simply that the error bars do not account for indi-

vidual RV measurement uncertainty, the goodness of fit

of any subtracted companions, or the potential for the

velocities to contain any additional companions.

3.5. Keck Data Before 2004

In August 2004, the Keck-HIRES instrument went

through upgrades and recommissioning, resulting in an

improvement in precision from 4-5 m/s to 1-2 m/s in RV

measurements post-2004 (Butler et al. 2017). In several

cases, the errors on the RV’s before and after this up-

grade lead to visually different RV observations (either

larger scatter or in some cases RV offsets between pre-

and post-2004) and require being treated as observa-

tions from two separate telescopes. As mentioned be-

fore, RVLIN is capable of separately fitting RV’s from

multiple telescopes and solving for the offset between

them. Because of the sometimes large difference in qual-

ity of data between pre- and post-2004 observations, we

have taken several approaches to account for this, de-

pending on the individual system’s observations.

Removing pre-2004 data from jitter calculation —In most

cases where the pre-and post-2004 data appear different

(by comparing the reported errors), we only make use of

the pre-2004 data to constrain a fit to the RV data and

discard those observations in the final calculation of RV

jitter. Our reason for this is the same as discarding other

non-Keck observations in our calculation of RV jitter.

Since the instrumental errors pre-2004 are significantly

higher, they will inherently have larger scatter and will
inflate our measurements of RV jitter.

Note that this approach is only taken when we observe

noticeable differences between the pre- and post-2004

data. In our sample, only 8 stars showed such a necessity

(shown in Table 3). For a large number of stars in our

sample, we don’t observe any obvious differences and so

the pre-and post-2004 data are treated the same and are

included in both the fitting and final jitter calculation.

Removing pre-2004 data altogether —In only two cases did

we find the need to completely ignore the data before the

2004 upgrades (2 out of 617, HD 1205 and HD 101472).

These systems has a large quantity of data after the up-

grades such that completely removing the pre-upgrade

data does not severely limit the number of observations

used in the fit. We are not suspicious of any long period

trends or companions for these stars and so including

the pre-2004 data to maintain the long baseline is not

necessary.

Pre- and post-upgrade offsets —For 19 stars, we noticed

that there appeared to be a reduction error when calcu-

lating the velocities before and after the upgrade, lead-

ing to a slight but noticeable offset in the radial veloci-

ties. By treating the pre- and post-upgrade velocities as

coming from two separate telescopes, RVLIN is able to

solve for the offset, which is typically no more than 15

m/s.

In only one case (HD 50639), errors in RV extrac-

tion have produced large (km/s) offsets between pre-

and post-2004 RV’s as a result of only containing a sin-

gle observation in the immediate 2 years following the

upgrade. This occurrence is obvious by-eye as a large

discontinuity in the otherwise smooth RV curve. In this

case, the pre- and post-2004 Keck data are so largely off-

set that RVLIN cannot solve for the offset and instead

finds a long period, highly eccentric fit that manages to

explain the discontinuity in 2004 as the periastron pas-

sage. To resolve this, we manually apply a first order

offset of ∼1 km/s before inputting the data into RVLIN

as two separate telescopes to find the exact offset that

minimizes the χ2.

3.6. Activity Cycles and Correlated Activity

By examining the SHK periodograms for every star,

we notice activity cycles among many stars, which are

listed in Appendix B5.

To examine the correlation between radial velocities

and SHK, we use a Pearson correlation coefficient

r =

∑(
SHK(ti)− SHK

) (
RV (ti)−RV

)√∑(
SHK(ti)− SHK

)2√∑(
RV (ti)−RV

)2 , (3)

where RV and S represent the set of velocities and s-

indices. For strongly correlated variables, the Pearson

coefficient is near 1, and for strong anticorrelation r is

near -1. The ability to simultaneously extract SHK and

the radial velocity from the same stellar spectrum is

what allows this correlation to be measured. For stars

that show |r| > 0.5, we are particularly suspicious of

activity-induced jitter and make a special note of them.

In general, we find that among the stars that show

a correlation between the RVs and SHK, the majority

show a positive correlation (125 stars) as opposed to a

negative correlation (19 stars), also seen in Lovis et al.

5 The classification of stars as having “activity cycles” in this
work is not rigorous. We refer to stars with periodic activity as
those with activity cycles, with the periodicity determined by vi-
sually examining the strength of peaks in periodograms of activity.
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(2011). If we interpret activity index SHK as a proxy for

surface starspots and faculae, it follows that as activity

increases, the number of spots and faculae also increases,

which leads to suppressed convection in those regions.

Since the stellar surface has a net convective blueshift

from convective granulation, the suppressed convection

results in a redward shift, toward positive radial veloci-

ties, leading to the positive correlation between activity

and radial velocity.

However, not all stars with activity cycles show ev-

idence of correlated radial velocities. Similarly, many

stars show radial velocities that are highly correlated

with non-cyclical, stochastic activity. Despite most cor-

related RVs showing a positive correlation with activity,

we observe a wide range of features among stars with

activity cycles and activity-correlated radial velocities.

That is to say, correlated RVs are not always indicative

of a cycle, and cycles are not always indicative of a cor-

related RVs6. The relation between activity and how it

manifests in the radial velocities remains an open ques-

tion. A detailed discussion of these features is beyond

the scope of this paper and for now we describe individ-

ual stars in Appendix B.

To summarize, our efforts to subtract companions in

order to retain the stellar jitter means that we must en-

sure that any periodic signals present in the RVs are not

in fact due to an activity cycle that is correlated with

the RVs. Since stellar astrophysical jitter includes cy-

cles, we have made the effort to examine the correlations

between activity and RVs on a star-by-star basis.

3.7. Outliers

In many stars we see radial velocity observations that

appear to be obvious outliers in the data, usually in

one of two ways. In the majority of cases we notice

that the reported errors for a given observation are sev-

eral times larger than the typical errors for that star.

Usually this also occurs with velocities themselves that

appear to be significantly displaced from the mean. As

a general rule, we remove these points if the errors are

larger than 2.5 times the typical errors. In other cases

where the velocity rather than the error is what iden-

tifies it as an outlier, we also investigate the reported

χ2 of the fit to the stellar spectrum as reported by the

RV measurement pipeline. This indicates observations

where the extraction of a radial velocity was more diffi-

cult and is not always represented in the velocity error.

6 In the case of a star showing an activity cycle but no correlated
RV’s, this could be explained by having RV’s that are significantly
rotationally modulated, such that the rotationally modulated RV’s
no longer correlate with the overall activity cycle.

We describe instances of outlier removal on individual

systems in Appendix B.

3.8. Summary of total sample statistics

In all, we applied some sort of correction to the RVs

(outlier rejection, companion subtraction, etc) for more

than half of our sample, with only 303 of the 661 stars

having an RV jitter simply calculated as the RMS of the

unaltered velocities, highlighting the need for our care-

ful approach. 158 stars had velocities that produced a

successful Keplerian fit by RVLIN but did not pass our

vetting procedure and resulted in rejected fits (that is,

we did not alter the velocities). Table 3 gives the calcu-

lated jitter for each star and lists what changes, if any,

have been made to the raw RVs of each system. Note

that our criterion that stars have more than 10 obser-

vations is used for judging possible companions. We do

not apply this criterion to the actual jitter calculation,

where we occasionally remove the observations before

the Keck upgrades in 2004 from the jitter calculation. In

these cases the pre-upgrade observations are enough to

confirm or reject a planet, but will inflate the measured

RV jitter if included in the jitter calculation. This ap-

plies to a total of 6 stars (HD 1388, HD 8765, HD 30708,

HD 35974, HD 191876, and HD 216275). Detailed notes

on individual systems can be found in Appendix B.

3.9. Theoretical Calculations of Convective

Components of RV Jitter

The previous sections all dealt with the empirical mea-

surement of jitter for our sample of stars. The following

two sections deal with calculating a theoretical RV jit-

ter for the two convective components we account for in

this work: stellar oscillations and granulation. The the-

oretical calculations will later be used to compare with

the empirical results.

3.9.1. Theoretical Oscillation Component of RV Jitter

Kjeldsen & Bedding (2011) provide a theoretical scal-

ing relation for the velocity amplitude of p-mode oscil-

lations at νmax, the frequency at which the oscillation

power peaks,

Avel ∝
Lτ0.5

M1.5T 2.25
eff

, (4)

where τ is the mode lifetime, for which scaling rela-

tions have not been solidly established (See discussions

in Kjeldsen & Bedding (2011); Kallinger et al. (2014)).

For this work, we choose the mode lifetime scaling rela-

tion found in Corsaro et al. (2012),

τ ∝ exp

(
5777 K − Teff

T0

)
, (5)
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Table 3. RV Jitter and Analysis

Name Jitter σj Nobs log g SHK BFF PF Np,p Np,u LTF Outlier RMSpu Removal Offset Nothing

(m/s) (m/s)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

HD 105 50.546 11.260 14 4.53 0.38 X - - - - - - - - X

HD 166 17.681 2.118 40 4.51 0.42 X - - - - - - - - X

HD 377 53.023 5.715 64 4.46 0.38 X - - - - - - - - X

HD 691 22.473 6.326 17 4.48 0.56 X - - - - - - - - X

HD 1388 5.615 0.715 51 4.32 0.16 - 1 0 1 - - - - X -

HD 1461 4.023 0.193 593 4.34 0.16 - 1 2 0 - X - - - -

HD 4208 5.048 0.786 55 4.50 0.19 - 1 1 0 - - - - - -

HD 4203 3.320 0.259 49 4.08 0.15 - 1 2 0 X - - - - -

HD 4307 4.047 0.472 83 4.05 0.15 X - - - - - - - - X

HD 4628 2.589 0.192 188 4.54 0.19 - 1 0 1 - - - - - -

Note—To save space, we have used the following column header abbreviations. Col (1) lists the star name as given in B17. Col (2) is the
calculated RV jitter for the star and Col (3) is the uncertainty in that calculation as given in Equation A5. Col (4) is the number of
observations used in the jitter calculation. Note that while our criterion is that stars have more than 10 observations, we do not apply this
criterion to the actual jitter calculation, where we occasionally remove the observations before the Keck upgrades in 2004 from the jitter
calculation. This applies to a total of 6 stars. Cols (5) and (6) are the surface gravities and activity measure used in Figures 2-7. Col (7)
is a flag indicating if a blind fit was applied to the system (Blind Fit Flag). Col (8) is a Planet Flag to indicate if we have subtracted a
companion from the system. Cols (9) and (10) indicate the number of published planets (Np,p) and unpublished planets (Np,u) for each
system. Col (11) is the Linear Trend Flag is a linear trend was subtracted. Col (12) indicates if any outliers were removed. Col (13) contains
a flag for when only the post-upgrade observations from Keck were used in the RMS calculation. Col (14) indicates the systems where the
pre-upgrade observations were discarded altogether. Col (15) indicates the systems where the pre- and post-upgrade Keck velocities were
treated as separate telescopes with an offset between them. Finally, Col (16) is a flag that indicates stars for which no alterations were
made to the RVs. Note that because we first try a blind fit to every star without a published planet, this flag is equivalent to having BFF
= 1 with no other flags checked. We include this column to explicitly indicate stars for which the raw RVs were used to calculate the RV
RMS (no subtractions or removals).

Note—Table 3 is published in its entirety online in the machine-readable format. A portion is shown here for guidance regarding its form
and content.

where T0 = 601 K. Putting this all together and scaling

it to measured solar observations (Kjeldsen & Bedding

1995), we get

Avel = 0.234 m/s

(
Teff

Teff,�

)1.75(
R

R�

)−1(
g

g�

)−1.5

τ0.5.

(6)

However, Equation 6 gives the amplitude of p-mode os-

cillations. To derive a scaling relation for the RMS of

this velocity, we assume oscillation manifests as a single

sinusoid with ν = νmax, whereby the RMS is 0.7087Avel,

which gives

σosc = 0.166 m/s

(
Teff

Teff,�

)1.75(
R

R�

)−1(
g

g�

)−1.5

τ0.5.

(7)

While choosing a single sinusoid with amplitude Avel is

a simplistic view of stellar oscillations, it should only

affect the scaling constant and should still capture the

evolutionary trends we seek to observe across the sam-

ple.

3.9.2. Theoretical Granulation Component of RV Jitter

The RV jitter due to granulation is a scaling relation

that follows from the granulation size and the number of

convective cells on the surface of the star. The propor-

tionality comes again from Kjeldsen & Bedding (2011),

σgran ∝
Hpcs
R
∝ L0.5

MT 0.5
eff

, (8)

where Hp is the pressure scale height, which is the char-

acteristic size of a granular region, and cs is the sound

speed on the surface of the star. These relations as-

sume a constant mean molecular weight, µ. To derive a

proper scaling relation, we require a value for the sun’s

RV RMS due to granulation, a difficult quantity to mea-

sure. However, Meunier et al. (2015) derives an expected

value of 0.8 m/s based on simulations of granulation and

supergranulation. More recent work by Milbourne et al.

(2019) has used the HARPS-N spectrograph to contin-

uously observe the sun as it would appear as a star (de-

scribed in Dumusque et al. (2015)) and find an RV RMS

of 1.2 m/s after accounting for the suppression of con-

vective blueshift by bright magnetic regions. Given the

general agreement between these two values, we choose

to split the difference between the two and adopt a sim-
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ple value of 1 m/s. Our scaling relation is then

σgran = 1 m/s

(
L

L�

)0.5(
M

M�

)−1(
Teff

Teff,�

)−0.5

(9)

We note that the granulation term in this work does not

distinguish between the signal from the three scales of

granulation: granulation, mesogranulation, and super-

granulation. Each of these has different physical scales

(1 Mm, 5 Mm, 30 Mm), different flow velocities (1 km/s

vertical flow, 0.06 km/s vertical flow, 0.4 km/s horizon-

tal flow), and have different lifetimes (0.2 hr, 3 hr, 20

hr) which makes their individual contributions to RV

jitter difficult to study (Rast 2003). However, based on

the arguments in Kjeldsen & Bedding (2011) and Me-

unier & Lagrange (2019), we expect that these three

granulation effects all follow the same scaling relation.

Therefore by roughly scaling it to the solar values we

are merely scaling the magnitude of the combined gran-

ulation, mesogranulation, and supergranulation effects,

despite the fact that in practice stars will have variabil-

ity due to each of these effects, which operate on dif-

ferent timescales. This is justified given the observing

cadence of planet-search stars, which is too infrequent

to resolve these individual components. The total RV

RMS due to convection (both granulation and oscilla-

tion) is found by summing the two terms (Equations 7

& 9) in quadrature.

