
Active Knowledge Graph Completion

Pouya Ghiasnezhad Omran1,2, Kerry Taylor1,3, Sergio Rodriguez Mendez1,4,
and Armin Haller1,5

1 Australian National University
2 P.G.Omran@anu.edu.au

3 kerry.taylor@anu.edu.au
4 Sergio.RodriguezMendez@anu.edu.au

5 armin.haller@anu.edu.au

Abstract. Knowledge Graphs (KGs) proliferating on the Web are well
known to be incomplete. Much research has been proposed for automatic
completion, sometimes by rule learning, that is known to scale well. All
existing methods learn closed rules. In this paper, we introduce open
path (OP) rules and present a novel algorithm, oprl, for learning OP
rules. While CP rules complete a KG by answering given queries, OP
rules identify the incompleteness of a KG by generating such queries.
For our learning to scale well, we propose a novel, efficient, embedding-
based fitness function to estimate the quality of rules. We also introduce
a novel, efficient vector computation to formally assess the quality of such
rules against a KG. We use adaptations of Freebase, YAGO2, Wikidata,
and a synthetic but complete Poker KG to evaluate oprl. We find that
oprl mines hundreds of accurate rules from massive KGs with up to 8M
facts. The learnt OP rules are used to generate queries with precision
as high as 98% and recall of 62% on a complete KG, demonstrating the
first solution for active knowledge graph completion.

Keywords: Knowledge Graph Completion · Open Path Rule · Knowl-
edge Graph.

1 Introduction

Knowledge Graphs (KGs) are a convenient technology to model and store mas-
sive quantities of weakly-structured data. However, their intended scope is usu-
ally poorly defined and they fail to record relevant entities, as well as relevant
relationships for the entities they do record [12]. The power of KGs arises from
a data-first approach. They allow information to be added in a relatively arbi-
trary manner as structural constraints are few; unlike, for example, relational
databases where type, not-null, and key constraints abound to enforce a kind of
completeness. Also, KGs are often (semi-)automatically built from unstructured
sources such as Wikipedia articles. The methods are prone to asserting some
erroneous facts, while missing some others.

Techniques have been developed for knowledge graph completion and rule
learning to curate KGs automatically [9]. In these approaches models, often

2 P.G. Omran et al.

expressed as logical rules or vector embeddings, are learnt from a given KG. The
models are then used for curating tasks including link prediction that predict
missing facts for extant entities.

Rule learning methods for KGs [14] consider closed rules which are used
to predict a ground fact that instantiates the triple at the head of the rule.
For example, consider a rule defining a relationship between citizenship and the
residence of a person, citizenOf(x, y)←− livesIn(x, z)∧ locatedIn(z, y). Using
this rule, someone’s citizenship can be inferred from facts about a person’s city
of residence and the nation in which that city is located.

Closed rules enable inference of specific facts that, if true, are missing from
the KG. They draw attention to a potential missing fact only if the fully specified
fact is able to be inferred by the rule. KG completion is driven by the assumption
that the KG knows what it does not know. In this paper we consider, for the first
time, the problem of rules-based knowledge graph completion in the situation
that it does not know what it does not know. This problem requires the KG, as
it does for people, to look outside its own environment.

We propose learning open path rules (OP) from which we infer less con-
strained, open-ended questions to complete a knowledge graph. Our OP rules
provide evidence that information is missing even when there is no evidence
for a specific missing fact. The questions inferred from OP rules identify that
a new fact is needed when the answer is not known, but also not obvious. The
question could be posed to an active user engaged in a curating task or to a
Web question-answering engine, where the answer might be found outside the
KG. In particular, an answer to the question may well introduce previously un-
known entities to the KG, and so to address a previously unstudied direction in
knowledge graph completion, that is missing entities.

As a beneficial side-effect, our work addresses a long-standing gap in tradi-
tional link prediction systems (e.g. [1]), that use the KG to propose new links,
but need to be seeded with questions about potential missing links. Convention-
ally, for evaluation purposes, these questions are generated from test facts that
are held-back from the KG in the hope that a high-performing predictor will
rediscover the missing fact. However, once a link predictor is deployed over a
working KG, test facts cannot be held back, so whence does the question arise?
We propose that the questions we infer from our OP rules can be widely used
to generate the questions that link predictors need to repair KGs.

The contributions of this paper are as follows. We present a novel method for
learning open path rules from a KG. These are Horn rules with a different form to
the usual closed path rules that are used for knowledge graph completion tasks.
We propose an algorithm for learning these rules, including novel fitness criteria
for discarding poor rules early, and efficient vector computation of formal quality
criteria. We show that, together with KG sampling, our algorithm is effective
over very large KGs. As such, we introduce a first solution to the problem of
active knowledge graph completion (AKGC), where we aim, instead of suggesting
missing facts, to ask the best questions to complete a KG.

