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Abstract. This note verifies a conjecture of Král, that a continuously differentiable func-
tion, which is subharmonic outside its critical set, is subharmonic everywhere.
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1. Introduction

A classical result of Radó (see Theorem 12.14 of [9]) says that if f is continuous
on an open set Ω ⊂ C and holomorphic on {z ∈ Ω : f(z) 6= 0}, then f is holomorphic
on all of Ω. An analogue for harmonic functions due to Král (see [6]) says that if u :
Ω → R is C1 on an open set Ω ⊂ R

N , N > 2 and harmonic on {x ∈ Ω: ∇u(x) 6= 0},
then u is harmonic on all of Ω. (A short proof of this result was recently given
in [8].) Král conjectured in [7] that his result could be strengthened by substituting
“subharmonic” for “harmonic” throughout. However, the methods of [6] and [8] are
not applicable to subharmonic functions. The purpose of this note is to verify this
conjecture.

2. Main result

Theorem 1. If u is C1 on an open set Ω ⊂ R
N and subharmonic on {x ∈ Ω:

∇u(x) 6= 0}, then u is subharmonic on all of Ω.
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The idea of the proof below comes from the theory of viscosity solutions of partial
differential equations, which is expounded in [2], [3]. In fact, Theorem 1 may readily
be deduced from results in [5] concerning viscosity solutions of the p-Laplace equation
(cf. [4] for a generalization of Král’s original result to p-harmonic functions). How-
ever, we will instead give a self-contained argument, partially inspired by [5], that
uses only some basic properties of subharmonic functions. A convenient background
reference is [1].

P r o o f. Let ε > 0 and B be an open ball {x : ‖x − x1‖ < r} such that B̄ ⊂ Ω.
By taking the Poisson integral of u in B and adding the polynomial

x 7→ ε
(

1 +
r2 − ‖x− x1‖

2

2N

)

,

we obtain a function hε ∈ C(B̄) satisfying

{

∆hε = −ε in B,

hε = u+ ε on ∂B.

It will be enough to show that hε > u in B, since we can then let ε tend to 0 to
arrive at the required spherical mean value inequality for u.
The set

O = {(x, y) ∈ B̄ × B̄ : hε(x)− u(y) > 1
2ε}

is relatively open in B̄ × B̄ and contains {(x, x) : x ∈ ∂B}. Thus, the quantity
‖x− y‖4 is bounded away from zero on ∂(B×B)\O, and we may choose c > 0 large
enough so that w > 0 on ∂(B ×B), where

w(x, y) = hε(x)− u(y) + c‖x− y‖4, x, y ∈ B̄.

We suppose, for the sake of contradiction, that the minimum value of the continuous
function w on B̄ × B̄ is attained at some point (x0, y0) ∈ B ×B.
Setting y = y0 in the inequality

(1) hε(x)− u(y) + c‖x− y‖4 > hε(x0)− u(y0) + c‖x0 − y0‖
4, x, y ∈ B̄,

we see that hε > ϕ, where

ϕ(x) = hε(x0) + c(‖x0 − y0‖
4 − ‖x− y0‖

4), x ∈ B̄.

Further, hε − ϕ is smooth and attains its minimum value at x0, so

∂2(hε − ϕ)

∂x2
i

(x0) > 0, i = 1, . . . , N
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and hence
∆ϕ(x0) 6 ∆hε(x0) = −ε.

In particular, x0 6= y0 since ∆ϕ(y0) = 0.
Similarly, setting x = x0 in (1), we see that u 6 ψ, where

ψ(y) = u(y0) + c(‖x0 − y‖4 − ‖x0 − y0‖
4), y ∈ B̄.

Since u − ψ is C1 and attains its maximum value 0 at y0, and also x0 6= y0, we see
that ∇u(y0) = ∇ψ(y0) 6= 0. By hypothesis, the formula

v(s) = w(x0 + s, y0 + s) = hε(x0 + s)− u(y0 + s) + c‖x0 − y0‖
4

defines a function which is superharmonic on some neighbourhood of 0 in RN . Since v
attains a local minimum at 0, it must be constant near 0. However, this leads to the
contradictory conclusion that ∆u = −ε < 0 near y0.
The theorem now follows, because

min
B̄

(hε − u) = min
x∈B̄

w(x, x) > min
B̄×B̄

w = min
∂(B×B)

w > 0.
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