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The electronic properties of graphene nanoflakes (GNFs) with embedded hexagonal boron nitride (hBN) domains are investigated
by combined ab initio density functional theory calculations and machine-learning techniques. The energy gaps of the quasi-0D
graphene-based systems, defined as the differences between LUMO and HOMO energies, depend not only on the sizes of the
hBN domains relative to the size of the pristine graphene nanoflake but also on the position of the hBN domain. The range of
the energy gaps for different configurations increases as the hBN domains get larger. We develop two artificial neural network
(ANN) models able to reproduce the gap energies with high accuracies and investigate the tunability of the energy gap, by
considering a set of GNFs with embedded rectangular hBN domains. In one ANN model, the input is in one-to-one
correspondence with the atoms in the GNF, while in the second model the inputs account for basic structures in the GNF,
allowing potential use in upscaled systems. We perform a statistical analysis over different configurations of ANNs to optimize
the network structure. The trained ANNs provide a correlation between the atomic system configuration and the magnitude of
the energy gaps, which may be regarded as an efficient tool for optimizing the design of nanostructured graphene-based
materials for specific electronic properties.

1. Introduction

The absence of an electronic gap in pristine graphene
hinders many of the expected applications based on the
field effect. Graphene nanopatterning is one way to tune the
electronic and transport properties, and this can be achieved
by reducing the dimensionality [1–4], by drilling periodic
arrangements of holes [5, 6], by embedding hexagonal boron
nitride (hBN) [7–12], or by combining any of these.
Graphene nanoribbons (GNRs) and graphene nanoflakes
(GNFs), typically passivated with monovalent species like
hydrogen or halogen atoms, are two examples of quasi-1D
and quasi-0D graphene systems, respectively, which attracted
a lot of attention in the past few years. GNRs can have a
metallic or semiconducting behavior depending on the
lateral width and edge type: armchair or zigzag. In contrast
to GNRs, where only the edge states may influence the

electronic properties, in GNFs these are markedly influ-
enced by both edge and corner states and, in general, by
the different possible shapes [13, 14]. In addition, GNFs
may be functionalized, which further extends the range
of the electronic, optical and, magnetic properties.

GNFs can be produced by bottom-up approaches,
where the synthesis takes place in solution by mechanical
extrusion, using magnetic field alignment and thermal
annealing [15, 16] or by top-down methods, using tech-
niques like e-beam lithography [17], plasma etching [18],
or a cationic surfactant-mediated exfoliation of graphite
[19]. Besides the many applications envisioned for nanoe-
lectronics and spintronics [20], more recently, novel appli-
cations also indicate the role of GNFs for biological
recognition [21]. Therefore, the methods for an efficient
investigation of multiple configurations of GNFs and
related structures are highly demanded.
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In the past few years, machine-learning (ML) techniques
are gaining ground in the field of condensed matter. They
have been developed to predict the band gaps in solids
[22, 23], while they also provide new clues in crystal struc-
ture prediction [24, 25]. They can be used to bypass the
Kohn-Sham equations by learning energy functionals via
examples [26] or predicting DFT Hamiltonians [27]. The
generic aim is to develop less expensive and faster methods
to calculate the system’s properties. To this end, the method-
ology contained in PROPhet [28] provides a general frame-
work for coupling machine learning and first-principles
methods. ML techniques can also provide more insights
about the physical properties of a system. The usefulness as
a universal descriptor of grain boundary systems was pointed
out [29], potentially indicating which building blocks map
to particular physical properties. ML techniques can also
achieve high accuracies, the prediction errors of molecular
machine-learning models being below that of the hybrid
DFT error [30]. High-throughput DFT calculations in con-
nection with ML techniques, as well as some of the problems,
challenges, and future perspectives are illustrated in a recent
review [31].

Regarding graphene systems, ML techniques have been
employed in several studies, e.g., for obtaining an accurate
interatomic potential for graphene [32], for searching the
most stable structures of doped boron atoms in graphene
[33], for investigating the influence of GNF topology [34],
and for predicting accuracy differences between different
levels of theory [35], as well as for the prediction of interfacial
thermal resistance between graphene and hBN [36].

