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CLOSED SURFACES WITH DIFFERENT SHAPES
THAT ARE INDISTINGUISHABLE BY THE SRNF

Eric Klassen and Peter W. Michor

Abstract. The Square Root Normal Field (SRNF), introduced by Jermyn
et al. in [5], provides a way of representing immersed surfaces in R3, and
equipping the set of these immersions with a “distance function" (to be precise,
a pseudometric) that is easy to compute. Importantly, this distance function
is invariant under reparametrizations (i.e., under self-diffeomorphisms of the
domain surface) and under rigid motions of R3. Thus, it induces a distance
function on the shape space of immersions, i.e., the space of immersions modulo
reparametrizations and rigid motions of R3. In this paper, we give examples of
the degeneracy of this distance function, i.e., examples of immersed surfaces
(some closed and some open) that have the same SRNF, but are not the
same up to reparametrization and rigid motions. We also prove that the
SRNF does distinguish the shape of a standard sphere from the shape of any
other immersed surface, and does distinguish between the shapes of any two
embedded strictly convex surfaces.

1. Introduction

It is a fascinating mathematical problem to distinguish shapes of different
surfaces, and to quantify how different these shapes are from each other. One
promising candidate for solving this problem has been the SRNF (square root
normal field) method introduced by Jermyn et al. in [5], It has been the subject
of several subsequent publications, including [4], [6], and [2]. Given an oriented
surface M with a Riemannian metric, this method introduces a pseudometric on
the space

Imm(M,R3) := {immersions M → R3} .
This pseudometric is invariant under the right action of the group Diff+(M)
by composition (where Diff+(M) denotes the group of orientation preserving
diffeomorphisms M →M), and is invariant under the left action of the group of
rigid motions of R3. Because of these invariances, this pseudometric on Imm(M,R3)
induces a pseudometric on the shape space

S = Imm(M,R3)/(Diff+(M)× rigid motions of R3) .
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The purpose of this paper is to give examples demonstrating that this pseudome-
tric fails to be a metric on shape space for every domain M . Some of these examples
were already known for open surfaces (or surfaces with boundary). We include
them here anyway, because they have not appeared in the literature. However, the
main contribution of this paper is to give a way of constructing examples for closed
surfaces as well. The paper is structured as follows. Section 2 offers a brief review
of the SRNF method. In Section 3, we give some examples of surfaces (open and
closed) whose shapes are not determined by their SRNF. In Section 4, we prove
that the shape of the sphere is determined by its SRNF. In Section 5, we prove
that if two embedded, strictly convex, closed surfaces have the same SRNF, then
they are translates of each other. In Section 6, we prove a theorem that is used in
the presentation of the most important example in Section 3.

2. Review of the Square Root Normal Field Method

In this paper, we will assume thatM is a smooth, connected, oriented Riemannian
2-dimensional manifold with or without boundary. Let Imm(M,R3) denote the
space of immersions of M into R3. Given f ∈ Imm(M,R3), the orientation on M
and the standard orientation on R3 imply an orientation on the normal bundle of
f(M) at each point of M . Thus, given f ∈ Imm(M,R3), we can define n : M → R3

by letting n(x) be the oriented unit normal vector to f(M) at f(x). Given such an
f , we can also define a : M → R by a(x) = the local area multiplication factor of
f at x. To give a precise formula for a(x), let {v, w} be an orthonormal basis of
TxM . Then let a(x) = |dfx(v)× dfx(w)|, where “×” denotes the usual vector cross
product.

The square root normal field (SRNF) map Φ: Imm(M,R3) → C∞(M,R3) is
defined by Φ(f) = q, where

q(x) =
√
a(x)n(x) .

We now discuss some of the important properties of the SRNF. First, it clearly
induces a function

Φ: Imm(M,R3)/translations→ C∞(M,R3)

since Φ(f) depends only on the first derivative of f . Note that Diff+(M) acts
on Imm(M,R3) by right composition. We define a right-action of Diff+(M) on
C∞(M,R3) by

(1) (g ∗ φ)(x) =
√
b(x)g

(
φ(x)

)
,

where b(x) = the area multiplication factor of φ at x. Is easy to check that the
map Φ is equivariant with respect to these two actions; i.e.

Φ(f) ∗ φ = Φ(f ◦ φ) .