4. EMPIRICAL ANALYSIS OF RV JITTER

After applying our vetting process to our large sample

of stars, we can perform our analysis, examining how RV

jitter correlates with stellar parameters. We begin by ex-

amining bulk trends in the entire sample. However, first

we wish to briefly summarize some key findings of pre-

vious works that also investigated the California Planet

Search Stars monitored with Keck-HIRES.

Wright (2005) examined a subsample of the CPS

stars without known planets and used an activity met-

ric ∆FCa II, which accounts for the minimum activity

of stars as a function of B − V (Rutten 1984), finding

that RV jitter increases with this activity metric. Im-

portantly, Wright (2005) notes that K and G type stars

show slightly lower levels of RV jitter. Isaacson & Fis-

cher (2010) performed a similar analysis but used ∆SHK

to observe trends with activity. One of the key results

of this work was that the RV jitter of K dwarfs showed

little dependence on magnetic activity and showed the

overall lowest levels of RV jitter, representing a “sweet

spot” for exoplanet searches.

Our analysis builds on these previous works in sev-

eral ways. First is our thorough approach to calculating

RV jitter. Wright (2005) removed known planet hosts

from the sample, and Isaacson & Fischer (2010) did not

give special treatment to planet hosts or possible com-

panions. The resulting jitter values certainly contained

dynamical velocities, which is why they simply inves-

tigated the jitter floor. By accounting for planets and

other companions in a consistent, conservative manner,

we have brought many of the artificially high points

down to the jitter floor, thereby strengthening its sig-

nificance. Further, we have the benefit of several years’

worth of additional observations that give us a better

handle on the long-timescale RV variability as well as

better constraints on long period planets and other long-

term trends. Tied to this is the years of observations on

stars that were not previously in the California Planet

Search sample, or had very few observations at the time

of publication of either Wright (2005) or Isaacson & Fis-

cher (2010). As mentioned previously, this includes the

sample of “Retired” A stars (Johnson et al. 2007a) as

well as a sample of young, active stars which had been

observed as part of the Spitzer Legacy Program, Forma-

tion and Evolution of Planetary Systems (Meyer et al.

2006). These two samples are crucial for this work as

they give us much stronger leverage on both activity and

evolution. Finally, we restrict ourselves to stars with

updated stellar properties from B17, which allows us to

investigate more clearly how stellar RV jitter manifests

for different stellar types in a more precise manner than

previously possible.

Figure 2 shows the RV RMS of our sample in two

different ways. First, as a function of log g and colored

by their activity, SHK. In this panel, we have cut off the

y-axis to exclude stars that have large levels of jitter that

are likely due to additional companions that cannot fully

be constrained and to better show the trends among the

low jitter stars. The second panel shows the same data

but plotted as a function of activity, SHK, and color-
coded by their evolutionary state, log g.

The first panel in Figure 2 has two immediately no-

ticeable features: a vertical pileup of stars at high sur-

face gravities (log g ∼ 4.5), and a horizontal pileup

among the low surface gravity stars. By noting the

color-coding, it is clear that the vertical pileup con-

tains the active stars and the inactive stars are con-

tained in the horizontal pileup. We can therefore easily

see the two regimes of RV jitter — activity-dominated

and convection-dominated. The second panel in Fig-

ure 2 does not make as clear of a distinction between

these two regimes. Instead, we see a general trend where

jitter decreases with decreasing activity while stars are

still in the main sequence (yellow-shaded points). Upon

leaving the main sequence (orange/red points), we see

that decreasing activity results in an increase in RV jit-
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ter. We note that because we are looking at the full

sample spanning several spectral types, a clear relation

between SHK is not expected. Upon closer examination,

Figure 2 (in particular the top panel) paints a general

astrophysical picture of RV jitter evolution, as follows:

The Main Sequence —The main sequence is easily identi-

fied by the vertical pileup in the left of the upper panel

of Figure 2, at log g ∼ 4.5. These main sequence stars

are further distinguished by the large fraction of active

stars (SHK & 0.25) in this portion of the plot. Given

the known correlation between RV jitter and activity

(Campbell et al. 1988; Saar et al. 1998; Santos et al.

2000; Wright 2005; Isaacson & Fischer 2010), this is

unsurprising based on general main sequence evolution

(e.g., Mamajek & Hillenbrand 2008). We expect that

stars start out on the top left of this diagram (at the top

of the main sequence here), as rapidly rotating, active

stars with high surface gravity characteristic of the zero

age main sequence (ZAMS). As they live out their lives

on the main sequence, they lose angular momentum to

magnetic winds, spin down, and become less active. As

a result, they become quieter in RV observations and are

seen to have less jitter. Therefore, a given star’s path on

the main sequence is to drop vertically as it becomes less

active and less jittery. Eventually, as stellar evolution

progresses, its surface gravity drops and it enters the

subgiant and giant regime where it tends to be inactive

(Wright 2004). A typical surface gravity for a terminal

age main sequence (TAMS) Sun-like star is log g ≈ 4.

We emphasize that a portion of the inactive horizontal

floor seen in the upper panel of Figure 2 is during a star’s

final main sequence evolution. Therefore we find it use-

ful to distinguish between the main sequence (the time

in which the star is burning hydrogen in its core) and

the phase in which the star is in the vertical portion of

Figure 2. We introduce the term “active main sequence”

when we wish to refer specifically to the vertical pileup

of active stars. Stars on the “active main sequence” are

stars whose jitter is dominated by magnetic activity.

Subgiants and Giants —The remainder of a star’s life (at

least until into the early giant phase, beyond which we

cannot probe with this sample) is spent moving mostly

horizontally to the right in the upper panel of Figure 2.

These stars are no longer active, as they have spun down

to the point that they have very weak magnetic fields

and therefore little chromospheric emission. However,

we see a noticeable increase in RV jitter as stars evolve

and their convective power increases. Among the giants

and subgiants, stars with lower log g show higher levels

of RV jitter than do stars with higher log g, a result ex-

pected and seen by Wright (2005), Kjeldsen & Bedding

(2011) and Bastien et al. (2014b). Since these are al-

most entirely inactive stars that have fully spun down,

their jitter is dominated by convection, through a com-

bination of granulation and oscillations. The increase

in RV RMS with decreasing log g can be more easily

seen when the y-axis is plotted in log-scale, as seen in

Figure 3, where we now color-code by mass.

We therefore see from Figure 2 that RV jitter tracks

stellar evolution as stars transition from active to inac-

tive stars and then exhibit increased convective power as

they continue to evolve. From Figure 3, we see color gra-

dients that indicate strong mass dependencies, namely

the lower log g and higher RV jitter with increased mass

and the increase in RV jitter with mass among the most

active stars. To examine these trends more closely, we

divide our sample into mass bins.

Figures 4 & 5 are the same as the first panel in Figure 2

i.e., RV RMS vs. log g) and Figures 6 & 7 are the same as

the second panel (i.e., RV RMS vs. SHK) but now they

have been broken into mass bins, each 0.1 M� wide7.

For reference, we have added the sun to the plot of stars

1.0≤M? < 1.1 M�, plotted as a large diamond symbol8.

For these plots, it is useful to compare trends as they

relate to astrophysical checkpoints in their evolution.

For that reason, in each mass bin, we plot three ver-

tical lines that correspond to the surface gravities at

three points in the evolution of a star: the zero-age

main sequence (ZAMS), the terminal age main sequence

(TAMS) and the base of the red giant branch (BRGB).

These values come from a simple MESA (Paxton et al.

2013) stellar evolution model where we set the TAMS by

determining the age at which the hydrogen core fraction

falls below Xc = 0.0002 and the BRGB by determining

the local minimum on the HR diagram (van Saders &

Pinsonneault 2013). These three lines break each plot

into the three basic phases of evolution that they cover:

main sequence, subgiant, and giant phases. The inclu-

sion of the TAMS line also highlights the fact that stars

are known to evolve while on the main sequence (Mama-

7 We note that our mass bins are smaller than the typical un-
certainty in the mass from B17. The median mass uncertainty in
our sample is 0.16 M� (∼ 15%). As such, it is likely that a num-
ber of our stars do not actually fall within the mass bin to which
we have assigned them. We have settled on bin widths of 0.1 M�
after comparing several different bin widths, and seeing that our
conclusions hold for both larger and smaller bin widths. The bin
width we used is both convenient numerically while being small
enough to track the differences across mass bins but large enough
to contain enough stars to clearly show trends within a bin.

8 We use the measured disk-integrated solar RV RMS of 8 m/s
(over the solar cycle) from Meunier et al. (2010). The solar SHK is
0.1694 averaged over the solar activity cycle (Egeland et al. 2017).
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Figure 2. Top: RV jitter as a function of log g for our entire CPS sample. The y-axis has been capped at 100 m/s to show
only those stars whose jitter are likely dominated by astrophysical sources rather than additional unsubtracted companions
(upward-pointing arrows indicate the 8 stars with RV RMS above 100 m/s, two of which overlap in this plot with identical log g
values of 4.42). The vertical error bars are calculated from Equation A5 as described in Appendix A. The horizontal error bars
are uniformly 0.028 dex in log g as described in B17. The color bar shows activity metric SHK as defined in Section 2.3. As a
typical star evolves, it will begin at the top left of this plot with large surface gravity, high activity, and high jitter; it then moves
vertically downward due to main sequence spin-down; as it evolves off the main sequence it transitions from activity-dominated
jitter to convection-dominated jitter where the jitter shows a gradual increase with evolution. Bottom: RV RMS as a function of
SHK for the stars in our sample. Horizontal error bars come not from individual measurement uncertainty for SHK but instead
are the standard deviation of the SHK time series, effectively indicating how variable a star is in activity (typically from cycles).
Points are colored by their surface gravity. Again, the 8 stars with RV RMS greater than 100 m/s are shown as upward arrows.
As a star evolves it will begin on the right side of this plot with high jitter; it then moves diagonally down to the left as it spins
down, eventually increasing again as an inactive giant star, when convective phenomena dominate the RV jitter.
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Figure 3. Same as Figure 2, but with the following changes: the y axes have been transformed to logscale and the points
in both plots are now color coded by mass. The mass color-coding highlights two effects: 1) the shift in toward lower log g
and higher RV RMS with higher mass star in the top panel, and 2) among active stars (above ∼0.25), the higher RV jitter
associated with higher mass seen in the bottom panel. These plots motivate the analysis by mass bin to see trends more clearly
as a function of mass.
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Figure 4. Same as first panel of Figure 2 but separated by mass. The y-axis covers a smaller range to highlight the slope with
log g. Further, the color scale has been decreased to highlight the transition from the vertical activity-dominated regime to the
horizontal convection-dominated regime. Solar values are plotted in the 1.0 to 1.1 M� plot as a large diamond (log g = 4.43, RV
RMS = 8 m/s). We use the solar RMS found in Meunier et al. (2010) and the activity-averaged SHK from Egeland et al. (2017).
The vertical dashed lines plot the theoretical zero-age main sequence (ZAMS) for the lowest mass star and the theoretical
terminal-age main sequence (TAMS) for the highest mass star in a given bin. The shaded region at the bottom of each plot
shows the typical Keck-HIRES instrumental uncertainty, which has not been subtracted out from our calculation of RV jitter.
The dashed blue and red lines show the RV jitter components for oscillation and granulation, respectively, as given by Equations
7 and 9. Their total contribution to RV jitter (added in quadrature) is shown by the purple line. The theoretical lines in the
first two panels have been grayed out for surface gravities where the stellar model is older than the age of the universe. See
Figure 5 for the remaining high mass bins.
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Figure 5. Same as Figure 4, for larger masses. We note the ‘X’ in the 1.5 to 1.6 M� bin, which shows the RV RMS of two
nights of targeted observations of HD 142091 to observe stellar p-mode oscillations. This serves as a validation of the theoretical
scaling relation for the oscillation component (blue dashed line) of the RV RMS and is described in more detail in Section 4.2.
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Figure 6. Same as the second panel of Figure 2 but separated by mass bin. The highest mass bins in our sample are seen in
Figure 7. Solar values are plotted as a diamond in mass bin 1.0 ≤ M? < 1.1 M�, as in Figure 4. The shaded region at the
bottom of the plots shows the typical Keck-HIRES instrumental uncertainty.

jek & Hillenbrand 2008) and illustrates the effects this

has on RV jitter. A star’s main sequence lifetime is spent

between the ZAMS and TAMS lines and we can use

these as a quick way to estimate spin-down timescales

(as indicated by the decreasing activity and RV jitter) as

they compare to the main sequence lifetime for a given

mass.

Additionally, we have included theoretical curves from

relations found in Kjeldsen & Bedding (2011). These

curves plot the expected scaling relation of RV jitter

with log g due to the two components of convectively

driven RV jitter: stellar oscillations and stellar granula-

tion, as discussed previously in Sections 3.9.1 and 3.9.2

and given in Equations 7 and 9, respectively. To plot

them as a function of log g, we use MESA to generate
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Figure 7. Same as Figure 6, for the larger mass bins

an evolution track for each mass range. For each mass

bin we evolve a solar-metallicity star with the mass of

the lowest mass in the mass bin from ZAMS to the tip of

the red giant branch, since we are only concerned with

evolving a star until log g = 2.5. We can then use the

stellar parameters at each point in the evolution in the

theoretical relations, which depend not only on the sur-

face gravity, but also depend on temperature and radius

at a given point in the star’s evolution. The evolution

tracks used in this work can be seen in Figure 8.

4.1. Two Regimes of RV Jitter: The Transition from

Activity-dominated to Convection-Dominated

We have empirically identified two major regimes of

RV jitter: magnetic activity-dominated and convection-

dominated. As a reminder, we have treated the gran-

ulation and oscillation components as one combined

regime where the RV jitter is driven by convection
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Figure 8. MESA evolutionary tracks used for the theo-
retical granulation and oscillation components of RV jitter
(Equations 9 & 7) as a function of surface gravity for each
mass bin in Figure 5. The CPS sample in this work is shown
in light gray points for reference.

and increases with evolution (as opposed to the de-

crease with evolution seen in the activity-dominated

regime). For this sample, we are not as concerned with

determining whether a star is granulation-dominated

or oscillation-dominated but rather the transition from

activity-dominated to convection-dominated. In fact,

based on the theoretical scaling relation, our sam-

ple barely contains stars that have evolved enough to

probe the transition from granulation-dominated to

oscillation-dominated. However, the fact that the floor

of the observations seems to increase as theoretically

expected, especially in stars with masses 1.2-1.3 M�,

suggests that the oscillation component dominates for

stars below log g ∼ 3, and we use this as further valida-

tion of the scaling relation for the oscillation component.

