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Relative weak derived functors

Panneerselvam Prabakaran

Abstract. Let R be a ring, n a fixed non-negative integer, WI the class of all
left R-modules with weak injective dimension at most n, and WF the class of
all right R-modules with weak flat dimension at most n. Using left (right) WI -
resolutions and the left derived functors of Hom we study the weak injective
dimensions of modules and rings. Also we prove that −⊗− is right balanced on
MR×RM by WF ×WI , and investigate the global right WI -dimension of RM

by right derived functors of ⊗.

Keywords: weak injective module; weak flat module; weak injective dimension;
weak flat dimension

Classification: 18G25, 16E10, 16E30

1. Introduction

Throughout this paper, R denotes an associative ring with identity and all mod-

ules are unitary. For a left R-module M , the character module HomZ(M,Q/Z) is

denoted byM+ and for a class of R-modules C, we denote by C+ = {C+ : C ∈ C}.

Denote by RM the category of all left R-modules and by MR the category of right

R-modules. For unexplained concepts and notations, we refer the reader to [2],

[7], [9].

We first recall some known notions and facts needed in the sequel.

Let C be a class of left R-modules and M a left R-module. Following [2],

we say that a map f ∈ HomR(C,M) with C ∈ C is a C-precover of M , if the

group homomorphism HomR(C
′, f) : HomR(C

′, C) → HomR(C
′,M) is surjective

for each C′ ∈ C. A C-precover f ∈ HomR(C,M) of M is called a C-cover of M if

f is right minimal, that is, if fg = f implies that g is an automorphism for each

g ∈ EndR(C). Dually, we have the definition of C-preenvelope (or C-envelope).

In general, C-covers (C-envelopes) may not exist, if exists, they are unique up to

isomorphism.

A pair (F,C) of classes of left R-modules is called a cotorsion theory, see [2], if

F⊥ = C and ⊥C = F, where F⊥ = {M ∈ RM : Ext1R(F,M) = 0 ∀F ∈ F} and
⊥C = {M ∈ RM : Ext1R(M,C) = 0 ∀C ∈ C}. A cotorsion theory (F,C) is called

perfect , see [6], if every left R-module has a C-envelope and a F-cover.
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Let C,D and E be abelian categories and T : C ×D → E an additive functor

contravariant in the first variable and covariant in the second. Let F and G be

classes of objects of C and D, respectively. Then T is said to be right (or left)

balanced by F × G [2, Definition 8.2.13] if for every object M of C, there is

a T (−,G)-exact complex

· · · → F1 → F0 →M → 0 (or 0 →M → F 0 → F 1 → · · · )

with each Fi (or F
i) in F, and for every object N of D, there is a T (F,−)-exact

complex

0 → N → G0 → G1 → · · · (or · · · → G1 → G0 → N → 0)

with each Gi (or Gi, respectively) in G.

In [8], B. Stenström defined and studied FP -injective modules. A left R-mo-

dule M is called FP -injective (or absolutely pure) if Ext1R(F,M) = 0 for all

finitely presented left R-modules F . The FP -injective dimension of M , denoted

by FP -id(M), is defined to be the smallest non-negative integer n such that

Extn+1(F,M) = 0 for every finitely presented left R-module F (if no such n

exists, set FP -id(M) = ∞).

A left R-module M is called super finitely presented , see [4], if there exists an

exact sequence of left R-modules: · · · → F1 → F0 → M → 0, where each Fi
is finitely generated and projective. Recently, Z. Gao and F. Wang introduced

the notion of weak injective and weak flat modules, see [4]. A left R-module M

is called weak injective if Ext1R(F,M) = 0 for any super finitely presented left

R-module F . A right R-module N is called weak flat if TorR1 (N,F ) = 0 for any

super finitely presented left R-module F . The class of all weak injective (or weak

flat) left (or right) R-modules is denoted by WI (or WF, respectively).

Accordingly, the weak injective dimension of a left R-module M , denoted by

widR(M), is defined to be the smallest n ≥ 0 such that Extn+1

R (F,M) = 0 for all

super finitely presented left R-modules F . If no such n exists, set widR(M) = ∞.

The weak flat dimension of a right R-module N , denoted by wfdR(N), is defined

to be the smallest n ≥ 0 such that TorRn+1(N,F ) = 0 for all super finitely pre-

sented left R-modules F . If no such n exists, set wfdR(N) = ∞. The left super

finitely presented dimension, denoted by l.sp.gldim(R), of a ring R is defined as

l.sp.gldim(R) = sup{pdR(M) : M is a super finitely presented left R-module}.