In addition, the action defined by (1) is by linear isometries, if we put the usual
L2 inner product on C∞(M,R3). The obvious action of SO(3) on C∞(M,R3) is
also by isometries with respect to the L2 inner product. (This action is defined by
A ∗ q(x) = Aq(x).)
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These facts are important because we can use the SRNF to define a distance
function on Imm(M,R3) by

(2) d(f1, f2) = ‖Φ(f1)− Φ(f2)‖

where the norm refers to the L2 norm. Define the shape space of immersions of M
in R3 by

S = Imm(M,R3)/(Diff+(M)× rigid motions of R3) .
In order to define a distance function on S, we wish to define a distance function
on Imm(M,R3) that is invariant under the actions of Diff+(M) and the group
of rigid motions of R3. The distance function defined by (2) has these invariance
properties! This is the main motivation for the use of the SRNF in shape analysis.

Though we called the function d defined on Imm(M,R3) by (2) a “distance func-
tion”, there are some difficulties associated with that terminology; these difficulties
are the main subject of this paper.

First, note that if two immersions differ only by a translation, their distance is
zero. We don’t consider that to be a serious problem, because we want to mod out
by the group of rigid motions of R3, which includes translations.

However, it is easy to create examples of pairs of immersions that do not represent
the same elements of shape space, but that still have distance zero with respect to
d. We now give some of these examples in order of increasing seriousness.

3. Counterexamples to the injectivity of the SRNF map
on shape space

3.1. Cylinders. Let M denote the cylinder in R3 defined by x2 + y2 = 1 and
0 ≤ z ≤ 1; we have, of course, the identity immersion Id : M → R3. Given r > 0,
define the linear transformation L : R3 → R3 by L(x, y, z) = (rx, ry, zr ). It is
immediate that L ◦ Id is also an immersion, and that Id and L ◦ Id both give rise
to the same SRNF. Furthermore, it is obvious that these two immersions of the
cylinder are not related by rigid motions or reparametrization. Of course, both
of these immersions have Gaussian curvature 0 everywhere, making them rather
special.

3.2. Paraboloids. Let a and b be non-zero real numbers and let Sa,b denote the
graph of the function z = ax2 + by2 in R3.

Theorem 1. If ab = cd, then we can parametrize Sa,b and Sc,d in such a way that
they have the same SRNF.

Proof. For a given (a, b), parametrize Sa,b by

B(x, y) =
(x
a
,
y

b
,
x2

a
+ y2

b

)
.

An easy computation then yields

Bx ×By =
(
− 2x
ab
,−2y

ab
,

1
ab

)
.
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Since Bx ×By depends only on ab (not on a and b individually), and the SRNF
can be expressed as Bx×By√

|Bx×By|
, the theorem follows. �

Once again, it is clear that if a 6= ±c and b 6= ±d, then Sa,b and Sc,d are not
equivalent under a rigid motion of R3 or under reparametrization.

3.3. Closed surfaces.

Definition 1. We define a flat place D ⊂ R2×{0} to be a closed disc in R2×{0}
with n disjoint open discs removed. These removed discs should be small enough
that their boundaries are disjoint from each other and disjoint from the boundary
of the original disc. Hence the boundary of a flat place consists of n+ 1 disjoint
round circles; we call the largest of these, C0, the outer boundary component, and
the others C1, . . . , Cn the inner boundary components.

Let M ⊂ R3 be a closed, oriented, smooth surface with the following two
properties.

(1) M contains a flat place D and
(2) D separates M into n+ 1 components M0,M1, . . . ,Mn, where ∂Mi = Ci

for each i.
We have, of course, the identity immersion Id : M → R3. We now construct a new
immersion f : M → R3.

First, choose a new flat place D̃ ⊂ R2× 0, whose outer boundary C̃0 is the same
as the outer boundary C0 of D, while each of its inner boundary components C̃i
is required to have the same radius as Ci, but may have a different location. For
each i = 1, . . . , n, let Ti denote the translation R3 → R3 that takes Ci to C̃i. Now
define f : M → R3 as follows:
• On M0, f(x) = x.
• On each Mi where i > 0, f(x) = Ti(x).
• On D, f : D → D̃ is an area preserving diffeomorphism that is the identity

on a neighborhood of C0 and agrees with Ti on a neighborhood of Ci for each
i = 1, . . . , n. The existence of such an area-preserving diffeomorphism will be
proved in Section 6, Theorem 5.

