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Abstract The problem of calculating the tune-out wavelength for an atom inter-
acting with a plane electromagnetic wave is formulated as a zero in the Rayleigh
scattering cross section, rather than a zero in the dynamic polarizability. Retar-
dation (finite wavelength) corrections are discussed in the velocity gauge, and
possible gauge transformations to a length form are investigated. For the special
case of S-states, it is shown that a pure length form exists for the leading pxz

retardation correction, even though one does not exist in general. The results of
high-precision calculations in Hylleraas coordinates are presented for the tune-out
wavelength of helium near the 2 3S − 3 3P transition at 413 nm.

Keywords tune-out wavelength · gauge transformation · retardation · helium

1 Introduction

The tune-out wavelength is the wavelength at which the interaction of an atom
with an incident laser field vanishes. Recent high-precision measurements in helium
[1] are sensitive to relativistic and quantum electrodynamic corrections. The effect
has traditionally been formulated as a zero in the ac Stark shift for an atom
trapped in an optical lattice formed by counter-propagating laser beams [2,3], and
detailed relativistic configuration-interaction (CI) calculations have been carried
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2 Helium tune-out wavelength

out [4]. However, an optical lattice corresponds to an electric potential that is fixed
in space and oscillates in time such that the interaction with an atom depends
on its location relative to the nodes of the potential. Calculations are usually
done in the long-wavelength approximation for the dipole and higher multipole
terms generated by the optical lattice. The Baldwin experiment [1] involves instead
the interaction of an atom with a single laser beam corresponding to traveling
transverse plane wave with a vector potential of the form

A = A0êe
ik·r−iωt (1)

In this case, it is more appropriate to think of the tune-out wavelength as a zero in
the Rayleigh scattering cross section, rather than a zero in the frequency-dependent
polarizability. In other words, the tune-out wavelength is the wavelength at which
the atom no longer scatters photons, and so it becomes “invisible.” The ac Stark
shift does not take into account the photon nature of the interaction. The two
pictures are equivalent in lowest order, but not when retardation corrections are
taken into account; i.e., corrections to the long wavelength approximation.

The purpose of this paper is to reformulate the tune-out wavelength as a zero
in the Rayleigh scattering cross section, and to investigate its calculation in the
velocity form of the interaction, as well as the length form. We also investigate
the calculation of the leading retardation correction. Some of the numerical results
have been previously presented [5].

2 Rayleigh scattering formalism

Following the derivation of Akhiezer and Berestetskii [6] from QED, the normal-

ization factor is eA0 = ce
√

h̄/(2ωV), normalized to unit photon energy h̄ω in a
volume V, the effective interaction energy is

Ui→f =
2πh̄c2e2

V√ωiωf

∑

n±

[
⟨f | êfe−ikf ·r | n⟩⟨n | êieiki·r | i⟩

En − Ei − h̄ωi

+
⟨f | êieiki·r | n⟩⟨n | êfe−ikf ·r | i⟩

En − Ef + h̄ωi

]
(2)

summed over both positive and negative energy states. In terms of the Dirac γ-
matrices, ê is defined by ê = γµeµ, and e is the polarization vector such that
k · e = 0. For the case of coherent Rayleigh scattering, Ei = Ef , ki = kf , and
ωi = ωf = ω. Let us assume for the sake of definiteness that the propagation vector
k points in the z-direction, and the wave is plane-polarized in the x-direction. (The
results are easily generalized to the case of arbitrary directions of propagation and
polarization.) The expression for Ui→f then becomes

U =
2πc2e2h̄

ωV
∑

n±

[
⟨i | αxe

−ikz | n⟩⟨n | αxe
ikz | i⟩

En − Ei − h̄ω
+

⟨i | αxe
ikz | n⟩⟨n | αxe

−ikz | i⟩
En − Ei + h̄ω

]