Let n be a fixed non-negative integer. In what follows, the symbols F , WI

and WF denotes the classes of all left R-modules with FP -injective dimension

at most n, left R-modules with weak injective dimension at most n and right

R-modules with weak flat dimension at most n, respectively.
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In [10], Y. Zeng and J. Chen proved all left R-modules over a left coherent

ring R have F -preenvelope and F -cover and they investigated the derived func-

tors of Hom using F -resolutions. In [5], Z. Gao and Z. Huang investigated the

derived functors of Hom and ⊗ using WI and WF-resolutions. Recently, T. Zhao

in [12] proved that over any ring R, WI and WF are preenveloping and covering

classes. Inspired by the above works and by [11], in this paper we investigate the

derived functors of Hom and ⊗ using WI and WF -resolutions. This paper is

organized as follows.

In Section 2, we investigate the WI -dimensions of modules and rings in terms

of left or right WI -resolutions. We give some characterizations of right WI -dim

M ≤ m and right WI -dim RR ≤ m. Also, we obtain some equivalent conditions

concerning the weak injective dimension of a module N .

In Section 3, we first show that − ⊗ − is right balanced on MR × RM by

WF ×WI . Then we investigate the global right WI -dimension of RM in terms

of the properties of the right derived functors of “⊗”.

The following results proved by T. Zhao in [12] will be used frequently in this

paper.

Proposition 1.1 ([12, Corollary 2.4]).

(1) For a left R-module M , we have widR(M) = wfdR(M
+).

(2) For a right R-module M , we have wfdR(M) = widR(M
+).

Theorem 1.2 ([12, Theorem 4.8 and Theorem 4.9]). The class WI is preen-

veloping and covering.

Theorem 1.3 ([12, Theorem 4.4 and Theorem 4.5]). The class WF is preen-

veloping and covering.

2. Left derived functors of Hom and right WI -dimension

By Theorem 1.2, all left R-modules have WI -preenvelopes and WI -covers.

Hence Hom(−,−) is left balanced on RM ×RM by WI ×WI . Let Extm(−,−)

denote the mth left derived functor of Hom(−,−) with respect to the pair

WI × WI . Then, for any two left R-modules M and N , Extm(M,N) can com-

puted by using a right WI -resolution of M or a left WI -resolution of N . For

a left WI -resolution of M : · · · → F1 → F0 →M → 0 with each Fi ∈ WI , write

K0 =M, K1 = ker(F0 →M), and Ki = ker(Fi−1 → Fi−2) for i ≥ 2.

The mth kernel Km, m ≥ 0, is called the mth WI -syzygy of M .
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Let 0 →M
g
→ F 0 f

→ F 1→· · · be a right WI -resolution of M in RM . Apply-

ing HomR(−, N) to the sequence, we get the deleted complex

· · · → Hom(F 1, N)
f∗

→ Hom(F 0, N) → 0.

Then Extm(M,N) is exactly the mth homology of the complex above. There is

a canonical map

σ : Ext0(M,N) = Hom(F 0, N)/im(f∗) → Hom(M,N),

which is defined by σ(α+ im(f∗)) = αg for each α ∈ Hom(F 0, N).

Following [2], the left WI -dimension of a left R-module M , denoted by left

WI -dim M , is defined as inf{m : there is a left WI -resolution of the form 0 →

Fm → · · · → F0 →M → 0}. If there is no such m, set left WI -dim M = ∞. The

global left WI -dimension of RM , denoted by gl.left WI -dim RM , is defined to

be sup {left WI -dimM : M ∈ RM}. The right versions can be defined similarly,

and they are denoted by right WI -dim M and gl.right WI -dim RM .

Definition 2.1. Let R be a ring and M a left R-module. Then WI -dim(M) is

defined to be the smallest non-negative integer m such that Extm+n+1(F,M) = 0

for every super finitely presented left R-module F . If no such m exists, set WI -

dim(M) = ∞.

Remark 2.2. We note that if n = 0, then WI -dim(M) coincides with wid(M)

and if R is coherent ring then WI -dim(M) coincides with F -dim(M), see [10,

Definition 3.1]. Moreover, if R is a coherent ring and n = 0, then WI -dim(M) is

coincide with FP -id(M).

Lemma 2.3. The following statements are equivalent for any M ∈ RM and

m ≥ 0:

(1) WI -dim(M) ≤ m;

(2) Extn+m+1(N,M) = 0 for any super finitely presented left R-module N ;

(3) if the sequence 0 → M → F 0 → · · ·Fm → 0 is exact with each F 0, · · · ,

Fm−1 ∈ WI then Fm ∈ WI ;

(4) widR(M) ≤ m+ n.