In this paper, we investigate the electronic properties of
hybrid graphene-hBN nanoflakes, using combined DFT
and ML methods. We construct the distribution of gap
energies using ab initio DFT calculations, as LUMO-
HOMO differences, which depend on the size and position
of the hBN domains within the GNF. Given the large number
of possibilities of setting the hBN domains, extensive DFT
calculations are typically required, with a significant compu-
tational cost. Instead, we develop artificial neural network

(ANN) models able to reproduce the energy gaps with high
accuracies, which significantly reduce the computational
effort. We test our ANN models against reference gap values
obtained by DFT and discuss the optimal conditions for the
network structure.

2. Model Systems and Computational Methods

We consider GNFs with embedded hBN domains, passivated
with hydrogen, as indicated in Figure 1. The hBN domains
are rectangular-shaped regions containing an equal number
of boron and nitrogen atoms. In this way, the systems retain
an intrinsic semiconducting behavior, without a net chemical
doping. The embedded rectangular hBN is randomly posi-
tioned in the graphene nanoflake. The widths and heights
of the rectangular hBN regions are extracted from a flat
distribution so that the entire graphene nanoflake can be
replaced by BN. The systems analyzed here have a total of
200 atoms, of which N = 166 atoms are stemming from
graphene/hBN and NH = 34 hydrogen atoms. For the
investigation of the electronic properties, a number of
900 nonequivalent systems are generated.

The DFT calculations are performed using the SIESTA
code [37] employing local density approximation (LDA) in
the parametrization of Ceperley and Alder [38]. The strictly
localized basis set allows a linear scaling of the computational
time with the system size. The self-consistent solution of the
Kohn-Sham equations was obtained using the standard
double-ζ polarized basis set, a grid cutoff of 100Ry, and
the norm-conserving pseudopotentials of Troullier and
Martins [39] with typical valence electron configurations
for carbon, boron, and nitrogen. The supercells are cubic
cells with a linear size of 50Å, which provides enough
empty space so that two neighboring nanoflake structures
do not interact. Gamma point calculations are performed
for the cluster-type systems. The gap energies are deter-
mined, being defined as the difference between the LUMO
and HOMO energies, Egap = ELUMO − EHOMO.

Figure 1: A typical graphene nanoflake with an embedded rectangular hBN domain. The edges are passivated with hydrogen. Each system
contains N = 166 C, B, or N atoms, colored in black, pink, and light blue, respectively, and NH = 34 hydrogen atoms.
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Based on the DFT results, we implement ANN models
able to reproduce the gap energy for similar systems from a
new set. The ANNs are standard fully connected backpropa-
gation neural networks implemented using the FANN library
[40], with three layers: one input layer, one hidden layer, and
one output layer. In Method 1, we assign an input neuron to
each atom of species C, B, or N, so that the number of input
neurons is N in = 166. Method 2 accounts for the chemical
neighborhood of a certain atomic species and its prevalence
in the system. In this case, we use N in = 20 input neurons,
where 4 of them account for the proportions of the four
atomic species (C, B, N, and H) and 16 neurons are associ-
ated with the normalized counts of atom quadruplets Xi,
Y1, Y2, andY3 , where Xi = C, B, and N and Y1,2,3 are the
three nearest neighbors of Xi, with 1 ≤ i ≤N . Therefore, to
obtain the normalized counts of atom quadruplets, one has
to loop over all atoms (C, B, or N) and consider the number
of times each particular configuration of nearest neighbors
Y1, Y2, andY3 appears. The number of neurons in the
hidden layer Nh is varied, from 25 to 200 neurons, in order
to find a close-to-optimal configuration. The output layer
has a single neuron, Nout = 1, and the result maps the gap
energy by a continuous function in the [0,1] interval,
corresponding to a maximum gap energy Egap

max = 4 eV.
Method 2 has the advantage that the input does not
depend on the system size, allowing the same ANN to
handle upscaled structures. The two proposed methods
are not limited to rectangular shapes and may handle systems
with irregular patterns.

For training, we employ the iRPROP algorithm of Igel
and Husken [41], which is a variant of the standard
RPROP algorithm introduced by Riedmiller and Braun
[42]. The iRPROP algorithm is adaptative and there is
no preset learning rate. The sigmoid activation function
is used and the mean square error during training is set
to 10−5. Since the ANNs are randomly initialized and the
final weight configurations depend on the seeds, an
ensemble of 1000 ANNs is trained on the same data set.
Finally, a statistics regarding the accuracy obtained on
the test data is performed.

