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Abstract. Completely regular semigroups are unions of their (maximal) subgroups with
the unary operation within their maximal subgroups. As such they form a variety whose
lattice of subvarieties is denoted by L(CR).
We construct a 60-element ∩-subsemilattice and a 38-element sublattice of L(CR). The

bulk of the paper consists in establishing the necessary joins for which it uses Polák’s
theorem.
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1. Introduction and summary

Completely regular semigroups endowed with the operation of inversion within

their maximal subgroups form a variety. It is denoted by CR and its lattice of

subvarieties by L(CR).

In the study of L(CR), there emerged a great number of subvarieties creating a

copious choice of further varieties. Author’s article [6] was an attempt to collect

them, classify them according to their bases of identities, and present them as a

subset of L(CR) ordered by inclusion. This appeared in 1982. Since that time, the

collection of known varieties grew considerably. The diagram in that paper showed

large lacunae. With the present article, we will close some of them, but also create

new ones.

Gradually, progress was made in identifying new varieties and determining the

relationship between the old and new ones. Besides the enlarged and more complete

diagram, we identify a large sublattice of L(CR). In fact, the bulk of this paper

consists in proving that the stated set of varieties indeed represents a sublattice of
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L(CR). All this is illustrated by a diagram depicting an ∩-subsemilattice and a

sublattice of L(CR).

By sections, the paper runs as follows. Section 2 contains most of the terminology

and notation used in the paper. This is supplemented in Section 3 by citations from

the literature and lemmas. Section 4 comprises proof of the single theorem.

2. Terminology and notation

For the terminology, notation and results we depend heavily on text [13], and will

not repeat here what can be found in that book. In particular, varieties are denoted

by their acronyms as in [13]. In them, in a meet V1 ∩ V2 ∩ . . . ∩ Vn, we often omit

writing the symbol ∩ of meet, and write them by juxtaposition. In order to facilitate

the reading and avoiding ambiguity, we place brackets in strategic positions. For

example, (BG)CHA stands for the variety of cryptic (bands of groups) completely

regular semigroups all of whose (maximal) subgroups of its core (subsemigroup gen-

erated by idempotents) are abelian.

All relations on L(CR) we allude to (possibly implicitly) have all their classes

intervals. Hence, for any V ∈ L(CR) and relation A we write the A-class of V

as VA = [VA,V
A]. Conforming to the custom, and for typographical reasons, we

write VA also as AV .

We generally omit stating the dual statements except in very few cases for the

sake of clarity.

3. Citations and lemmas

First we state the results from the literature needed in the paper but not contained

in book [13]. In some cases, the needed results are not available in the literature in the

form we need them. We will use them without reference for the sake of uninterrupted

train of thought.

For the kernel and trace relations we recommend paper [11], and for local and core

relations, paper [12]. General results we need follow.

Fact 3.1.

(i) If V ∈ L(LO) then

VK =

{

V ∩ G if V ⊆ O,

V ∩ CS otherwise.

(ii) The intervals [T ,B], [G,O], [CS, LO] are K-classes.
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P r o o f. (i) See [15], Theorem 2 and [11], Theorem 5.8.

(ii) This can be deduced from [15], Theorem 2. �

Fact 3.2.

(i) The mappings V → VP , P ∈ {Tl, T, Tr} are ∩-endomorphisms of L(CR).

(ii) The mappings V → VK , V → VTl
, V → VTr

are endomorphisms of L(CR).

P r o o f. (i) For T , see [11], Proposition 7.10; for Tl, see [11], remark after Propo-

sition 8.4; Tr follows by duality.

(ii) ForK, this follows from [15], Theorem 1(3) via [4], Theorem 14; for Tl, see [11],

Theorem 8.2 and Proposition 8.4; Tr follows by duality. �

Next we consider some relations among operators.

Fact 3.3. Let V ∈ L(CR).

(i) VK = (VK)Tl
= (VK)Tr

.

(ii) VT = VTl ∩ VTr .

(iii) BTl = LBG, BTr = RtBG.

P r o o f. (i) See [15], Theorem 2.4(4).

(ii) This forms part of the varietal version of [13], Corollary VII.4.2.

(iii) For the first formula, see [8], Lemma 5.3; the second is its dual. �

We will also need the following lemmas.

Lemma 3.4. We have OT = BGC .