Proof: (1)⇒ (2). We will proceed by induction onm. If WI -dim(M) = 0, then

it is clear. Suppose that m ≥ 1 and N is a super finitely presented left R-module.

Let 0 → K → P → N → 0 be a projective resolution of N with P finitely

generated projective. ThenK is super finitely presented, and Extn+m+1(N,M) ∼=

Extn+m(K,M) = 0 by induction.

(2) ⇒ (1) is trivial.

(2) ⇔ (4) follows from [4, Proposition 3.3].
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(2) ⇒ (3). Note that Extn+m+1(N,M) ∼= Extn+1(N,Fm) for all super finitely

presented left R-module N . Then the implication follows by [4, Proposition 3.3].

(3) ⇒ (2). Let 0 → M → E0 → · · · → Em−1 → · · · be an injective resolution

of M . Then we have K = coker(Em−2 → Em−1) ∈ WI . From the isomorphism

Extn+m+1(N,M) ∼= Extn+1(N,K), it follows that Extn+m+1(N,M) = 0 for all

super finitely presented left R-module N . �

Proposition 2.4. Let R be a ring. Then WI -dim(M) = right WI -dim M for

any left R-moduleM . Moreover right WI -dimM ≤ m if and only if widR(M) ≤

m+ n.

Proof: It is trivial by Lemma 2.3. �

Proposition 2.5. The following statements are equivalent for any M ∈ RM :

(1) widR(M) ≤ n;

(2) the canonical map σ : Ext0(M,N) → Hom(M,N) is an isomorphism for

any N ∈ RM ;

(3) the canonical map σ : Ext0(M,M) → Hom(M,M) is an isomorphism;

(4) the canonical map σ : Ext0(M,N) → Hom(M,N) is an epimorphism for

any N ∈ RM ;

(5) the canonical map σ : Ext0(M,M) → Hom(M,M) is an epimorphism.

Proof: (1) ⇒ (2) is clear by setting F 0 =M .

(2) ⇒ (3) ⇒ (5) and (2) ⇒ (4) ⇒ (5) are trivial.

(5) ⇒ (1). By (5), there exists α ∈ Hom(F 0,M) such that σ(α + im(f∗)) =

αg = 1M . So M is isomorphism to a direct summand of F 0, and hence

widR(M) ≤ n. �

Corollary 2.6. The following statements are equivalent:

(1) widR(RR) ≤ n;

(2) the canonical map σ : Ext0(R,N) → Hom(R,N) is an isomorphism for

any N ∈ RM ;

(3) the canonical map σ : Ext0(R,R) → Hom(R,R) is an isomorphism;

(4) the canonical map σ : Ext0(R,N) → Hom(R,N) is an epimorphism for

any N ∈ RM ;

(5) the canonical map σ : Ext0(R,R) → Hom(R,R) is an epimorphism.

Proof: It follows from Proposition 2.5. �

Proposition 2.7. The following statements are equivalent for any M ∈ RM :

(1) right WI -dim M ≤ 1;

(2) the canonical map σ : Ext0(M,N) → Hom(M,N) is a monomorphism for

any left R-module N .
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Proof: (1) ⇒ (2). By assumption, M has a right WI -resolution 0 → M →

F 0→F 1→0. Thus we get an exact sequence 0 → Hom(F 1, N) → Hom(F 0, N) →

Hom(M,N) for any left R-module N . Hence σ is a monomorphism.

(2) ⇒ (1). Let 0 → M → E → L→ 0 be an exact sequence of left R-modules

with M → E being a WI -preenvelope ofM . It is enough to prove that L ∈ WI .

By [2, Theorem 8.2.3], we have the following commutative diagram with exact

rows:

Ext0(L,L) //

σ1

��

Ext0(E,L) //

σ2

��

Ext0(M,L)

σ3

��

// 0

0 // Hom(L,L) // Hom(E,L) // Hom(M,L).

Note that σ2 is an epimorphism by Proposition 2.5 and σ3 is a monomorphism

by (2). Hence σ1 is an epimorphism by the Snake lemma. Thus L ∈ WI by

Proposition 2.5. �

Proposition 2.8. The following statements are equivalent for any M ∈ RM and

any m ≥ 2:

(1) right WI -dim M ≤ m;

(2) Extm+k(M,N) = 0 for any N ∈ RM and k ≥ −1;

(3) Extm−1(M,N) = 0 for any N ∈ RM .