(3)
where k = ω/c. For convenience, let us write this in the form

U =
2πc2e2h̄

ωV
∑

n±

∣∣∣⟨i | αxe
ikz | n⟩

∣∣∣
2 ( 1

∆En + ω̄
+

1

∆En − ω̄

)
(4)
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where ∆En = En − Ei and ω̄ = h̄ω. For a many-electron atom, the transition
operator αxe

ikz is understood to be summed over the N atomic electrons.
The contribution from negative energy states in Eq. (4) makes an important

contribution, even in the nonrelativistic limit. It could be handled directly with-
out approximation by introducing a complete basis set of relativistic Sturmian
functions [7–9]. However, our aim here is to obtain equivalent nonrelativistic
operators. As discussed by Akhiezer and Berestetskii [6], in the nonrelativistic
limit h̄ω << mc2, the denominators in Eq. (4) can be replaced by a constant
En ≃ −2mc2. The sum over n− can then be extended to a sum over all n± with
the introduction of negative energy projection operators, and the sum completed
by closure. In this approximation, the contribution from negative energy states is
proportional to the matrix element ⟨f | ei · ef exp[i(ki − kf ) · r] | i⟩, which just
reduces to Nδif for the case of coherent scattering with kf = ki, and N is the
number of electrons. Then U− becomes

U− = −2Nπc2e2h̄

ωV

(
1

2mc2 + ω̄
+

1

2mc2 − ω̄

)

≃ −2Nπe2h̄

mωV

[
1 +

(
ω̄

2mc2

)2

+ · · ·
]

(5)

There are of course other binding-energy corrections, which are known in the one-
electron case from Lamb shift calculations [10], but the second term in Eq. (5) is
certainly one of the frequency-dependent terms that should be included.

U− can now be combined with the remaining sum over positive energies to
obtain the total

U =
2πc2e2h̄

ωV

{
∑

n+

∣∣∣⟨i | αxe
ikz | n⟩

∣∣∣
2 ( 1

∆En + ω̄
+

1

∆En − ω̄

)

− N

mc2

[
1 +

(
h̄ω

2mc2

)2

+ · · ·
]}

(6)

The usual procedure at this point is to make the long wavelength approximation
and assume that kz << 1 for values of z within the dimensions of the atom, and
to insert the retardation expansion

eikz = 1+ ikz − 1

2
(kz)2 + · · · (7)

This is rapidly convergent for nonrelativistic frequencies ω = k/c, and so only the
leading three terms will be considered for now.

Let us first consider the nonretarded limit where only the first term of the right-
hand-side of Eq. (7) is kept. In that case, the transition matrix element is simply
⟨i | αx | n⟩, evaluated in terms of Dirac wave functions. In the nonrelativistic limit,
we can make the replacement

α ·A → p ·A
mc

+ µ×A (8)

where µ = (eh̄/2mc)σ is the spin magnetic moment of the electron. Neglecting for
now the spin-dependent part, Eq. (6) then simplifies to

U =
2πe2h̄

ωmV

{
1

m

∑

n+

|⟨i | px | n⟩|2
(

1

∆En + ω̄
+

1

∆En − ω̄

)
−N

}
(9)
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Equation (9) corresponds to the “velocity” (or momentum) form of the inter-
action. Calculations of tune-out wavelengths are typically done in the equivalent
“length” form involving matrix elements of x in place of px. The transformation
can be accomplished by making use of the commutation relation

[H,x] =
ih̄

m
px (10)

together with (En − Ei)⟨i | x | n⟩ = −⟨n | [H,x] | i⟩, where x is a short-hand

notation for
∑N

k=1 xk. An interesting feature is that the summation term in Eq.
(9) tends to N in the limit ω → 0 (analagous to the Thomas-Reiche-Kuhn oscillator
strength sum rule) and so the two terms cancel. To see this more clearly, it is useful
to expand the energy denominators in the form

1

∆En + ω̄
+

1

∆En − ω̄
=

2

∆En

(
1 +

ω̄2

∆E2
n
+ · · ·

)
(11)

and correspondingly expand U = U (0)+U (2)+ · · ·. The leading two terms are then

U (0) =
2πe2h̄

ωmV {N −N} = 0 (12)

and

U (2) + · · · = 2πe2h̄

ωmV

{
2ω2m

∑

n+

⟨i | x | n⟩⟨n | x | i⟩
∆En

(
1 +

ω̄2

∆E2
n
+ · · ·

)}
(13)

The infinite series in (ω/∆En)
2 can then be resummed to infinity to obtain the

final length form

U =
2πe2ω̄

V
∑

n+

⟨i | x | n⟩⟨n | x | i⟩
(

1

∆En + ω̄
+

1

∆En − ω̄

)