Active Knowledge Graph Completion 3

2 Background

2.1 Rule-Based KG Completion

An entity e is an identifier for an object such as a place or a person, and a fact
(also known as a link) is an RDF triple (e, P, e′), which means that the subject
entity e is related to an object entity e′ via the binary predicate (also known as a
property), P . Here we write facts in the form P (e, e′). A knowledge graph (KG)
is a pair K = (E,F), where E is a set of entities and F is a set of facts and E
is the same as the set of entities that occur in the facts of F .

Rule learning systems deploy different rule languages to express the rules
learnt. RLvLR [13] and ScaleKB [4] use so-called closed path (CP) rules that
are a kind of closed rule with no free variables. Each consists of two parts, a
head at the front of the arrow and a body at the tail. We say the rule is about
the predicate of the head. The rule forms a closed path, or single unbroken loop
of links between the variables. It has the following general form.

Pt(x, y)← P1(x, z1) ∧ P2(z1, z2) ∧ ... ∧ Pn(zn−1, y) (1)

We interpret this kind of rules with universal quantification of all variables at
the outside, and so we can infer a fact that instantiates the head of the rule by
finding an instantiation of the body of the rule in the KG. For example, from the
rule citizenOf(x, y)← livesIn(x, z)∧ locatedIn(z, y), if we have the facts in the
KG, livesIn(bronte, canberra) and locatedIn(canberra, australia), then we can
derive and assert the following new fact in the KG, citizenOf(bronte, australia).

Rules are considered of more use if they generalise well, that is, they explain
many facts. To quantify this idea we recall measures support, head coverage and
standard confidence that are used in some major approaches to rule learning
including [4] and [6].

Definition 1 (satisfies, support). Let r be a CP rule of the form (1). A pair
of entities (e, e′) satisfies the body of r, denoted bodyr(e, e′), if there exist entities
e1, ..., en−1 in the KG such that all of {P1(e, e1), P2(e1, e2), ..., Pn(en−1, e

′)} are
facts in the KG. Further (e, e′) satisfies the head of r, denoted Pt(e, e

′), if Pt(e, e
′)

is a fact in the KG. Then the support of r counts the rule instances for which
the body and the head are both satisfied in the KG.

supp(r) = |{(e, e′) : bodyr(e, e′) and Pt(e, e
′)}|

Standard confidence (SC) and head coverage (HC) offer standardised mea-
sures for comparing rule quality.

Definition 2 (standard confidence, head coverage). Let r, e, e′, bodyr be
as given in definition 1. Then

SC(r) =
supp(r)

|{(e, e′) : bodyr(e, e′)}| , HC(r) =
supp(r)

|{(e, e′) : Pt(e, e′)}|

4 P.G. Omran et al.

2.2 Embedding-Based KG Completion

Representation learning methods have been developed to model KGs for tasks
such as link prediction, entity resolution, and link-based clustering [9]. Repre-
sentation learning typically consists of two main steps: (1) to embed the entities
and predicates of the given KG into a latent space, and (2) to reconstruct the
KG based on the obtained embeddings to predict new facts.

The KG is embedded into a low-dimensional vector space of latent, unnamed
features not present in the KG vocabulary [11, 7, 10, 8, 1, 17, 15, 9]. The plausibil-
ity of each fact is defined by a scoring function over the embedded representations
of its predicate and entities. Learning and operating on latent representations
benefits from the use of unobserved but intrinsic properties of entities and their
relations.

Rescal [11] is a compositional-based embedding learner. It embeds each
entity ei by a vector ei ∈ Rd and each predicate Pk by a matrix Pk ∈ Rd×d

where R is the set of real numbers and d is an integer (a parameter to the
learner specifying the dimensionality of the latent feature space).

Rescal learns two sets of embeddings, vectors {ei} and matrices {Pk} by
minimizing a loss function defined over the product of the entity and predicate
embeddings. Rescal captures rich interactions amongst entities and predicates
because it learns a larger number of parameters than methods which embed the
predicates into vectors [10]. We work with rescal for its empirical strength
when used as a heuristic for mining logical axioms[14]. The embeddings learned
by rescal are well suited for our novel heuristic function for mining OP rules
introduced here.

3 Rules with Free Variables for AKGC

Unlike earlier work in rule mining for KG completion, for our active knowledge
graph completion task we mine open path (OP) rules of the following form:

Pt(x, z0)← P1(z0, z1) ∧ P2(z1, z2) ∧ ... ∧ Pn(zn−1, y) (2)

Here, Pi is a predicate in the KG and each of {x, zi, y} are variables (x and y are
free while the zis are bound). Unlike CP rules, OP rules do not necessarily form
a loop, but instantiations of a CP rule are also an instantiation of an OP rule.
From an instantiation of the body of an OP rule, we can not infer a fact, but only
a question. For example, the following OP rule, citizenOf(x, t)← livesIn(x, z).
states that if an entity, x, lives in z, then that entity is citizen of somewhere (t).
By instantiating the body of this rule as follows, livesIn(bronte, canberra), we
could infer the query, citizenOf(bronte, ?).

To assess the quality of our mined open path rules, we introduce open path
standard confidence (OPSC) and open path head coverage (OPHC) derived from
the closed path forms (Definition 2).