Proof: (1)⇒ (2). Let 0 →M → F 0 → · · · → Fm → 0 be a right WI -resolution

of M . Then we have an exact sequence

0 → Hom(Fm, N) → Hom(Fm−1, N) → Hom(Fm−2, N)

for all left R-modules N . Hence Extm(M,N) = Extm−1(M,N) = 0. It is clear

that Extm+k(M,N) = 0 for all k ≥ −1.

(2) ⇒ (3) is trivial.

(3) ⇒ (1). Assume that 0 → M → F 0 → F 1 → · · · → Fm → · · · is a right

WI -resolution of M with Lm = coker(Fm−2 → Fm−1). It suffices to show that

Lm ∈ WI . Clearly, we have the following commutative diagram:

0 M F 0 · · · Fm−2 Fm−1 Fm · · ·

0 0

Lm

// // // //
f

//
g

// //

π

��
✿✿

✿✿
✿✿

✿✿

λ

BB☎☎☎☎☎☎☎☎

@@������� ��
❃❃

❃❃
❃❃

❃

.
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By (3), we have Extm−1(M,Lm) = 0. The sequence

Hom(Fm, Lm)
g∗

→ Hom(Fm−1, Lm)
f∗

→ Hom(Fm−2, Lm)

is exact. Since f∗(π) = πf = 0, π ∈ ker(f∗) = im(g∗). Thus there exists

h ∈ Hom(Fm, Lm) such that π = g∗(h) = hg = hλπ, and hence hλ = 1 since π is

epic. Thus Lm ∈ WI . �

Lemma 2.9. Let R be a ring. Then the following hold.

(1) If 0 → A → B → C → 0 is an exact sequence of left R-modules with

A,B ∈ WI , then C ∈ WI .

(2) If 0 → A → B → C → 0 is an exact sequence of right R-modules with

B,C ∈ WF , then A ∈ WF .

Proof: (1). If 0 → A→ B → C → 0 is an exact sequence, then we have a long

exact sequence

· · · → Extn+1(F,B) → Extn+1(F,C) → Extn+2(F,A) → · · ·

for any super finitely presented left R-module F . Because A,B ∈ WI ,

Extn+1(F,B) = 0 = Extn+2(F,A). This implies that Extn+1(F,C) = 0 and

hence C ∈ WI by [4, Proposition 3.3].

(2). By hypothesis, the sequence 0 → C+ → B+ → A+ → 0 is exact with

C+, B+ ∈ WI by Proposition 1.1. Then by (1), we have A+ ∈ WI . Hence

A ∈ WF by Proposition 1.1 again. �

Theorem 2.10. The following are equivalent for a left R-module N and any

m ≥ 2:

(1) left WI -dim N ≤ m− 2;

(2) Extm+k(M,N) = 0 for any M ∈ RM and k ≥ −1;

(3) Extm−1(M,N) = 0 for any M ∈ RM .

Proof: (1) ⇒ (2). By (1), N has a left WI -resolution 0 → Fm−2 → · · · → F1 →

F0 → N → 0. Then for any left R-module M , we have the following complex

0 → Hom(M,Fm−2) → Hom(M,Fm−3) → · · · → Hom(M,F0) → 0.

Hence, Extm+k(M,N) = 0 for all left R-module M and all k ≥ −1.

(2) ⇒ (3) is clear.

(3) ⇒ (1). By Theorem 1.2, N has a left minimal WI -resolution

· · · −→ Fm
fm
−→ Fm−1

fm−1

−→ · · ·
f2
−→ F1

f1
−→ F0

f0
−→ N −→ 0

with each Fi ∈ WI . Put Km = ker(Fm−1 → Fm−2) and H = Fm−1/Km. Let

λ : Km → Fm−1 be the inclusion and π : Fm−1 → H the canonical projection.
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Then there exists p : Fm → Km such that fm = λp, and there exists a monomor-

phism α : H → Fm−2 such that fm−1 = απ. Put L = Fm−2/im(α) and let

β : Fm−2 → L be the canonical projection. Then there exits a homomorphism

i : L → Fm−3 via i(x + im(α)) = fm−2(x) such that fm−2 = iβ. So we have the

following commutative diagram:

Fm Fm−1 Fm−2 Fm−3

0 0 0 0

Km H L

fm
//

fm−1
//

fm−2
//

p

!!❉
❉❉

❉❉
❉❉

❉❉

##●
●

●
●

● ;;✇✇✇✇✇✇✇✇✇✇

λ

==③③③③③③③③③

;;✇✇✇✇✇✇✇✇✇

π

!!❉
❉❉

❉❉
❉❉

❉❉

##●
●●

●●
●●

●●
●

α

==③③③③③③③③③

β

!!❉
❉❉

❉❉
❉❉

❉❉

##●
●●

●●
●●

●●
●

i

==③③③③③③③③③

.