Further, despite good agreement with the data, the the-

oretical granulation component appears to follow the

instrumental uncertainly threshold and so we are reluc-

tant to make strong claims about the relative strengths

of RV variations due to granulation and oscillations.

For most stars we have ∼10-30 observations over a span

of years with variable cadence depending on the star,

which does not allow us to say much about the phys-

ical phenomena with timescales of minutes to hours

(granulation, oscillation). It is clear however that these

theoretical predictions convincingly describe the obser-

vations (whereas activity does not since the S-value is

low despite elevated jitter in some cases). More work

will be needed to distinguish different convection-driven

processes.

The following paragraphs discuss the transition from

activity-dominated to convection-dominated jitter as it

depends on mass. First it is useful to define the “jit-

ter minimum”, the point in a star’s lifetime where its

RV jitter is lowest, which, as our data suggest, occurs

at the transition between the activity-dominated and

convection-dominated regimes.

4.1.1. Low-mass stars: M? < 0.9 M�

For low-mass stars in our sample we have very few

evolved stars due to their long main sequence lifetimes.

As we decrease in stellar mass, the main sequence life-

time increases and at some point exceeds the age of

the universe. All Sun-like stars below a certain mass,

(∼0.9 M�) are therefore activity dominated, and our

data suggest that there is a fundamental mass limit

where stars have not evolved enough to reach their as-

trophysical jitter minimum.

The following trends with log g can be seen in the first

two panels of Figure 4. Stars less massive than the sun

are born as young, active stars and magnetic activity

(manifested as spots/plages/etc.) dominates the RV jit-

ter. As they continue to evolve on the main sequence,

they spin down and become less active, which results in

lower RV jitter amplitudes. Since they are still early in

their MS lifetimes, they have not changed their structure

much, and remain near their initial log g. Their primary

movement on a plot of RV jitter vs. log g is therefore

vertically downward from their zero-age-main-sequence

location. We note that for most of our mass bins in this

regime we are unable to fully probe the minimum jitter

value due to the instrumental uncertainty. We see some

evidence in the stars between 0.9 and 1.0 M� that the

jitter floor for these stars occurs when these stars have

begun to evolve toward the end of their main sequence

lifetimes.

When looking at trends with SHK in Figure 6, we see

the same story in a slightly different way. First, there is

a lack of a convection-dominated regime, which would

be indicated by an increase in jitter for the least active

stars in these plots. These stars are therefore activity-

dominated, and because they have reached our instru-

mental floor, it is unclear whether they have lived long

enough to have spun down to their jitter minimum. We

further note by comparing to other mass bins that the

activity dependence is diminished for the lower masses.

That is to say that even the most active stars in this

group only have RV jitter of 10-20 m/s. Although ac-

tivity and RV jitter are still strongly correlated, the de-

pendence is much weaker, with a slope 6 times shallower

than in the 1.0 to 1.1 M� bin (slopes of 15 and 98). This

echoes the results of Isaacson & Fischer (2010), who re-

ported this “sweet spot” for spectral type K stars, which

exhibit relatively low levels of RV jitter across all mea-

sured activity levels.
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We wish to note that for this group of stars there ap-

pears to be a discrepancy between the theoretical ZAMS

and the ZAMS one would infer from looking at the ver-

tical pileup of the “active main sequence”. That is, the

observed surface gravities appear to be systematically

lower than predicted by stellar models. We see this only

in this sample of low-mass stars and we attribute this as

due in part to the calibration of log g in B17, which used

asteroseimic surface gravities to calibrate the measured

spectroscopic surface gravities. As such, the asteroseis-

mic sample was mostly evolved (and therefore massive

enough to have evolved within the lifetime of the uni-

verse) stars. Therefore, there are very few calibration

points for lower mass dwarfs, and it is expected that the

measured surface gravities would be less certain. De-

spite the larger uncertainties and tendency to underes-

timate the surface gravities for the lowest mass dwarfs

in our sample, our results hold. We note that this ef-

fect is reduced when using the isochrone-derived surface

gravities given in B17, which are otherwise disfavored.

We are limited in our sample of low mass stars by

the lower temperature limit of B17. We expect similar

trends to hold (i.e., low jitter regardless of activity) for

stars below 0.7 M�, and therefore expect them to con-

tinue to be a “sweet spot” for planet searches. However,

the inability to have fully spun down on the timescale of

the age of the universe means that these stars may only

be able to spin down to a level of RV jitter that could be

above what we see in our lowest mass bins. Further, we

expect different manifestations of activity for stars that

are fully convective and so we avoid speculating about

the RV jitter of such stars. New infrared spectrographs

(Carmenes, HPF, SPIROU, iSHELL) will provide bet-

ter studies for the behavior of RV jitter for these fainter

M dwarfs.

We remind the reader that we see no evolved stars in

this set of stars due to the main sequence lifetimes being

longer than the age of the universe (as is indicated by the

washed out lines in Figure 4 that show the theoretical

convection component).

4.1.2. Solar-mass stars: 0.9 M� ≤ M? < 1.5 M�

Although the highest mass in this range would typi-

cally not be considered “solar mass”, we find that the

RV jitter of stars in this range of masses behaves very

similarly. Stars roughly solar mass stars up to 1.5 M�
exhibit the following trends in log g (seen in Figure 4

and Figure 5). These stars start as active stars that

then move vertically down the “active main sequence”

as they spin down. However, it is clear from these plots

that stars in this mass range do not reach their jitter

minimum before beginning to evolve to lower log g. The

“jitter minimum” instead occurs for stars that have mea-

surably evolved, but before the stars get so big that

RV variations caused by convection become dominant9.

This transition region from activity-dominated jitter to

convection-dominated jitter comes mostly from the loss

of magnetic activity. The color gradient seen in the stars

in Figure 4 in the mass range 1.0 to 1.1 M� near the

jitter minimum at log ∼ 4.3 clearly shows this transition

as stars become magnetically quiet. From there, a star

follows the general path shown in the purple line, with

RV jitter dominated by convection: first, we predict, by

granulation and later by oscillations.

In terms of activity, Figure 6 and Figure 7 show the

same trends in a different manner. In these plots, it is

easy to see the relation between activity and RV jitter.

We clearly see when comparing the 0.9 to 1.0 M� mass

bin with the 1.0 to 1.1 M� mass bin that the most active

stars in the higher mass bin have higher levels of RV

jitter. We expect this to hold generally: the most active

stars of higher masses have higher RV jitter, continuing

with what we saw in the lower mass bins in Section 4.1.1.

This is confirmed by the increasing slopes with activity

from 0.9 to 1.0 M� bin (slope of 62) to 1.0 to 1.1 M�
bin (slope of 99), to 1.1 to 1.2 M� bin (slope of 132)10.

In other words, despite the fact that the range of SHK

values decreases with increasing mass, the range of RV

jitter values is observed to increase substantially as well,

with 97th percentiles in RV jitter of (12.38 m/s, 18.99

m/s, 31.09 m/s, 36.09 m/s, and 43.402 m/s for the first

5 bins of Figure 6). However, our ability to probe this

trend for intermediate mass stars (∼ 1.3 to 1.5 M�)

is hampered by selection effects, outlined below. The

convection-dominated regime is not as clearly defined as

it is in the plots of log g. In general we see that below a

certain activity level (different for each mass bin), stars

exhibit high levels of RV jitter again.
From the plots for these stars, it is clear that both

activity and evolutionary state of the star are useful for

selecting stars that are RV quiet as we see a well-defined

transition between the activity-dominated regime and

the convection-dominated regime.

We wish to quickly discuss the inclusion of the in-

termediate mass stars in this grouping. Stars of inter-

9 This is less clear in the 0.9 to 1.1 M� mass bins since we are
unable to fully probe the jitter minimum for these stars, given the
instrumental uncertainty. However, it is still suggested in the plot
that the jitter minimum occurs at lower log g values among the
main sequence stars in this bin.

10 The increasing slope is also affected by the fact that SHK is
not normalized between spectral types (e.g., the most active stars
in the 1.1 to 1.2 M� bin are all below 0.4 whereas the highest in
the mass bin below it are below 0.5).
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mediate mass (1.3 to 1.5 M�) on the main sequence

are not suitable for RV observations. Their hot tem-

peratures produce few absorption lines in their spectra

and their rapid rotation broadens any absorption fea-

tures they may have to the point where precise RV mea-

surements are not possible. Therefore, to study planets

around intermediate-mass stars, surveys like the “Re-

tired A-Star Survey” (Johnson et al. 2006) have exam-

ined their evolved stages where they have both cooled

and spun down, allowing for precise RV measurements.

Therefore, we do not see many stars in the “zero age

main sequence” portion of these figures for stars above

1.3 M�. We also must point out that this mass is not

surprisingly near the Kraft break (Kraft 1967). Above

this mass range, dwarf stars rotate too rapidly for precise

RV measurements. The Kraft break also pinpoints the

region where stars begin to have very thin (or nonex-

istent) convective envelopes. If they lack a convective

envelope, this further complicates our analysis because

they would no longer be magnetically active, since con-

vection is a required condition for our current under-

standing of magnetic dynamo (Parker 1955). Instead,

spin down for these stars occurs after the main sequence

as they gain a deepening convective envelope (Kippen-

hahn et al. 2012; van Saders & Pinsonneault 2013). Any

attempts at obtaining radial velocities of intermediate

mass stars on the main sequence would probably con-

tain large amounts of RV jitter, likely dominated by

pure uncertainty in measuring a precise velocity from

the rotationally-broadened absorption features11 rather

than magnetic activity.

Instead, intermediate mass stars show up in our sam-

ple once they have appreciably evolved and become

amenable for precision radial velocities. van Saders &

Pinsonneault (2013) argue that the stars above the Kraft

break are able to spin down rather quickly post main se-

quence due to the rapid rotation during the onset of the

magnetic winds coupled with the fact that these stars

are substantially expanding and increasing their mo-

ments of inertia (moreso than in lower mass stars). As

such, the massive stars are able to spin down from their

main sequence rotations (v sin i > 70 km/s)12 to veloc-

ities more amenable for radial velocity measurements

(v sin i < 20 km/s) in a relatively short amount of time.

Despite the rapid spin down, their descent toward lower

RV jitter is not as vertical as seen in the lower mass

11 The A-F stars studied in Galland et al. (2005) were seen to
exhibit RV uncertainty in the range of 50-300 m/s. Additional
work has shown that RV uncertainty can be as much as ∼km/s in
O-type stars (Williams et al. 2013).

12 Based on Kraft (1967)

stars. Presumably this is because the subgiant lifetime

is shorter than the timescale to spin down and so these

stars then stay active down to very low log g. They

therefore travel along a diagonal path downward and

to the right in the log g plots as they leave the main

sequence.

When looking at the log g plots for the intermediate

mass stars (first two panels of Figure 5) there is evidence

for an “active main sequence” where stars are spinning

down and traveling vertically downward as the decrease

in RV jitter. However, there are only a few points that

indicate the presence of an active main sequence. When

we look at the SHK plots, there is very little evidence of

a trend with activity for the active stars, casting doubt

on the any evidence of an active main sequence for these

stars. Given the low significance, the appearance of an

“active main sequence” in the log g plots can be ex-

plained away by measurement uncertainties (log g, M ,

RV RMS). However, these stars still clearly show the

rising floor of the convection-dominated regime as they

evolve through the subgiant and giant phases. Despite

expecting stars in the range of 1.3 to 1.5 M� to have dif-

ferent trends than the solar-mass stars, it is clear from

the log g plots that these stars follow the trends seen

among the solar-mass stars instead of the trends seen in

the higher mass stars.

We are limited in this sample by several selection ef-

fects. Probing the full effect of activity is challenging

because of the nature of exoplanet searches, which have

predominantly searched around inactive stars, rightly

expected to have lower levels of RV jitter. Added to this

is the effect of rotational broadening. At higher masses,

stars have thinner and thinner convective envelopes and

are unable to fully spin down on the main sequence. We

only see the initial effects of this in the stars in this mass

range. The effects are strongest in the next mass range.

4.1.3. High-mass stars: M? > 1.5 M�

Astrophysically, the stars in this set follow the

same ideas of transitioning from activity-dominated to

convection-dominated, but with two distinct differences

as seen in the plots of log g. First, as mentioned above,

these stars are not able to spin down until they gain a

convective envelope, which occurs in the subgiant phase

for these stars. Second, their evolutionary timescales are

considerably shorter, such that the spin-down timescale

is of order their evolutionary timescale. This means

they are seen to be moving diagonally downward to the

right as they spin down, decrease in jitter, and expand

into a giant star. Evidence of this trend was seen in the

previous set of stars, but it becomes very clear when

looking at the behavior of this set. The transition from
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activity-dominated to convection-dominated is therefore

spread out in log g and in fact the most evolved stars in

our sample have only just hit the theoretical convection

limit. This means that these stars are still spinning

down and activity becomes the dominant predictor of

RV jitter rather than evolution.

We see slight evidence of this when looking at the

plots of SHK for this set of stars when compared with

the first two bins of Figure 7. Because the active and

rapidly rotating main sequence stars in the first two bins

(1.3 to 1.4 M� and 1.4 to 1.5 M�) are avoided in tar-

get selection, there appears negative correlation between

SHK and RV RMS since the stars are in the convective-

dominated regime where RV jitter increases with time

as they continue their final spin-down. For the stars

in mass bins above 1.5 M� the sign flips and we see a

stronger positive trend again, most likely because they

evolve more quickly and were more rapidly rotating to

start with, so they are still. Unfortunately our data are

too sparse in these bins to fully support these claims.

Instead, the data appear to be merely consistent with

the framework we have adopted for the the evolution of

RV jitter as seen in the lower mass bins and extrapo-

lated to these bins. At least in the 1.6 to 1.7 M� bin, it

seems that activity is a better predictor of RV jitter.

An important caveat to remember is that this sam-

ple does not contain many evolved giant stars. It is

reasonable to expect that if we observed giant stars

with log g < 3 we would see the rise of the convection-

dominated floor and therefore see the negative trend

with SHK below about 0.2. It is therefore only true

that activity is the better predictor of RV jitter for this

specific set of stars in our sample. Additionally, as men-

tioned above, main sequence stars of these masses were

avoided in RV observations and so we continue to lack

stars close to the ZAMS, and in this set of the highest

mass stars we barely have any stars before the TAMS.