≡ 2πω̄

V αd(ω) (14)

where αd(ω) is the frequency-dependent dipole polarizability. At this level, it makes
no difference whether one identifies the tune-out wavelength as a zero in αd(ω), or
a zero in the effective interaction energy U(ω) responsible for Rayleigh scattering.
However, it does make a difference when retardation corrections are considered,
as discussed in the following section. There is a further qualitative difference in
the interaction energy in limit ω → 0. In this limit, U(ω) vanishes, but the static
dipole polarizability αd remains constant.

3 Retardation Corrections

Retardation (finite wavelength) corrections to the results in the previous section
come from the higher-order terms in Eq. (7). They must be calculated in the
velocity form of the interaction because, in general, a length form as usually defined
does not exist beyond the lowest-order term for any given multipole [11]. The
following paragraphs provide a rationale for the nonexistence of a simple length
form.
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According to the usual argument, the equivalence of the length and velocity
forms can be viewed as a gauge transformation of the electromagnetic fields E and
B which satisfy Maxwell’s equations

E = −∇V − 1

c

∂A

∂t
(15)

B = ∇×A (16)

The physical fields E and B are invariant under an arbitrary transformation of the
scalar and vector potentials V and A according to

A −→ A+∇f(r, t) (17)

V −→ V − 1

c

∂f(r, t)

∂t
(18)

where f(r, t) is an arbitrary differentiable function of r and t. For a wave propa-
gating in the z-direction and polarized in the x-direction, choose

A = A0êx eikz−iωt (19)

f(r, t) = C eikz−iωt (20)

where C is an arbitrary constant. Then the gauge transformation yields

A → A0êx eikz−iωt + Cikêz eikz−iωt (21)

V → V + C iω
c

eikz−iωt (22)

where k = ω/c. Define a new arbitrary constant C′ = ikC. Then

A = A0êx eikz−iωt + C′êz eikz−iωt (23)

V = V0 + C′ eikz−iωt (24)

Thus the gauge transformation introduces a longitudinally polarized component
C′êz eikz−iωt counterbalanced by an additional contribution C′ eikz−iωt to the scalar
potential V , while leaving the physical E and B fields unchanged.

Quantum mechanical matrix elements are also unchanged, provided that the
wave functions are exact, and this leads to the “length” form of the transition
operator, at least in lowest order, as follows. Equating matrix elements of the C′-
dependent parts of −(p · A + A) · p/(2mc) and V between arbitrary orthogonal
states | a⟩ and | b⟩ yields

1

2mc
⟨a | pzeikz + eikzpz | b⟩ = −⟨a | eikz | b⟩ (25)

where, by conservation of energy, k = ωab/c. This equation is satisfied term-by-
term to all orders in the expansion eikz = 1 + ikz + · · ·, provided that the wave
functions are exact and orthogonal. This can easily be seen by making the substi-
tution

⟨a | (ikz)n+1 | b⟩ = iωab
(ik)n

c
⟨a | zn | b⟩

= i
(ik)n

h̄c
⟨a | [H0, z

n] | b⟩ (26)
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and evaluating the commutator with the field-free Hamiltonian H0. The leading
nonvanishing terms give

1

mc
⟨a | pz | b⟩ = − iωab

c
⟨a | z | b⟩ (27)

This is the usual equivalence of the length and velocity forms. However, the correct
velocity operator for our assumed plane wave is pxe

ikz, not pze
ikz. In general,

there is no equivalent length form valid beyond leading order [11].

3.1 Gauge invariance of multipole expansions

A similar argument applies to each partial wave if the plane wave discussed so far
with definite direction of propagation k and direction of polarization ê in terms of
definite angular momentum L and parity. It is always possible to write

ω̄ab⟨a | rLY M
L | b⟩ = ⟨a | [H, rLY M

L ] | b⟩ (28)

where Y M
L is a spherical harmonic. Furthermore, since ∇2rLY M

L (θ,ϕ) = 0, it fol-
lows that (in atomic units)

[H, rLY M
L ] = −1

2
[∇2, rLY M

L ] (29)

= −∇rLY M
L ·∇ (30)

= −i∇rLY M
L · p (31)

which is the correct velocity form of the operator. However, this works only to
lowest order. The function rL is just the leading term in the power series ex-
pansion of the spherical Bessel function jL(kr) = jL(ωr/c) [14], and in general
∇2rKY M

L (θ,ϕ) ̸= 0 unless K = L.