By (3), Extm−1(Km, N) = 0. Thus, the sequence

Hom(Km, Fm)
fm∗

−→ Hom(Km, Fm−1)
fm−1∗

−→ Hom(Km, Fm−2)

is exact. Since fm−1∗(λ) = fm−1λ = 0 and λ ∈ ker(fm−1∗) = im(fm∗), we have

λ = fm∗(l) = fml for some l ∈ Hom(Km, Fm). But fm = λp, and hence λ = λpl.

We obtain pl = 1 since λ is monic, and so Km ∈ WI . Since 0 → Km → Fm−1 →

H → 0 is an exact sequence, H ∈ WI by Lemma 2.9. Similarly, L ∈ WI .

Next we will show that the complex

0 → Fm−2 → Fm−3 → · · · → F1 → F0 → N → 0

is a left WI -resolution ofN . First we show that β : Fm−2 → L is an isomorphism.

Let T = ker(fm−3), ϕ : Fm−2 → T be an WI -cover of T and ψ : T → Fm−3

the inclusion mapping. Then fm−2 = ψϕ. Consider the following commutative

diagram:

Fm−1 Fm−2 Fm−3 Fm−4

0 0 0

H L T

fm−1
//

fm−2
//

fm−3
//

π

��
❄❄

❄❄
❄❄

❄❄

!!❈
❈❈

❈❈
❈❈

❈ @@�������

α

??⑧⑧⑧⑧⑧⑧⑧⑧

==④④④④④④④④

β
��
❄❄

❄❄
❄❄

❄❄

��
❃❃

❃❃
❃❃

❃

ψ

??⑧⑧⑧⑧⑧⑧⑧⑧

σ
//❴❴❴❴❴❴

i

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

ϕ

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
.

Set σ : L→ T via x+im(α) 7→ fm−2(x). It is easy to verify that σ is well defined

and i = ψσ. We have ψϕ = fm−2 = iβ = ψσβ, and ϕ = σβ since ψ is monic.

Hence, there exists a homomorphism η : L→ Fm−2 such that σ = ϕη for ϕ is an
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WI -cover and L ∈ WI . So we have ϕ = σβ = ϕηβ and ηβ is an automorphism

of Fm−2 for ϕ : Fm−2 → T is an WI -cover. Hence, β is a monomorphism and so

Fm−2
∼= L. Consider the exact sequence

0 → H
α
→ Fm−2

β
→ L→ 0,

then α = 0 and H ∼= 0. So the complex

0 → Fm−2 → Fm−3 → · · · → F1 → F0 → N → 0

is a left WI -resolution of N , as desired. �

Remark 2.11. We note that Theorem 2.10 is a generalization of [5, Proposi-

tion 4.10] and [10, Theorem 4.2]. In fact, if n = 0, then this is [5, Proposition 4.10]

and if R is a coherent ring, then this is [10, Theorem 4.2].

Theorem 2.12. The following are equivalent for m ≥ 2:

(1) gl.right WI -dim RM ≤ m;

(2) gl.left WI -dim RM ≤ m− 2;

(3) Extm+k(M,N) = 0 for all left R-modules M,N and k ≥ −1;

(4) Extm−1(M,N) = 0 for all left R-modules M,N ;

(5) l.sp.gldim(R) ≤ m+ n.

Proof: By Proposition 2.8 and Theorem 2.10 the statements (1)–(4) are equiv-

alent and (1) ⇔ (5) follows from Lemma 2.3 and Proposition 2.4. �

Corollary 2.13. For any ring R we have gl.left WI -dim RM = gl.right WI -dim

RM − 2, and is zero if gl.right WI -dim RM ≤ 2.

Lemma 2.14. The following statements are equivalent for any M ∈ RM and

m ≥ 0:

(1) widR(M) ≤ m+ n;

(2) for any left WI -resolution · · · → Fm → Fm−1 → Fm−2 → · · · → F1 →

F0 → N → 0 for each N ∈ RM , HomR(M,Fm) → Hom(M,Km) → 0 is

exact, where Km is the mth WI -syzygy of N .