The two regimes of RV jitter as they relate to low

mass stars (Section 4.1.1), solar mass (Section 4.1.2),

and high mass (Section 4.1.3) can be briefly summa-

rized as follows. Low mass stars evolve very little during

the transition from activity-dominated to convection-

dominated RV jitter. It is clear that for these stars,

the spin-down timescale is much less than their main

sequence lifetimes, as expected (van Saders & Pinson-

neault 2013). Higher mass stars evolve quite dramati-

cally before they complete the transition from activity-

dominated to convection-dominated RV jitter. The two

reasons for this are that 1) higher mass stars (above the

Kraft break) are unable to spin-down while on the main

sequence and so all spin down occurs in the subgiant

Table 4. Estimated RV Jitter Minimum by Mass

Mass bin jmin Location of jmin ZAMS TAMS

(M�) (m/s) log g log g log g

0.8 – 0.9 ≤2.5 4.5 4.629 4.294

0.9 – 1.0 ≤2.5 4.4 4.587 4.251

1.0 – 1.1 ≤2.5 4.35 4.535 4.210

1.1 – 1.2 ≤2.5 4.25 4.500 4.104

1.2 – 1.3 3.5 4.2 4.429 4.017

1.3 – 1.4 4 4 4.339 3.959

1.4 – 1.5 4 3.8 4.297 3.907

1.5 – 1.6 5 3.3 4.284 3.844

1.6 – 1.7 5 3.25 4.297 3.873

> 1.7 5.5 3.1 4.302 3.873

and later evolutionary stages, and 2) higher mass stars

evolve more quickly. The key result from this is that the

jitter minimum occurs at later stages of evolution for

higher mass stars.

4.1.4. Location of the jitter minimum

Given this picture for the stellar evolution of RV jitter

as a function of mass, we provide a rough estimate of the

value and location (in terms of log g) of the jitter mini-

mum for each mass bin in Table 4. These estimates are

performed by eye. For each mass bin we simply follow

the RV jitter evolution in the log g plots, starting first

at the active main sequence and following that sequence

downward as the stars spin down. For the lowest mass

stars, they hit the instrumental floor in a vertical strip

that makes it quite easy to estimate the location of the

jitter minimum. As they appear to be at the instrumen-

tal floor, we can only say that their jitter is likely below

2.5 m/s. For the mass bins in the solar range, we follow

the spin down of the active main sequence in increas-
ingly gradual transitions, as suggested by the floor of the

data. When they reach the instrumental floor or appear

to essentially flatten out, we again estimate the log g

at which this first appears to happen (towards higher

log g.). For the highest mass stars, we follow the diago-

nal path downward until it roughly reaches the modeled

convective floor.

4.2. Validation of Oscillation Scaling Relation

Now that we have discussed the major trends and ob-

servational limitations, we take an aside to comment on

the validation of the scaling relation used for the oscil-

lation component of RV jitter. We tested several dif-

ferent scaling relations for the oscillation component of

RV jitter that can be found in the literature. A detailed

account of each relation would detract from the purpose

of this paper. We find that many of the relations agree
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with the general trends, and we cannot with confidence

claim that one relation is preferred by the data. To

compare all of the different scaling relations, we check

using two wider mass bins, 1.0-1.2 M� and 1.2-1.4 M�
by examining how well the resulting scaling relation fol-

lowed the jitter floor. We find that the effects are seen

most clearly toward the end of the subgiant regime and

into the giant regime, which is why we use these bins

where our sample is large and the floor is fairly well de-

fined. All tested relations can be seen in Figure 9. We

find that KB11+Co12 (Kjeldsen & Bedding (2011) os-

cillation scaling relation with the Corsaro et al. (2012)

mode lifetime scaling) shows the best agreement to the

floor of our data by eye, and we use this as light empir-

ical evidence in favor of these relations. As can be seen,

the other relations either showed too sharp or too shal-

low of an increase with log g. We note that KB11+Ch09

(Kjeldsen & Bedding (2011) relation with the Chaplin

et al. (2009) mode lifetime) also does a decent job fitting

the RV jitter floor. We choose the Corsaro et al. (2012)

mode lifetime over the Chaplin et al. (2009) lifetime for

its ability to better fit the floor at the lowest surface

gravities.

To further test our scaling relation, we make use of

observations of HD 142091, a 4th magnitude subgiant

for which asteroseismic radial velocity observations were

made specifically to target stellar p-mode oscillations.

The observations were made over several hours on two

separate nights in mid 2013. The first night (June 24)

contains 246 observations over a 4 hour span. The sec-

ond night (June 30) is separated by 6 days and contains

151 observations over a 2 hour span. Each night of ob-

servations shows a clear sinusoidal variation in the radial

velocities due to the stellar p-mode oscillations, shown

in Figure 10. The remaining observations of this star

show evidence of a planet (Baines et al. 2013). To cal-

culate the RV jitter for this star, we first subtract out

the planet. The RV jitter of the residuals to this fit is

then largely driven by the nearly 400 observations that

show the stellar oscillations. Since the RMS for the two

nights of observations is significantly smaller than the

scatter for the remaining observations, we remove these

from the jitter calculation and obtain an RV RMS of

7.6 m/s compared to the RMS during the two nights of

high-frequency observations of 2.6 m/s, which provides

a good check of our expected oscillation component. We

show this as an ‘X’ in the 1.5 to 1.6 M� mass bin of Fig-

ure 5 and note that this is the only star in our sample

for which we have resolved stellar oscillations. The ‘X’

lands almost exactly where the scaling relation in Equa-

tion 7 (Kjeldsen & Bedding 2011; Corsaro et al. 2012)

predicts. We note that the blue dashed line showing the

oscillation component of RV jitter shown in Figure 5

is for a nominal 1.5 M� star. We can go one step fur-

ther and compare the measured and expected oscillation

amplitudes based on the actual stellar properties for this

star.

Using the stellar properties of HD 142091 (M =

1.5 M�, Teff = 4781 K, [Fe/H] = 0.25, log g = 3.26,

R = 4.85 R�), the expected oscillation amplitude is

3.293 m/s (2.944 m/s when using the Chaplin et al.

(2009) mode lifetime). For both nights of observations

we find the best-fit sinusoid to determine the ampli-

tude of stellar p-mode oscillations. The best-fit sinu-

soid for the June 24th observations has an amplitude

of 2.778 m/s. The amplitude for the June 30th obser-

vations is slightly smaller: 2.511 m/s. Both observa-

tions show very good agreement with the predicted am-

plitudes from Kjeldsen & Bedding (2011) and Corsaro

et al. (2012), which we show in Figure 10. The excellent

agreement between the measured and expected ampli-

tudes for a massive, evolved star is validation for the

oscillation scaling relation used in this work, which has

been scaled to the sun.

4.3. Other Features of Jitter Evolution

Here we quickly highlight a few other results and fea-

tures noticed in the jitter evolution plots (Figures 2, 4,

5, 6, and 7.).

4.3.1. Jitter-Above-the-Floor Stars

Our primary concern has been to establish the “jit-

ter floor” and explore trends among stellar types. After

establishing the jitter floor, we examined stars that ap-

peared to be well above the floor and here we note two

stars that have significantly higher RV jitter than simi-

lar stars (at log g ∼ 3.2) and are well above our relation.

These two stars, HD 207077 and HD 128095, are in fact

stars that showed lower jitter in the early stages of the

vetting process when the blind fitting had subtracted

Keplerian signals.

HD 207077 (M = 1.13 M�, log g = 3.27, σRV =

18.62 m/s) has a strong planet candidate signal at

around 600 days, and is among those listed in Luhn et al.

(2019) as planet candidates. We are nearly convinced by

this planet, however we have decided to not count it as a

planet until more observations are made. However, the

above-average jitter for this type of star provides strong

evidence that this planet is real (see Luhn et al. 2019).

Indeed, if we subtract our best-planet model, we get an

RV RMS of 6.69 m/s, where it would fall along our rela-

tion. This validates our conservative vetting procedures

and supports our confidence that none of the features

in our plots are the products of any subjectivity in our

vetting.
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Figure 9. Comparison between various theoretical and empirical scaling relations for the oscillation component of RV jitter
for stars between 1.0 and 1.2 M� (left) and stars between 1.2 and 1.4 M� (right). Points are color-coded as in Figure 4.
Scaling relations are abbreviated as follows: KB95 for Kjeldsen & Bedding (1995), KB11+Ch09 for Kjeldsen & Bedding (2011)
with Chaplin et al. (2009) mode lifetime, KB11+B11 for Kjeldsen & Bedding (2011) with Baudin et al. (2011) mode lifetime,
KB11+Co12 for Kjeldsen & Bedding (2011) with Corsaro et al. (2012) mode lifetime, C13 for Corsaro et al. (2013), and K14
for Kallinger et al. (2014).

HD 128095 (M = 1.2 M�, log g = 3.35, σRV =

25.59 m/s) shows strong evidence of both a long pe-

riod planet and a shorter period planet. However, given

the small number of observations, we expect that our

two-planet fit might underestimate the true jitter, as

the system will be overfit. For now we have simply re-

moved the long period planet, however, it results in a

large jitter for this star. Given that it is well above our

relation, we believe this provides further evidence that

the two planet model is closer to correct.

We notice several other high jitter stars in the various

plots, but the above two cases show clear examples of

using the jitter floor to identify stars that appear to

be out of place, indicating the presence of additional

RV variation that has not been accounted for, namely

planets. This type of identification is useful only for

large offsets typical of Jovian type planets but is still

useful for prioritizing targets and optimizing the use of

our resources.

4.3.2. Active Subgiants

We observe from Figure 2 a sample of stars with

3 < log g < 3.5 that are well above our jitter floor.

These stars also show high levels of magnetic activity,

generally unexpected for subgiant stars. However, this

is the result of using a broad stellar sample, covering a

wide range of masses and evolutionary stages. As ex-

plained above, these are merely intermediate-mass stars

that are still spinning down, and evolving quickly before

they can lose their magnetic activity. This is evidenced

by the lack of any stars in this range of surface gravities

that appear to have high jitter and abnormally high ac-

tivity when looking at the plots separated by mass bins.

We also note that a decent fraction of these active sub-

giants also have stellar companions, which could play a

role in the observed increased activity, which was also

noted in Isaacson & Fischer (2010).

4.3.3. Upturn in jitter for giant stars

We also notice when examining Figure 2 an upturn

in RV jitter around log g ∼ 2.75. We are unable to

yet confirm that this is indeed a real feature of RV jit-

ter evolution and not merely a few high points. If it

is indeed real, this could perhaps indicate that the os-

cillation scaling relation has a sharper scaling with log g

than the theoretical relations (Kjeldsen & Bedding 2011;

Corsaro et al. 2012) suggest. Given that it is only ap-

parent in Figure 2 for our entire sample and less so in

the same plots broken into mass bins, it is likely not

real. However, our sample includes very few stars that

have evolved to log g ∼ 2.75, and so the lack of evidence

in the plots broken up by mass could merely be due to

small sample size for these types of giant stars. A future

goal is to extend this further and increase our sample of

giant stars for precisely this reason.

4.3.4. Theoretical Bump in RV jitter for Intermediate
Mass Stars

As can be seen in Figures 4 and 5, for stars above

roughly 1.2 M�, the theoretical oscillation and granu-

lation components to RV jitter go through a period of

increased RV jitter from about log g 4 to 3.75 for the

1.2 M� stars and moving to later evolutionary stages

(log g 3.75 to 3.5) for the most massive stars in our sam-

ple. We find that this region corresponds to the onset of

hydrogen shell burning, which has the effect of restruc-
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Figure 10. Observations of HD 142091 targeting stellar
oscillations. The black curve shows the best-fit sinusoid for
the observations on June 24, 2013 (top panel) and June 30,
2013 (bottom panel). The red curve in each panel shows the
same sine curve but with the predicted oscillation amplitude
based on the scaling relation in Kjeldsen & Bedding (2011),
as given in Equation 7.

turing the star. This occurs differently in stars above

∼1.2 M� than for lower mass stars, and can be seen

in the evolutionary tracks for these stars as the period

where the stars move back up and left on the HR dia-

gram as they temporarily become hotter and more lu-

minous (see Figure 8). As a relatively small effect, it is

likely only noticeable in the purely theoretical tracks and

is unlikely to be observable empirically due to slightly

different stellar parameters (Teff , M, SHK, [Fe/H]) be-

tween stars in the sample. Even with the higher preci-

sion offered by next-generation RV instruments, we ex-

pect this bump might only be observed with a dedicated

sample of nearly identical stars with similar observing

strategies that specifically target granulation effects, and

even then we do not expect it to be very likely.

5. DISCUSSION

The conclusions drawn from this investigation have

relied heavily on the examination of the RV jitter floor.

We remind readers that our vetting process for calculat-

ing RV jitter has undoubtedly included many stars that

have additional non-stellar components which are inflat-

ing the measured RV jitter. However, by examining the

floor of RV jitter, we expect that we have primarily fo-

cused on those stars for which all dominant non-stellar

components of RV jitter have been removed.

Our results here have very serious implications for our

understanding of RV jitter. We have shown the relation-

ship between a star’s evolutionary state and its radial

velocity jitter. In fact, radial velocity jitter seems to

track stellar evolution quite well, tracing main sequence

(and post main sequence) spin down and subsequent de-

crease in magnetic activity until a star becomes inactive

and its RV jitter follows the increase in convective power

as both the characteristic size of a granular region and

the p-mode oscillation amplitude grow with decreasing

surface gravity. While the basic path is the same for ev-

ery star, stars of different mass have subtle differences

in where these transitions occur relative to the main se-

quence lifetimes.

From this work, it is clear that RV jitter depends on

primarily three stellar parameters: stellar mass, surface

gravity, and magnetic activity. With these three pa-

rameters, we can establish an expected RV jitter. Fu-

ture work will analyze this in more depth, and various

methods to predict jitter. We also plan to investigate

which types of stars have systematically large or small

discrepancies between the observed and predicted jitter.

Furthermore, the basis of this work is to better under-

stand the astrophysical drivers of RV jitter in order to

better identify suitable RV targets. The following sec-

tion highlights the important implications of this work

on RV surveys.

5.1. Implications for RV Surveys

We break our implications into 3 broad categories:

implications for informing target selection for RV sur-

veys, prioritizing targets for RV follow-up, and identify-

ing stars with abnormally high jitter.

