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Abstract. In this paper, we find all Pell and Pell-Lucas numbers written in the form
−2a − 3b + 5c, in nonnegative integers a, b, c, with 0 6 max{a, b} 6 c.
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1. Introduction

Let {Fn}n>0 be the Fibonacci sequence defined as Fn+2 = Fn+1 + Fn, where

F0 = 0 and F1 = 1 and its companion Lucas sequence {Ln}n>0 follows the same

recursive pattern as the Fibonacci numbers, but with initial values L0 = 2 and

L1 = 1. The Pell sequence {Pn}n>0 is the binary recurrent sequence given by

P0 = 0, P1 = 1 and Pn+2 = 2Pn+1 + Pn for all n > 0 and its companion Pell-Lucas

sequence {Qn}n>0 follows the same recursive pattern as the Pell numbers, but with

initial values Q0 = 2 and Q1 = 2. These numbers are well-known for possessing

amazing properties (consult [5]). The problem of finding binary recurrent sequence

of a particular form has a very rich history. Bugeaud, Mignotte and Siksek in [3]

concluded that 0, 1, 8, 144 and 1, 4 are the only perfect power in Fibonacci and

Lucas numbers, respectively. Other related papers searched for Fibonacci numbers

of the particular forms such as px2+1, px3+1 (see [11]), k2+k+2 (see [6]), pa±pb+1

(see [7]). There are also many papers that searched for Pell numbers and Pell-Lucas

numbers of a particular form. For example, in 1996, McDaniel found that 1 is the
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only triangular number in the Pell sequence (see [9]). In 1991, Pethő in [10] found

all perfect powers in the Pell sequence. In 2015, Bravo, Das, Guzmán and Laishram

in [2] found the powers in products of terms of Pell and Pell-Lucas sequences.

In this paper, we are interested in Pell and Pell-Lucas numbers which are sums of

three perfect powers of some prescribed distinct bases. More precisely, our results

are as follows.

Theorem 1.1. The only solutions of the Diophantine equation

(1.1) Pn = −2a − 3b + 5c

in nonnegative integers n, a, b, c with 0 6 max{a, b} 6 c are

(n, a, b, c) ∈ {(0, 1, 1, 1), (1, 0, 1, 1), (2, 1, 0, 1), (4, 2, 2, 2)}.

Theorem 1.2. The only solutions of the Diophantine equation

(1.2) Qn = −2a − 3b + 5c

in nonnegative integers n, a, b, c with 0 6 max{a, b} 6 c are

(n, a, b, c) ∈ {(0, 1, 0, 1), (1, 1, 0, 1), (3, 1, 2, 2)}.

2. Preliminaries

Before proceeding further, we shall recall some facts and lemmas which will be

used later. First, we recall Binet’s formulae for Pell and Pell-Lucas sequences:

Pn =
γn − µn

γ − µ

and

Qn = γn + µn,

where γ = 1 +
√
2 and µ = 1 −

√
2 are the roots of the characteristic equation

x2 − 2x− 1 = 0 of Pn. The inequalities

(2.1) γn−2 6 Pn 6 γn−1, γn−1 6 Qn 6 2γn

hold for all positive integers n.
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In order to prove our theorem, one result is a Baker type lower bound for a linear

form in logarithms of algebraic numbers and such a bound was shown by the following

result of Matveev (see [8]).

Lemma 2.1. Let γ1, γ2, . . . , γt be real algebraic numbers and let b1, . . . , bt be

nonzero rational integers. Let D be the degree of the number field Q(γ1, γ2, . . . , γt)

over Q and let Aj be a real number satisfying

Aj > max{Dh(γj), |log γj |, 0.16}

for j = 1, . . . , t. Assume that

B > max{|b1|, . . . , |bt|}.

If γb1
1 . . . γbt

t 6= 1, then

|γb1
1 . . . γbt

t − 1| > exp(−1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 . . . At).

In the above statement, the logarithmic height of an s-degree algebraic number γ

is given by

h(γ) =
1

s

(

log |a|+
s

∑

j=1

logmax{1, |γ(j)|}
)

,

where a is the leading coefficient of the minimal polynomial of γ (over Z) and γ(j),

1 6 j 6 s are the conjugates of γ (over Q).