Proof: We proceed by induction on m. For m ≥ 1, we consider the exact

sequence 0 →M → F → H → 0, where F is an WI -preenvelope of M . Then we
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have the commutative diagram

Hom(F, Fm) //

��

Hom(F,Km)

��

// 0

Hom(M,Fm) //

��

Hom(M,Km)

0

and

0

��

0

��

0

��

0 // Hom(H,Km) //

��

Hom(H,Fm−1) //

��

Hom(H,Km−1)

��

0 // Hom(F,Km) //

��

Hom(F, Fm−1) //

��

Hom(F,Km−1)

��

// 0

0 // Hom(M,Km) // Hom(M,Fm−1) //

��

Hom(M,Km−1)

0

Hence widR(M) ≤ m + n if and only if widR(H) ≤ m + n− 1 by Lemma 2.3

if and only if Hom(H,Fm−1) → Hom(H,Km−1) is surjective by induction if and

only if Hom(F,Km) → Hom(M,Km) is surjective by the second diagram if and

only if Hom(M,Fm) → Hom(M,Km) is surjective by the first diagram.

Form = 0, letK0 =M in the first diagram. Then Hom(M,F0) → Hom(M,K0)

is surjective. Thus F0 → M splits, and hence M ∈ WI . If M ∈ WI , it is clear

that Hom(M,F0) → Hom(M,K0) is surjective. �

Corollary 2.15. The following conditions are equivalent for any m ≥ 0:

(1) if · · · → F1 → F0 →M → 0 is a left WI -resolution of a left R-moduleM ,

then the sequence is exact at Fk for k ≥ m− 1, where F−1 =M ;

(2) right WI -dim RR ≤ m;

(3) widR(RR) ≤ m+ n;

(4) if Km is the mth syzygy of M , then the WI -precover Fm → Km is

surjective.

Proof: (1) ⇒ (4). By the assumption, · · · → F1 → F0 → M → 0 is exact

at Fm−1. Thus Fm → Km is surjective.

(4) ⇔ (2). It follows by Lemma 2.14.
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(3) ⇔ (2) is clear.

(2) ⇒ (1). Suppose m ≥ 2, and let 0 → R → F 0 → F 1 → · · · → Fm → 0 be

a right WI -resolution of R. Then Extk(R,M) = 0 for k ≥ m − 1. Computing

Extk(R,M) by using a left WI -resolution · · · → F1 → F0 →M → 0, we see that

the sequence is exact at Fk for any k ≥ m− 1.

If m = 1 and 0 → R → F 0 → F 1 → 0 is a right WI -resolution of R, then

0 → Hom(F 1,M) → Hom(F 0,M) → Hom(R,M) is exact. Thus Extk(R,M) = 0

for k ≥ 1 and Ext0(R,M) →M is a monomorphism. But computing Ext0(R,M)

by using a left WI -resolution · · · → F1 → F0 →M → 0, we see that the sequence

is exact at F0. So · · · → F1 → F0 →M → 0 is exact at Fk for any k ≥ 0.

Now let m = 0. Then RR ∈ WI , and so every WI -precover is surjective.

Thus · · · → F1 → F0 →M → 0 is exact. �

3. Right derived functors of ⊗ and right WI -dimension

In this section, we prove that − ⊗ − is right balanced on MR ×R M by

WF × WI .

Proposition 3.1. The following hold for any ring R:

(1) If f : A → B be a WI -preenvelope of a module A in RM , then f∗ :

B+ → A+ is a WF -precover of A+ in MR.

(2) If f : A → B be a WF -preenvelope of a module A in MR, then f∗ :

B+ → A+ is a WI -precover of A+ in RM .

Proof: By Proposition 1.1, we have WI
+ ⊆ WF and WF

+ ⊆ WI . Now both

the assertions follows from [3, Theorem 3.1]. �

The following proposition is the generalization of [5, Proposition 5.1] and [2,

Example 8.3.9].

Proposition 3.2. −⊗− is right balanced on MR × RM by WF × WI .

Proof: Assume that M ∈ MR and 0 → M → F 0 → F 1 → · · · is a right WF -

resolution of M in MR. Let E ∈ WI . Then E+ ∈ WF by Proposition 1.1. So

we get the exact sequence:

· · · → Hom(F 1, E+) → Hom(F 0, E+) → Hom(M,E+) → 0

which gives the exact sequence:

· · · → (F 1 ⊗ E)+ → (F 0 ⊗ E)+ → (M ⊗ E)+ → 0.

Thus we get the exact sequence 0 →M ⊗ E → F 0 ⊗ E → F 1 ⊗ E → · · · .



46 P. Prabakaran

On the other hand, let N ∈ RM and let 0 → N → E0 → E1 → · · · be

a right WI -resolution of N . Then · · · → E1+ → E0+ → N+ → 0 is a left

WF -resolution of N+ by Proposition 1.1. Hence

· · · → Hom(F,E1+) → Hom(F,E0+) → Hom(F,N+) → 0

is exact for any right R-module F ∈ WF , this is equivalent to the sequence

· · · → (F ⊗ E1)+ → (F ⊗ E0)+ → (F ⊗N)+ → 0

being exact. So 0 → F ⊗ N → F ⊗ E0 → F ⊗ E1 → · · · is exact for any right

R-module F ∈ WF , as desired. �

We denote by Torn(−,−) the nth right derived functor of −⊗− with respect

to WF × WI .