It is clear that f is an area-preserving immersion, and also that for each x ∈M ,
the unit normal vector of M at x is equal to the unit normal vector of f(M) at
f(x). It follows immediately that Φ(Id) = Φ(f).

Here is an amusing way to visualize this situation. Imagine a round table-top
with a chessboard painted on it, and with the 32 chess pieces sitting on the board.
Consider the surface M to be the boundary surface of this entire configuration:
the tabletop together with the board and the pieces. If we move the chess pieces
around on the board (without changing the orientation of each piece), the resulting
surface is related to the original one as in the above construction. Thus, all surfaces
obtained by moving around the chess pieces are indistinguishable using the SRNF.

3.4. A closed example with a flip. Here is another example, similar to the
chessboard example above. Let M be a closed orientable surface in R3 and assume
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we can write M = M0 ∪D∪M1 where D = {(x, y, z) : z = 0 and 1 ≤ x2 + y2 ≤ 4},
and M0 intersects D along its outer boundary and M1 intersects D along its inner
boundary. Again, Id : M → R3 is an immersion of M into R3. We define another
immersion f : M → R3 as follows:
• On M0, f(x, y, z) = (x, y, z).
• On M1, f(x, y, z) = (−x,−y,−z).
• On the annulus D, f(x, y, 0) = (x, y, 0) on a neighborhood of the outer

boundary, f(x, y, 0) = (−x,−y, 0) on a neighborhood of the inner boundary,
and f rotates each concentric circle of D by an angle that smoothly varies
from 0 radians on the outer boundary to π radians on the inner boundary.

Once again, it is immediate that Φ(Id) = Φ(f), while these two immersions are
not related by a reparametrization or by a rigid motion. In terms of the above
visualization, we have turned one or more of the chess pieces upside down while
simultaneously giving it a 180 degree horizontal rotation. It is clear that the “flat
place” plays a crucial role in the last two examples. Thus there is an obvious
question:

Question: Are there examples of non-injectivity of the SRNF map on shape
space if the domain is a closed orientable manifold, and the immersions don’t have
any flat places?

4. The sphere is distinguished from all other immersed surfaces
by its SRNF

In this section, we prove that the standard round sphere is distinguished from
every other immersion of S2 by its SRNF. Let S2 denote the unit sphere in R3; we
have the immersion Id : S2 → R3.
Theorem 2. If f : S2 → R3 is any immersion such that Φ(Id) = Φ(f), then
f = Id (up to translation in R3).
Proof. Clearly, x is the oriented unit normal to S2 at x. Because of our assumption
that Φ(Id) = Φ(f), it follows immediately that x is also the oriented unit normal to
f(S2) at f(x). Therefore, locally, f is the inverse of the Gauss map, which can be
defined locally on f(U), where U is any open set in S2 that is sufficiently small so
that f restricted to U is injective. Since Φ(Id) = Φ(f), it follows that Id and f have
the same area multiplication factor at each point of S2; hence they both have area
multiplication factor of 1 at each point. It follows immediately from the definition
of Gaussian curvature that the area multiplication factor of the Gauss map at any
point of a surface is equal to the absolute value of the Gaussian curvature of the
surface at the same point. Hence, the Gaussian curvature of f(S2) at each point
is equal to ±1. Since the Gaussian curvature of f(S2) is a continuous function
of S2, it follows that it is either 1 at every point or −1 at every point. By the
Gauss Bonnet theorem, the Gaussian curvature of f(S2) is 1 at every point. It
then follows that f(S2) is a unit sphere, by the classical theorem that any closed
immersed surface in R3 with constant Gaussian curvature = 1 is a unit sphere in
R3. (See, for example, [1] for a recent statement and proof of this theorem for the
case of immersed surfaces.) �
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5. A uniqueness result for convex embedded surfaces

Theorem 3. Let f1, f2 : S2 → R3 be embeddings such that f1(S2) and f2(S2) are
both convex surfaces and both have Gaussian curvature strictly positive at every
point. If Φ(f1) = Φ(f2), then f1 and f2 differ by a translation.