Definition 3 (open path: OPsupp, OPSC, OPHC). Let r be an OP rule
of the form (2). Then a pair of entities (e, e′) satisfies the body of r, denoted

Active Knowledge Graph Completion 5

bodyr(e, e′), if there exist entities e1, ..., en−1 in the KG such that P1(e, e1),
P2(e1, e2), ..., Pn(en−1, e

′) are facts in the KG. A pair (e′, e) satisfies the head
of r, denoted Pt(e

′, e), if Pt(e
′, e) is a fact in the KG. The open path support,

open path standard confidence, and open path head coverage of r are given
respectively by

OPsupp(r) = |{e : ∃e′, e′′ s.t. bodyr(e, e′) and Pt(e
′′, e)}|

OPSC(r) =
OPsupp(r)

|{e : ∃e′ s.t. bodyr(e, e′)}|

OPHC(r) =
OPsupp(r)

|{e : ∃e′ s.t. Pt(e′, e)}|

For example, consider the OP rule, P1(x, z0)← P2(z0, z1)∧P3(z1, y). Assume
we have 3 entities ({e3, e4, e5}) which can instantiate z0 to satisfy both P1(x, z0)
and P2(z0, z1)∧P3(z1, y). Assume the number of entities that can instantiate z0
to satisfy the head part is 5 ({e1, e2, e3, e4, e5}) and the number of entities that
can instantiate z0 to satisfy the body part is 7 ({e3, e4, e5, e6, e7, e8, e9}). Hence
we have for this rule, OPsupp = 3, OPSC = 3/7 and OPHC = 3/5.

4 OP Rule Learning

Our objective is to mine a KG for high-quality OP rules about a specific target
predicate Pt. While we adhere to the architecture of RLvLR [14] that learns CP
rules, we propose the following novelties for mining OP rules: (i) a novel fitness
function which can estimate the quality of an OP rule based on the embedding
representations of its predicates; and (ii) a novel vector computation which allows
the system to evaluate the OP rules against a massive KG to compute quality
measures, OPSC and OPHC.

Our OP rule miner, oprl, is summarised in Algorithm 1. It takes user param-
eters for the maximum length of rules and least acceptable OPSC and OPHC.

First, we reduce the KG size because existing embedding-based methods
cannot handle vast KGs. For instance, rescal is unable to handle YAGO2 [10].
We use the sampling algorithm, Sampling() proposed in RLvLR [13] to build a
reduced KG. This means that embeddings are computed only for entities that
are relevant to a target predicate.

We then compute embedding models to construct a fitness function to rapidly
estimate a rule’s quality, and so significantly improve scalability (see Section 4.1).
Embeddings() obtains the embeddings P,A for respectively predicates and argu-
ments in the sample KG.

Then, in shortest-first order, we exhaustively generate OP rules for a target
predicate Pi and its inverse P−1i in PathFinding(). The inverse is defined as
∀e, e′P−1i (e′, e) = Pi(e, e

′). Since the target predicate is fixed, generating an
OP rule is reduced to generating a path to comprise the body, i.e. a sequence

6 P.G. Omran et al.

Algorithm 1 oprl

Input: a KG K, a target predicate Pt

Parameter: a max rule length l, MinOPSC and MinOPHC
Output: a set of OP rules R

1: K′ := Sampling(K,P)
2: (P,A) := Embeddings(K′)
3: R′ := ∅
4: for 2 ≤ k ≤ l do
5: Add PathFinding(K′, Pt,P,A, k) to R′

6: end for
7: Add IncPathFinding(K′, Pt,P,A, k, R′) to R′

8: R := Evaluation(R′,K)
9: return R

of predicates P ′1, P
′
2, . . . , P

′
n with required OP rule variable patterns. We apply

the proposed fitness function to each rule on generation to rapidly discard poor
performers.

In IncPathfinding() we create additional candidate rules by extending some
top-ranked candidates. We learn new short OP rules for the rightmost predicate
using PathFinding(). If we find a good rule about that predicate then we extend
the original rule by appending the new body to the tail, and we keep both rules.
We then use a redundancy elimination method to make sure there is no repetition
in all the mined rules and then evaluate candidate rules by OPSC and OPHC in
Evaluate(). We use efficient matrix and vector multiplication (Section 4.2) that
is crucial for scalability.

4.1 Rule Quality Estimation using Embeddings

Since the number of potential rules generated in PathFinding() is enormous,
we rapidly filter out candidates of low quality. For this purpose, the quality is
estimated by either of two fitness functions; co-occurrence or open path, both
of which are derived from embedding representations. The former uses entity
embeddings alone, while the latter incorporates predicate embeddings as well.
We use rescal [11] to compute both.

Co-occurrence Fitness Function Each instance of an OP rule connects its
head and body via a shared entity in place of z0 in (2), so an OP rule tends to
have high OPsupp (and so high OPSC and OPHC) if the entities which satisfy
the second argument of Pt has a large intersection with the entities that satisfy
the first argument of P1. When predicate pairs associate similar entities this way,
this induces a latent-feature relationship between the predicates that we call co-
occurrence. For instance, the two predicates liveIn(e′′, e) and isNeighbour(e, e′)
may co-occur because in both cases e is often a city.