5.1.1. Target Selection for RV Surveys

The RV community has long been aware of the re-

lation between RV jitter and magnetic activity. Our

results as they relate to magnetic activity align with

previous results with main insight that binning by mass
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shows very clear relations rather than purely spectral

type. We observe cleaner relations between jitter and ac-

tivity due primarily to improved stellar parameters and

thorough approach to calculating RV jitter. RV surveys

will continue to avoid active stars, especially those that

are higher mass, as they are seen to exhibit higher jitter

than the low mass stars (as high as 60 m/s in 1.1 to 1.2

M� compared to less than 20 m/s in 0.8 to 0.9 M�). In

other words, in terms of RV jitter, more massive stars

are more sensitive to activity.13

In our analysis of log g, we identified the jitter mini-

mum for stars of mass 0.7 < M? < 1.7 M� (see Table 4).

This will enable RV surveys to tailor their stars to those

expected to be at jitter minimum, and could expand

exoplanet searches into regimes that have not been pre-

viously explored, although we note that an efficient tar-

get selection requires the knowledge of the stellar mass,

evolutionary status (log g) and magnetic activity (e.g.,

SHK). Our understanding of planetary system forma-

tion and evolution is hampered by our inability to detect

planets, particularly in RVs in a wide variety of regimes.

With this study, we can begin to strategically address

this.

More generally, this study enables a more refined se-

lection at a time when more precise and accurate stellar

parameters are more readily available. It also enables

surveys to better select specific focus points, for exam-

ple: subgiants, main sequence stars at jitter minimum,

more evolved stars with sufficiently low astrophysical jit-

ter, etc. It also highlights areas for focused observations

for further jitter studies, which may enable a refined un-

derstanding of jitter in areas where we currently suffer

from selection effects, thus permitting planet searches in

sparsely populated areas of the jitter-mass-log g-activity

space.

5.1.2. Target Prioritization for RV Follow-up

Similarly, we expect that this framework will be in-

valuable for prioritizing targets for RV-followup. While

13 We note that it is unclear why exactly this is the case. Un-
der a purely spot-model assumption, the larger radii of the more
massive stars would naively lead one to assume that RV jitter
would decrease with activity due to the relatively smaller spot
size compared to the stellar disk. Observing the opposite effect
therefore might indicate that the spots themselves are larger on
more massive stars, or perhaps have a higher spot coverage. But
there are many sources of activity-induced jitter, not solely spots.
Indeed, some stars have high RV jitter dominated not by spots
but the bright magnetic regions. We refrain from speculating on
this point as it is still unclear exactly how activity manifests in
stars of different masses and in turn how that translates to the
measured radial velocity. Lastly, it is worth reminding that the
Calcium H&K lines are formed in the chromosphere of stars and
the velocities are measuring photospheric effects.

we advise prioritizing stars with low expected jitter and

avoiding stars with high expected amounts of RV jitter,

we acknowledge that this will not stop RV teams from

giving high priority to targets that present the most sci-

entifically interesting cases, regardless of expected jitter.

However, in these cases we encourage using estimated or

expected amplitude of RV jitter as well as the knowledge

of the expected dominant source of RV jitter to better

prepare and select proper observing strategies, in an at-

tempt to model or remove the RV jitter. For example,

Dumusque et al. (2011) and Medina et al. (2018) give

observing strategies for mitigating the effects of gran-

ulation as well as p-mode oscillations. Further, several

studies have shown promising results in modeling stellar

RV variability due to magnetic suppression of convective

blueshift and show that proper longitudinal coverage

and simultaneous photometry can significantly reduce

variations (Aigrain et al. 2012; Haywood et al. 2014).

5.1.3. Identifying Easy Planet Candidates

As we have already seen in this work, we can use these

relations to identify stars that have unusually high jitter

compared to the expected value (Section 4.3). In these

cases, the high RV jitter is likely due to unsubtracted

companions. By comparing the observed jitter to the

expected jitter, one can easily identify potential planet

candidates and pick out stars that would benefit from

additional observations. For example, stars in the mass

range 0.9 < M? < 1.1 M� at log g ∼ 4 that have an

RV RMS of more than 10 m/s are good candidates for

potential planets.

5.2. Limitations

5.2.1. Observational Biases in the CPS Sample

In using data from the California Planet Search it is

important to highlight some of the limitations imposed

due to the nature of the survey. As mentioned previ-

ously, we see an instrumental noise floor of about 2.5

m/s, and so we are unable to say anything about the RV

stability of stars below that level. For some stars in our

sample, we have measured RV RMS less than 2.5 m/s.

We have opted to report these as measured to ensure

consistency, since the instrumental uncertainty indeed

varies from star to star and we expect many stars to be

RV stable below the 2.5 m/s level, but great care should

be taken with these stars.

Furthermore, the California Planet Search did not fol-

low any specific observing strategy for their targets.

This means that the cadence and duration of obser-

vations can vary dramatically from star to star, and

even for a single star throughout its observation history.

Since the astrohpysical processes that drive stellar RV
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jitter as described in this work all operate on different

timescales (minutes to years), the cadence of observa-

tions for a given star will be likely to probe some of

these processes more than others, which will affect the

measured RV RMS. As was shown with HD 142091, the

high-cadence sampling to trace out the p-mode oscilla-

tions resulted in the majority of the observations being

taken over a timespan shorter than the typical timescale

for other sources of RV variation and as a result those

sources were not reflected in the overall RMS. In gen-

eral, the stars in this sample are observed infrequently

enough that no single process should dominate the RV

jitter, justifying our choice to add the theoretical granu-

lation and oscillation components in quadrature as they

will both be evenly and randomly sampled.

We also suffer from observational biases in the CPS

survey, which have largely targeted inactive main se-

quence stars. As a result, our leverage on activity and

evolution effects on RV jitter is not as strong as it could

be. In both of these areas - more active and more evolved

- stars in general have fewer observations. In terms of

activity, this likely arises from observing a given star for

a period of time, before noticing that it had high jitter

and thereby removing it from the list of targets for fur-

ther observations. We also find that many of the most

active stars were added more recently to the sample in

an effort to explore young stellar systems as part of the

Formation and Evolution of Planetary Systems Spitzer

Legacy Program (Meyer et al. 2006) and so have not

had as long of a baseline to gather many observations.

In terms of evolution, we previously noted how the stars

in the “Retired” A star survey have been added more

recently and also suffer from shorter time baselines and

fewer observations. Adding to this is the tendency of

these stars to be slightly more massive than solar and

host planets on longer periods, both of which work to re-

duce the expected semi-amplitude of potential planets.

Thus these stars require more observations than usual

to disentangle planet signals and adds to the likelihood

of planetary signals being remaining in our data despite

our best efforts to remove them all.

5.2.2. Choice of Number of Observations Threshold

In this work, we have chosen to measure the jitter

for only those stars with 10 or more RV observations.

This limit, while arbitrary, was based on having suffi-

cient observations to see signs of a planet signal, linear

trend, or other non-stellar phenomenon in the radial ve-

locity time series. In practice, we find that the threshold

for accurately calculating jitter to the 2.5 m/s level re-

quires closer to twenty or thirty observations. However,

we have a large number of stars in our sample that have

between ten and twenty observations and so we have

opted to make ten our threshold to include these stars,

given that our goal is to identify the jitter floor. In par-

ticular, most of the stars with 10-20 observations lie in

the areas where we get most of our leverage (active stars

and evolved stars), which is why it was important to in-

clude them. By making the threshold 10 observations,

we are able to build up a statistically significant sample

to define the jitter floor for these areas where we suffer

from observational bias at the expense of adding several

stars with jitter above the floor.

6. SUMMARY AND CONCLUSIONS

In this work we have presented a comprehensive analy-

sis of RV jitter that builds upon previous analyses in sev-

eral ways. A major improvement is the additional years

of observations from which we calculate jitter. Further,

our results hinge upon the precise stellar parameters

provided by B17, most notable of which are the accurate

measurements of log g. To calculate jitter, we focus on

removing any RV variations that are not due to surface

features on the star itself. This primarily means remov-

ing planetary and stellar companions, but also includes

removing velocities during transit for some stars that

show Rossiter-McLaughlin effects, an in depth search

for outliers, and other unusual circumstances which may

lead to non-astrophysical RV variations. We impose a

conservative subjective vetting technique that we apply

on a star-by-star basis. By imposing a general method

of attempting a one-planet fit to each star, we can tailor

the technique to each star individually, iterating with

new constraints on the fit until we favor or reject a com-

panion fit. By not imposing a one-size-fits-all model to

subtract out planets and other effects from our hetero-

geneous sample, we are able to verify the measurements

of RV jitter for each star in our sample.

We first examined the evolutionary dependence of RV

jitter by sorting our sample into mass bins of width

0.1 M�. By doing so, we observe empirical evidence

of two regimes of RV jitter: activity-dominated, and

convection-dominated. Drawing from these observa-

tions, we conclude that RV jitter tracks stellar evolution

and that most stars pass through the following stages of

RV jitter:

1. Zero-age main sequence stars are born with high

magnetic activity that drives large RV jitter.

2. As a star spins down on the main sequence, it loses

angular momentum through magnetic winds and

RV jitter decreases with decreasing magnetic ac-

tivity.
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Figure 11. Schematic of jitter evolution using data for
stars in four mass bins. The bins are discontinuous to bet-
ter highlight the effect of mass on jitter evolution. Lines
have been drawn (not fit) to represent the general evolu-
tionary path suggested by the data for each mass bin. Here
it is clear how more massive stars begin to evolve before
fully spinning down, such that the most massive stars move
diagonally down and to the right as they transition from
activity-dominated to granulation-dominated and eventually
oscillation-dominated jitter.

3. As a star becomes magnetically inactive, or

“quiet”, the dominant driver of RV jitter is surface

convection. The transition from magnetically-

driven to convection-driven RV jitter defines the

minimum level of RV jitter in a given star’s evo-

lution.

4. As a star moves through the subgiant and later gi-

ant regimes, the RV jitter increases as the p-mode

oscillation amplitude increases and the number of

granules on the star decreases due to the increased

size of a characteristic granular region (which is re-

lated to the pressure scale height).

By investigating the different mass bins, we see sub-

tle differences between different spectral types. As you

go toward higher masses, the RV jitter minimum (and

the transition from magnetically-driven to convectively-

driven jitter) occurs at later evolutionary stages. This is

due to both the shorter evolution timescales for higher-

mass stars and the lack of convective envelopes while on

the main sequence for the highest masses in our sam-

ple (above ∼ 1.3 M�), which are thereby unable to spin

down due to angular momentum loss from stellar winds

until they evolve off the main sequence and gain a con-

vective envelope. These trends with mass are shown in

Figure 11, which shows a schematic of the jitter evolu-

tion for stars of various masses.

We also performed a similar analysis of RV jitter by

examining the RV jitter as a function of magnetic ac-

tivity. Our results are consistent with many previous

studies of RV jitter which indicate strong correlation

between RV jitter and magnetic activity among main

sequence stars. We confirm the result in Isaacson &

Fischer (2010) that for K dwarfs, RV jitter has a very

weak dependence on activity. Instead, these stars show

surprisingly low levels of RV jitter for even the most

magnetically active stars.

Due to the nature of stellar evolution for more mas-

sive stars, stellar spin down for stars above the Kraft

break does not occur until they have evolved off of the

main sequence and have gained a convective envelope.

For these more massive stars (above 1.3 M�), they re-

main in the activity-dominated regime throughout the

subgiant phase. For these stars, activity becomes the

better predictor for evolved star RV jitter rather than

convection.

In summary, we observe 3 different classes of stars in

terms of RV jitter:

1. Low mass stars (< 0.9 M�) that are strictly

activity-dominated (i.e. have not evolved enough

to reach their convective phase)

• Despite the wide range of S values, all of these

stars seem to exhibit relatively low jitter

• Not only have these stars not evolved enough

to become convectively driven, but there’s ev-

idence for a lower-mass limit where stars have

not yet spun down enough to reach jitter min-

imum.

2. Solar-ish mass stars (0.9 ≤ M? < 1.5 M�) that

display activity and convection-dominated phases

• All of these stars, including F dwarfs, display

activity- and convection-dominated regimes.

The two regimes meet in a “jitter mini-

mum,” meaning that even F dwarfs, typi-

cally avoided by RV planet searches, can be

amenable to RVs (see Luhn et al. in prep)

• Jitter minimum for these stars occurs on the

main sequence or late in its MS lifetime, near

or right at the TAMS.

3. More massive stars (> 1.5 M�, beyond the Kraft

break) which only enter the RV surveys when

they’re evolved and for which activity once again

becomes the key predictor of RV jitter because

these stars have now developed convective en-

velopes (and presumably solar dynamo-like activ-

ity.)
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• The most evolved of these stars in our sample

appear to just be reaching the expected jitter

minimum and show RV stability to 3-10 m/s.

• Jitter minimum for these stars occurs well

into the subgiant and giant phases.

Finally, we comment on the utility of these relations.

From our sample of stars with well-measured stellar

properties and RV jitter, we can build a model that is

able to predict the expected RV jitter of a star given

a variety of input stellar parameters and uncertainties.

We expect that these results will be particularly ben-

eficial for continued RV follow-up of planet candidates

from K2 and TESS. We are also able to use these rela-

tions to identify stars that have noticeably higher-than-

typical RV jitter, which indicates the potential presence

of unsubtracted orbital companions. We can then select

these targets for further observations to fully extract the

companion.

In other words, our relations have highlighted two

classes of stars for which RV observations are particu-

larly useful: those stars that are at the “jitter minimum”

of their evolution, and those stars that are already ob-

served to have RV jitter well above the “jitter floor”.

Both of these classes present good regimes in which to

look for planets. In addition to identifying promising

targets for RV follow-up, our results can help inform

target selection for RV surveys in a similar manner by

identifying which stars are the most RV stable.

The authors thank Fabienne Bastien for her found-

ing role in initiating the investigation and defining

the project. Her insight, discussions, and advice have

greatly contributed to this work.