After finding an upper bound on n which is in general too large, the next step is to

reduce it. For that, we need a variant of the famous Baker-Davenport lemma, which

is due to Dujella and Pethő (see [4]). For a real number x, we denote the distance

from x to the nearest integer by ‖x‖ = min{|x− n| : n ∈ Z}.

Lemma 2.2 (see [1]). Let M be a positive integer, let p/q be a convergent of the

continued fraction of the irrational number α such that q > 6M , and let A, B, τ

be some real numbers with A > 0 and B > 1. Let ε = ‖τq‖ −M‖αq‖, where ‖ · ‖
denotes the distance from the nearest integer. If ε > 0, then there exists no solution

to the inequality

0 < |uα− v + τ | < AB−ω

in positive integers u, v, and ω with u 6 M and

w >
log(Aq/ε)

logB
.

Now, we are ready to deal with the proofs of our theorems.
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3. Proof of Theorem 1.1

3.1. Bounding n. Combining the Binet formula together with (1.1) we get

(3.1)
∣

∣

∣

γn

2
√
2
− 5c

∣

∣

∣
=

∣

∣

∣
−2a − 3b +

µn

2
√
2

∣

∣

∣
6 2a + 3b +

|µ|n
2
√
2
,

which yields

(3.2)
∣

∣

∣

γn5−c

2
√
2

− 1
∣

∣

∣
<

3

50.3c
.

We claim that γn5−c/2
√
2− 1 6= 0. In fact, if γn5−c/2

√
2− 1 = 0, then γn = 5c

√
8,

hence γn = −5c
√
8, where γ is the conjugate of γ. Thus, we can get γnγn = −52c8,

hence (−1)n−1 = 52c8, which is an absurdity. So, we have

(3.3) 0 <
∣

∣

∣

γn5−c

2
√
2

− 1
∣

∣

∣
<

3

50.3c
.

If n = 0, from (1.1), we get 5c = 2a + 3b 6 2c + 3c, this implies that c = 0, 1. If

n > 0, from the first inequality of (2.1), we obtain the estimate γn−2 < 5c; this yields

n < 1.83c + 2. If c 6 10, then n 6 20. A brute force search with Mathematica in

the range 0 6 c 6 10 and 0 6 n 6 20 turned up that the only solutions of (1.1)

are (n, a, b, c) ∈ {(0, 1, 1, 1), (1, 0, 1, 1), (2, 1, 0, 1), (4, 2, 2, 2)}. Thus, we assume that
c > 10. From the first inequality of (2.1), we get

γn−1 > 5c − 2a − 3b > 5c − 50.44c − 50.69c = 5c
(

1− 1

50.56c
− 1

50.31c

)

> 0.9× 5c,

which implies that 1.82c+ 0.8 < n, and this also yields c < n.

We apply Matveev’s result Lemma 2.1 to the left-hand side of (3.2). According

to (3.3) we have proved that the expression on the left-hand side of (3.2) is nonzero.

We take t := 3, γ1 := γ, γ2 := 5, γ3 :=
√
8 and b1 := n, b2 := −c, b3 := −1. For

this choice, we have D = [Q(
√
2): Q] = 2. Note that h(γ1) =

1
2 log γ, h(γ2) = log 5

and h(γ3) = log
√
8. Thus, we can take A1 := 0.89, A2 := 3.22 and A3 := 2.1. Note

that B = max{|b1|, |b2|, |b3|} = max{n, c, 1} = n. According to Matveev’s result

Lemma 2.1 together with a straightforward calculation, we get

(3.4)
∣

∣

∣

γn5−c

2
√
2

− 1
∣

∣

∣
> exp(−C(1 + logn)),

where C = 5.84 × 1012. Thus from (3.3), (3.4) and c > (n− 2)/1.83, taking log-

arithms in inequalities (3.3), (3.4) and comparing the resulting inequalities, we get

that

0.263n− 1.63 < 5.84× 1012 × (1 + logn),

giving n < 7.84× 1014. We obtain the conclusion of this section as follows.
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Lemma 3.1. If (n, a, b, c) is a solution in positive integers of equation (1.1) with

0 6 max{a, b} 6 c, then

c < n < 7.84× 1014.