Based on this observation, a co-occurrence fitness function for mining CP
rules is defined using argument embeddings in RLvLR [13] and we adapt it

Active Knowledge Graph Completion 7

here. RLvLR also defines a similarity fitness function that is not applicable here
because it relies on the head predicate to share a large number of entities with
the body in both argument positions.

For argument embeddings, each predicate has a subject argument in the
first position and an object argument in the second position. Each argument’s
embedding is a vector obtained by averaging the embeddings of all the entities
in the argument position. For entity e we write its embedding vector as e. For
predicate P we write its embedding matrix as P, also called a weight matrix.

Definition 4 (argument embedding). Let K = (E,F) be a KG. The ar-
gument embeddings of the subject and object arguments of a predicate P are
vectors defined respectively as:

P(1) =
1

n

∑
e∈SP

see and P(2) =
1

n

∑
e∈OP

oee

where n is the number of facts in the KG, SP and OP are the sets of enti-
ties occurring as subjects and objects of P , respectively (more precisely, SP =
{e | ∃e′ s.t. P (e, e′) ∈ F} and OP = {e′ | ∃e s.t. P (e, e′) ∈ F}), and se and
oe are the numbers of occasions that entity e occurs as a subject and an ob-
ject of P in K respectively (more precisely, se = |{e′ s.t. P (e, e′) ∈ F}| and
oe = |{e′ s.t. P (e′, e) ∈ F}|).

The co-occurrence fitness function for CP rules used in RLvLR [13] needs
to be modified for the OP case here. In an OP rule of the form (2), the co-
occurrences of z0 as the object argument of Pt and subject argument of P1, and
zi (1 ≤ i ≤ n − 1) as the object argument of Pi and subject argument of Pi+1,
motivates us to highly value rules with the properties (where the symbol ≈ is

read as similar to): P
(2)
t ≈ P

(1)
1 , and P

(2)
i ≈ P

(1)
i+1 (1 ≤ i ≤ n−1). Pairwise local

fitness functions are defined accordingly.

Definition 5 (local co-occurrence fitness). Let r be an OP rule of the form
(2). Then

f
(0)
loc (Pt, P1) = sim(P

(2)
t ,P

(1)
1)

f
(i)
loc(Pi, Pi+1) = sim(P

(2)
i ,P

(1)
i+1) for 1 ≤ i ≤ n− 1

where sim is defined by the Frobenius norm, i.e. for two matrices M1 and M2,

sim(M1,M2) = exp(−‖M1 −M2‖F).

Co-occurrence for the whole rule can then be obtained by aggregating the
pairwise local occurrences as follows.

Definition 6 (co-occurrence fitness). Let r be an open path rule of the form
(2). Then

fcoo(r) = f
(0)
loc (Pt, P1) +

n−1∑
i=1

f
(i)
loc(Pi, Pi+1)

8 P.G. Omran et al.

By its use of argument embeddings built from entity embeddings, the co-
occurrence captures the weight of connections of sequential entities along the
path. Next we introduce an alternative quality estimation function which uses
both entity and predicate embeddings, called open path fitness, fOP (.).

Open Path Fitness Function An OP rule acts to connect entities satisfying
the subject argument of the head predicate, Pt, to entities forming the object
argument of the tail predicate, Pn, along a path of entities that satisfy a chain
of predicates in the rule. The product of the predicate embeddings along the
path acts as a low-dimensional representation of the latent features of a path
that connects its endpoints, and therefore represents the overall rule from the
perspective of the predicates. However, to anchor the rule, we also need to ac-
count for the entities that satisfy the free variables at the endpoints (as does
the rescal [11] evaluation function for a single predicate). Conveniently, our
argument embeddings for the subject argument of Pt and the object argument
of Pn, give us what we need by averaging the embeddings of all the entities at the
endpoints. Based on this observation, we propose the open path fitness function
to estimate rule quality.

Definition 7. Let r be an OP rule of the form (2). Then the open path fitness
for r is defined by the product

fOP (r) = P
(1)
t

T
PtP1P2 . . .PnP(2)

n

There is no clear reason to prefer either of the fitness functions, fOP (.) and
fcoo(.), over the other, although the first focuses on entities and the second on
predicates. Experimentally, we find that they complement each other, and that
a hybrid approach is preferable (cf. Table 3).

4.2 Evaluating Potential Rules through Matrices and Vectors

Now we are ready to explain the evaluation method, Evaluation() in Algorithm
1. For efficiency, we first evaluate the candidate rules based on the sampled KG,
and select the rules with OPsupp(r) ≥ 1. These rules may still contain a large
number of redundant and low quality rules and so we do a further selection based
on the two measures, OPSC and OPHC evaluated over the full KG. We show in
the following how to efficiently compute the measures using an adjacency matrix
representation of the KG.