The trained ANNs are tested on a set of 100 new exam-
ples and the predicted gaps are compared to the reference
values obtained by DFT calculations. We use the R2 coeffi-
cient of determination as a measure of how far the observed
outcomes are replicated by the ANN model.

3. Results and Discussion

GNFs are quasi-0D systems with a discrete energy spectrum,
where the gap energy is typically influenced by their geome-
try, passivation, and nanopatterning. By embedding hBN in
GNFs, which is a wide band-gap isomorph of graphene, it
is expected that the gap energy has a strong variation. Partic-
ularly in finite systems, the position and shape of the embed-
ded rectangular hBN domain, closer to the edges or at the
center of the GNF, significantly influences Egap.

We first investigate the variation of Egap as a function
of the hBN domain size, given by the BN fraction f BN =

NB +NN /N , where NB and NN are the number of boron
and nitrogen atoms, respectively. As it is indicated in
Figure 2, there is a rather wide dispersion of values, as
there are multiple configurations with the same f BN. Still,
a clear trend is visible for Egap f BN : larger gaps may be
obtained as the BN domain size increases, while smaller
gaps are still present. A fit with a second degree polynomial
function shows the statistical increase of the gap energy, as
Egap = 2 31f BN2.

Next, we investigate the accuracies in predicting the
energy gaps for the proposed ANN models. In Method 1,
we start with an ANN configuration with three layers, with
N in = 166 neurons in the input layer, Nh = 100 neurons in
the hidden layer, and Nout = 1 output neuron. The ANN is
trained on 800 examples and tested on a new set of 100 struc-
tures. The results are represented in Figure 3, where the
predicted gap is plotted vs. the reference DFT gap. The R2

coefficient of determination calculated for the training set
yields a rather high value of 99.7%, which indicates a consis-
tent convergence during training. Typically, for this ANN
configuration, the threshold for the mean square error set
to 10−5 is reached in ∼400 steps. Running the ANN on the
test systems, one obtains R2 values as high as 95%. However,
as detailed in the following, the performance of the ANN
relies on the converged configuration, which may depend
on the ANN initialization.

In the second method, labeled Method 2, the ANN is
trained to capture the local chemical neighborhood. For
the same set of systems, there are 16 instances of atom
quadruplets X, Y1, Y2, andY3 , with X = C, B, and N
and Y1,2,3 = C, B, N, and H. These are counted for each
structure and normalized to N , the total number of car-
bon, boron, and nitrogen atoms. Along with these 16 inputs,
the fractions corresponding to each of the four atomic species
are added, yielding a total number of N in = 20 input neurons.
These extra input neurons improve the prediction behavior
of the ANN as they emphasize the importance of the size of
the hBN domains. The same training procedure and
convergence criterion are employed as for Method 1. The
convergence during training is poorer (R2 = 97 5%), and the
obtained accuracy is typically smaller (R2 = 88 8%) for
Method 2, although they are comparable with the ones
obtained forMethod 1. However,Method 2 is by construction
scale invariant and this is potentially a significant advantage
in investigating systems with different sizes.

The final ANN configuration following the training
phase depends on the assigned random initial weights.
Consequently, the accuracy of the output results obtained
by running the test examples is subject to the initialization
procedure. In order to see how robust are the obtained
results, we construct histograms using an ensemble of 2000
trained ANNs. The results are shown in Figure 4 for the
two methods. InMethod 1, as the number of hidden neurons
is varied, the distributions evolve from a rather widespread
distribution of R2 coefficients for Nh = 25 to a more confined
distribution around the high accuracy values; this is for a
number of neurons in the hidden layer, Nh (between 100
and 125 neurons). Increasing Nh further does not improve
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the accuracy. Rather, as the ANN becomes larger, memory
effects become important to the detriment of capturing the
essential features of the structures. Moreover, by decreasing
the mean square error to 10−6 when training ANNs with
Nh > 150, they become overtrained and the R2 coefficient
does not improve either. Therefore, we conclude that optimal
ANN configurations exist, with quite high maximal output
accuracies (∼97%) and a relatively narrow band of ∼10%,
where the R2 coefficients of the most trained ANNs can
be found.