3.2. Reducing the bound on n. We use several times Lemma 2.2 to reduce the

bound for n. We return to (3.3). Put

ΛP := n log γ − c log 5− log
√
8.

Note that ΛP 6= 0, thus, we distinguish the following cases. If ΛP > 0, then eΛP > 1,

so from (3.3) we obtain 0 < ΛP < eΛP − 1 < 3/50.3c. Suppose now that ΛP < 0.

It is easy to check that 3/50.3c < 1
2 for all c > 10. Then, from (3.3), we have that

|eΛP − 1| < 1
2 and therefore e

|ΛP | < 2. Since ΛP < 0, we have

0 < |ΛP | < e|ΛP | − 1 6 e|ΛP ||eΛP − 1| < 6

50.3c
.

In any case, we have that the inequality 0 < |ΛP | < 6/50.3c holds for all c > 10. Re-

placing ΛP in the above inequality by its formula and dividing by log 5, we conclude

that

(3.5) 0 <
∣

∣

∣
n
log γ

log 5
− c− log

√
8

log 5

∣

∣

∣
<

6

log 5× 50.3c
< 3.73× 1.6−c.

We are now ready to apply Lemma 2.2 with the obvious parameters

α :=
log γ

log 5
, τ := − log

√
8

log 5
, A := 3.73, B := 1.6.

It is easy to prove that α is irrational and we omit this step here. Let pk/qk be its con-

tinued fraction’s kth convergent. We can takeM := 7.84×1014. Applying Lemma 2.2

and performing the calculations with q28 > 6M and ε = ‖τq28‖ − M‖αq28‖ =

0.02427 . . ., we get that if (n, a, b, c) is a solution in positive integers of equation (1.1),

then c < 88, which implies that

n < 1.83× 88 + 2 = 163.04 < 164.

Then we can takeM := 164. Applying Lemma 2.2 again and performing the calcula-

tions with q7 > 6M and ε = ‖τq7‖−M‖αq7‖ = 0.10378 . . ., we get that if (n, a, b, c)

is a solution in positive integers of equation (1.1), then c < 25, which implies that

n < 1.83× 25 + 2 = 47.75 < 48.
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Finally, we use a program written in Mathematica to find the solutions of (1.1)

in the range 0 6 max{a, b} 6 c < 25 and n < 48. Quickly, the program returns the

solutions (n, a, b, c) ∈ {(0, 1, 1, 1), (1, 0, 1, 1), (2, 1, 0, 1), (4, 2, 2, 2)}. This completes
the proof. �

4. Proof of Theorem 1.2

4.1. Bounding n. Combining the Binet formula together with (1.2), we get

(4.1) |γn5−c − 1| =
∣

∣

∣
−2a

5c
− 3b

5c
− µn5−c

∣

∣

∣
<

3

50.3c
.

From the second inequality of (2.1) and (1.2), we obtain the estimate γn−1 < 5c, this

yields n < 1.83c+1. If c 6 20, then n < 38. A brute force search with Mathematica

in the range 0 6 c 6 20 and 0 6 n < 38 turned up that the only solutions of (1.2) are

(n, a, b, c) ∈ {(0, 1, 0, 1), (1, 1, 0, 1), (3, 1, 2, 2)}. Thus, we assume that c > 20. From

the second inequality of (2.1), we get

2γn > 5c − 2a − 3b > 5c − 50.44c − 50.69c = 5c
(

1− 1

50.56c
− 1

50.31c

)

> 0.9× 5c,

which implies that 1.82c− 0.91 < n, and this also yields c < n.

We also apply Matveev’s result Lemma 2.1 to the left-hand side of (4.1). The

expression on the left-hand side of (4.1) is nonzero, since this expression being zero

means that γn = 5c ∈ Z, so γn ∈ Z for some positive integer n, which is false.