Let K = (E,F) with E = {e1, . . . , en} be the set of all entities and P =
{P1, . . . , Pm} be the set of all predicates in F . Like rescal [10], we represent K
as a set of square n×n adjacency matrices by defining the function A. Specifically,
the [i, j] element A(Pk)[i, j] is 1 if the fact Pk(ei, ej) is in F ; and 0 otherwise.
Thus, A(Pk) is a matrix of binary values and the set {A(Pk) : k ∈ {1, . . . ,m}}
represents K.

We illustrate the method for computing OPSC and OPHC through an ex-
ample. Consider the OP rule r : Pt(x, z0) ← P1(z0, z1) ∧ P2(z1, y). Let E =

Active Knowledge Graph Completion 9

{e1, e2, e3} and

F = {P1(e1, e2), P1(e2, e1), P1(e2, e3), P1(e3, e1),

P2(e1, e2), P2(e3, e2), P2(e3, e3), Pt(e1, e3)}

The adjacency matrices for the predicates P1, P2 and Pt are:

A(P1) :

0 1 0
1 0 1
1 0 0

 , A(P2) :

0 1 0
0 0 0
0 1 1

 , A(Pt) :

0 0 1
0 0 0
0 0 0


For OPSC and OPHC (Definition 3) we need to calculate (1) the number of

entities that satisfy the head of the rule in the second argument position, i.e.
#e : ∃e′′ s.t. Pt(e

′′, e), (2) the number of entities that satisfy the body of a rule
in the first argument position, i.e. #e : ∃e′ s.t. bodyr(e, e′) and, (3) the number of
entities that join the head of a rule to its body i.e., #e : ∃e′, e′′ s.t. bodyr(e, e′) and
Pt(e

′′, e).
For (1) to find distinct es we sum each column of the adjacency matrix

(corresponding to each value for the second argument) and transpose to obtain
the vector V(2)(Pt). Each non-zero element of this vector indicates a satisfying
e and the number of distinct es is given by counting the number of non-zero
elements in it. Formally, the satisfying es are {ej :

∑n
i=1 A(Pt)[i, j] > 0 and

1 ≤ j ≤ n} and the cardinality is the number we need.
For the example, we have the only non-zero element in A(Pt) is A(Pt)[1, 3]

and after summing the columns we have V(2)(Pt)
T = (0, 0, 1) so we have only

V(2)(Pt)[3] is non-zero and {e3} satisfies the head with count 1.
For (2) the pairs (e, e′) satisfying the body are connected by the path P1, P2, . . . Pm,

and can be obtained directly from the matrix product B = A(P1)A(P2) . . . A(Pm),
being the elements with a non-zero value. To find distinct es we sum each row
(corresponding to each value for the first argument) to obtain the vector V(1)(B).
Each non-zero element of this vector indicates a satisfying e and the number
of distinct es is given by counting the number of non-zero elements in V(1)B.
Formally, let B = A(P1)A(P2) . . . A(Pm). Then the satisfying es are given by
{ei :

∑n
j=1 B[i, j] > 0 and 1 ≤ i ≤ n}

For the example we have

B = A(P1)A(P2) =

[
0 0 0
0 2 1
0 1 0

]
, V(1)(B) =

[
0
3
1

]

with satisfying entities e2 and e3 and count of 2.
Computing (3) is now straightforward. We have that the row index of non-

zero elements of V(2)(Pt) indicate entities that satisfy the second argument of
the head and that the row index of non-zero elements of V(1)(B) indicate entities
that satisfy the first argument of the body. Therefore we can find the entities
that satisfy both of these conditions by pairwise multiplication. That is, the
entities we need are {ei : (V(2)(Pt)[i] × V(1)(A(P1)A(P2) . . . A(Pm))[i]) > 0 and

10 P.G. Omran et al.

1 ≤ i ≤ n}, and the count is the cardinality of this set. For the example we have
only e3 in the set with count 1.

Hence, OPsupp(r) = 1. From (1), (2) we can easily obtain OPHC(r) = 1/1
and OPSC(r) = 1/2.

Minimum thresholds for OPSC and OPHC are supplied to Algorithm 1 at
run-time and Evaluation() discards failing rules. The remaining rules are the final
result of the algorithm.

In summary, we introduce the following novel components to mine OP rules
from KGs:

– Proposing OP rules: we proposed a fragment of Horn rules which allows us
to mine rules with free variables while keeping the complexity of the learning
phase manageable.

– Learning OP rules based on an embedding representation: we introduced a
novel method to estimate the feasibility of each candidate rule based on its
embedding representation.

– Evaluating OP rules: we proposed an efficient method to exactly compute
the quality of each rule by matrix and vector operations.

5 Inferring relevant queries for AKGC

Given predicate P , the AKGC task is to predict queries of the form P (?, e′) and
P (e, ?) for entities e and e′ occurring in the KG. To find relevant queries, we
implement an inference module that derives queries from KG facts together with
OP rules found by Algorithm 1.

For an OP rule of the form (2), if an instance of the rule body such as
P1(e, e1), P2(e1, e2), . . . , Pn(en−1, e

′) exists in the KG, then the existence of an
instance of the head with one free variable, viz the query Pt(?, e), can be inferred
with a quantifiable confidence.