3.2 The leading retardation term

As an illustrative example, the operator for the leading retardation correction
to the velocity form pxe

ikz is ikpxz. In general, there is no corresponding pure
length form [11], but for the special case of the interaction energy U for spherically
symmetric S-states, the operator can be symmetrized with respect to x and z to
obtain, for matrix elements

⟨a | ik

2mc
(pzx+ pxz) | b⟩ = − k

2h̄c
⟨a | [H0, xz] | b⟩

= −k2

2
⟨a | xz | b⟩ (32)

evaluated at k = ωab/c. The right-hand-side looks superficially like a quadrupole
interaction, but in fact it is a retardation correction. It is a factor of two smaller
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than what one might naively expect. Using this equivalence, the velocity and length
forms of the xz-retardation correction are

∆UV
xz =

2πe2h̄

ωmV

{
k2

m

∑

n+

|⟨i | pxz | n⟩|2
(

1

∆En + ω̄
+

1

∆En − ω̄

)}
(33)

∆UL
xz =

2πe2ω̄

V

{
k2

4

∑

n+

| ⟨i | xz | n⟩ |2
(

1

∆En + ω̄
+

1

∆En − ω̄

)
∆E2

n

ω̄2

}
(34)

The results presented in the following section demonstrate that the above ex-
pressions yield identical results to within the accuracy allowed by the variational
wave functions. The next (kz)2/2 in Eq. (7) also contributes as a cross-term after
squaring. This and other finite mass and relativistic corrections will be discussed
separately in a future publication.

4 Calculations and Conclusions

This section presents results of calculations of the tune-out wavelength for helium
near the 413 nm transition corresponding to the 2 3S − 3 3P transition. The field-
free Hamiltonian for helium in reduced mass atomic units is

H0 = −1

2
∇2

1 − 1

2
∇2

2 − Z

r1
− Z

r2
+

1

r12
− µ

M
∇1 ·∇2 (35)

where the last term is the mass polarization term, and µ is the electron reduced
mass. The transition matrix elements and energies were evaluated in terms of
variational solutions to the Schrödinger equation with wave functions expressed in
Hylleraas coordinates of the form [15,16]

Ψ(r1, r2) =

2∑

p=1

∑

i,j,k

a
(p)
ijk r

i
1r

j
2r

k
12 e

−αpr1−βpr2 YM
l1l2L(r̂1, r̂2)± 1 ↔ 2 (36)

with i + j + k ≤ Ω, Ω = 4, 5, 6, · · · 15, and YM
l1l2L

(r̂1, r̂2) is a vector-coupled
product of spherical harmonics for the two electrons to form a state of total an-
gular momentum L and component M . The sum over p allows for two (or more)
individually optimized distance scales as determined by the nonlinear parameters
αp and βp. The resulting wave functions have exceptional numerical stability so
that standard quadruple precision arithmetic (approximately 32 decimal digits) is
sufficient.

The infinite sums over intermediate states in the previous section (including
an integration over the continua) were replaced by finite sums over variation-
ally determined pseudostates obtained by diagonalizing the Hamiltonian in an
N -dimensional basis set of P -states for the nonrelativistic tune-out wavelength,
and D-states for the xz-retardation correction.

As an illustrative example, Table 1 shows the convergence with basis set size
for the nonrelativistic tune-out wavelength λt in both the length (L) and velocity
(V) forms. It is significant that the velocity form is more rapidly convergent with
basis set size (as controlled by Ω) by more than an order of magnitude, even
though it does not yield an accurate value for the static polarizability αd due to
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Table 1 Nonrelativistic tune-out wavelength λt near the 2 3S − 3 3P transition of helium at
413 nm for the case of infinite nuclear mass, calculated in both the length (L) and velocity (V)
forms. NS and NP are the numbers of terms in the S- and P -state basis sets respectively for
each Ω = (i + j + k)max. ∆λL

t and ∆λV
t are the changes in λL

t and λV
t for successive values

of Ω to show the respective rates of convergence.