We thank John Brewer for many useful discussions

and clarifications regarding the spectroscopic stellar

properties. We thank John Johnson for use of the data

on HD 142091. We thank Raphaëlle Haywood and Tim
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APPENDIX

A. CALCULATION OF ERROR ON JITTER MEASUREMENTS

Since the RV RMS is already a measurement of error and represents the standard deviation of the RV observations

of a given star, we seek to calculate the uncertainty in our estimate of the true standard deviation (essentially the

standard deviation of the standard deviation). For simplicity of notation, we find it helpful to define the variance

v ≡ j2, (A1)

which will help in transforming between standard deviation (j) and the variance. Where the standard deviation of the

data is related to the second moment of the dataset (the mean being the first moment), the variance of the sample

variance is related to the fourth moment of the data. The exact statistical relation comes from Mood et al. (1974),

σ2
j2 = σ2

v =
µ4

n
− j4(n− 3)

n (n− 1)
, (A2)

where µ4 is the fourth moment of the data, defined as

µ4 =
∑

(εi − ε)4
. (A3)

However, we are interested in knowing σ2
j , not σ2

j2 , and so we must use error propagation

σ2
j = σ2

v

∣∣∣∣∂j∂v
∣∣∣∣2 (A4)

which gives

σj =
σj2

2j
(A5)

The derivation of this formula assumes a normal distribution and does not account for individual error measurements.

However our individual measurement uncertainties are largely homoskedastic, and our conclusions are not sensitive to

the precision of our jitter uncertainties. Note also that this estimation of error in our calculation of RV jitter does not

take into account the χ2 of any subtracted fits nor the possibility of the data containing additional companions. It is

merely a measurement of the uncertainty in calculating σRV from the residuals, ε.

B. NOTES ON INDIVIDUAL SYSTEMS

Here we list many individual systems and provide notes on what alterations to the RV time series we have applied

when calculating RV jitter. We provide this for completeness and reproducibility. We additionally note stars that

show strong correlations between the radial velocities and activity metric SHK, the vast majority of which have been

independently extracted from the same spectra and published by Butler et al. (2017).

B.1. 0.7 ≤ M? < 0.8 M�

HD 4628 —HD 4628 shows evidence of an activity cycle. However, we notice several low outliers in the activity time

series that suggest rapid decreases in activity. A closer investigation reveals that these “ramp downs” in SHK occur

at the beginnings and ends of the observing season. As a bright (V=5.74) target, we interpret the sudden decreases

in activity as observations taken during twilight and contaminated by the solar spectrum. We do not see evidence for

any correlation between the activity and the velocities and so we are satisfied with the reported jitter. We see similar

effects in HD 26965, HD 69830, and HD 192310 below.

HD 10700 —HD 10700 (also known as Tau Ceti) has 4 reported planets all with semi-amplitudes of 0.55 m/s or less

(Feng et al. 2017). As an RV standard star, it has a long baseline of observations (917 over 17 years) and there are

several obvious outliers. We remove 8 points that have velocities more than 3σ from the mean, which reduces the

RV RMS from 3.23 to 2.75 m/s. After subtracting the best-fit multi-planet Keplerian, the RV jitter is essentially

unchanged, 2.75 to 2.73, indicating that we are at the instrumental uncertainty for this star.
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HD 26965 —HD 26965 has a proposed planet candidate with small semi-amplitude (Dı́az et al. 2018), who also

acknowledge that it could simply be stellar activity masquerading as a planet. We choose to subtract the planet given

the good agreement, but we note that the RV jitter is relatively unchanged (3.6 m/s to 3.2 m/s). We also note an

apparent activity cycle in this star, with low SHK outliers reminiscent of the “ramp downs” seen in HD 4628. As

another bright target (V=4.43), we again attribute these outliers to solar contamination from chasing the star into

twilight. We note that the lowest SHK values for this star are unphysical (<∼ 0.1), which could indicate errors in the

SHK extraction for this star.

HD 31560 —HD 31560 shows a strong correlation between the activity and the radial velocities (Pearson coefficient

0.76). However, this correlation is based on only a few observations.

HD 97658 —HD 97658 shows a strong activity cycle that is not very correlated with the radial velocities (Pearson

coefficient 0.31 after removing the known planet).

HD 100623 —HD 100623 shows evidence of a long term linear trend, which we have subtracted out.

HD 116443 —HD 116443 shows evidence of an activity cycle, with no correlated radial velocities.

HD 170657 —HD 170657 has 3 obvious outliers that have internal errors of about 25 m/s. After removing these points,

there was also a long term linear trend evident in the data, which we have subtracted.

HD 220339 —HD 220339 shows evidence of a possible activity cycle. More observations are necessary to confirm this

signal. The activity time series show little to no correlation with the velocities.

HD 196124 —HD 196124 shows a correlation between the activity and the radial velocities (Pearson coefficient 0.62).

It is unclear whether the star is exhibiting cycling behavior as it undergoes a large decrease in activity over several

years and then was not observed until several years later when it was higher in activity. It is likely indicative of a

cycle, but more data is needed.

B.2. 0.8 ≤ M? < 0.9 M�

HD 10476 —HD 10476 shows evidence of a possible activity cycle that is weakly correlated with the radial velocities

(Pearson coefficient 0.466).

HD 18143 —HD 18143 has a long term linear trend, which we fit with a Keplerian (RV jitter reduced from 4.7 m/s

with a linear trend to 4.3 with a Keplerian fit). This star shows evidence of an activity cycle with period near 4500

days, however the observations span at most one full period and likely only a fraction of a period so the exact cycle

period is uncertain.

HD 20165 —HD 20165 shows evidence of an activity cycle and correlated radial velocities (Pearson coefficient 0.66).

HD 42250 —The velocities of HD 42250 taken prior to the Keck-HIRES upgrade appear to be systematically offset

from those take post-upgrade. We include an offset of 6.6 m/s, which reduces the RV jitter from 5.4 m/s to 3.7 m/s.

HD 69830 —HD 69830 has 3 published planets (Lovis et al. 2006), which we are able to recover. However, similar to

HD 4628 above, we notice several low outliers in the activity time suggesting rapid “ramp downs” in SHK that occur

at the beginnings and ends of the observing season, more apparent in this star than in HD 4628. As a bright (V=5.95)

target, we interpret the sudden decreases in activity as observations taken during twilight and contaminated by the

solar spectrum. The low SHK values do not affect the jitter and so a deeper dive into the cause of these low outliers is

beyond the scope of this work. Nevertheless, this star remains an interesting target for investigating activity and the

effects of solar contamination on measurements of stellar activity.

HD 114783 —HD 114783 has a single planet with a 493 day period (Wittenmyer et al. 2009). The residuals to this

fit show strong periodicity near 4300 days. However, this star has a noticeable activity cycle with a period near 3000

days. Given the lack of correlation and the fact that the planetary signal and activity signal are out of phase and not

on the same period, we are inclined to believe the second planet.

HD 124106 —HD 124106 has an obvious outlier by eye that lies about 70 m/s above the rest of the observations. The

RV jitter is reduced from 15.4 m/s to 8.2 m/s when this outlier is removed. We note that this is a reasonably active

star and so it is possible that this outlier was due to a flare.
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HD 125455 —HD 125455 shows evidence of a possible activity cycle that is not correlated with the radial velocities.

HD 154345 —HD 154345 is a particularly interesting star. Wright et al. (2008) claimed the presence of a Jupiter twin

in a 9 year orbit, while noting that the star has an activity cycle that is nearly the same period and in phase with the

velocities. By looking at similar cycling G stars and not finding a correlation between the activity cycle and the RV’s,

the period and phase similarity of the proposed planet signal and the activity cycle was suggested to be coincidence.

Later, with additional data Wright (2015) reversed the claim of a planet after including several more years of additional

observations that continued to show strong phase and period similarities. For this work, we again reverse the stance

and decide to subtract off the planet because of the coherent RV signal. No other system in this sample with activity

cycles that are correlated with the RV’s shows such a clear and coherent Keplerian-like signal. Further, we note that

within our own solar system the solar cycle is very similar in period to Jupiter’s period. With Jupiter being the

dominant radial velocity signal in the sun, a distant observer could very well have the same conundrum with our own

system. Either way, this remains a very interesting system to study more closely. For now, we have subtracted off the

planet, resulting in an RV jitter of 3.2 m/s, but note that the unaltered RV’s yield an RV jitter of 12.7 m/s. Given

that it is not an overly active star, we find that 3.2 m/s matches a little more closely with similar stars (see Figure 6).

HD 165401 —HD 165401 shows evidence of a long term linear trend, which we have subtracted out.

HD 189733 —The velocities for HD 189733 contain a strong Rossiter-McLaughlin signal, which contributes to the

residuals and the RV jitter. Removing the points during transit results in a change in RV jitter from 15 m/s to 11

m/s.

HD 192310 —HD 192310 is similar to HD 4628 and HD 69830 above where we observe “ramp downs” in the activity

time series near the end of the observing season. As another bright (V=5.73) target, we believe this is another case of

chasing a star into twilight, resulting in solar contamination, or errors in the SHK extraction. We note that the lowest

SHK values for this star are unphysical (<∼ 0.1). This star also has a long term activity cycle with a period close to

10 years.

HD 219538 —HD 219538 appears to exhibit a possible decaying activity cycle, similar to HD 4915, which was identified

as a possible Maunder minimum candidate in Shah et al. (2018), and is detailed in the next mass bin below. Unlike

HD 4915, there is no correlation with the velocities for HD 219538.

HD 131156 —HD 131156 has a long term linear trend, which we have subtracted off.

B.3. 0.9 ≤ M? < 1.0 M�

HD 4614 —HD 4614 shows evidence of a long term linear trend, which we have subtracted out.

HD 4915 —HD 4915 shows strong correlation between the radial velocities and the decaying activity cycle (Pearson

coefficient 0.83). This star was recently identified as a possible Maunder minimum candidate, as the decaying activity

cycle shows similar features to the the solar entrance into Maunder minimum (Shah et al. 2018).

HD 19467 —The directly imaged T Dwarf HD 19467 B has a period of more than 300 years and a mass of 52 MJup

Jensen-Clem et al. (2016). The period of this companion is too long for our observations and exceeds the 100 year

period limit imposed by RVLIN. Therefore we merely subtract the best fit linear trend from the data, since we are

unable to fit this companion.

HD 20619 —Despite not having a strongly noticeable activity cycle, there is a strong correlation between the velocities

and activity measurements for HD 20619 (Pearson coefficient 0.73).

HD 24496 —We have subtracted a linear trend from the velocities of HD 24496 and note the presence of an activity

cycle.

HD 37213 —We note that the radial velocities for this star prior to the 2004 upgrade are all clustered around -5 to -10,

with the post-upgrade velocities centered more closely around 0. However, given the small number of post-upgrade

velocities, we take simply the full RV RMS of 5.479 m/s and note that the RV RMS of the pre-upgrade only velocities

is only slightly higher: 4.588 m/s.
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HD 40397 —HD 40397 shows evidence of a long term trend. However, removing a simple linear trend resulted in

coherent periodicity remaining and so we have subtracted a full Keplerian signal. The RV RMS after removing a line

was 3.424 m/s, compared to the RV RMS after removing a Keplerian of 2.557 m/s

HD 42618 —HD 42618 has a strong periodic signal near 4000 days, which appears by eye to be correlated with the

activity cycle of this star, despite the medium correlation coefficient of 0.442 after subtracting out the planet (Fulton

et al. 2016).

HD 46375 —HD 46375 has an outlier, which we have removed, obvious from its 20 m/s uncertainty for that observation.

HD 90711 —HD 90711 had an obvious outlier offset by about 200 m/s. This observation also has errors that are an

order of magnitude higher than the rest of the observations and so we remove this observation. The resulting time

series has a evidence of a long term linear trend, which we subtract.

HD 96700 —HD 96700 has been previously reported as having 2 planets (Mayor et al. 2011). The Keck velocities

show no indication of such planets and since the velocities from the initial discovery are not available, we are forced

to disregard these fits. The Keck velocities also show a very strong correlation with activity (Pearson coefficient 0.91),

driven in large part by one observation that has both low velocity and SHK. When we fix the orbital solution to the

Mayor et al. (2011) orbital parameters, there is only a small decrease in RV jitter from 7.4 to 6.5.

HD 99491 —HD 99491 shows evidence of a strong activity cycle, which are correlated with the radial velocities (Pearson

coefficient 0.74).

HD 105631 —HD 105631 shows a strong correlation between the radial velocities and the activity (Pearson coefficient

0.72).

HD 109358 —HD 109358 shows evidence of an offset between the pre- and post-upgrade velocities of about 8 m/s. We

include this offset, which reduces the jitter from 4.1 m/s to 3.3 m/s.

HD 136352 —HD 136352 was previously reported as hosting 3 small planets (Mayor et al. 2011). However, the velocities

used in the discovery were not reported and the Keck time series is poorly sampled, leaving poor constraints on the

fit. Given the number of observations for this star, a 3 planet fit to the Keck-HIRES data will be over-fit and results

in a RV jitter of 1.2 m/s. In order to avoid overfitting we opt to use the raw RV RMS of 4.1 m/s. We note that Udry

et al. (2019) report an RMS of 1.3 m/s for this star after fitting out all 3 planets.

HD 149806 —HD 149806 show evidence of an activity cycle with period near 3000 days (8 years).

HD 164595 —HD 164595 has been previously reported to host a planet (Courcol et al. 2015). However, the Keck

velocities by themselves do not show evidence for this planet and so we do not remove it.

HD 181234 —HD 181234 shows a long term linear trend, which we have subtracted.

HD 201219 —HD 201219 shows a correlation between the activity and the radial velocities, with Pearson coefficient

0.84.

HD 206374 —HD 206374 shows a correlation between the activity and the radial velocities, with Pearson coefficient

0.82.

HD 212291 —HD 212291 shows a correlation between the activity and the radial velocities, with Pearson coefficient

0.60.

HD 218868 —HD 218818 shows a strong activity cycle with period near 2000 days. This activity cycle is strongly

correlated with the radial velocities (Pearson coefficient 0.759).

HD 8389 —HD 8389 shows a slight correlation between the activity and the radial velocities, with Pearson coefficient

0.54. The activity time series also shows evidence of an activity cycle.
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HD 45652 —HD 45652 has been previously reported to host a planet (Santos et al. 2008). However, the Keck velocities

are discrepant with the SOPHIE and CORALIE and ELODIE data for this star. We remain confused by this star and

have not been able to track down why the Keck data does not agree at all with the ELODIE, CORALIE, or SOPHIE

data, which agree with each other over many epochs. For now we have simply not removed any planet from the Keck

velocities. In fact, fixing the orbital parameters to those in Santos et al. (2008) increases the RV RMS of the Keck

velocities from 28.2 to 33.9 m/s.

HD 62613 —HD 62613 has slight evidence of an activity cycle.

HD 76445 —HD 76445 shows a long term linear trend, which we have subtracted.

HD 162232 —HD 162232 shows a long term linear trend, which has been subtracted. After subtracting, there is

evidence for an additional companion (reducing the RV jitter from 12.2 m/s to 8.2 m/s), but not strong enough to

subtract out. We only subtract the linear trend.