We define the confidence degree (CD) of a query to be the maximum SC of
all the rules inducing the query, thereby giving no weight to redundant rules
inducing the same query. Formally, for a query f = P (?, e′) or f = P (e, ?) and
the set of rules R that can infer f from the given KG, the CD of f is defined:

CD(f) = max
r∈R

(OPSC(r))

In this way we go beyond link prediction to infer relevant queries for missing
links, AKGC. Typically, a link predictor is given a query derived from the holdout
test data to predict facts, and then uses test data for evaluating the predicted
facts. This begs the question, whence the query arises in an industrial application
of link prediction? You have a KG and a link-predicting model built for the KG,
but do you hold-out facts from your KG in order to generate queries that predict
those same facts: facts that are missing only because you need them to generate
queries? For AKGC, we need only a named predicate (or all predicates) and use
OP rules mined over training data to induce queries over the full KB.

Active Knowledge Graph Completion 11

Our proposed AKGC is not an alternative to KGC. However, it is a comple-
mentary front-end step and allows us to ask relevant questions via OP rules and
to answer them via a link predictor or another way.

6 Experiments

We have conducted two sets of experiments to evaluate oprl6, demonstrating:

1. Oprl can mine quality OP rules from a range of KGs. Oprl can mine mas-
sive KGs in reasonable time. Our novel hybrid fitness function outperforms
the fitness function adapted from RLvLR [13].

2. Queries generated from oprl’s rules are relevant with good recall and pre-
cision in multiple KGs. They far outperform a distribution-based baseline.

The four benchmark datasets are given in Table 1. FB15K SELECTED
(which we call FB15KSE) is derived from Freebase and is widely adopted for link
prediction [18]. YAGO2 core is often used for rule mining [6, 4]. Wikidata [16] is
a multilingual, collaboratively-created KG to manage the factual information of
a popular online encyclopedia; we use a copy dated December 2014 provided in
AMIE+ [6]. Poker is a synthetic dataset adapted by the authors from the clas-
sic version [3, 5] to be a correct and complete KG for experiments. Each hand
consists of 5 playing cards drawn from a reduced deck with 6 ranks and 2 suits.

All experiments were conducted on an Intel Xeon CPU E5-4620v2 @ 2.60GHz,
66GB RAM and running CentOS 7.

For sampling, we use similar parameters to those proposed in RLvLR [13].
We set the maximum size of each sample to 800 entities. We use rescal [9]
to generate embeddings with the vector size set to 100. We retain the top 10%
of the OP rules according to the fitness function. The number of possible rules
grows significantly with increasing length, as does the runtime for mining. We
use a maximum rule length of 4 for PathFinding() and we allow the extension to
6 by IncPathFinding(). These parameters are the optimum obtained by tuning.

6.1 OP Rule Learning

First, we assess how well oprl finds high quality rules. We are not aware of other
OP rule learners with which to compare, but we do compare the performance of
fitness functions. The quality of rules are reported based on their OPSC/OPHC
scores calculated against the full benchmark KGs, not the samples.

Later we will use the mined rules for generating queries, so we need some
holdout facts for query evaluation. For FB15KSE, test and training sets are
available [18]. For Poker and YAGO2 core we can find no previously prepared
data, so we randomly partition 90% for training and 10% for testing.

Table 2 shows the average numbers of quality rules mined for all predicates
(except for Wikidata for which we target 50 randomly selected predicates) and

6 The datasets used in the experiments and detailed results can be found at
www.dropbox.com/sh/y1f7zut09dheius/AADofv9c18Rzm-CFc64dw2yVa?dl=0

12 P.G. Omran et al.

Table 1: Benchmark KG specifications
KG # Facts # Entities # Predicates

FB15KSE 272K 15K 237
YAGO2 core 948K 470K 32
Poker 1M 95k 27
Wikidata 8.4M 4M 430

Table 2: Performance of oprl on bench-
mark KGs

Benchmark #Rules #Arules Time (hours)

FB15KSE 1029 261 0.17
YAGO2 core 84 9 0.20
Poker 603 509 0.52
Wikidata 175 56 1.76

the running times (in hours, averaged over the targets). Similarly to [6], only
rules with quality OPSC≥ 0.1 and OPHC≥ 0.01 are included. The average
number of accurate rules, i.e. the rules with OPSC≥ 0.8, are given as #Arules.
Figure 1 shows the distribution of mined rules by OPSC and length. We can see
that oprl can learn plausible rules over popular benchmark KGs of over eight
million facts and four million entities in less than two hours.

Fig. 1: The length and quality of mined rules.

For illustration we present the following two OP rules which are mined from
Wikidata, with their OPSC and OPHC values respectively. The first rule states
if there is a region (z) that its country (w) is known to the KG and the continent
of its country (y) is also known, it is likely that its highest point (x) is known.
The second rule states if the spouse of a person (z) is known, it is likely that
the place of birth of that person is also known. Thus, if the body of each rule is
instantiated but there is no fact to instantiate the head of the rule, a relevant
query is generated.

0.19, 0.45 highestPoint(z, x)← country−1(z, w) ∧ continent(w, y).