Ω NS/NP λL
t (nm) ∆λL

t λV
t (nm) ∆λV

t

4 35/104 413.140 681 9343 413.031 682 9604
5 56/164 413.046 812 8503 –0.093 869 0840 413.036 738 3288 0.005 055 3684
6 84/238 413.040 187 6300 –0.006 625 2203 413.038 111 5461 0.001 373 2173
7 120/300 413.038 656 7622 –0.001 530 8678 413.038 278 7252 0.000 167 1791
8 164/371 413.038 394 3741 –0.000 262 3881 413.038 295 0253 0.000 016 3001
9 218/457 413.038 345 3450 –0.000 049 0291 413.038 301 6088 0.000 006 5835

10 281/551 413.038 308 7062 –0.000 036 6388 413.038 304 0087 0.000 002 3999
11 356/660 413.038 305 4303 –0.000 003 2759 413.038 304 3265 0.000 000 3178
12 441/775 413.038 304 5622 –0.000 000 8681 413.038 304 3887 0.000 000 0622
13 540/905 413.038 304 4523 –0.000 000 1099 413.038 304 3817 –0.000 000 0070
14 650/1039 413.038 304 3970 –0.000 000 0553 413.038 304 3859 0.000 000 0042
15 776/1189 413.038 304 3893(35) –0 .000 000 0077 413.038 304 3858(1) –0.000 000 0001
Other theory 413.038 28(3)a

aZhang et al. [4].

numerical cancellation (cf. Eq. (12).) Also, the length form tends to converge from
above while the velocity form converges (predominantly) from below. The result
for the finite nuclear mass case for 4He with µ/M = 1.370 745 665× 10−4 is

λt(
4He) = 413.082 590 5833me/µ = 413.139 221 4630(1) nm (37)

where µ/me = 1−µ/M is the reduced mass to electron mass ratio, and for the finite
nuclear mass case, the factor of 1/m in Eq. (9) should be replaced by (1/m)(1 +
µ/M). The numerical result marginally disagrees with the nonrelativistic value
413.139 19(2) nm from Ref. [4].

Finally, the calculated xz-retardation correction is δλ
(xz)
t = 0.000 560 0236 nm

assuming infinite nuclear mass. This is a correction of nominal order α2, and so is
significant relative to other relativistic and QED corrections. It has not been in-
cluded in previous calculations. A detailed discussion of these other corrections will
be given in a future publication. They must also be included before a meaningful
comparison can be made with the experimental value λt = 413.0938(9stat)((20syst)
[1], and the most recent theoretical value λt = 413.09015(4) nm [17].

In conclusion, we have reformulated the tune-out wavelength problem as a
zero in the Rayleigh scattering cross section instead of a zero in the frequency-
dependent polarizability, and demonstrated how the calculation can be done in the
velocity form as well as the length form. The velocity form turns out to be more
rapidly convergent for the tune-out wavelength, but not for the static polarizability.
In addition, we have shown how retardation corrections can be calculated in the
velocity form, even though a pure length form in general does not exist. The choice
of which formalism to use depends entirely on the experimental conditions, and
in particular whether the atom is interacting with a travelling wave as expressed
by Eq. (1) or a standing wave in an optical lattice. In future work, relativistic and
QED corrections will be discussed, including corrections to the radiative transition
operator [18].



Helium tune-out wavelength: Gauge invariance and retardation corrections 9

Aclnowledgments

We are grateful to Li-Yan Tang for helpful correspondence concerning her calcula-
tions. Research support by the Natural Sciences and Engineering Research Coun-
cil, by SHARCnet, and by the Australian Research Council Discovery Project
DP180101093 are gratefully acknowledged. P.-P. Zhang acknowledges support by
the National Natural Science Foundation of China under Grant No. 11604369,
and the Strategic Priority Research Program of the Chinese Academy of Sciences
under Grants No. XDB21010400.

References

1. B. M. Henson, R. I. Khakimov, R. G. Dall, K. G. H. Baldwin, L. Y. Tang, and A. G.
Truscott, Phys. Rev. Lett. 115, 043004 (2015).
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