P r o o f. Using [10], Lemma 5.5, we obtain OT = BCT = BTC = BGC . �

Lemma 3.5. For V ∈ {HA, CHA, C} we have VK = V .

P r o o f. The case (HA)K = HA is the content of [9], Lemma 5.2. Using this

and [10], Lemma 5.3, we obtain

(CHA)K = (HA)CK = (HA)KC = (HA)C = CHA.

Next let S ∈ CK , a ∈ S and e, f ∈ E(S) satisfy ef H a. Then (ef)τ H aτ , so

(eτ)(fτ) H aτ . By [2], Proposition 7.2(ii), we obtain (eτ)(fτ)(aτ) = (aτ)(eτ)(fτ),

whence efa τ aef , which by [13], Lemma II.3.4 yields

(3.1) xefay ∈ E(S) ⇔ xaefy ∈ E(S), x, y ∈ S1.

Let x = (efa)−1 and y = 1, so (efa)−1aef ∈ E(S) by (3.1). The hypothesis that

ef H a implies that aef H efa and thus aef = efa. Therefore S ∈ C, which proves

that CK ⊆ C. The reverse inclusion is trivial. �

3



Lemma 3.6.

(i) V = (V ∩ B) ∨ (V ∩ G), V ∈ [T ,O(BG)],

(ii) V = (V ∩ B) ∨ (V ∩ CS), V ∈ [RB, (LO)BG],

(iii) V = (V ∩ O) ∨ (V ∩ CS), V ∈ [ReG, (LO)TO].

P r o o f. (i) See [5], Lemma 1.

(ii) See the proof of [1], Corollary 5.7.

(iii) See [16], Theorem 4.9. �

We will use the following consequence of Polák’s theorem, see [14], [15] concerning

the computation of a basis of a join of varieties. To this end, we need the following

construction.

Let N3 = {LNB,S,RNB} and by Θ denote the set of all finite sequences of

alternating letters Tl and Tr. For each θ ∈ Θ denote by θ̄ the mirror image of θ.

For any V ∈ [S, CR] we call

VTlTr

VTr

V

VTl

VTrTl

.

.

.

the network of V and denote it by netV . Further, we call

VK ∩
(

⋂

{(Vθ)
Kθ̄ : θ ∈ Θ,Vθ /∈ N3}

)

∩
(

⋂

{(Vθ)
θ̄ : θ ∈ Θ,Vθ ∈ N3}

)

the evaluation of netV , and denote it by evalnetV .

Fact 3.7. Let {Vα}α∈A be a family in [S, CR]. We define the join
∨

α∈A

netVα

componentwise. Then
∨

α∈A

Vα = eval

(

∨

α∈A

netVα

)

.
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4. Theorem and diagrams

We will need the following subsets of CR.

CR

CHA

C LO TO

HA BG

O RBG

B NBG

CS

SG

Sketch 1.

LO(TO)CHA

LO(TO)C (LO)RBG

(LO)BA O CS

B

S

Sketch 2.

Lemma 4.1. Both Sketch 1 and Sketch 2 represent inclusion ordered subsets

of CR.

P r o o f. These inclusions are obvious except C ⊆ CHA, which follows from [13],

Theorem II.6.5, and BG ⊆ TO, which follows from Lemma 3.4. �

We are finally ready for the single theorem of the paper. It contains a complete ∩-

subsemilattice and a complete sublattice of L(CR), both finite. For them we provide

the number of elements, the relevant lattice properties and the set of generators.

Theorem 4.2.

(i) Diagram 1 represents a 60-element ∩-subsemilattice Γ of L(CR) generated by

the set of varieties in Sketch 1.
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(ii) The set

∆ = [T , (LO)TO] \ {O(HA), LO(TO)HA}

in Diagram 1 represents a 38-element sublattice of L(CR) generated by the

varieties in Sketch 2.

(iii) For V ∈ {BG, (LO)BG,RBG, (LO)RBG,NBG, CS} we have V(HA) ∨ G = VC.