0.50, 0.02 placeOfBirth(z, x)← spouse(z, y).

We conducted an experiment to assess the utility of our fitness functions,
using random.org to select 20 random predicates from FB15KSE. The results
summarised in Table 3 show that a hybrid fitness function that combines both
fcoo(.) and fOP (.) is capable of mining more quality rules (defined as for Table
2) than either of these functions individually.

Active Knowledge Graph Completion 13

Table 3: Comparison of Fitness Functions
Fitness Function #Rules #Arules

fcoo, co-occurrence 843 223
fOP , open path fitness 796 193
oprl, fcoo & fOP 1109 296

Table 4: Accuracy of query generation, comparing oprl with a random query generator
Benchmark #Q oprl Prand

P R F1 P R F1

FB15KSE 15k 0.13 0.3 0.18 0.02 0.05 0.03
YAGO2 core 9k 0.14 0.01 0.03 0.06 0.005 0.01
Poker 41k 0.98 0.62 0.76 0.17 0.07 0.1

6.2 Query Generation for Active Knowledge Graph Completion

Our second set of experiments assesses the relevance of queries induced from
oprl-generated rules. For this purpose we consider that a query with an answer
present in the test set is a relevant query, having previously filtered out queries
that can be answered from the training set.

In the absence of any comparative system for query generation, we developed
three baseline query sets of the same cardinality as those generated from oprl,
Prand. Prand queries are generated by first selecting a bag of predicates, with
each selected randomly with probability of its proportion in the test set. Then
for half of the instances of each predicate, a subject (respectively object) entity
is assigned by random selection of an entity with probability of its proportion
as a subject (respectively object) of any predicate in the test set. The object
(respectively subject) position is free (denoted “?”).

We assess relevance over three KGs; but not Wikidata because there are no
public test and train sets, and Prand cannot handle the massive size.

Table 4 shows average precision, recall and F1, where a query is counted
true if it has an instance in the test data, and false otherwise. The queries were
induced by oprl rules learnt over the training data with quality thresholds
OPSC≥ 0.8 and OPHC≥ 0.01. We see that oprl’s performance exceeds Prand
on FB15KSE, YAGO2 core and Poker by factors of approximately 6, 2 and 9
respectively. We suspect that YAGO2 induces fewer rules and has much weaker
performance because it has significantly fewer repeatable patterns. This could
be because it is quite correctly weakly structured, or because it has significantly
more missing facts. If the latter, then the validity of the test set is questionable
because genuinely missing facts will be treated as false instead of true, thereby
incorrectly punishing precision and recall compared to their values on a complete
test set. Supporting this explanation, we see that for synthetic Poker, which is
naturally highly structured, and where all the missing facts are present in the
test set, we have very close to 100% precision and excellent recall. Very high
precision means our queries are very highly relevant as they ask questions for

14 P.G. Omran et al.

which the answer facts are missing from the training set. Still, even for Poker,
recall shows that there are relevant queries that were not generated, possibly
due to the limitations of our OP language or to useful rules being discarded by
the fitting function or the OPSC/OPHC thresholds.

Next we consider the sensitivity of the performance of oprl queries to the
OPSC threshold by varying it from 0.1 to 1, learning the previously selected
predicates for FB15KSE (Table 3). In Figure 2, we see that increasing OPSC
has the expected, healthy, behaviour of decreasing recall as poorer rules get
through, and increasing precision as more missing facts are found. Observing a
sharp anomaly where the OPSC threshold is 0.9, we suspect it might be caused
by the incompleteness of FB15KSE (i.e. the generated queries may be valid but
there is no answer in the test set). We repeated the experiment on the complete
Poker KG and the anomaly is indeed absent as expected.

Fig. 2: Sensitivity analysis of oprl on 20 predicates of FB15KSE

Finally, we compare oprl queries with state-of-the-art CP-learning link pre-
dictor, RLvLR [13]. CP learners predict facts, not queries, so we cannot com-
pare them directly. Instead, we translate each fact generated by RLvLR to two
queries, by freeing the subject and object entities respectively. However, while
generating facts, RLvLR uses a Noisy-OR operator to aggregate high-performing
rules about a target predicate. This aggregation is not compatible with the
query translation task where only the top prediction matters. Consequently, ex-
periments show that RLvLR with Noisy-OR performs very poorly for query
generation. To more fairly compare, we changed the aggregation in RLvLR to
use a Max operator instead of the Noisy-OR, and we call this RLvLR*. We
used 20 randomly selected predicates from FB15KSE in the query generation
task. We plot the query performance of oprl and RLvLR as ROC (Receiver
Operating Characteristic) curves in Figure 3 using respectively minimum OPSC
and minimum SC parameters as the ordering criteria.

While for oprl we vary the minimum OPSC from 1 to 0.5 in 4 decrements
and get a False Positive Rate of almost 50%, for RLvLR we vary SC from
1 to 0.1 (the minimum and default) in 4 decrements to achieve the same False

Active Knowledge Graph Completion 15

Fig. 3: ROC curves for oprl and RLvLR, showing True Positive Rate vs False Positive
Rate while varying OPSC and SC respectively

Positive Rate. Since SC and OPSC are similar measures, we say oprl has higher
confidence in its queries than RLvLR does. In Figure 3 the partial area under
the curve (AUC) of RLvLR* is 0.23 while the partial AUC of oprl is 0.30,
showing oprl outperforms RLvLR* on query generation by 30%.