Comparatively, by employing Method 2, the R2

histograms follow the same trend, although the accuracy
spread is larger. Still, the highest values can reach as high as
∼91%. This shows that by describing the local chemical
environment and constructing a statistics reflecting the
neighborhood of the different species, one can infer quite
reasonably the electronic features of the GNFs, in particu-
lar the energy gaps. A direct comparison to Method 1 is
shown in Figure 5. Additionally, the distribution of R2

coefficients for an intermediate model based on geometri-
cal parameters of the rectangular hBN domains is also indi-
cated. In this case, the four distances between the edges of
the hBN rectangles and the edges of the GNF along with
the two linear sizes of the hBN domains were taken as inputs,
i.e., N in = 6 input neurons. However, this approach can be
used as long as the geometric features of the samples can be
easily identified, i.e., in this case the parameters describing
the rectangular shapes. The distribution of the R2 coefficients

lies in between the ones corresponding to Method 1 and
Method 2, with a maximum at 94.1%, compared to the best
results of 97.2% obtained with Method 1 and 91.9% using
Method 2. This also shows that by identifying the geometrical
features in graphene-hBN systems, without taking into
account a detailed representation of the species present in
the structure, i.e., considering the hBN domain as a whole,
reasonable accuracies may be achieved.

4. Conclusions

The electronic properties of GNFs with embedded hBN
domains were investigated using combined DFT and ML
techniques. Using DFT calculations, we constructed the
energy gap distribution for a set of systems with different
rectangular hBN shapes. The collected data was used to train
two types of ANNs. In Method 1, one input neuron is
assigned to one atom of species C, B, or N, while in Method
2 the prevalence of the chemical neighborhood and atomic
species was taken into account. The trained ANNs provide
a correlation between the different domain shapes and their
sizes and locations within the GNFs, on one hand, and the
magnitude of the energy gaps, on the other hand. Method 1
shows the highest accuracies, while in Method 2 smaller
ANNs are not bound to a fixed system size and the accuracies
are comparable. A statistical analysis reveals the optimal
configurations of the three-layer ANNs, pointing out poten-
tial memory and overtraining effects in large networks. The

0 0.1 0.2 0.3 0.4 0.5
DFT gap (eV)

0

100

200

300

400

500

600

N
um

be
r o

f s
am

pl
es

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Boron nitride fraction

0

1

2

3

4

D
FT

 g
ap

 (e
V

)

y=2.31x2

Figure 2: The reference DFT gap vs. the BN fraction f BN. Depending on the position and shape of the BN rectangular domain, different gap
values are obtained at the same f BN. A fit with a second degree polynomial function shows the statistical increase of Egap with f BN (y = 2 31x2).
The inset shows a histogram of the DFT gap values, focusing on the small energy gaps.

4 Journal of Nanomaterials



DFT gap (eV)

0

1

2

3

4

A
N

N
 g

ap
 (e

V
)

0.01 0.1 1
DFT gap (eV)

0.01

0.1

1

A
N

N
 g

ap
 (e

V
)

0 1 2 3 4

R2 = 99.7%
R2 = 95.0%

(a)

0

1

2

3

4

A
N

N
 g

ap
 (e

V
)

0.01 0.1 1
DFT gap (eV)

0.01

0.1

1

A
N

N
 g

ap
 (e

V
)

R2 = 97.5%
R2 = 88.8%

DFT gap (eV)
0 1 2 3 4

(b)

Figure 3: Predicted ANN gap vs. reference DFT gap, for typical fully connected networks with three layers: (a)Method 1 (166/100/1 neurons)
and (b) Method 2 (20/100/1 neurons). The results corresponding to the training and test sets are represented in blue and red colors,
respectively. The R2 coefficient of determination is calculated for both training and test examples. The inset contains log-log plots showing
a detailed view over the small gap energy range.

5Journal of Nanomaterials



approach based on ANNs is therefore a feasible route,
providing a reduction of the computational effort, while
retaining a high accuracy; therefore, it may be employed

for optimizing the design and selecting candidates of
nanostructured graphene-based materials for specific elec-
tronic properties.
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