CR

CHA TO

C (TO)CHA
BG

HA (TO)C (BG)CHA
RBG

(TO)HA (BG)C (RBG)CHA

BA (RBG)C

RBA
LO

(LO)CHA
(LO)TO

(LO)C LO(TO)CHA
(LO)BG

(LO)HA LO(TO)C LO(BG)CHA
(LO)RBG

LO(TO)HA LO(BG)C LO(RBG)CHA
NBG

LO(BA) LO(RBG)C (NBG)CHA
CS

(LO)RBA (NBG)C (CS)CHA

NBA (CS)C

(CS)HA

O

O(HA) O(BG)

O(BA) O(RBG)

B O(RBA) O(NBG)

ReB O(NBA) ReG

NB ReA

RB

SG

SA G

S A

T

Diagram 1. Subsemilattice Γ and sublattice ∆ (within boldface lines) of L(CR).
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P r o o f. (i) One can simply count the number of elements. Alternatively, one

may do this by “blocks”, which is more instructive, for it induces a useful decompo-

sition of the set into blocks which will be essential in most of the coming discussion.

In fact,

4× 4 + 4× 6 + 2× 5 + 4 + 2× 3 = 60.

The fact that Γ is an ∩-subsemilattice of L(CR) follows directly from the notation of

the labels of its vertices. We can thus pass to the generation by varieties in Sketch 1.

For any W ,X ,Y,Z ∈ Γ such that W ⊆ X and Y ⊆ Z, let

[W ,X ] ∧ [Y,Z] = {P ∩ Q|P ∈ [W ,X ],Q ∈ [Y,Z]}.

If W = X , we write simply W for [W ,X ]. Next we consider numerous cases.

⊲ [HA, CR] ∧ [RBG, CR] = [RBA, CR],

⊲ LO ∧ [RBG, CR] = [(LO)RBG, LO],

⊲ {CS,NBG} together with the preceding case gives [CS, LO],

⊲ LO ∧ [HA, CR] = [(LO)HA, LO],

from the preceding two cases, or directly, we get

⊲ [CS, LO] ∧ [(LO)HA, LO] = [(CS)HA, (LO)HA],

⊲ O ∧ [CS, (LO)BG] = [ReG,O(BG)],

⊲ O ∧HA = O(HA),

⊲ O(HA) ∧ [CS, (LO)BG] = [ReA,O(BA)],

⊲ B ∧ [CS, (LO)RBG] = [RB,ReB],

⊲ SG ∧ (CS)HA = A,

⊲ SG ∧ NB = S,

⊲ SG ∧ ReG = G,

⊲ S ∧ G = T .

By direct inspection of Diagram 1, we can see that with this type of meet we have

covered all varieties in Γ, proving the assertion of generation. Note that for varieties

U ,V ∈ Γ we have U ∧ V = U ∩ V .

Recall that the semilattice Γ being an ∩-subsemilattice of L(CR) means that the

label of the meet is the meet (that is, the intersection) of labels of factors in L(CR).

We will have a similar situation for varieties in ∆ but relating both to meet and join.

(ii) Part (i) takes care of the meets. Guided by Lemma 3.6, we set

A = [T ,O(BG)], B = [RB, (LO)BG], C = [ReG, (LO)TO].

The sets A, B, C are depicted in Diagram 2. First, the three equalities in Lemma 3.6

guarantee that the operations within A, B and C coincide with those of their labels
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O(BG)

O(BA) O(RBG)

B O(RBA) O(NBG)

ReB O(NBA) ReG

NB ReA

RB

SG

SA G

S A

T

A

(LO)BG

LO(BG)CHA
(LO)RBG

LO(BG)C LO(RBG)CHA NBG

LO(BA) LO(RBG)C (NBG)CHA
CS

(LO)RBA (NBG)C (CS)CHA

NBA (CS)C

O(BG) (CS)HA

O(BA) O(RBG)

B O(RBA) O(NBG)

ReB O(NBA) ReG

NB ReA

RB

B

(LO)TO

LO(TO)CHA
(LO)BG

LO(TO)C LO(BG)CHA
(LO)RBG

LO(BG)C LO(RBG)CHA
NBG

LO(RBG)C (NBG)CHA
CS

(NBG)C (CS)CHA

O (CS)C

O(BG)

O(RBG)

O(NBG)

ReG

C

Diagram 2. The sets A, B, C
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in L(CR). It thus remains to check the join U ∨ V in each of the following cases.

Consult Diagram 2 for the following information.

(α) A \B = [T ,SG], B \A = [(CS)HA, (LO)BG],

(β) B \ C = [RB, (LO)BA], C \B = [O, (LO)TO],

(γ) A \ C = [T ,O(BA)], C \A = [(CS)C, (LO)TO] ∪ {O}.