Proposition 3.3. The following are equivalent for a left R-module N andm ≥ 2:

(1) right WI -dim N ≤ m;

(2) Torm+k(M,N) = 0 for all M ∈ MR and k ≥ −1;

(3) Torm(M,N) = Torm−1(M,N) = 0 for all M ∈ MR;

(4) Torm−1(M,N) = 0 for any finitely presented right R-module M .

Proof: (1) ⇒ (2). Assume 0 → N → F 0 → F 1 → · · · → Fm → 0 is a right

WI -resolution of N . Then the sequence

M ⊗ Fm−2 →M ⊗ Fm−1 →M ⊗ Fm → 0

is exact for any M ∈ MR. It follows that Torm(M,N) = Torm−1(M,N) = 0. It

is clear that Torm+k(M,N) = 0 for any k ≥ 1. Hence, (2) holds.

(2) ⇒ (3) ⇒ (4) are trivial.

(4) ⇒ (1). Let 0 → N → F 0 → F 1 → · · · be a right WI -resolution of N .

Then for any finitely presented right R-module P ,

P ⊗ Fm−2 → P ⊗ Fm−1 → P ⊗ Fm → P ⊗ Fm+1

is exact by (4). Hence,K = ker(Fm → Fm+1) is pure in Fm by [2, Lemma 8.4.23],

and K ∈ WI by [12, Corollary 4.7]. So 0 → N → F 0 → F 1 → · · · → Fm−1 →

K → 0 is a right WI -resolution of N and hence (1) follows. �

Theorem 3.4. The following are equivalent for a ring R and m ≥ 2:

(1) gl.right WI -dim RM ≤ m;

(2) Torm+k(M,N) = 0 for all N ∈ RM and M ∈ MR and k ≥ −1;

(3) Torm(M,N) = Torm−1(M,N) = 0 for all N ∈ RM and M ∈ MR;

(4) Torm−1(M,N) = 0 for all N ∈ RM and all finitely presented right R-

module M .

Proof: The result follows from Proposition 3.3. �
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Theorem 3.5. Let R be a ring and m ≥ 0. Then the following are equivalent:

(1) for every flat left R-module F , there is an exact sequence 0 → F → A0 →

A1 → · · · → Am → 0 with each Ai ∈ WI ;

(2) there is an exact sequence 0 → R → A0 → A1 → · · · → Am → 0 of left

R-modules with each Ai ∈ WI ;

(3) if 0 → M → F 0 → F 1 → · · · is a right WF -resolution of a right

R-module M , then the sequence is exact at F k for k ≥ m − 1, where

F−1 =M .

Proof: (1) ⇒ (2) is immediate.

(2) ⇒ (3). By Proposition 3.2, we know that − ⊗ − is right balanced on

MR ×R M by WF × WI with right derived functor Tork(−,−).

If m ≥ 2, there is a right WI -resolution 0 → R → B0 → B1 → · · · →

Bm → · · · with Bi ∈ WI . Moreover the above sequence is exact. Let K =

coker(Bm−2 → Bm−1). Since there is an exact sequence 0 → R → A0 → A1 →

· · · → Am → 0 with each Ai ∈ WI by (2), we have the following commutative

diagram with exact rows:

0 // R // B0 //

��

· · · // Bm−2 //

��

Bm−1 //

��

K

��

// 0

0 // R // A0 // · · · // Am−2 // Am−1 // Am // 0

Hence, there is an exact complex:

0 → R → B0 ⊕R → B1 ⊕A0 → · · · → Bm−1 ⊗Am−2 → K ⊕Am−1 → Am → 0

with exact subcomplex 0 → R → R → 0 → · · · → 0. We have the exact quotient

complex:

0 → B0 → B1 ⊕A0 → · · · → Bm−1 ⊗ Am−2 → K ⊕Am−1 → Am → 0.

Since WI is closed under cokernels of monomorphisms, extensions and direct

summands. It follows that K ∈ WI . Hence, there is a right WI -resolution 0 →

R → B0 → B1 → · · · → Bm−1 → K → 0 with Bi, K ∈ WI . It is easy to check

that Tork(M,R) = 0 for k ≥ m− 1. Computing by 0 → M → F 0 → F 1 → · · · ,

as in (3), we see that Tork(M,R) is just the kth homology group of this complex,

giving the desired result.