Proof. Since f1(S2) is convex and has strictly positive Gaussian curvature, it
follows that its Gauss map G : f1(S2)→ S2 is a diffeomorphism. If we replace both
f1 and f2 by their compositions with f−1

1 ◦G−1, the hypotheses of the theorem
still hold. Hence, for the remainder of the proof, we may assume that f1 is the
inverse of the Gauss map G : f1(S2)→ S2. Because Φ(f1) = Φ(f2), it follows that
f2 is the inverse of the Gauss map f2(S2)→ S2. For i = 1, 2, define Ki : S2 → R
by Ki(x) = the Gaussian curvature of fi(S2) at fi(x). Because Φ(f1) = Φ(f2), we
know that f1 and f2 have the same area multiplication factor. But, by definition of
Gaussian curvature, the area multiplication factor of the Gauss map is equal to
the absolute value of the Gaussian curvature. Since f1(S2) and f2(S2) are both
assumed to have positive Gaussian curvature, it follows that K1(x) = K2(x) for
every x ∈ S2. According to the Minkowski [9], it follows that f1(S2) and f2(S2)
differ only by a translation.

�

6. Proof of a theorem on area-preserving maps of a flat place

The goal of this section is to prove a theorem needed in Section 3.3 of this paper.
First, we need the following theorem. It remains true for manifolds with more
general boundaries with the same proof; for a formulation for Whitney manifold
germs see [8, end of Section 4].

Theorem 4. Let M be a connected, compact, oriented manifold with corners
with dim(M) = m. Let ω0, ω ∈ Ωm(M) be two volume forms (both > 0) with∫
M
ω0 =

∫
M
ω. Suppose that there is a diffeomorphism f : M → M such that

f∗ω|U = ω0|U for an open neighborhood of ∂M in M .
Then there exists a diffeomorphism f̃ : M → M with f̃∗ω = ω0 such that f̃

equals f on an open neighborhood of ∂M .

Proof. Choose an open neighborhood V of ∂M in M with V ⊂ V ⊂ U and such
that M \ V is connected. Put ω1 := f∗ω and ωt := ω0 + t(ω1 − ω0) for t ∈ [0, 1];
each ωt is again a volume form.

We search for a curve of diffeomorphisms t 7→ ft with f∗t ωt = ω0; then we
should have ∂

∂t (f
∗
t ωt) = 0. Since

∫
M

(ω1 − ω0) = 0 and ω1 − ω0 ∈ Ωmc (M \ V ) has
compact support and

∫
M\V : Hm

c (M \ V ) is an isomorphism, we have [ω1 − ω0] =
0 ∈ Hm

c (M \ V ), so ω1 − ω0 = dψ for some ψ ∈ Ωm−1
c (M \ V ). Consider the

time-dependent vector field ηt := ( ∂∂tft) ◦ f
−1
t ; then by [7, 31.11] we have:

0 wish= ∂
∂t (f

∗
t ωt) = f∗t Lηtωt + f∗t

∂
∂tωt = f∗t (Lηtωt + ω1 − ω0),

0 wish= Lηtωt + ω1 − ω0 = diηtωt + iηtdωt + dψ = diηtωt + dψ .
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We can choose ηt uniquely by iηtωt = −ψ, since ωt is nondegenerate for all t. Note
that ηt has compact support in supp(ψ) ⊂ M \ V . Consequently, the evolution
operator ft = Φηt,0 exists for t ∈ [0, 1], by [7, 3.30]. We have, using [7, 31.11.2],

∂
∂t (f

∗
t ωt) = f∗t (Lηtωt + dψ) = f∗t (diηtωt + dψ) = 0 ,

so t 7→ f∗t ωt = ω0 is constant, ft|V = Id and ω0 = f∗1ω1 = f∗1 f
∗ω = (f ◦ f1)∗ω. So

f̃ = f ◦ f1 is the solution. �

We now state the theorem we used in Section 3.3:

Theorem 5. Let D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}. Let D1, . . . , Dn be closed discs
contained in D that are disjoint from each other and also disjoint from ∂D. Let
D̃1, . . . , D̃n be another collection of closed discs in D, also disjoint from each other
and from ∂D. Assume that for each i, Di and D̃i have the same radius, and let Ti
be the translation of R2 such that Ti(Di) = D̃i. Then there exists an area preserving
diffeomorphism D → D that is the identity on a neighborhood of ∂D, and agrees
with Ti on a neighborhood of Di for each i.

Proof. It follows from Theorem 3.2 on page 186 of Hirsch’s Differential Topology [3]
that there exists a diffeomorphism F : D → D such that F is the identity on a
neighborhood of ∂D, and agrees with Ti on a neighborhood of each Di. Theorem 4
implies that there is an area preserving diffeomorphism of D that agrees with F
on a neighborhood of ∂D and on a neighborhood of each Di.

�
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