7 Related Work and Conclusion

We are unaware of any previous work that produces relevant queries for link
predictors in the knowledge graph completion process. However, chai [2] filters
facts before supplying them to a link predictor, aiming to improve the prediction
by focusing its attention on the more probable facts and discarding irrelevant
ones. It does not generate queries as oprl does, and is highly dependent on the
initial set of facts which it aims to filter.

In this paper, we proposed a method for learning rules with free variables from
Knowledge Graphs (KGs). Such rules can be used to generate queries soliciting
missing facts. Notably, the queries could be fed to link predictors, so obtaining
a fully automated framework for KG completion. We introduced the following
novel components (1) we proposed OP rules, a fragment of Horn rules, which
allows us to mine rules with free variables while keeping the complexity of the
learning phase manageable; (2) we introduced a novel method to estimate the
feasibility of each candidate rule based on its embedding representation; (3)
we proposed an efficient method to evaluate OP rules by exactly computing
the quality of each rule by matrix and vector operations; and (4) we showed
how OP rules can be used to generate highly relevant queries for missing links,
introducing the first work on active knowledge graph completion.

Our experiments show that oprl can learn rules for KGs with varying sizes
and degrees of incompleteness. We show the usefulness of the mined rules by
applying them to three different KGs to infer relevant queries.

There remain some intriguing challenges for future work. We plan to extend
oprl to learn rules with more complex shapes such as stars, and with numerical

16 P.G. Omran et al.

attributes. We plan to pair oprl with a link predictor to form a unified frame-
work for fully automated KG completion. We will also trial oprl in a setting
for human-curated maintenance on an enterprise KG.

References

1. Bordes, A., Usunier, N., Weston, J., Yakhnenko, O., Garcia-Duran, A., Weston,
J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In:
Advances in neural information processing systems. vol. 26, pp. 2787–2795 (2013)

2. Borrego, A., Ayala, D., Hernández, I., Rivero, C.R., Ruiz, D.: Generating Rules
to Filter Candidate Triples for their Correctness Checking by Knowledge Graph
Completion Techniques ACM Reference Format. In: K-Cap. vol. 19. ACM (2019)

3. Cattral, R., Oppacher, F., Deugo, D.: Evolutionary Data Mining with Automatic
Rule Generalization., pp. 296–300. WSEAS Press (2002)

4. Chen, Y., Wang, D.Z., Goldberg, S.: ScaLeKB: scalable learning and inference over
large knowledge bases. The International Journal on Very Large Data Bases pp.
893–918 (2016)

5. Dua, D., Graff, C.: UCI machine learning repository (2017), archive.ics.uci.edu/ml
Retrieved Nov 2019

6. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in onto-
logical knowledge bases with AMIE+. The International Journal on Very Large
Data Bases pp. 707–730 (2015)

7. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning Entity and Relation Embed-
dings for Knowledge Graph Completion. In: AAAI. pp. 2181–2187 (2015)

8. Liu, H., Wu, Y., Yang, Y.: Analogical Inference for Multi-Relational Embeddings.
In: International Conference on Machine Learning (2017)

9. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A Review of Relational Machine
Learning for Knowledge Graphs. In: IEEE. vol. 104, pp. 11–33 (2016)

10. Nickel, M., Rosasco, L., Poggio, T.: Holographic Embeddings of Knowledge Graphs.
In: AAAI. pp. 1955–1961 (2016)

11. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on
multi-relational data. In: International Conference on Machine Learning. pp. 809–
816 (2011)

12. Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale
knowledge graphs: Lessons and challenges. ACM Queue 17 (2019)

13. Omran, P.G., Wang, K., Wang, Z.: Scalable Rule Learning via Learning Represen-
tation. In: IJCAI. pp. 2149–2155 (jul 2018)

14. Omran, P.G., Wang, K., Wang, Z.: An Embedding-based Approach to Rule Learn-
ing in Knowledge Graphs. IEEE Transactions on Knowledge and Data Engineering
pp. 1–1 (2019)

15. Shen, Y., Huang, P.S., Chang, M.W., Gao, J.: Link Prediction using Embedded
Knowledge Graphs. arXiv preprint arXiv:1611.04642 (2018)

16. Vrandečić, D., Krötzsch, M.: Wikidata: A Free Collaborative Knowledge Base.
Communications of the ACM pp. 78–85 (2014)

17. Yang, B., Yih, W.t., He, X., Gao, J., Deng, L.: Embedding entities and relations
for learning and inference in knowledge bases. In: International Conference on
Learning Representations. p. 12 (2015)

18. Yang, F., Yang, Z., Cohen, W.W.: Differentiable Learning of Logical Rules for
Knowledge Base Reasoning. In: Neural Information Processing Systems (2017)