The pattern of the proof in each of these cases is the same. Let X,Y ∈ {A,B,C}

be any choice. To each member U of X \ Y we associate the set of all varieties V in

Y \X noncomparable to U , and perform the join U ∨V . We then verify whether the

join of their labels in L(CR) equals the label of U ∨ V in Γ.

For the sake of the economy of exposition, we will refer to the intervals in Dia-

gram 2, and will not state their members explicitly. Hence, Diagram 2 will be referred

to every time we speak of an interval. In particular, if the interval in question is

linearly ordered, we shall refer to its members, as first, second, etc., counting from

below.

We can now pass to the three cases (α), (β), (γ) indicated above. For the networks

we will freely use the results in Section 3.

Case (α). To each U ∈ A \ B = [T ,SG] we associate the set of all varieties V in

B \A = [(CS)HA, (LO)BG] noncomparable to U as follows:

A: [RB,B],

G: [RB,B], [ReA,O(BA)], [(CS)HA, (LO)BG],

S: [RB, CS],

SA: [RB,B], [RB, CS],

SG: [RB,B], [ReA,O(BA)], [(CS)HA, (LO)BA], [RB, CS].

Subcase A. The fact that A∨RB = ReA is a simple consequence of the material

in [13], Section VIII.1. For the remaining varieties in the interval [RB,B] we state

the argument only for A∨NB; the remaining two cases, that is, A∨ReB and A∨B

are very similar. We use Fact 3.7.

The networks are

S S

SA

LNB RNB

NB

S S

LNB RNB

SA ∨NB

S S

.

.

.

.

.

.

.

.

.

∨ =
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and the evaluation

A ∨NB = SA ∨NB = (SA ∨NB)K ∩ LNBTr ∩RNBTl

= AK ∩ LNBTr ∩RNBTl = O(HA) ∩H3 ∩H3

= O(HA) ∩ NBG = O(NBA),

where H3 and H3 can be found in [7] and in particular the equality H3 ∩H3 = NBG

in [7], Theorem 5.1(iii). The networks of the remaining varieties, ReB and B, are:

B B

B

LRB RRB

ReB

S S

...

...

Subcase G. The instances in the interval [RB,B] are treated in a manner very

similar to the preceding subcase using SG instead of SA. For the second interval

[ReA,O(BA)] we first have G ∨ReA = ReG. For the second instance O(NBA), the

networks are

O O

O

HA HA

HA

S S

SG

LNB RNB

NBG

S S

LNB RNB

O(NBA)

S S

...
...

...

...
...

which gives the network

LNB RNB

SG ∨ O(NBA)

S S

...

and its evaluation

SG ∨ O(NBA) = (SG ∨ O(NBA))K ∩ LNBTr ∩RNBTl

= O ∩H3 ∩H3 = O(NBG)

10



as in Subcase A. The remaining two instances in this interval require the same type

of argument.

For the variety in the third interval we have G ∨ (CS)HA = (CS)C by [13], Corol-

lary VIII.8.3. For the remaining varieties in this interval we need the following

networks:

S S

SG

LNB RNB

NBA

S S

LNB RNB

(NBG)C

S S

...
...

...

and the evaluation, using Lemma 3.5,

G ∨ NBA = ((NBG)C)K ∩ LNBTr ∩RNBTl

= NBGK ∩ CK ∩H3 ∩H3 = (LO)C(NBG) = (NBG)C.

The remaining two instances in this interval are treated in a similar way.

Subcase S. This follows directly from [13], Corollary IV.1.1.

Subcase SA. First

SA ∨RB = S ∨ A ∨RB = S ∨ReA = O(NBA)

and for V ∈ [ReG, CS] we have SA ∨ V = S ∨ A ∨ V = S ∨ V .

Subcase SG. Similarly,

SG ∨ RB = S ∨ G ∨ RB = S ∨ ReG = O(NBG),

SG ∨ReA = S ∨ G ∨ RB ∨A = S ∨ ReG = O(NBG),

and for V ∈ [(CS)C, CS] we have SG ∨ V = S ∨ G ∨ V = S ∨ V .

Case (β). To each U ∈ C \B = [O, (LO)TO] we associate the set of all varieties

V ∈ B \ C = [RB, (LO)BA] noncomparable to U as follows. This amounts to the

single subcase.