If m = 1, we can assume that 0 → R → A0 → A1 → 0 is a right WI -resolution

of R by the proof above. Hence, Tor1(M,R) = 0, so that F 0 → F 1 → F 2 is

exact and M ⊗ R → Tor0(M,R) is onto. Computing the later morphism using

0 →M → F 0 → F 1, we obtain that M → F 0 → F 1 is exact.
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If m = 0, then (2) means that widR(RR) ≤ n. But we have the exact sequence

0 →M ⊗R → F 0⊗R→ F 1⊗R→ · · · since the functor −⊗− is right balanced.

That is, 0 →M → F 0 → F 1 → · · · is exact.

(3) ⇒ (1). Assume (3) with m ≥ 2. Let F be a flat left R-module and

0 → F → A0 → A1 → · · · a right WI -resolution of F . Obviously, this complex

is exact. Then by (3), we get Tork(M,F ) = 0 for k ≥ m − 1 since F is flat.

Computing using 0 → A0 → A1 → · · · and using [5, Lemma 5.6], we get K =

ker(Am → Am+1) is pure in Am, so K ∈ WI . Hence 0 → F → A0 → A1 →

· · · → Am−1 → K → 0 gives the desired exact sequence.

Now letm = 1. Then (3) says M → F 0→F 1→· · · is exact, so Tork(M,F ) = 0

for k > 0 and M ⊗ F → Tor0(M,F ) is onto. Hence, if 0 → F → A0 → A1 → · · ·

is exact, then M ⊗ F → M ⊗ A0 → M ⊗ A1 → M ⊗ A2 is exact for any finitely

presented right R-module M . By [5, Lemma 5.6] again, we get the desired exact

sequence 0 → F → A0 → K → 0 with K = ker(A1 → A2).

If m = 0, then 0 → M → F 0 → F 1 → · · · being exact means Tork(M,F ) = 0

for k > 0 and M ⊗ F → Tor0(M,F ) is an isomorphism. This gives that 0 →

M ⊗ F → M ⊗ A0 → M ⊗A1 is exact for all M which implies that F is a pure

submodule of A0, so F ∈ WI . �

Corollary 3.6. The following are equivalent for a ring R:

(1) every flat left R-module has weak injective dimension at most n;

(2) every injective right R-module has weak flat dimension at most n;

(3) RR has weak injective dimension at most n;

(4) (WI ,WI
⊥) is a perfect cotorsion theory.

Proof: (1) ⇔ (2) ⇔ (3) follows from Theorem 3.5.

(3) ⇒ (4) is proved in [12, Proposition 4.17].

(4) ⇒ (3). It follows from the fact that if WI = ⊥(WI
⊥), then each projective

left R-module is in WI . �

Recall that a C-envelope ϕ : M → C is said to have unique mapping property,

see [1], if for any homomorphism f : M → C′ with C′ ∈ C, there is a unique

homomorphism g : C → C′ such that gϕ = f . Dually, we have the definition of

C-cover with unique mapping property.

We end this paper with the following result.

Theorem 3.7. The following are equivalent for a ring R:

(1) l.sp.gldim(R) ≤ n;

(2) widR(R) ≤ n and every left R-module has a monomorphic WI -cover;

(3) every left R-module has an epimorphic WI -cover with the unique map-

ping property;
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(4) every left R-module has a WI -envelope with the unique mapping prop-

erty.

Proof: (1) ⇒ (2), (1) ⇒ (3) and (1) ⇒ (4). Let M be a left R-module. Then

M ∈ WI by (1). Then it is easy to verify that the identity homomorphism on M

is a WI -cover with the unique mapping property. It is also a WI -envelope ofM

with the unique mapping property.

(2) ⇒ (1). Let M be any left R-module. By (2), M has an epimorphic WI -

cover f : F → M . Since widR(R) ≤ n, it is easy to see that f is an epimorphism

and hence M ∈ WI .

(3) ⇒ (1). For any left R-module M , let f : E → M be a WI -cover of M

with the unique mapping property, where E ∈ WI . By (3), K = ker(f) has

an epimorphic WI -cover g : E′ → K. So we obtain the following row exact

commutative diagram:

E′

0

""❊
❊❊

❊❊
❊❊

❊❊
g

||②②
②②
②②
②②
②

ig

��

0 // K
i

// E
f

// M // 0.

Since f(ig) = 0, we have ig = 0 by uniqueness. Note that g is an epimorphism.

Hence K = ker(f) = im(g) ⊆ ker(i) = 0. Hence M ∈ WI and so (1) follows.

(4) ⇒ (1). The proof is similar to that of (3) ⇒ (1). �
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