B.4. 1.0 ≤ M? < 1.1 M�

HD 1461 —There is an obvious outlier present in the time series for HD 1461. The median velocity error for all

observations of this star is less than 1 m/s, but the obvious outlier has an error of 70 m/s. For this reason, we

remove it from the set of observations for this star. We also note that the residuals to the known planets show strong

periodicity near 4226 days. However, we find that this is the same period of the star’s apparent activity cycle and

appears to be in phase, so we do not attempt a third planet.

HD 45350 —HD 45350 is host to a known planet with published period of 963 days (Endl et al. 2006). When using

the best-fit parameters from Endl et al. (2006), we obtain a rather poor fit. In fact, our resulting best-fit is worse than

when using simple blind fit for this star (reduced χ2 improves from 63 to 10 and the jitter decreases from 8 m/s to 4

m/s). Given the large number of observations after publication of the most recent best fit, we are inclined to believe

that we have much better constraints on the orbital parameters now, which we report in Table 2.

HD 73256 —HD 73256 has been previously reported to host a short period planet (Udry et al. 2003), who see a period

of 2.5 days. This is the tallest peak in the periodogram of the Keck data, however, our best fit with this period results

in scatter of 63 m/s compared to the 20 m/s seen in Udry et al. (2003). Because of the poor fit, we decide to not

subtract this planet in the interest of observing the true jittter floor.

HD 92788 —HD 92788 has 2 confirmed planets14. We find good agreement with HD 92788 b on a 325 day orbit.

However, we are unable to find a believable 2 planet fit with a second planet at 162 days, as claimed in Wittenmyer

et al. (2013). Instead, we find strong evidence for a long period second planet near 11000 days. While this orbit does

not have complete phase coverage, we believe it to be properly subtracting out a real companion. As we obtain more

observations of this system, the long period planet’s orbital parameters will be further constrained. We do not observe

any signs of an activity cycle for this star, and certainly not on the timescale of the more than 25 year period. For this

reason, we are confident in our subtracting this best-fit model. In addition, we have removed a single outlier which

has velocity error of 15 m/s, where the median error for the remainder of the observations is 1.3 m/s.

HD 195019 —For this system, we have split the pre-2004 data and the post-2004 data and treated them as two separate

telescopes in the fitting procedure. We chose to do this after noticing that our original best fit caused nearly every

point before the Keck upgrades to have a negative velocity in the residuals and nearly every point after the upgrade to

have a positive residuals. We take this as evidence that the fitting procedure is minimizing χ2 by simply straddling the

two sets of data. The structure seen in the residuals also resembles the signal of a long period planet. However, neither

the pre-2004 nor post-2004 data shows evidence of long period trends and so we take it to simply be an incorrect

offset between the pre-2004 data and post-2004 data. By including a 16 m/s offset (found by a best-fit in RVLIN), we

observe residuals that no longer appear to have suspicious structure centered around the Keck upgrade date.

14 according to exoplanet.eu
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HD 217107 —For this system, we simply take note of 3 points that appear to be outliers when examining the residuals.

The best two-planet fit after using the orbital parameters from Wright et al. (2009) as initial guesses has 3 points

that are all significantly above the typical scatter of the residuals. However, the three points fall on consecutive

observations, and could represent real variations on the stellar surface during those observations. We do not find

evidence in the reported errors on these velocities to warrant their removal and so we have kept them in the fitting

and jitter calculations. Given the large number of observations on this star (142) and the relatively low (4 m/s) jitter,

we do not expect these three points to significantly affect the final jitter.

HD 150706 —This star has a previously published planet (Boisse et al. 2012) using SOPHIE follow-up to an ELODIE

planet candidate. Including the Keck data for this star, we find that it loosely agrees with the planetary parameters

found by Boisse et al. (2012). However, the Keck data alone shows strong correlation with SHK (0.729 Pearson

correlation coefficient), indicating that the RV jitter observed could be entirely activity-driven and not due to a

planet. Indeed, the SOPHIE and ELODIE data have quite large errors compared to Keck. In addition, the long period

of this planet means we do not have full phase coverage. In fact, the only points at RV maximum are the earliest

ELODIE observations, which are the observations with the largest error bars. Thus we are suspicious as to the veracity

of this planet. Because of the low number of Keck observations for this star, we include the planet fit for now.

HD 207832 —HD 207832 has two previously published planets (Haghighipour et al. 2012). With additional observations

we are unable to recover convincing fits. When examining the RVs, we notice a correlation with SHK, with a Pearson

correlation coefficient of 0.6. Given that Haghighipour et al. (2012) contains no discussion on the activity of this star,

we are inclined to believe that the jitter is activity-driven. Further proof of this is from the periodogram itself. With

the addition of several new observations since the initial discovery, we find that neither of the two periods found for

the planets (162 days and 1307 days) correspond to the peak with the highest power in the periodogram, which is near

300 days. Despite our conservative approach in general, in this case we are conservative in the opposite way: we do

not quite have enough evidence to definitively claim that these planets do not exist given the care that Haghighipour

et al. (2012) put into demonstrating the planet’s reality and so we use the best 2 planet model.

HD 1388 —This star shows signs of an obvious stellar companion, which we have fit out using RVLIN. Although our

orbital parameters are highly uncertain and likely incorrect, it follows the by-eye curvature quite well and so we have

kept it. The residuals show evidence of potential other companions, however this would certainly result in overfitting.

For now we have excluded pre-2004 observations from our jitter calculation but not from our fit. We find that the

uncertainties in the velocity measurements for this star before the Keck upgrade (4-5 m/s) are substantially higher

than after the upgrade (∼ 1 m/s).

HD 8038 —For this star, we find a very high correlation between SHK and the RV observations (Pearson correlation

coefficient 0.93). We therefore take the observed RV variations as pure jitter.

HD 9986 —This star also shows a fairly strong activity correlation (Pearson correlation 0.5), but more importantly

shows evidence of a strong activity cycle, with a periodogram peak near 1000 days, which is near the strongest peak

in the RV periodogram. We expect that the observed cyclical RV variations are activity-driven.

HD 13931 —For this star we have removed an obvious outlier, whose velocity uncertainty of 8 m/s is significantly

higher than the median uncertainty for this star (1.2 m/s). This star also has a strong planet signal, which further

shows that this point is an outlier.

HD 18803 —HD 18803 shows evidence of a strong activity cycle, and has SHK values that correlate well with the RV

observations (Pearson coefficient of 0.51). We disregard any strong peaks in the RV periodogram of this star and take

the RV variations for this star as jitter.

HD 32923 —For this star, we notice a long term trend in the radial velocities. We therefore subtract a linear fit for

this star before fitting a blind fit to the data. The best-fit planet with a line removed does not meet our criteria and

so we simply remove only the linear fit from the velocities.

HD 39881 —HD 39881 has what appears to be either a very slight offset between the pre- and post-upgrade velocities or

a very slight linear trend. The difference in RV jitter between these approaches is very small: 4.0 m/s when subtracting

a linear trend and 3.8 m/s when applying an offset between the pre- and post-upgrade velocities (the raw RV RMS is

4.5 m/s). We choose to use the linear trend to better avoid over-fitting.
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HD 52711 —HD 52711 has an outlier in the SHK time series. After removing this point, there is a slight correlation

between the radial velocities and the activity (Pearson coefficient 0.61), which is why we disregard the blind-fit planet.

HD 68168 —HD 68168 has several observations in short succession that span nearly 40 m/s. Other than these few

points, the star appears to have some slight cyclical variation to it. However, we find that the SHK values are well

correlated (Pearson coeffecient 0.61), indicating that these observed RV variations are simply activity-driven jitter.

We have also removed 2 observations that were taken during a gibbous moon through 1-3 magnitudes of clouds.

HD 233641 —HD 233641 shows a very strong correlation between activity metric SHK and the measured velocities

(Pearson correlation coefficient 0.95), again indicating activity-driven RV jitter.

HD 153458 —HD 153458 also shows a very strong activity-RV correlation (Pearson coefficient 0.96), indicating that

RV variations are driven by activity in this star.

HD 157347 —HD 157347 has 3 outliers due to velocity errors more than 2.5 times the median errors for this star,

although the velocity measurements themselves are consistent with the rest of the data. Nevertheless, we remove these

3 observations.

HD 157338 —HD 157338 has two obvious outliers in the RV time series. These are identified by eye and also by their

large uncertainties (6.3 and 18 m/s) compared to the median uncertainty (1.5 m/s) for this star. It has an obvious

stellar companion with a long period that cannot be well constrained. We are able to find best-fit 2 companion models

with a planet and a stellar companion, however we reject these fits based on convenient lack of phase coverage near

sharp RV peaks in models that find rather large eccentricities. We posit that more observations are necessary before we

can definitively believe a 2 companion model. We therefore restrict ourselves to circular orbits for the obvious stellar

companion, re-emphasizing that it is the jitter floor we seek. Our stated jitter of 11.5 m/s is likely an overestimate of

jitter, but we are careful not to over-subtract (our best 2 companion models yield jitter of ∼ 4.7 m/s).

HD 85689 —HD 85689 has one extremely low point separated by more than 100 m/s, but otherwise seemingly normal.

We assume that this is an anomalous point and we have removed it for that reason, which brings the jitter from 25

m/s to 6 m/s.

HD 92719 —The by-eye inspection of this star shows what appears to be a strong activity correlation, despite a medium

Pearson coefficient (0.46). Regardless, we find no evidence of Keplerian RV variations, and so we do not perform any

changes to this star.

HD 197076 —We see strong evidence of an activity cycle for this star, with a period of ∼ 2000 days. This also

corresponds to the peak in the RV time series periodogram. The correlation between activity and velocity is quite

strong (Pearson coefficient 0.63) and so we simply take everything as activity-induced jitter.

HD 12484 —HD 12484 has 1 known planet (Hébrard et al. 2016) and is an active star with high jitter (43 m/s). After

subtracting out the planet, we find a strong activity correlation with the residual velocities (Pearson coefficient 0.74).

HD 45184 —After removing an obvious outlier in both of the activity and velocity time series, we find a correlation

(Pearson coefficient 0.67) between the activity index and the residual radial velocities for HD 45184 after subtracting

out the best fit planet (Mayor et al. 2011).

B.5. 1.1 ≤ M? < 1.2 M�

HD 13043 —The RV observations for HD 13043 show some coherence which could be evidence of an activity cycle or a

planet. Further observations are necessary to fully determine what is driving the apparent coherence and so for now,

we do not remove any signals.

HD 107148 —HD 107148 has a purported planet with period of 48 days (Butler et al. 2006). We see no evidence for

a planet at 48 days and instead find a strong peak near 77 days, which RVLIN finds as the best-fit period. When we

remove our best fit for this 77 day planet, a tall peak in the periodogram shows up at ∼20 days. Our best fit to a

2 planet model is not convincing enough to accept. However we note that this star is worth further observations to

reliably reject or accept the presence of a second planet. For this work, we merely take the RMS of the residuals to a

one-planet fit as the RV jitter.
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HD 141004 —HD 141004 has an obvious outlier that we have removed. The error on this measurement was more than

2.5 times the typical error for this star, and the measured velocity is more than 5 times the mean jitter for this star.

In this case, the resulting difference in jitter is not extreme: 5.126 m/s when the outlier is included and 5.007 m/s

with it removed. However, the point remains a clear outlier and so we remove it.

HD 28005 —HD 28005 also contains a very obvious outlier. The error is significantly more than 2.5 times the typical

error for this star. Removing the outlier, our measurement of jitter reduces substantially from 13.14 m/s to 7.24 m/s.

HD 159222 —HD 159222 shows very strong correlation between RV observations and SHK, with a Pearson correlation

coefficient of 0.69. We therefore take the RV observations as activity-induced jitter.

HD 182572 —We have removed an outlier from the observations of HD 182572. The outlier is obvious by its larger-

than-normal errors. However, the velocity of this observation is not largely displaced from the mean RV measurement

and so the RV jitter is largely unaffected by the presence of this outlier.

HD 195564 —HD 195564 shows evidence of a clear stellar companion, which we remove. The residuals to our best fit

stellar companion show coherence and what appears to be a somewhat sinusoidal signal. However, we are unable to

arrive at a good two-body model and so we simply subtract the loosely fit stellar companion and treat the residuals

as jitter.

HD 1293 —HD 1293 has 12 Keck-HIRES observations spanning 5 years (mid 2007 to mid 2012). The radial velocities

rise close to linearly over the course of these observations and so we subtract a linear trend for this star. There are

strong deviations from this line, which could be evidence of an additional companion that cannot yet be subtracted

out due to the limited number of points. This target presents a good case for future observations to correctly fit the

long term linear trend and to determine the nature of the additional perturbations to that line, whether it be pure RV

jitter or an additional companion.

HD 77818 —HD 77818 shows evidence of a small stellar companion. There are enough observations to observe a

slight curvature in the long period trend, however we resort to subtracting a linear trend until more observations are

obtained.

HD 128095 —HD 128095 also shows evidence of a long period stellar companion. For this star, the curvature is enough

to produce a believable fit to the time series. However, the residuals to this fit show variation of ± 30 m/s. When

we attempt a two-planet fit, we find a surprisingly good fit to the time-series with a roughly circular 472 day planet,

and a fairly eccentric (e = 0.63) stellar companion. However, given that there are only 14 observations for this star,

we expect that our 2-planet fit has overfit, given that we are attempting to fit 14 data points with 12 free parameters.

We therefore simply remove the long period trend, and encourage follow up of this star to investigate the legitimacy

of a second planet (in Section 4.3.1, we find further evidence that points toward the second companion being real).

HD 207077 —The periodogram of observerations of HD 207077 exhibit a strong peak near 600 days. The resulting

best-fit planet model presents a convincing case for a 606 day planet with eccentricity 0.20. Despite the good fit and

improved jitter from 18.66 m/s to 6.69 m/s, we decide to disfavor this planet for now and for our jitter analysis. In

doing so, we can investigate how the raw jitter for this star matches with similar star, and use this as a case to favor

of disfavor the planet. HD 207077 is discussed further in Section 4.3.1.

HD 10212 —The RV timeseries for HD 10212 shows a clear stellar companion that passes through periapse. However,

observations are sparse and only contain 2 points with negative radial velocities near pericenter. This caused RVLIN a

few problems in obtaining a good fit. We noticed that no model could perform a good fit for both of these two points,

with residuals for these points separated by more than 100 m/s (with every other residual near or less than 100 m/s).