Subcase O: [(CS)HA, (LO)BG]. Since the remaining three varieties in C \ B are

all greater than the varieties in B \C, we now consider subsubcases of this subcase.
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Subsubcase (CS)HA. The networks are

HA HA

HA

O O

O ∨ (NBG)HA

LNB RNB

NBG

S S

LNB RNB

(NBG)HA

S S

...
...

...
...

where we have used Lemma 3.5 for HA, and will now use it for C together with [13],

Corollary VIII.8.3:

O ∨ (CS)HA = (O ∨ (CS)HA)K ∩ OTr ∩ OTl = (G ∨ (CS)HA)K ∩OT

= ((CS)C)K ∩ OT = CSK ∩ CK ∩ OT = LO(TO)C.

Subsubcases {NBA, (LO)RBA, (LO)BA}. The networks are

LO LO

LO

...

B B

BG

...

HA HA

HA

...

B B

LO(BA)

...

O O

O ∨ (LO)BA

...

and the evaluation, with references as above,

O ∨ (LO)BA = (O ∨ (LO)BA)K ∩OTr ∩ OTl = (G ∨ (CS)HA)K ∩OT

= ((CS)C)K ∩ OT = LO(TO)C.

Since

(CS)HA ⊆ NBA ⊆ (LO)RBA ⊆ (LO)BA,

it follows from the above that

O ∨NBG = O ∩ (LO)RBA = LO(TO)C.

Case (γ). To each U ∈ C \ A = [(CS)C, (LO)TO] ∪ {O} we associate the set of

all varieties V ∈ A \ C = [T ,O(BA)] noncomparable to U .

All pairs of noncomparable varieties in A:

O(BA), B, O(RBA), ReG, O(NBA), NB,
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and those in C:
CS, (CS)CHA, (CS)C,

NBG, (NBG)CHA, (NBG)C,

(LO)RBG, LO(RBG)CHA, LO(RBG)C

are contained in B, and therefore have been accounted for by the statement at the

very start of the proof, see Diagram 2.

This establishes the coincidence of the lattice properties. We can now pass to the

assertion of generation of the lattice ∆.

Similarly as in the case of Γ, but now faster with fewer details because of it, we

proceed as follows.

O ∨ CS = LO(TO), B ∨ CS = (LO)BG, S ∨ CS = NBG

yield [CS, (LO)TO]. By hypothesis, we have [O, (LO)TO]. Performing meets, we

get (recall the meaning of ∧)

(LO)BA ∧ [CS, (LO)BG] = [(CS)HA, (LO)BG],

O ∧ [(CS)HA, (LO)BA] = [ReA,O(BA)],

B ∧ [CS, (LO)RBG] = [RB,ReB],

S ∧ RB = T , S ∧ NBA = SA, S ∧ (CS)HA = A, S ∧ ReG = G.

This concludes the proof of part (ii).

(iii) By [3], Theorem 2.7, we have BA∨O(BA) = (BG)C, and from Corollary in [5],

it follows that O(BG) = B ∨ G. Therefore by [13], Corollary VIII.8.3, we obtain

(4.1) BA ∨ G = BA ∨ B ∨ G = BA ∨ O(BG) = (BG)C.

According to [17], Corollary 2.9, G is neutral in L(CR) which together with (4.1) and

G ⊆ V ⊆ BG yields

V(HA) ∨ G = (V ∩ BA) ∨ G = (V ∨ G) ∩ (BA ∨ G)

= V ∨ (BG)C = V ∩ BG ∩ C = V ∩ C = VC.

�

Where do we go from here? One way would be to enlarge the lattice∆ by adjoining

some of the varieties in Γ\∆. Theorem 4.2(iii) might be of some help, but many more

joins, or even meets, would have to be computed. This may be termed extension

outward.

As a contrast, extension inward would be to adjoin new subvarieties of (LO)TO.

This would entail computing meets and joins with varieties already in ∆. For
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example, the lattice L(B) is well known and understood, and the short sequence

of band varieties in ∆ can be integrated into L(B). In a different direction, the

sequence T , A, G can be augmented by any group varieties. Similarly for L(CS),

where a number of varieties has already been identified.

This is the first instalment of a trilogy. The second paper will contain at least one

basis for each of the varieties in Γ, while the third paper will deal with classes of

kernel, trace, local and core relations of all varieties in Γ.

A c k n ow l e d g em e n t. The assistance of Victoria Gould and Edmond Lee is

appreciated with gratitude.
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