We take t := 2, γ1 := γ, γ2 := 5 and b1 := n, b2 := −c. For this choice, we have

D = [Q(
√
2) : Q] = 2. Note that h(γ1) =

1
2 log γ, h(γ2) = log 5. Thus, we can take

A1 := 0.89, A2 := 3.22. Note that B = max{|b1|, |b2|} = max{n, c} = n. According

to Matveev’s result Lemma 2.1 together with a straightforward calculation, we get

(4.2) |γn5−c − 1| > exp(−C(1 + logn)),

where C = 1.5×1010. Thus from (4.1), (4.2) and c > (n− 1)/1.83, taking logarithms

in inequalities (4.1), (4.2) and comparing the resulting inequalities, we get that

0.263n− 1.37 < 1.5× 1010 × (1 + logn),

giving n < 1.662× 1012. We obtain the conclusion of this section as follows.
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Lemma 4.1. If (n, a, b, c) is a solution in positive integers of equation (1.2), with

0 6 max{a, b} 6 c, then

c < n < 1.662× 1012.

4.2. Reducing the bound on n. We reduce the bound for n by using the

extremality property of continued fractions. We return to (4.1). Put

ΛQ := n log γ − c log 5.

Note that ΛQ 6= 0, thus, we distinguish the following cases. If ΛQ > 0, then eΛQ > 1,

so from (4.1) we obtain 0 < ΛQ < eΛQ − 1 < 3/50.3c. Suppose now that ΛQ < 0.

It is easy to check that 3/50.3c < 1
2 for all c > 20. Then, from (4.1), we have that

|eΛQ − 1| < 1
2 and therefore e

|ΛQ| < 2. Since ΛQ < 0, we have

0 < |ΛQ| < e|ΛQ| − 1 6 e|ΛQ||eΛQ − 1| < 6

50.3c
.

In any case, we have that the inequality 0 < |ΛQ| < 6/50.3c holds for all c > 20. Re-

placing ΛQ in the above inequality by its formula and dividing by log 5, we conclude

that

(4.3) 0 <
∣

∣

∣
n
log γ

log 5
− c

∣

∣

∣
<

6

log 5× 50.3c
.

Let [a0, a1, a2, a3, a4, . . . , ] = [0, 1, 1, 4, 1, 2, . . .] be the continued fraction of the ratio

log γ/ log 5, and let pk/qk be its kth convergent. Recall that n < 1.662 × 1012 by

Lemma 4.1. A quick inspection using Mathematica reveals that q19 < 1.662×1012 <

q20. Furthermore, aM := max{ai : i = 0, 1, . . . , 20} = a17 = 163. So, from the

extremality property of continued fractions we obtain that

(4.4)
∣

∣

∣
n
log γ

log 5
− c

∣

∣

∣
>

1

(aM + 2)n
=

1

165n
.

Comparing estimates (4.3) and (4.4), we get that

1

165n
<

6

log 5× 50.3c
.

Since c > (n− 1)/1.83, leading to

0.263n < 6.69 + log n,

which implies that 0 6 n < 40, this yields c < (n+ 0.91)/1.82 < 23. Finally, we

use a program written in Mathematica to find the solutions of (1.2) in the range

0 6 max{a, b} 6 c < 23 and n < 40. Quickly, the program returns the only solutions

of (1.2) are (n, a, b, c) ∈ {(0, 1, 0, 1), (1, 1, 0, 1), (3, 1, 2, 2)}. This completes the proof.
�

287



5. Conclusion

In this paper, we solve the Diophantine equation (1.1) by using Matveev’s re-

sult Lemma 2.1 and Lemma 2.2 from Diophantine approximation to reduce the up-

per bounds on the variables of the equation. For the Diophantine equation (1.2),

we find its all solutions by using Matveev’s result Lemma 2.1 and the properties

of continued fractions to reduce the upper bounds on the variables of the equa-

tion.

6. Final comments

We remark that we can use our approach to conclude that there are only finitely

many solutions which are effectively computable for the Diophantine equation Pn =

±2a ∓ 3b + 5c, Qn = ±2a ∓ 3b + 5c in nonnegative integers n, a, b, c with 0 6

max{a, b} 6 c. We leave this as a problem for other readers.

Acknowledgements. The authors express their gratitude to the anonymous

referee for carefully reading the manuscript and for the instructive suggestions im-

proving the paper.
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