At first inspection, neither of these two points seemed to be a clear outlier. However upon further investigation, we

find that the median χ value for one of these observations to be abnormally high, indicating that the radial velocity

was poorly measured due to a poor fit to the absorption in the spectrum itself. When we remove this point, our fit

improves dramatically, from a jitter of 28 m/s (and reduced χ2 of 193) to 7 m/s (reduced χ2 23).
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B.6. 1.2 ≤ M? < 1.3 M�

HD 8907 —HD 8907 is a fairly active star, and shows good correlation between the activity and RV time series (Pearson

coefficient 0.61). Given this and the lack of a best-fit model, we expect all RV variations are driven by the activity of

the star.

HD 28237 —We notice a strong correlation between RV’s and activity in this fairly active star (Pearson coefficient

0.58), suggesting that RV jitter in this star is activity-driven.

HD 52265 —We find little evidence of the 59 day second planet for this star published in Wittenmyer et al. (2013), and

are unable to get a fit without invoking high eccentricity. Regardless, the best two-planet fit using Keck data results

in an RV jitter of 4.1 m/s, compared to 4.6 m/s in the one-planet fit. By selecting the one-planet fit, we have not

changed the RV jitter enough to affect any results.

HD 74156 —For this star, we find that the residuals to the 2 planet fit are all below 0 m/s for data before the Keck

upgrade (with a mean of -8.7 m/s compared to a mean of 3 m/s post-upgrade), but not by more than the average

scatter for the post-upgrade residuals. In fact, the lowest velocity residuals are all post-upgrade. For this reason, we

have not split the pre- and post-upgrade velocities in the fit but have taken only the post-upgrade velocities when

calculating jitter.

HD 114613 —This is a star with a known planet (Wittenmyer et al. 2014) on a 3624 day period. However, the Keck

data show an activity correlation (Pearson coefficient 0.695) and do not show evidence of this planet. We therefore

consider the velocities to be purely activity-induced RV jitter.

HD 179949 —After the discovery of a companion to HD 179949 in Butler et al. (2006), this star had additional

observations starting again in 2009. After removing the best-fit companion, we notice that the pre-upgrade residuals

cluster around 10 m/s, while the post-upgrade observations cluster around -10 m/s. When including an offset in the

fit, the RV jitter is reduced from 15 m/s to 10 m/s.

HD 188512 —HD 188512 shows evidence of a long term linear trend, which we have subtracted out.

HD 198802 —We find a strong activity correlation for HD 198802 (Pearson coefficient 0.78), which leads us to disregard

the best fit single-planet model and leave the RV variations as activity-driven jitter.

HD 11970 —After subtracting the stellar companion to HD 11970, we note a correlation between the radial velocities

and the activity (Pearson coefficient 0.73).

HD 25311 —HD 25311 shows evidence of RV variation beyond simply activity-driven variations (given the lack of

correlation between activity and velocities). We find that with a linear trend and a period of 70 days, we can reduce

the RV jitter to nearly 10 m/s. However, this fit relies on a convenient lack of phase coverage during the RV maximum

of the orbit and so we are hesitant to accept this best-fit planet. We instead simply subtract a linear trend.

HD 25457 —We remove an obvious outlier from this star. The outlier is not as obvious when comparing simply the

uncertainties in the velocities, although it is much larger than the typical uncertainty on the velocity for this star (13

m/s vs. 5 m/s). However, it is also noticeable by eye as an outlier in that it is below -175 m/s when nearly every

other velocity for this star is within ±30 m/s.

HD 38801 —After subtracting the best-fit companion to HD 38801, we note a correlation between the radial velocities

and the activity (Pearson coefficient 0.64).

HD 88134 —HD 88134 shows evidence of a long term linear trend, which we have subtracted out.

HD 117497 —This star has the minimum number of observations for our jitter calculation (10) but over a very short

baseline (close to 2 months). For this star, our jitter estimate is therefore relatively uncertain.

HD 144363 —HD 144363 has clear evidence of a stellar companion (RV variations with semi-amplitude 6 km/s).

However, the small number of points makes an exact fit difficult, and the residuals to the best fit remain of order 500

m/s. This could suggest spectral contamination from the binary companion, leading to spurious RV measurements,

but for now it is unclear whether the poor fit is due to measurement error or the lack of complete coverage.
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HD 154144 —After subtracting a linear trend, we find a strong correlation between the radial velocities and the activity

(Pearson coefficient 0.68).

HD 156342 —HD 156342 shows evidence of a long term linear trend, which we have subtracted out.

B.7. 1.3 ≤ M? < 1.4 M�

HD 21847 —HD 21847 is another active star that shows strong correlation between activity and radial velocities

(Pearson coefficient 0.78). The RV jitter for this star is relatively high (34 m/s) but appears to be purely activity-

induced.

HD 39828 —HD 39828 showed evidence of a long period stellar companion due to a strong linear trend, decreasing by

about 400 m/s over the 8 and a half years of observations. Since there is no indication of curvature, we have subtracted

a linear trend.

HD 95088 —HD 95088 had an obvious outlier that we have removed. This outlier was identified by eye as it had a

velocity measurement that was 100 m/s removed from the remaining points. The RV jitter is decreased from 23 m/s

to 9 m/s once the outlier is removed.

HD 106270 —HD 106270 shows a clear planetary signal (Johnson et al. 2011). However, it also shows a strong activity

correlation (Pearson coefficient 0.645). Despite the strong correlation, the two signals do not seem to be entirely in

phase and the planetary signal has sufficient phase coverage to indicate that the planetary signal is indeed correct.

B.8. 1.4 ≤ M? < 1.5 M�

HD 38529 —HD 38529 shows evidence of a strong activity cycle, however, this cycle does not appear to induce

correlated radial velocities. The planets found in Wright et al. (2009) are not in phase and show little signs of being

activity-induced RV variations.

HD 63754 —Despite obtaining a planet fit for HD 63754, we find that we are quite likely overfitting in this case.

Instead we simply subtract off a linear trend. Additional observations would confirm if the curvature suggested by the

planet fit is indeed present.

HD 33142 —HD 33142 has 1 previously known planet (Johnson et al. 2011). After subtracting out the best fit planet,

we find evidence for an additional planet near 860 days. We compare the 1-planet, 1-planet plus trend, 2-planet, and

2-planet plus trend fits and find that there is not strong enough evidence to accept either of the 2-planet fits. We

therefore take the 1-planet fit with a trend as it resulted in a lower χ2 than the 1-planet fit alone. This system is

worth further scrutiny to determine whether there is indeed a second planet in this system. If it does, our current

jitter measurement will be slightly inflated: 8.7 m/s instead of 6.0 m/s.

HD 99706 —HD 99706 was originally published as a one planet system with a linear trend (Johnson et al. 2011). Later,

(Bryan et al. 2016) used additional observations to refine the fit and published a 2-planet solution. With the addition

of a few more observations, we find that the current dataset is inconsistent with the Bryan et al. (2016) two planet

solution. We use simply a 1 planet plus trend solution.

HD 140025 —We note that the radial velocity observations of HD 140025 have a strong correlation with activity

(Pearson coefficient 0.785).

HD 142091 —HD 142091 was discussed in detail in Section 4.2. The majority of the observations of this star were

obtained on two separate nights in 2013 to capture stellar p-mode oscillations. These observations therefore skew the

RMS toward lower values expected from purely stellar oscillations. We therefore remove these two nights and calculate

the RV RMS of the remaining observations. The oscillation observations are used separately to validate the theoretical

scaling relations used in this work.

HD 155413 —HD 155413 shows evidence of a stellar mass companion, and so we have simply subtracted a linear trend.

HD 219553 —HD 219553 has a potential planet based on a 1-planet fit. However, the periodogram does not show a

clear, sharp peak at the best-fit period. Given the few observations and poor phase-coverage of the best-fit planet fit,

we opt to disregard the best-fit one planet solution and treat it as pure RV jitter. If there is indeed a planet, the RV

RMS drops from 18.6 to 5.8. As such, this is a system where we may be able to use its height above the expected

jitter floor to provide additional evidence for or against the one planet solution.
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HD 224032 —This system shows evidence of a long term linear trend, which we have subtracted off.

B.9. 1.5 ≤ M? < 1.6 M�

HD 67767 —The velocities of HD 67767 pre-upgrade show much larger variation due to several high points than

the post-upgrade velocities (14 m/s vs. 6 m/s). However, the post-upgrade velocities show evidence of an activity

correlation. If the velocities are indeed correlated with activity, then the high velocity measurements pre-upgrade

could simply be activity-induced. Therefore, we find it necessary to include all velocities in the calculation of RV jitter

(11 m/s when combined).

HD 18645 —HD 18645 shows a slight correlation between activity and radial velocity (Pearson coefficient 0.538).

HD 22682 —HD 22682 has unusually large errors in the measured velocities. It is not a faint star, nor is it rapidly

rotating. Rather, it is bright (V= 6.67) and slowly rotating (v sin i = 0.8 km/s.).

HD 31423 —The velocities for HD 31423 show a rising trend in velocities spanning several hundred m/s and crossing 0

m/s from mid 2011 to mid 2012. A single point removed from the rest by more than a year (late 2013) has a measured

velocity near 3000 m/s. As the latest observation, we are unable to constrain a fit with this point included. We do not

expect this to be an errant point, but in order to accurately measure the jitter, we remove this point from the time

series. The resulting rising trend we subtract as a simple linear trend.

HD 72440 —HD 72440 presents a very interesting case. We observe what appears to be a strong downward linear trend

spanning 400 m/s. However, when examining the SHK time series for this star, we notice they very strongly correlate

with the radial velocities with a Pearson coefficient of 0.984. While the RV trend is almost certainly indicative

of a stellar companion, the corresponding very large drop in S is hard to explain and could be interpreted as an

extraordinarily large RV-activity correlation. We remain puzzled by this system.

HD 85440 —We obtain a reasonable planet fit for HD 85440. However, the RV measurements are highly correlated

with the activity measurements (Pearson coefficient 0.929), and so we disfavor the planet, simply counting all variation

as activity-induced jitter.

HD 100337 —HD 100337 also shows a strong correlation between the activity and RV measurements (Pearson coefficient

0.789).

HD 193391 —HD 193391 shows a strong correlation between the activity and RV measurements (Pearson coefficient

0.860).

B.10. 1.6 ≤ M? < 1.7 M�

HD 12137 —HD 12137 appears to be a binary system. After subtracting a linear trend, we find evidence of a 5000 day

period planet. However, we are reluctant to subtract it due to the few number of observations. We simply subtract a

line for now.

HD 45210 —HD 45210 also shows a long term linear trend, which we have subtracted out.

B.11. M? > 1.7 M�

HD 225021 —HD 225021 shows evidence of a linear trend, which we have removed, resulting in an RV jitter of 8 m/s

instead of 27 m/s.

HD 31543 —HD 31543 shows clear evidence of a binary companion. However, the final two observations have very

large errors (10-20 m/s) and are the only two observations after the velocities have turned over and begin to increase

again. Because of the large uncertainties for those measurements, the orbit is not well-constrained and other solutions

exist.

HD 44506 —HD 45506 shows a coherent downward trend in the velocities, spanning a range of 100 m/s. We have

therefore subtracted a linear trend which results in a jitter of 8 m/s (26 m/s otherwise).
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HD 64730 —HD 64730 shows evidence of a stellar companion, however it has only completed one velocity minimum.

In addition, there are strong velocity variations that result in high eccentricity fits for this system. Due to the few

observations, we cannot fully constrain the orbit and can merely report an RV jitter about a poor fit. The resulting

RV jitter is 49 m/s, beyond the range of the plots in Figures 4 & 5.

HD 96683 —HD 96683 shows evidence of a long term trend but with some slight curvature. We have opted to include

the full Keplerian fit, which results in an RV RMS of 7.4 m/s, but note that this is likely an overfit. The RV RMS

about a linear trend is 40 m/s, and about a parabola is 7.7 m/s, indicating that the curvature is indeed significant.

B.12. Stars Removed from the Sample

Here we list the handful of stars that were removed from the sample along with the reasons for their removal.

HD 92855 —The cadence of observations for HD 92855 is not high enough to provide a Keplerian fit to the 30 km/s

variations in the RVs. We expect that such a high amplitude variation likely arises from a stellar companion of nearly

equal mass. We are therefore suspicious of contamination in the RV’s from the companion that also contributes to the

poor fit.

HD 4741 —HD 4741 shows evidence of a potentially long-period stellar-mass companion (about 8 km/s variation).

However, we have exactly 10 observations of this star over a span of 10 years, but only 5 have any significant leverage, as

the first 4 and final 3 observations are clustered in a period of about a week. This star was observed too infrequently

in between those sets of observations that a Keplerian fit would be overfitting. Indeed, while we are able to fit a

Keplerian that results in 7 m/s of jitter, the resulting eccentricity is likely unphysical (e = 0.99) and indicative of the

fitter “chasing” a single point. We expect this best fit to be an overfit.

HD 202568 —HD 202568 has very large internal error bars for every radial velocity measurement (8 m/s). In addition,

the observations span only one and a half years, giving only a very small time baseline on which to anchor the jitter.

HD 34957 —HD 34957 has evidence of spectral contamination in that all spectral lines have blueward asymmetries.

We remove this star as a double-lined binary.

HD 75732 —HD 75732 (also known as 55 Cnc) has 5 planets in the system, which are interacting gravitationally at

a scale that is discernible in the radial velocities (Nelson et al. 2014). For that reason, a multi-planet Keplerian fit is

not sufficient for this system, and it requires an N-body dynamical model, as in Nelson et al. (2014), which is beyond

this analysis. We therefore remove it from our sample, as we know we cannot recreate the best fit for this system. For

reference, Nelson et al. (2014) measure a jitter from Keck to be 3 to 3.5 m/s depending on whether the high cadence

observations were treated as independent or perfectly correlated.

HD 16297 —Despite meeting our threshold of having 10 or more observations, HD 16297 has large uncertainties on

the velocity measurements prior to the Keck-HIRES upgrade. When these points are removed, the remaining number

of good observations is only 6, and so we remove it from our sample.

HD 69076 —HD 69076 has large amplitude variations (20 m/s) that indicate the presence of a stellar companion on

what appears to be a short orbit. However, we are unable to obtain a believable best fit Keplerian for this system and

so we are suspicious of spectral contamination that may be affecting the measured RV’s.

HD 88656 —Like HD16297 above, HD 88656 does not meet our threshold for needing 10 or more observations once we

remove the highly-uncertain and clearly inconsistent velocities prior to the Keck upgrade.


